

US 20070252496A1

(19) United States

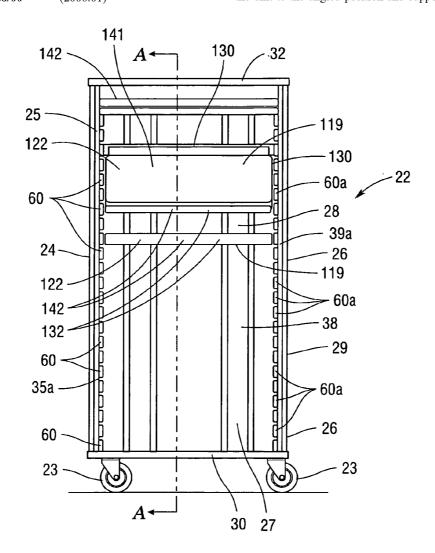
(12) Patent Application Publication (10) Pub. No.: US 2007/0252496 A1 Remondino (43) Pub. Date: Nov. 1, 2007

(54) TRACK SUPPORT SYSTEM AND METHOD

(76) Inventor: Paul Daniel Remondino, Spring Lake, MI (US)

> Correspondence Address: HODGSON RUSS LLP THE GUARANTY BUILDING 140 PEARL STREET SUITE 100 BUFFALO, NY 14202-4040 (US)

(21) Appl. No.: 11/411,592


(22) Filed: Apr. 26, 2006

Publication Classification

(51) **Int. Cl.** *A47B* 88/00 (2006.01)

(57) ABSTRACT

A track support system for installation in a housing having opposed first and second side walls with the housing capable of receiving a storage unit therein, the track system comprising the first side wall having a first component, a second component and a third component arranged in horizontal row. The second side wall having a mirror image first component, a mirror image second component and a mirror image third component arranged in a mirror image horizontal row. The mirror image first components support weight and provide stops for horizontal and angled storage units, the mirror image second components have mirror image angled sliding surfaces for guiding the storage unit to an angled position, and provide stops when the storage unit is horizontal and partly withdrawn from the housing, and mirror image third components have curved surfaces for guiding the unit to the angled position and support weight.

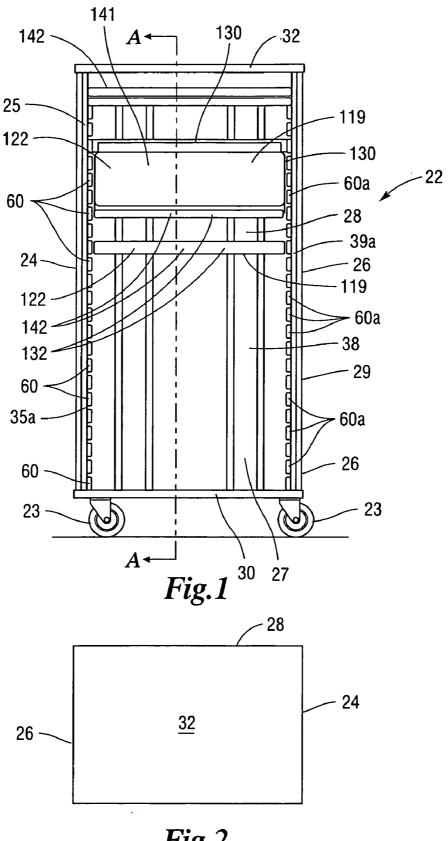


Fig.2

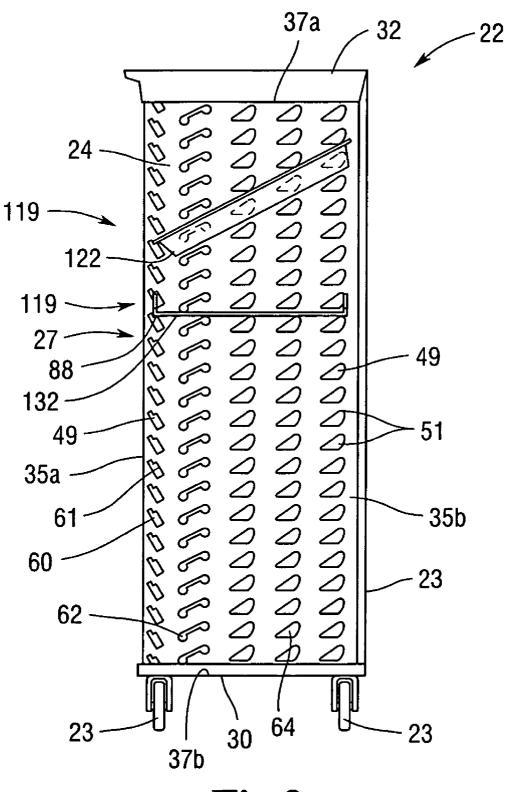
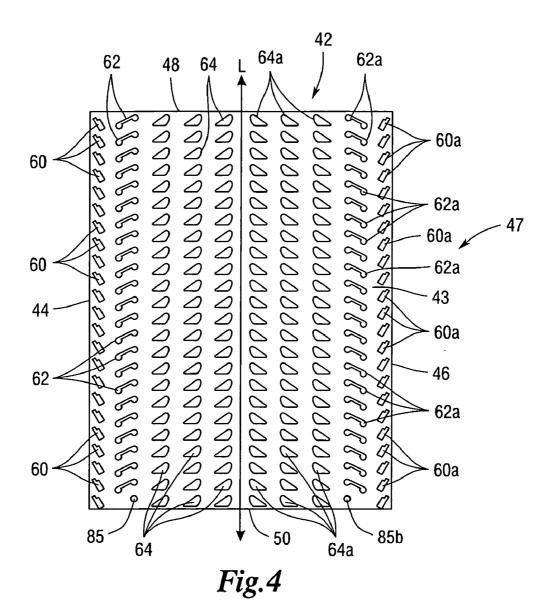



Fig.3

64 64a 62a 42 60a

Fig.5

60 62

50

47

46

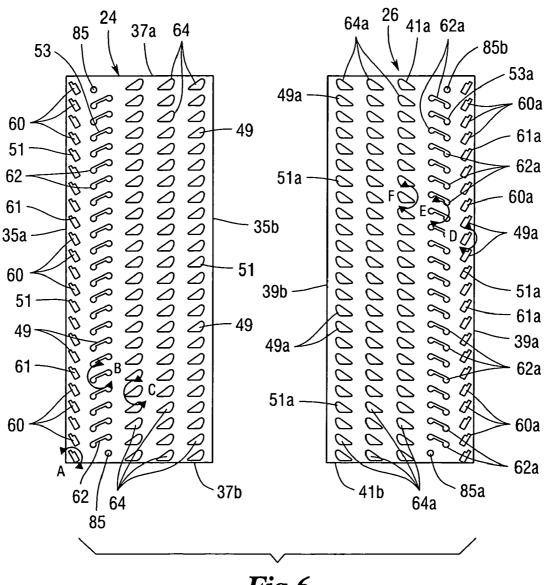


Fig.6

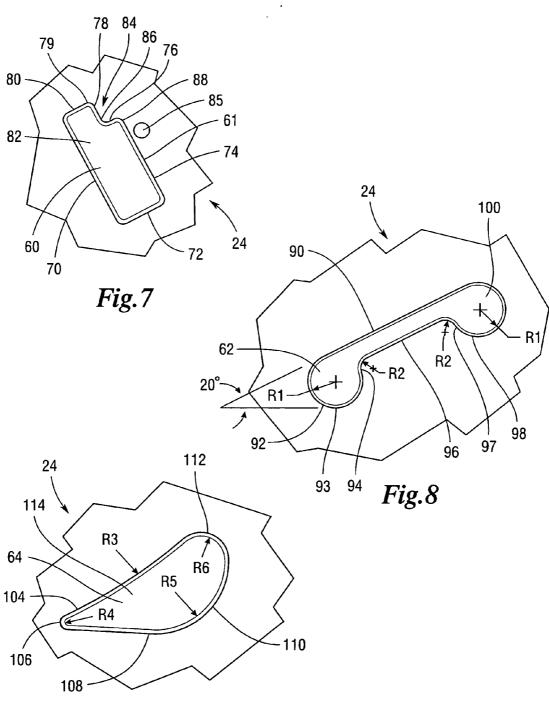


Fig.9

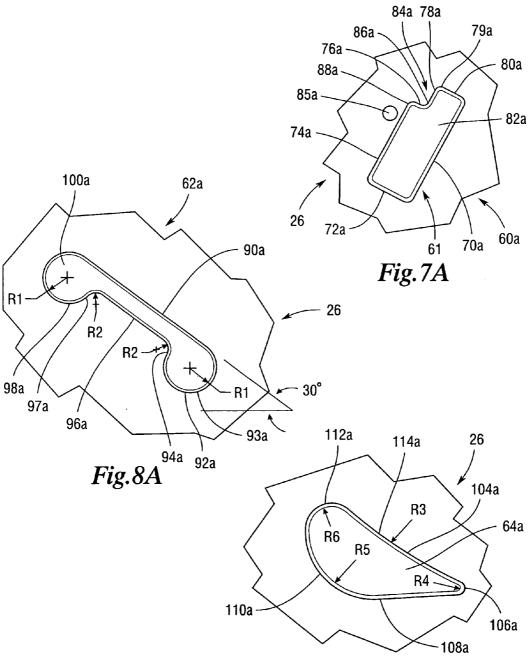
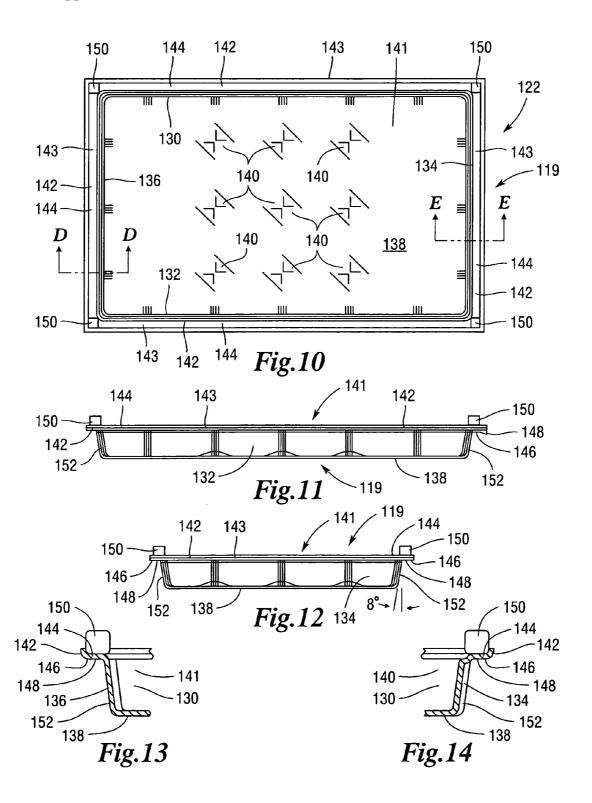
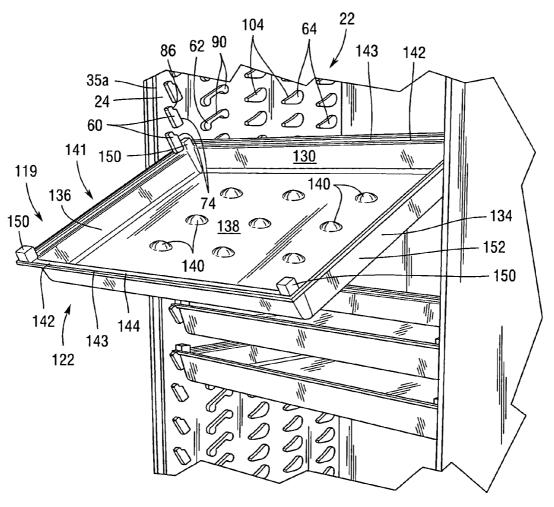
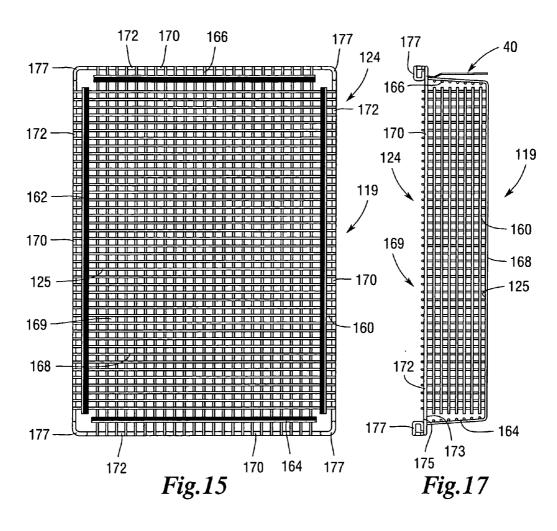
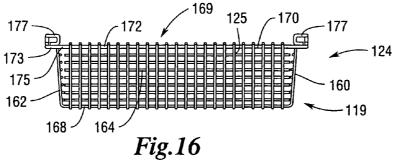
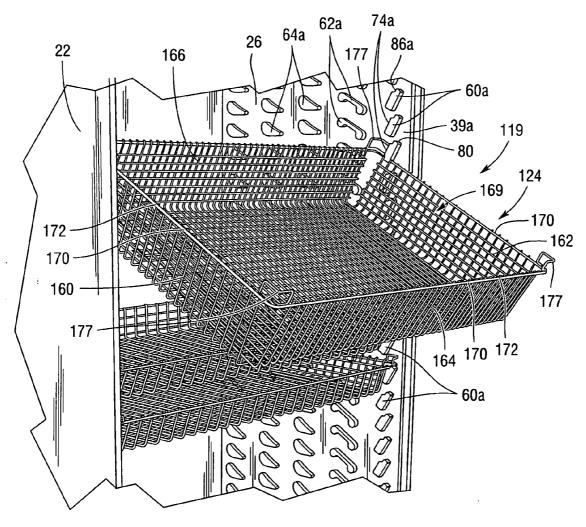



Fig.9A

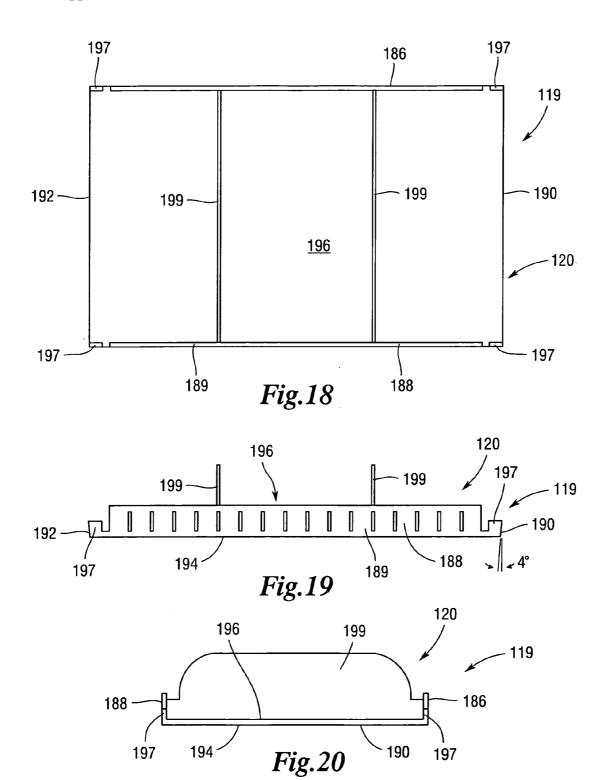

Fig.14A

Fig.17A

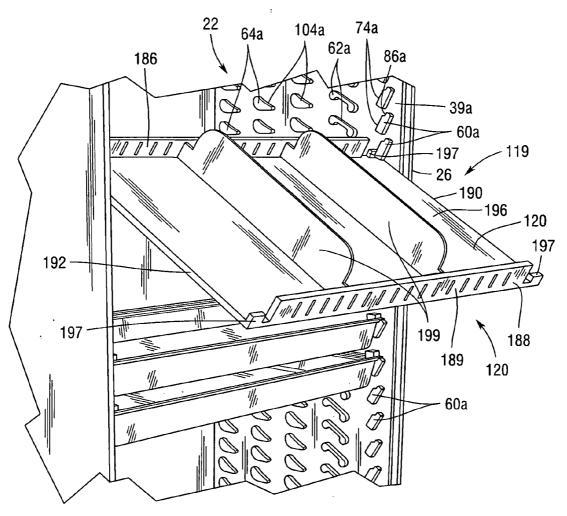


Fig.20A

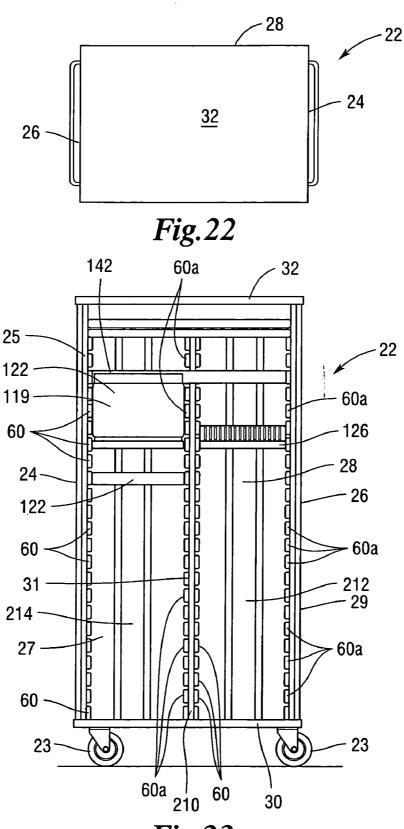



Fig.21

Fig.23

TRACK SUPPORT SYSTEM AND METHOD

FIELD OF THE INVENTION

[0001] The present invention relates to the field of housings and storage systems for use therein.

BACKGROUND

[0002] There are housings, for example cabinets, locking cabinets, and carts that can support a shelf or shelves horizontally so that objects can be placed on the shelf. However, problems can exist with the introduction and/or removal of the shelves from the housing. For example, when shelves are introduced or removed from the housing, they can undesirably wedge or jam against the internal sides of the housing. In addition, there is no reliable way for the shelves to be supported in a housing at an angle, because the shelves supported at an angle have the tendency to slide out of the housing due to gravity forces.

[0003] Thus, there is a need for a system that overcomes the above-described problems. It addition, it would be desirable if such a system were easy to make and use, and have a long working life.

SUMMARY

[0004] The invention is a track support system for installation in a housing having opposed first and second side walls or opposed first and second panels. The housing includes a base wall and an opposed elevated wall, and a back wall, such that the first and second side walls extend between the base and elevated wall. There is an opening in the housing opposite the back wall. Each of opposed first and second side walls has opposed first and second edges and opposed third and fourth edges. The first edges of the first and second side walls are proximal the opening in the housing and extend vertically, the second edges extend along the back wall, the third edges extend along the elevated wall, and the fourth edges extend along the base.

[0005] The first side wall or first panel has a plurality of differently configured elements extending from it that are disposed in a plurality of vertically spaced horizontal rows of elements. The second side wall or second panel has a plurality of differently configured elements extending from it that are disposed in a plurality of vertically spaced horizontal rows of elements. The plurality of vertically spaced horizontal rows of elements form a pattern on the first side wall or first panel, and the plurality of vertically spaced horizontal rows of elements form a pattern on the second side wall or second panel.

[0006] Each of the differently configured elements disposed on the first side wall and the second side wall are opposite one another and are mirror images of one another, and the vertically spaced horizontal rows of elements disposed on the first and second side walls are opposite one another and are mirror images of one another, and the patterns disposed on the first and second side walls are opposite one another and are mirror images of one another. In this arrangement, storage units can be slidably received in the housing horizontally or at an angle supported on the mirror image horizontal rows.

[0007] In a preferred embodiment, each of the horizontal rows of elements disposed on the first side wall or panel

includes a first component for supporting weight and providing a stop when the storage unit is fully introduced into the housing horizontally or at an angle, and for providing an extraction safety stop when the storage unit is partially removed from the housing. Each horizontal row further includes a second component for supporting weight and providing an inclined sliding surface for providing lift when the storage unit is introduced into the housing at an angle. The horizontal row further includes a third component for providing lift when the storage unit is introduced into the housing at an angle and for supporting the weight of the storage unit. In each horizontal row of elements, the first component is proximal the opening in the housing, the third component is proximal the back wall of the housing, and the second component is positioned between the first and third components. In one of the preferred embodiments, the first component on the first side wall or first panel has a rectangular shape, the second component has a telephone shape, and the third component has a tear drop shape. The second side wall has a mirror image first component has a mirror image rectangular shape, the mirror image second component has a mirror image telephone shape, and the mirror image third component has a mirror image tear drop shape.

DETAILED DESCRIPTION OF THE DRAWINGS FIGURES

[0008] FIG. 1 is a front elevational view of a housing having panels.

[0009] FIG. 2 is a top plan view of the housing.

[0010] FIG. 3 is a sectional view of the housing taken along cut line A-A in FIG. 1.

[0011] FIG. 4 is a top plan view of a molded panel.

[0012] FIG. 5 is a front elevational view of the molded panel.

[0013] FIG. 6 is a diagrammatic view of the molded panel sliced in half to form a first panel and a second panel that are mirror images of one another.

[0014] FIG. 7 is an enlarged view, partly in broken lines, of element A shown in FIG. 6, of the first panel showing a first component.

[0015] FIG. 7A is an enlarged view, partly in broken lines, of element D shown in FIG. 6, of the second panel showing a mirror image first component.

[0016] FIG. 8 is an enlarged view, partly in broken lines, of element B shown in FIG. 6, of the first panel showing a second component.

[0017] FIG. 8A is an enlarged view, partly in broken lines, of element E shown in FIG. 6, of the second panel showing a mirror image second component.

[0018] FIG. 9 is an enlarged view, partly in broken lines, of element C shown in FIG. 6, of the first panel showing a third component.

[0019] FIG. 9A is an enlarged view, partly in broken lines, of element F shown in FIG. 6, of the second panel showing a mirror image third component.

[0020] FIG. 10 is a top plan view of the tub.

[0021] FIG. 11 is a front elevational view of the tub.

[0022] FIG. 12 is right side elevational view of the tub.

[0023] FIG. 13 is a sectional view, partly in broken lines, of the tub taken along cut line D-D shown in FIG. 10.

[0024] FIG. 14 is a sectional view of the tub, partly in broken lines, taken along cut line E-E shown in FIG. 10.

[0025] FIG. 14A is a is a perspective view of a tub partly withdrawn from the housing and tub blocking members preventing the tub from sliding out of the housing.

[0026] FIG. 15 is a top plan view of the wire basket.

[0027] FIG. 16 is a front elevational view of the wire basket.

[0028] FIG. 17 is a right side elevational view of the wire basket.

[0029] FIG. 17A is a perspective view of the wire basket partly withdrawn from the housing and wire basket blocking members preventing the wire basket from sliding out of the housing.

[0030] FIG. 18 is a top plan view of the shelf.

[0031] FIG. 19 is a front elevational view of the shelf.

[0032] FIG. 20 is a right side elevational view of the shelf.

[0033] FIG. 20A is a is a perspective view of a shelf partly withdrawn from the housing and the shelf blocking members preventing the shelf from being withdrawn from the housing.

[0034] FIG. 21 is a front perspective view of a second embodiment wherein the housing has two cavities,

[0035] FIG. 22 is a top plan view of the second embodiment.

[0036] FIG. 23 is a front elevation view of the second embodiment.

DESCRIPTION

[0037] The present invention is a track support system 20 and is shown generally in FIGS. 1-20A. FIGS. 1-3 show a housing 22, for example, a cabinet, that has opposed first and second side walls or first and second panels 24, 26, respectively. It is to be understood that the terms sidewalls and panels are used interchangeably throughout this description. The housing 22 also has a back wall 28 that extends between the first side wall 24 and the second side wall 26. The housing 22 also has a base 30 and an opposed elevated wall 32, with the base 30 and the opposed elevated wall 32 each extending between the first side wall 24, the second side wall 26 and the back wall 28. The housing 22 has an opening 27 opposite the back wall 28 and has a cavity 38, as shown in FIG. 1. The housing 22 can be mounted on casters or wheels 23, as shown in FIGS. 1 and 3.

[0038] The first and second side walls 24, 26, respectively, are cut to size from a molded panel 42, as shown in FIG. 4, so that they can be used as the first and second side walls 24, 26, respectively of the housing 22. As will be described presently, the first and second side walls 24, 26, respectively, are adapted to support storage units 119 horizontally and at angles in the housing 22. The storage units 119 include tubs shelves 120, tubs 122 and wire baskets 124, as shown in FIGS. 1, 2, 11-20A. As shown in FIGS. 4 and 5, the molded

panel 42 is generally rectangular shaped and has a first edge 44 and an opposed second edge 46, and a third edge 48 and an opposed fourth edge 50, as shown in FIG. 4. As shown in FIG. 5, the molded panel 42 has a molded side 43 and an opposed joining side 45. In a preferred embodiment, the molded panel 42 is vacuum formed from an Acrylonitrile Butadiene Styrene (hereinafter ABS) material, such that the molded panel 42 is a one piece construction. ABS material and vacuum forming ABS materials well known to those having ordinary skill in the art. The molded panel 42 could, in other embodiments, be made of different plastics and materials. The molded panel 42 has a longitudinal axis, designated L in FIG. 4, and is sliced in half along its longitudinal axis L with a knife or blade(not shown) to thus form the first side wall or panel 24 and the second side wall or panel 26.

[0039] As shown in FIG. 6, the first side wall or panel 24 has opposed first and second edges 35a, 35b, respectively, and opposed third and a fourth edges 37a, 37b. The second side wall or panel 26 has opposed first and second edges 39a, 39b, respectively, and opposed third and fourth edges 41a, 41b. FIG. 6 also shows that the first side wall 24 has a plurality of differently configured elements 49 extending from it that are disposed in a plurality of vertically spaced horizontal rows 51. The second side wall 26 has a plurality of differently configured elements 49a extending from it that are disposed in a plurality of vertically spaced horizontal rows 51 a. The plurality of vertically spaced horizontal rows 51 form a pattern 53 on the first side wall 24, and the plurality of vertically spaced horizontal rows 51a form a pattern 53a on the second side wall 26.

[0040] When the housing 22 is assembled or otherwise brought together, the second edge 35b of the first side wall 24, and the second edge 39b of the second side wall 26, abut against the back wall 28 of the housing 22, as shown in FIGS. 1 and 3. In addition, the first edges 35a, 39a, respectively, of the first and second side walls 24, 26, respectively, are proximal to the opening 27 in the housing 22, as shown in FIG. 1. In addition, the third edges 37a, 41a, respectively, of the first and second side walls 24, 26, respectively, abut against the elevated wall 32, and the fourth edges 37b, 41b, respectively, abut against the base 30. Thus, forming the housing 22, each of the differently configured elements 49, 49a, respectively, disposed on the first side wall and second side wall 24, 26, respectively, are opposite one another, and the differently configured element 49a is a mirror image of the differently configured elements 49. Similarly, the vertically spaced horizontal rows 51, 51a, respectively, disposed on the first and second panels, 34, 36, respectively, are opposite one, and the vertically spaced horizontal rows 51 a are a mirror image of the vertical spaced horizontal rows 51. And, the patterns 53, 53a disposed on the first and second side walls 24, 26, respectively, are opposite one another, and the pattern 53a disposed on the second side wall 26 is a mirror image of the pattern 53 disposed on the first side wall 24. In this arrangement, storage units 119 can be slidably received in the housing horizontally or at an angle, as will be described presently, supported on the opposed mirror image vertically spaced horizontal rows 51, 51a.

[0041] As shown in FIGS. 1, 3 and 6, in one of the preferred embodiments the plurality of differently configured elements 49 that form each of the vertically spaced

horizontal rows 51 on the first side wall 24 includes, moving from left to right as viewed in FIG. 6, a first component or protrusion 60 that is located proximal to the first edge 35a, a second component or protrusion 62 proximal the first component 60, and third components or protrusions 64 proximal the second edge 35b. The first component 60 is thus located at the opening 27 in the housing 22, the third components 64 are located proximal the back wall 28 of the housing 22, and the second component 62 is positioned between the first and third components 60, 64, respectively. Similarly, the plurality of mirror image differently configured elements 49a that form each of the mirror image vertically spaced horizontal rows 51 a on the second side wall 26 include, moving from right to left as viewed in FIG. **6**, a mirror image first component or protrusion 60a that is located adjacent the first edge 39a of the second side wall 26, a mirror image second component or protrusion 62a proximal the first component 60a, and mirror image third components or protrusions 64a proximal the second edge 39b. The mirror image first component 60a is located at the opening 27 in the housing 22, the mirror image third components 64a are located next to the back wall 28 of the housing 22, and the mirror image second component 62a is positioned between the first and third components 60a, 64a, respectively. Thus, the first component and mirror image first component 60,60a, respectively, the second component and mirror image second component 62, 62a, respectively, and the third component and mirror image third component 64,64a, respectively, are disposed opposite one another and are mirror images of one another. It is pointed out that in other embodiments, the molded panel 42 can be embodied with more or fewer than three third components and mirror image third components 64, 64a, respectively, and the molded panel 42 can be cut to size for a particular applica-

[0042] As shown in FIGS. 1, 3, 14A, 17A and 20A, the first component and mirror image first component 60, 60a, respectively, together support the weight of the storage unit 119 and provide for safety stops 86, 86a, respectively, for storage units 119 fully received in the housing 22 horizontally or at an angle, and provide for extraction safety stops and have extraction safety stop surfaces 74, 74a, respectively, for stopping or blocking the complete removal of storage units 119 that are partly pulled out of the housing 22 horizontally or at an angle. In addition, the opposed first component and mirror image first component 60, 60a, respectfully serve as a vertical insertion locator, because the storage unit 119 is introduced into the housing horizontally between the vertically disposed mirror image horizontal rows 51, 51a, and between the opposed first component and mirror image first component 60, 60a, respectively. The opposed second component and mirror image second component 62, 62a, respectively, support the weight of storage units 119 installed horizontally or at an angle, and provide mirror image sliding surfaces 90, 90a, respectively, so that a storage unit 119 can be slidably introduced and removed from the housing 22 at an angle. In addition and as will be described in greater detail presently, the opposed second component 62 has a base stop surface 93 and the mirror image second component 62a has a mirror image base stop surface 93a that engage the storage unit 119 disposed vertically below and block the it from being withdrawn horizontally out of the housing 22. The third component and mirror image third component 64, 64a, respectively supporting the weight of the storage unit 119 and provide lifting surfaces 104, 104a, respectively, that lift and guide the storage units 119 when introduced into the housing 22 at an angle, and they provide mirror image third convex sliding surfaces 112, 112a, respectively, over which the storage unit 119 slides when moved horizontally in and out of the housing 22.

[0043] In one of the preferred embodiments the first component and mirror image first component 60, 60a, respectively, are molded such that the first component 60 has a rectangular shape 61, and the mirror image first component 60a has a mirror image rectangular shape 61a, as shown in FIGS. 4, 7 and 7A. FIGS. 7 and 7A show enlarged views of portions of the first and second side walls or panels 24, 26, respectively, as indicated by arrows A and Al in FIG. 6. It is to be understood that the opposed mirror image rectangular shapes 61, 61 a, respectively, formed in the first and second side walls 24, 26 respectively, have shapes that are mirror images of one another. The mirror image rectangular shapes 61, 61a have mirror image first surfaces 70, 70a, that extend to and makes a right angle bend with mirror image second surfaces 72,72a, respectively, the mirror image second surfaces 72,72a, respectively, extend to and makes a right angle bend with a mirror image extraction safety stop surfaces 74,74a, respectively, and the mirror image extraction stop surfaces 74,74a, respectively, extend to and makes a right angle bends with mirror image fourth surfaces 76,76a, respectively, and the mirror image fourth surfaces 76,76a, extend to and makes a right angle bends with mirror image fifth surfaces 78, 78a, respectively, and the mirror image fifth surface 78.78a, extend to and make right angle bends with mirror image sixth surfaces 80, 80a, respectively, and the mirror image sixth surfaces 80,80a, respectively, extend to and makes a right angle bends with the mirror image first surfaces 70,70a, respectively, all of which extend to mirror image rectangular flat surfaces 82,82a. The mirror image fourth surfaces 76,76a, respectively, and the mirror image fifth surfaces 78,78a, respectively, together form mirror image stops 86, 86a, respectively in the opposed mirror image rectangular shaped components 60,60a. The mirror image third surfaces 74,74a, respectively and mirror image fourth surfaces 76,76a meet at mirror image support corners 88,88a. In addition, the first component 60 has s first component sliding surface 79, and the mirror image first component 60a has a mirror image first component sliding surface 79a, and when storage units 119 are introduced into or slid out of the housing 22, they slide over the first sliding surface 79 and mirror image sliding surface 79a.

[0044] As shown in FIG. 3, when the storage unit 119 is supported in the housing 22 in the horizontal position, a portion of its weight is supported on the opposed mirror image support corners 88,88a, respectively, and as an advantage it cannot inadvertently slide out of the housing 22, because the opposed mirror image fifth surfaces 78,78a. When the storage unit 119 is in the angled position, which can be, for example, about 30° angle and completely positioned inside the housing 22, a portion of its weight is supported on the mirror image fifth surfaces 78,78a, respectively, and the mirror image fourth surfaces 76,76a, respectively, as shown in FIGS. 3, as an advantage the storage unit 119 cannot inadvertently slide out of the housing because mirror images stops 86,86a, respectively, prevent such movement.

[0045] In one of the preferred embodiments the second component 62 is formed to have a telephone shape 63, and the mirror image second component 62a is formed such it has a mirror image telephone shape 63a, as shown in FIGS. 3, 4, 8 and 8A. The second component and mirror image second component 62, 62a, respectively, extend from the first and second side walls or panels 24, 26, respectively. FIGS. 8 and 8A show enlarged views of a portion of the first and second side walls 24, 26, respectively, as indicated by arrows B and B1 in FIG. 6. The second component and mirror image second component 62, 62a, have mirror image sliding surfaces 90, 90a, respectively, that meet with mirror image first convex curved surfaces 92,92a, respectively, having mirror image radii designated R1. The mirror image first convex surfaces 92,92a, respectively, meet with mirror image first concave surfaces 94,94a, having a radii designated R2. The first mirror image concave surfaces 94,94a, respectively, meet with mirror image straight surfaces 96, 96a, respectively, and the straight surfaces 96,96a, respectively, extend to mirror image second concave surfaces 97,97a, respectively, having radii R2. The mirror image second concave surfaces 97, 97a, meet with mirror image second convex surfaces 98,98a, respectively, and have a radii R1, and the second convex surfaces 98, 98a, respectively, meets with the mirror image sliding surfaces 90, 90a. All of the above described surface meet with mirror image telephone shaped flat surfaces 100, 100a, respectively.

[0046] The second component and mirror image second component 62,62a, respectively, support weight and are at the location from which daily use will occur as storage units 119 are slid in and out of the housing 22 horizontally or at an angle. In addition, the second component and mirror image second component 62, 62a, respectively, provide the guide track function for guiding the support units 119 when they are introduced into or removed from the housing 22 horizontally or at an angle. It is pointed out that when the storage unit 119 is introduced into the housing 22 and is slid past the mirror image first components 60,60a, respectively, the user (not shown) has several options. The user can slide the storage unit 119 horizontally into the housing 22 over the mirror image second components 62, 62a, respectively. Or, as shown in FIG. 3, the user can slide the storage unit 119 into the housing 22 such that when the storage unit 119 reaches the mirror image second components 62, 62a, respectively, the user tilts the storage unit 119 toward the base 30 of the housing 22 and continues pushing the storage unit 119 into the housing 22. The storage unit 119 is caused to slide over the mirror image sliding surfaces 90,90, respectively, that are disposed in the mirror image horizontal rows 51,51a, respectively, that disposed vertically above. Thus, the support unit 119 advantageously cannot be mis-fed when introduced into the housing 22 horizontally or at an angle. Also, in one of the preferred embodiments, the mirror image sliding surfaces 90, 90a, respectively, can be, for example, at a 30° angle, as shown in FIGS. 8 and 8A, relative to the vertically spaced horizontal rows 51, 51a.

[0047] In addition, as previously mentioned, the second component 62 has the base stop surface 93 and the mirror image base second component 62a has a mirror image base stop surface 93a, as shown in FIGS. 8 and 8A. The base stop surface 93 and mirror image base stop surface 93a provide for a working level stop when a storage unit 119 is horizontally positioned in the housing 22. In particular, when the storage unit 119 is fully received in the housing 22 and then

pulled out of the housing 22, the base stop surface and mirror image base stop surface 93a each engages the storage unit 119 disposed vertically below. As will be described in greater detail presently, the tub 122 has tub blocking members 150, the wire basket 124 has wire basket blocking members 177, and the shelf 120 has shelf blocking members 199 that extend therefrom. When the tub 122 is pulled from the housing 22, one of the tub blocking members 150 engages the base stop surface 93 on the second component 62 disposed in the horizontal row 51 located vertically above, and one of the tub blocking members 150 engages the mirror image base stop surface 93a on the mirror image second component 62a disposed in the mirror image horizontal row 51 located vertically above. Thus, the tub 122 cannot be slid out of the housing 22 without the user taking addition action. When the tub 122 is horizontally slid out of the housing 22 in this manner, about 80% of the tub 122 is accessible to the user, and the tub hangs downwardly about 20 degree, which advantageously provides the user with easy access to the tub 122. To remove the tub 122, the user must lift the tub 122 about 20 degrees upwardly to move it under the base stop surface 93 on the second component 62 and the mirror image base stop surface 93a on the mirror image second component 62a that are disposed on the horizontal row 51 an mirror image horizontal row 51a vertically above the tub 122. Once the tub 122 is moved out of the housing 22 past the second component 62 and mirror image second component 62a, the tub blocking members 150 contact the extraction safety surface 74 and the mirror image extraction safety stop 74a, disposed on the first component 60 and mirror image first component 60a disposed vertically above. This advantageously prevents or blocks the sliding movement of the tub 122 and thus prevents it from undesirably sliding out of the housing 22. This thus advantageously allows the tub 122 to be partly withdrawn out of the housing so that the user can access items stored in the tub 122, without the risk of the tub 122 sliding out of the housing 22. To remove the tub completely from the housing 22, the user lifts it over the first component 60 and mirror image first component 60.

[0048] In one of the preferred embodiments the third component and mirror image third component 64,64a, respectively, are molded such that the third component 64 has a tear drop shape 65, and the mirror image third component 65a has a mirror image tear drop shape 65a, as shown in FIGS. 4, 6, 9, 9A. FIGS. 9 and 9A show enlarged views of portions of the first side wall or panel 24 and second side wall or panel 26 indicated by arrows C and C1 in FIG. 6. There are three third components and mirror image third components 64, 64a, respectively, but in other embodiments the number could be less or more. The tear drop shape 65 and mirror image tear drop shape 65a have mirror image curved lifting surfaces, for example, curved or concave mirror image lifting surfaces 104, 104a, having radii designated R3. The mirror image concave lifting surfaces 104, 104a, respectively, meet with mirror image first convex surfaces 106,106a, respectively, having radii designated R4, and the mirror image first convex surfaces 106,106a, respectively, meet with mirror image linear surfaces 108,108a, respectively. The mirror image linear surfaces 108,108a, respectively, meet with mirror image second convex surface 110,110a, respectfully, having radii designated R5, and the mirror image second convex surfaces 110,110a, respectfully, meet with mirror image third convex sliding surfaces 112,

112a, respectively, having radii designated R6. The mirror image third convex sliding surfaces 112,112a, respectively, meet with the mirror image concave lifting surfaces 104, 104a, respectively. The above-described surfaces extend to tear drop shaped flat surfaces 114, 114a, respectively.

[0049] The concave lifting surface 104 and mirror image concave lifting surface 104a support and guide the support unit 119 when it is introduced into the housing 22 at an angle, for example, a 30° angle, as described above. The third convex sliding surface 112 and mirror image third convex sliding surface 112a support the weight of the storage unit 119 when it is horizontally located in the housing 22.

[0050] In one of the preferred embodiments the horizontal rows 51, 51a, respectively, are spaced about 2.88 inches from one another, and the concave lifting surfaces 104, 104a, respectively, have about an 8 (eight) inch radius that provides the lift required to slide in and correct the angle as the storage units 119 are introduced into the housing 22 at an angle. In other embodiments, these dimensions can be changed.

[0051] As shown in FIGS. 1, 2, and 11-20A, the storage units 119 include a shelf 120 and tub 122 and basket 124. The tub 122 is generally shown in FIGS. 10-14A. The tub 122 has opposed first and second walls 130, 132, respectively, and opposed third and fourth walls 134, 136, respectively, each of which extends to a tub base 138 having elevated supports 140. The tub 122 thus has a tub cavity 141 defined by the opposed first and second walls 130, 132, respectively, and opposed third and fourth walls 134, 136, respectively, and tub base 138. A surrounding lip 142 having a first lip surface 144 and an opposed second lip surface 146 extends around the periphery of the tub 122, and extends in a direction away from the tub cavity 141. Tub blocking members 150 extends from the first lip surface 144 where straight portions 143 of the surrounding lip 142 meet proximal the corners of the tub 122, as shown in FIG. 10-14A. The tub blocking members 150 are for blocking the movement of the tub 122 when it is partly withdrawn from the housing 22. This advantageously prevents the tub 122 from uncontrollably sliding out of the housing 22 when it is pulled out of the housing 22 to retrieve an object stored therein. In particular, as shown in FIG. 14A, when the tub 122 is partly withdrawn from the housing 22, the tub blocking members 150 contact the first component 60 and mirror image first component 60a, respectively, disposed vertically above the tub 122, and in particular contact the extraction stop surface 74 and the mirror image extraction safety stop 74a, as shown. This advantageously prevents the entire tub 122 from undesirably sliding out of the housing 122.

[0052] In addition, each of the opposed first and second walls 130, 132, respectively, and opposed third and fourth walls 134, 136, respectively, advantageously has a taper 152. The taper 152 extends in a direction toward the tub base 138, and in one the preferred embodiments the taper 152 can be about 8°. The taper 152 advantageously allows for the tub 122 to be slid in out of the housing 22 without interference with vertically disposed horizontal rows 51,51a, respectively.

[0053] It is pointed out that when the tub 122 is slid into the housing 22 at an angle, as shown in FIGS. 1, 3 and 21, the surrounding support lip 142 of the tub 122 abuts against

the stop 86 and mirror image stop 86a, to thus advantageously prevent the tub 122 from sliding out of the housing 22. The tub 122 can be removed from the housing 22 by lifting the tub 122 over the first component 60 and mirror image first component 60a and sliding the tub 122 out of the housing 22. In addition, the second component 62 and mirror image second component 62a, and the third component 64, and mirror image third component 64a, respectively, advantageously guide the tub 122, and prevent the tub 122 from jamming or mis-feeding as the tub 122 is introduced or removed from the housing 22. The tub 122 can comprise plastic, metal and other suitable materials.

[0054] The wire basket 124, shown generally in FIGS. 15-17A, is formed from wires 125. The wires 125 can be plastic, metal or other suitable material. The wire basket 124 has an opposed first and second wire walls 160, 162, respectively, and opposed third and fourth wire walls 164, 166, respectively, each of which extends to a wire base 168. The wire basket 124 thus has a wire basket cavity 169 defined by the opposed first and second wire walls 160, 162, respectively, and opposed third and fourth wire walls 164, 166, respectively, and wire basket base 168. A surrounding wire lip 170 having a first wire lip surface 172 and an opposed second wire lip surface 173 having a wire lip support surface 175 extends around the periphery of the wire basket 124. The surrounding wire lip 170 extends in a direction away from the wire basket cavity 169. Wire basket blocking members 177 extend from the surrounding wire lip 170 and is for preventing the complete withdrawal of the wire basket 124 from the housing 22 in the same manner as described above in connection with the tub 122. In particular the wire basket blocking members 177 contact the first component 60 and mirror image first component 60a, on the horizontal row 51, 51 a, respectively, disposed vertically above the wire basket 124, and in particular contact the extraction stop surfaces 74, and the mirror image extraction safety stop 74a, as shown in FIG. 17A. This advantageously prevents the wire basket 124 from sliding out of the housing 22 when in the partly open position. In addition, each of the opposed first and second wire walls 160, 162, respectively, and opposed third and fourth wire walls 164, 166, respectively, advantageously has a taper 180. The taper 180 extends in a direction toward the wire base 168, and in one the preferred embodiments the taper 180 can be about 4°, as shown in FIG. 17. The 180 taper advantageously allows for the wire basket 124 to be slid in out of the housing 122 without interference from vertically disposed horizontal rows 51, 51a, respectively.

[0055] It is pointed out that when the wire basket 124 is slid into the housing 22 at an angle as shown in FIG. 21, the surrounding wire support lip 170 abuts against the stops 86, 86a, formed in the first components 60,60a, respectively, to thus advantageously prevent the wire basket 124 from sliding out of the housing 22. The wire basket 124 can be removed from the housing 22 by lifting it over the first components 60,60a, respectively, and sliding it out of the housing 22.

[0056] The shelf 120 shown in FIGS. 1 and 3, 18-20A can be similarly slid into the housing 22 horizontally or at an angle, for example, a 30° angle. As shown in FIGS. 18-20A, the shelf 120 has a shelf support surface 194 and an opposed shelf object surface 196. First and second opposed shelf sides 186,188, respectively, and third and fourth opposed

shelf sides, 190, 192, respectively, extend between the support shelf support surface 194 and shelf object surface 196. The shelf has a slotted wall 189 such that the dividers 199 can be removably repositioned on the shelf 120. A shelf blocking member 199 extends from the shelf 120 corners and is for preventing the complete withdrawal of the shelf 120 from the housing 22 in the same manner as described above in connection with the tub 122. In particular, as shown in FIG. 20A, the shelf blocking members 199 contact the first component 60 and mirror image first component 60a, on the horizontal row 51, 51a, respectively, disposed vertically above the shelf 120, and in particular contact the extraction stop surface 74 and mirror image extraction stop surface 74a. This advantageously prevents the shelf 120 from inadvertently sliding out of the housing 22 when in the partly open position. The shelf 124 can be introduced and removed from the housing 122 horizontally or at an angle. In addition, the shelf 120 has a taper that can be about 4° which facilitates introduction and removal of the shelf 120. In other embodiments the shelf 120 can be made without a taper 194. The shelf 120 can be introduced into the housing 22 by lifting the shelf 120 over the first components 60 and mirror image first component 60a, and sliding the shelf 120 into the housing 122 horizontally or at an angle of, for example, 30° angle, and can be supported horizontally and at angles in the same manner as describe above in connection with the tub 122. As with the tub 122 and wire basket 124, the first component and mirror image first component 60,60a, the second component and mirror image second component 62,62a, respectively, and the third component and mirror image third component 64,64a, respectively, guide the shelf 120 and advantageously prevent it from jamming or misfeeding when introduced or removed from the housing 22 horizontally or at an angle.

[0057] In use, taking for example the tub 122, the tub 122 is moved horizontally between opposed mirror image first components 60, 60a, respectively, and slid into the housing over the first component 60 and mirror image 60a first component. As insertion continues, the tub blocking members 150 extending from the tub will contact the second component 62 and mirror image second component 62 disposed in the horizontal row 51 and mirror image horizontal row 51a disposed vertically above. The user can push downwardly on the tub 122 such that the tub 122 slides up the second component 62 and the mirror image second component 62a disposed vertically above, and the tub 122 is thus moved to the angled position. The tub 122 then moves upwardly upon contacting the third component 64 and concave lifting surface 104 and mirror image third component 64a and mirror image concave lifting surface 104a. Once fully inserted the tub 122 comes to rest, and abuts against the stop 86 and mirror image stop 86a. If, on the other hand, during introduction the user lifts up on the tub 122 when it contacts the second component 62 and mirror image second component 62a disposed vertically above, then the blocking members 150 will move under the base stop surface 93 and mirror image base stop surface 93a disposed vertically above, such that the tub 122 can be moved into the housing 22 horizontally. Thus, the base stop surface 93 and mirror image base stop surface 93a provide for a working level stop when a storage unit 119 is horizontally positioned in the housing 22. It is to be understood that the wire basket 124 and shelf 120 are introduced into the housing horizontally or vertically in a like manner.

[0058] As described above, the tub 122 has tub blocking members 150, the wire basket 124 has wire basket blocking members 177, and the shelf 120 has shelf blocking members 199. Taking the tub 122 as an example, when the tub 122 is horizontally located in the housing 22 and pulled from the housing 22, the tub blocking members 150 engage the base stop surface 93 on the second component 62 and the mirror image base stop surface 93a on the mirror image second component 62a that are disposed on the horizontal rows 51 and mirror image horizontal row 5la spaced vertically above, such that the tub 122 cannot be slid out of the housing 22 without the user taking addition action. When the tub 122 is horizontally slid out of the housing 22 to this stopping location in this manner, about 80% of the tub 122 is accessible to the user, and the tub hangs downwardly at about a 20 degree angle, which advantageously provides the user with easy access to the tub 122 contents. This thus advantageously allows the tub 122 to be partly withdrawn out of the housing so that the user can access items stored in the tub 122, without the risk of the tub 122 sliding out of the housing 22. To further remove the tub 122, the user must lift the tub 122 about 20 degrees upwardly to move the blocking members 150 under the base stop surface 93 and the mirror image base stop surface 93a. Thereafter, the user can continue to pull the tub 122 out of the housing 22. In this connection, the blocking members 150 contact the first component 60 and mirror image first component 60a, respectively, disposed vertically above the tub 122, and in particular contact the extraction stop surface 74 and the mirror image extraction stop 74a, which advantageously provides a safety stop such that the tub 22 is prevented from undesirably or uncontrollably sliding completely out of the housing 22. To fully remove the tub, the user need only lift the tub 122 upwardly such that it is horizontal and pull it outward from the housing 22. Similarly, to remove a tub 122 that is at an angle in the housing 22, the user lifts the tub out of the stop 86 and mirror image stop 86a, until the blocking members 150 engage the first component 60 and mirror image first component 60a disposed vertically above. The tub 122 can be removed from the housing 22 by lifting it such that it is horizontal and sliding it out of the housing 22. It is pointed out that the mirror image first and second components 60, 60a, respectively, provide the working level stop in the 30 degree mode. The tub blocking members 150 engage the mirror image extraction stop surfaces 74,74a, respectively, disposed on the mirror image first components disposed vertically above. The tub 150 thus pivots on the first component 60 and mirror image first component 60a disposed vertically below. To remove the tub 122, the user then tilts the tub 122 until it is horizontal and slides it out of the housing 22.

[0059] In addition, it is to be understood that the shelf 120 and wire basket 124 can be introduced into the housing 22 horizontally and removed from the housing 22 horizontally in the same manner as described above in connection with the horizontal introduction and removal of the tub 122 from the housing 22, and can be introduced into the housing 22 at an angle and removed from the housing 22 from an angle position in the same manner as described above in connection the angled introduction and removal of the tub 122 from the housing 22.

[0060] It is pointed out that the third component 64 has a third convex sliding surface 112 and the mirror image third component 64a has a third convex sliding surface 112a each

supports the weight of the storage units 119 in the horizontal mode and provides for mirror image convex sliding surfaces 112, 112*a* in the horizontal mode

[0061] In addition, the tubs 122 and wire baskets 124 are two dimensional shapes, and in one of the preferred embodiments, the tub 122 and basket 124 has a width of 400 millimeters and a depth of 600 millimeters. The system can advantageously can be used in combination with two dimensionally different shapes and their multiples. The first side wall 24 and the second side wall 26 can be sized accordingly.

[0062] A method is of making a shelving system is also provided including forming a molded panel 42 from an ABS material, providing the molded panel with horizontal rows of elements and slicing the molded panel in a half along its longitudinal axis to make the first side wall 24 and the second side wall 26 that is a mirror image thereof, and using the first and second side walls 24, 26 to form a housing 22.

[0063] As shown in FIGS. 21-23 in a second embodiment an internal divider panel 210 that divides the interior of the housing 22 in to a first cavity 212 and a second cavity 214. This requires the use of additional first and second panels 22, 24, respectively. As shown, first and second side walls 24, 26, are mounted to opposed sides of the divider panel 210. It is to be understood that the reference numbers used in FIGS. 21-23 that are the same as those used above in connection with the first embodiment are not described herein again.

[0064] In addition, in another embodiment a standard housing (not shown) could be provided having a base, a back wall, an elevated wall and first and second opposed outer walls having interior surfaces, wherein the elevated wall is opposite the base, and wherein the back wall extends between the first and second opposed outer walls.

[0065] The standard housing has a standard housing opening opposite the back wall. Such a standard housing having this basic structure is well known to those having ordinary skill in the art. The first side or panel 24 can be joined to the interior surface of the first outer wall with, for example, screws, and the second side or second panel 26 can be joined to the interior surface of the second outer wall with, for example, screws, such that the first second and third components, 60, 62, 64, respectively, and mirror image first, second, and third components 60a, 62a, 64a, are opposite one another and are otherwise arrange in the standard housing exactly the same as described above in connection with the first embodiment. That is, the first component and mirror image component 60, 60a, respectively, are proximal the standard housing opening. For the purpose of joining, the first and second side or panels 24, 26, respectively, can be provide with mirror image dimples 85, 85a, respectively, through which the screw (not shown) can be passed, as shown in FIG. 6. Once the first and second side walls or panels 24, 26, respectively, are installed to the opposed outer walls, storage units 119 can introduced and removed from the housing in the same manner as described above. Thus, the scope of the present invention is great.

[0066] Thus, the present invention provides superior solution that ends the problem of drawers that wedge or jam. It also advantageously provides a way for storage units to be partly withdrawn from a housing, for example, at an angle, and eliminates the risk that they can inadvertently slide out

of the housing. The present invention also provides for a superior way to support storage units at an angle, feed storage unit into a housing at an angle, and remove storage units from an angled position.

[0067] In other embodiments, the housing 22 can also be embodied as a locking cabinet with doors and a lock.

[0068] It will be appreciated by those skilled in the art that while a track support system and method has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and other embodiments, examples, uses, and modifications and departures from the described embodiments, examples, and uses may be made without departing from the track support system and method. All of these embodiments are intended to be within the scope and spirit of the present track support system and method.

What is claimed:

- 1. A track support system for installation in a housing having opposed first and second side walls with the housing capable of receiving a storage unit therein, the rack system comprising:
 - the first side wall and having a first component, a second component and a third component arranged in horizontal row.
 - the second side wall having a mirror image first component, a mirror image second component and a mirror image third component arranged in a mirror image horizontal row, and
 - wherein the first component provides a stop and the and mirror image first component provides a mirror image stop for preventing the storage unit from inadvertently sliding out of the housing when housed therein.
- 2. The track support system according to claim 1 wherein the first side has a plurality of vertically spaced horizontal rows of components and the second side has a mirror image plurality of vertically spaced horizontal rows of components and wherein the storage unit is capable of being introduced into the housing between the mirror image vertically spaced horizontal rows of components.
- 3. The track support system according to claim 1 wherein the stop and the mirror image stop are for preventing the storage unit from sliding out of the housing when the storage unit is slidably received in the housing at an angle.
- **4**. The track support system according to claim 2 wherein the vertically spaced horizontal rows disposed on the first side form a pattern and wherein the mirror image plurality of vertically spaced horizontal rows disposed on the second side form a mirror image pattern.
- 5. The track support system according to claim 3 wherein the first component has an extraction safety stop surface and the mirror image first component has mirror image extraction safety stop surface for engaging the storage unit disposed vertically below to prevent the storage unit disposed vertically below from inadvertently sliding completely out of the housing when the storage unit disposed vertically below is partly withdrawn from the housing.
- **6**. The track support system according to claim 5 wherein the storage unit disposed vertically below has blocking members for engaging the extraction safety stop surface and the mirror image extraction safety stop surface.

- 7. The track support system according to claim 1 wherein the second component has an angled sliding surface and the mirror image second component has a mirror image angled sliding surface and wherein the sliding surface and mirror image sliding surface are for supporting weight and for guiding the storage unit when the storage unit is introduced into the housing at an angle and wherein the second component has a base stop surface and mirror image second component has a mirror base stop surface and wherein the base stop surface and mirror image base stop surface are for stopping the horizontal movement of a storage unit disposed vertically below.
- 8. The track support system according to claim 1 wherein the third component has a concave surface and the mirror image third component has a mirror image concave surface and wherein the concave surface and mirror image concave surface are for allowing the lifting of the storage unit to an angled position when the storage unit is introduced into the housing at an angle and further wherein the third component has a convex sliding surface and a mirror image third component has a mirror image convex sliding surface for allowing the horizontal sliding movement of the storage unit.
- **9**. The track support system according to claim 8 wherein the third component and the mirror image third component are for supporting weight when the storage unit is introduced into the housing horizontally and when the storage unit is introduced into the housing at an angle.
- 10. The track support system according the claim 8 wherein first component has an extraction safety stop surface and the mirror image first component has a mirror image extraction safety stop surface for preventing the inadvertent withdrawal of the storage unit disposed vertically below from the housing.
- 11. The track support system according to claim 10 wherein the storage unit includes a tub having tub blocking members, a shelf having shelf blocking members and a wire basket having wire basket blocking members, and wherein the tub blocking members, wire basket blocking members and shelf blocking members are for engaging the extraction safety stop surface and the mirror image extraction safety stop surface disposed vertically above such that the shelf, tub and wire basket can be partly withdrawn from the housing and maintained in the partly withdrawn position.
- 12. The track support system according to claim 1 wherein the first component has a rectangular shape formed with the stop and the mirror image first component has a mirror image rectangular shape formed with the mirror image stop, and the second component has a telephone shape having a sliding surface and the mirror image second component has a mirror image telephone shape having a mirror image sliding surface, and the third component has a tear drop shape having a concave lifting surface and the mirror image third component has a mirror image tear drop shape having a mirror image concave lifting surface.
- 13. The track support system according to claim 7 wherein the angled surface is at about a 30° angle.
- 14. A method of providing a track support system for installation in a housing having opposed first and second side walls with the housing capable of receiving a storage unit therein, the method comprising:
 - providing the first side wall with a first component, a second component and a third component and arrang-

- ing the first component second component and third component in a horizontal row,
- providing the second side wall with a mirror image first component, a mirror image second component and a mirror image third component and arranging the first component, the second component and the third component in a mirror image horizontal row, and
- providing the first component with a stop and providing the mirror image first component with a stop for preventing the storage unit from inadvertently sliding out of the housing when housed therein.
- 15. The method according to claim 14 further comprising providing the first side with a plurality of vertically spaced horizontal rows of components and providing the second side with a mirror image plurality of vertically spaced horizontal rows of components and wherein the storage unit is capable of being introduced into the housing between the mirror image vertically spaced horizontal rows of components.
- 16. The method according to claim 15 further comprising providing the first component with an extraction safety stop surface and providing the mirror image first component with a mirror image extraction safety stop surface for engaging the storage unit disposed vertically below to prevent the storage unit disposed vertically below from inadvertently sliding completely out of the housing when the storage unit disposed vertically below is partly withdrawn from the housing and providing the storage unit disposed vertically below with blocking members for engaging the extraction safety stop surface and the mirror image extraction safety stop surface.
- 17. The method according to claim 16 further comprising providing the second component with an angled sliding surface and the mirror image second component with a mirror image angled sliding surface and wherein the sliding surface and mirror image sliding surface are for supporting weight and for guiding the storage unit when the storage unit is introduced into the housing at an angle and providing the second component with a base stop surface and providing the mirror image second component with a base stop surface and wherein the base stop surface and mirror image base stop surface are for engaging the storage unit disposed vertically below.
- 18. The method according to claim 17 further comprising providing the third component with a concave surface and the mirror image third component has a mirror image concave surface and wherein the concave surface and mirror image concave surface are for lifting the storage unit to an angled position when the storage unit is introduced into the housing at an angle and wherein the third component and the mirror image third component are for supporting weight when the storage unit is introduced into the housing horizontally and when the storage unit is introduced into the housing at an angle.
- 19. Method according to claim 14 comprising providing the first component with a rectangular shape and having the stop and providing the mirror image first component with a mirror image rectangular shape formed with the mirror image stop, and providing the second component with a telephone shape having a sliding surface and providing the mirror image second component has a mirror image telephone shape having a mirror image sliding surface, and providing the third component with a tear drop shape having

a concave lifting surface and providing the mirror image third-component with a tear drop shape having a mirror image concave lifting surface.

20. A track support system for supporting a storage unit and for use in a standard housing having first and second outer walls having interior surfaces, a back wall, a base and an opposed elevated wall, the track system comprising:

- a first panel joined to the interior surface of the outer wall and having a first component, a second component and a third component arranged in horizontal row,
- a second panel joined to the interior surface of the second outer wall and having a mirror image first component, a mirror image second component and a mirror image third component arranged in a mirror image horizontal row and

wherein the first component provides a stop and the and mirror image first component provides a mirror image stop for preventing the storage unit from inadvertently sliding out of the housing when housed therein, and further wherein the second component and mirror image second component each provide mirror image angled sliding surfaces that allow for angled sliding of a storage unit and having mirror image base stop surfaces for blocking horizontal movement of the support unit disposed vertically below and wherein the third component and mirror image third component have mirror image curved surfaces, such that the storage unit can be introduced into the standard housing horizontally and at an angle, and when introduced at an angle the storage unit is supported on the mirror image sliding surfaces, and wherein the first panel and the second pane comprise plastic.

* * * * *