(19) United States
${ }^{(12)}$ Reissued Patent Perlmutter
(10) Patent Number: US RE46,243 E
(45) Date of Reissued Patent:

Dec. 20, 2016
(54) IN-BAND SIGNALING FOR ROUTING

Applicant: Genesys Telcommunications Laboratories, Inc., Daly City, CA (US)

Inventor: S. Michael Perlmutter, San Francisco, CA (US)

Assignee: Genesys Telecommunications Laboratories, Inc., Daly City, CA (US)
(21) Appl. No.: $\mathbf{1 4} / \mathbf{5 6 5 , 3 0 9}$

Filed: Dec. 9, 2014
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: $\mathbf{6 , 1 0 4 , 8 0 2}$

Issued: Aug. 15, 2000
Appl. No.: Filed:

08/972,772
Nov. 18, 1997
(51) Int. Cl.

H04Q 3/00
H04Q 3/64
(2006.01)
(2006.01)
(Continued)
(52) U.S. Cl.

СРС H04L 67/306 (2013.01); H04L 65/4007 (2013.01); H04M 3/51 (2013.01); H04M 3/5183 (2013.01); H04M 3/5191 (2013.01); H04M 3/523 (2013.01); H04M 3/5237 (2013.01); H04M 7/006 (2013.01); H04Q 3/0029 (2013.01); H04Q 3/0045 (2013.01); H04Q 3/64 (2013.01); H04Q 3/66 (2013.01);

H04M 3/42042 (2013.01); H04M 3/42059 (2013.01); H04M 3/42102 (2013.01); H04M 3/42323 (2013.01); H04M 3/5166 (2013.01); (Continued)
(58) Field of Classification Search

CPC H04L 67/306; H04L 65/4007; H04M 3/51;

H04M 3/5237; H04M 7/006; H04M 3/5191; H04M 3/523; H04M
3/5183; H04Q 3/0029; H04Q 3/66; H04Q
3/64; H04Q 3/0045
USPC \qquad 379/220.01, 221.09, 265.02
See application file for complete search history.

References Cited
 U.S. PATENT DOCUMENTS

| 3,914,559 A | $10 / 1975$ | Knollman |
| ---: | :--- | ---: | :--- |
| 4,048,452 A | $9 / 1977$ | Oehring et al. |
| | (Continued) | |

FOREIGN PATENT DOCUMENTS

270486	$7 / 2004$
281039	$11 / 2004$

(Continued)

OTHER PUBLICATIONS

"Competitive Gateway Product," Nikkei Communications, Japan, No. 257, Nov. 1997, 18 pages.
(Continued)
Primary Examiner - Ovidio Escalante
(74) Attorney, Agent, or Firm - Lewis Roca Rothgerber Christie LLP

(57)

ABSTRACT

Telephone call routing in networks is provided by forwarding routing data other than origination identification and destination identification in-band with calls, and using the in-band data at call destinations to do further routing. In some embodiments negotiation is accomplished between routers at different points in the network based on the in-band routing data. Practice of the invention extends to intelligent telephony networks and as well to simulated telephone calls between computers in wide area data networks, such as the Internet and Intranets.

8 Claims, 2 Drawing Sheets

Int. Cl.	
H04M 3/50	(2006.01)
H04M 7/00	(2006.01)
H04M 3/51	(2006.01)
H04M 3/523	(2006.01)
H04M 3/56	(2006.01)
H04M 3/42	(2006.01)
H04M 3/58	(2006.01)
H04L 29/08	(2006.01)
H04L 29/06	(2006.01)
H04Q 3/66	(2006.01)
H04M 7/12	(2006.01)
H04Q 3/72	(2006.01)

U.

CPC \qquad H04M 3/5233 (2013.01); H04M 3/56 (2013.01); H04M 3/58 (2013.01); H04M 7/12 (2013.01); H04M 2203/551 (2013.01); H04M 2207/12 (2013.01); H04M 2242/22 (2013.01); H04Q 3/72 (2013.01); H04Q 2213/1322 (2013.01); H04Q 2213/13034 (2013.01); H04Q 2213/13072 (2013.01); H04Q 2213/13093 (2013.01); H04Q 2213/13103 (2013.01); H04Q 2213/13106 (2013.01); H04Q 2213/13141 (2013.01); H04Q 2213/13164 (2013.01); H04Q 2213/13174 (2013.01); H04Q 2213/13204 (2013.01); H04Q 2213/13345 (2013.01); H04Q 2213/13349 (2013.01); H04Q 2213/13389
(2013.01)

References Cited

U.S. PATENT DOCUMENTS

4,056,683 A	$11 / 1977$	Suehiro	
4,290,141 A	$9 / 1981$	Anderson et al.	
4,320,256 A	$3 / 1982$	Freeman	
4,345,315 A	$8 / 1982$	Cadotte et al.	
4,355,207 A	$10 / 1982$	Curtin	
4,355,372 A	$10 / 1982$	Johnson et al.	
4,400,587 A	$8 / 1983$	Taylor et al.	
4,439,636 A	$3 / 1984$	Newkirk et al.	
4,451,700 A	$5 / 1984$	Kempner et al.	
4,489,438 A	$12 / 1984$	Hughes	
4,512,011 A	$4 / 1985$	Turner	
4,517,410 A	$5 / 1985$	Williams et al.	
4,521,643 A	$6 / 1985$	Dupuis et al.	
4,523,055 A	$6 / 1985$	Hohl et al.	
4,528,643 A	$7 / 1985$	Freeny, Jr.	
4,539,435 A	$9 / 1985$	Eckmann	
4,555,903 A	$12 / 1985$	Heaton	
4,558,180 A	$12 / 1985$	Scordo	
4,559,415 A	$12 / 1985$	Bernard et al.	
4,566,030 A	$1 / 1986$	Nickerson et al.	
4,567,323 A	$1 / 1986$	Lottes et al.	
4,577,062 A	$3 / 1986$	Hilleary et al.	
4,577,067 A	$3 / 1986$	Levy et al.	
4,578,700 A	$3 / 1986$	Roberts et al.	
4,580,012 A	$4 / 1986$	Matthews et al.	
4,584,602 A	$4 / 1986$	Nakagawa	
4,587,379 A	$5 / 1986$	Masuda	
4,598,367 A	$7 / 1986$	DeFrancesco et al.	
4,603,232 A	$7 / 1986$	Kurland et al.	
4,611,094 A	$9 / 1986$	Asmuth et al.	
4,625,276 A	$11 / 1986$	Benton et al.	
4,630,200 A	$12 / 1986$	Ohmae et al.	
4,630,201 A	$12 / 1986$	White	
4,634,809 A	$1 / 1987$	Paulsson et al.	
4,649,563 A	$3 / 1987$	Riskin	
4,654,482 A	$3 / 1987$	DeAngelis	
4,667,287 A	$5 / 1987$	Allen et al.	
4,674,044 A	$6 / 1987$	Kalmus et al.	
4,679,189 A	$7 / 1987$	Olson et al.	
4,			

4,696,029	A	9/1987	Cohen
4,697,282	A	9/1987	Winter et al.
4,737,983	A	4/1988	Frauenthal et al.
4,756,020	A	7/1988	Fodale
4,757,267	A	7/1988	Riskin
4,763,191	A	8/1988	Gordon et al.
4,763,317	A	8/1988	Lehman et al.
4,763,353	A	8/1988	Canale et al.
4,771,425	A	9/1988	Baran et al.
4,785,408	A	11/1988	Britton et al.
4,788,715	A	11/1988	Lee
4,811,382	A	3/1989	Sleevi
4,812,843	A	3/1989	Champion, III et al.
4,829,563	A	5/1989	Crockett et al.
4,831,518	A	5/1989	Yu et al.
4,852,001	A	7/1989	Tsushima et al.
4,866,756	A	9/1989	Crane et al.
4,881,261	A	11/1989	Oliphant et al.
4,893,328	A	1/1990	Peacock
4,896,345	A	1/1990	Thorne
4,897,866	A	1/1990	Majmudar et al.
4,908,850	A	3/1990	Masson et al.
4,924,488	A	5/1990	Kosich
4,943,995	A	7/1990	Daudelin et al.
4,953,204	A	8/1990	Cuschleg, Jr. et al. 379/266
4,972,461	A	11/1990	Brown et al.
4,994,985	A	2/1991	Cree et al.
5,001,710	A	3/1991	Gawrys et al.
5,008,930	A	4/1991	Gawrys et al.
5,017,917	A	5/1991	Fisher et al.
5,020,095	A	5/1991	Morganstein et al.
5,036,535	A	7/1991	Gechter et al.
5,058,152	A	10/1991	Solomon et al.
5,062,103	A	10/1991	Davidson et al. 379/265
5,073,890	A	12/1991	Danielsen
5,095,504	A	3/1992	Nishikawa et al.
5,117,225	A	5/1992	Wang
5,136,633	A	8/1992	Tejada et al.
5,155,761	A	10/1992	Hammond
5,164,983	A	11/1992	Brown et al.
5,168,515	A	12/1992	Gechter et al.
5,175,800	A	12/1992	Galis et al.
5,179,589	A	1/1993	Syu
5,181,236	A	1/1993	LaVallee et al.
5,181,239	A	1/1993	Jolissaint
5,185,782	A	2/1993	Srinivasan
5,202,828	A	4/1993	Vertelney et al.
5,206,903	A	4/1993	Kohler et al.
5,208,745	A	5/1993	Quentin et al.
5,212,727	A	5/1993	Ramkumar
5,214,688	A	5/1993	Szlam et al.
5,231,670	A	7/1993	Goldhor et al.
5,247,569	A	9/1993	Cave
5,249,223	A	9/1993	Vanacore
5,253,288	A	10/1993	Frey et al.
5,256,863	A	10/1993	Ferguson et al.
5,261,096	A	11/1993	Howarth
5,271,058	A	12/1993	Andrews et al.
5,274,635	A	12/1993	Rahman et al.
5,274,700	A	12/1993	Gechter et al.
5,274,782	A	12/1993	Chalasani et al.
5,278,898	A	1/1994	Cambray et al.
5,278,977	A	1/1994	Spencer et al.
5,280,625	A	1/1994	Howarter et al.
5,283,638	A	2/1994	Engberg et al.
5,283,856	A	2/1994	Gross et al.
5,285,494	A	2/1994	Sprecher et al.
5,288,147	A	2/1994	Schaefer et al.
5,291,550	A	3/1994	Levy et al.
5,291,551	A	3/1994	Conn et al.
5,291,552	A	3/1994	Kerrigan et al.
5,299,259	A	3/1994	Otto
5,299,260	A	3/1994	Shaio
5,301,320	A	4/1994	McAtee et al.
5,309,505	A	5/1994	Szlam et al.
5,311,574	A	5/1994	Livanos
5,311,583	A	5/1994	Friedes et al.
5,315,709	A	5/1994	Alston, Jr. et al.
5,327,486		7/1994	Wolff et al.

References Cited

U.S. PATENT DOCUMENTS

5,329,583	A	7/1994	Jurgensen et al.
5,333,266	A	7/1994	Boaz et al.
5,335,268	A	8/1994	Kelly, Jr. et al.
5,335,269	A	8/1994	Steinlicht
5,343,477	A	8/1994	Yamada
5,343,518	A	8/1994	Kneipp
5,355,474	A	10/1994	Thuraisngham et al.
5,359,649	A	10/1994	Rosu et al.
5,363,507	A	11/1994	Nakayama et al.
5,367,329	A	11/1994	Nakagaki et al.
5,369,695	A	11/1994	Chakravarti et al. 379/230
5,384,766	A	1/1995	Yamato et al.
5,384,771	A	1/1995	Isidoro et al.
5,384,829	A	1/1995	Heileman, Jr. et al.
5,384,841	A	1/1995	Adams et al.
5,392,277	A	2/1995	Bernstein
5,392,328	A	2/1995	Schmidt et al.
5,392,345	A	2/1995	Otto
5,392,400	A	2/1995	Berkowitz et al.
5,402,474	A	3/1995	Miller et al.
5,414,762	A	5/1995	Flisik et al.
5,422,813	A	6/1995	Schuchman et al.
5,425,091	A	6/1995	Josephs
5,425,093	A	6/1995	Trefzger
5,426,594	A	6/1995	Wright et al.
5,428,608	A	6/1995	Freeman et al.
5,436,965	A	7/1995	Grossman et al.
5,436,967	A	7/1995	Hanson
5,440,719	A	8/1995	Hanes et al.
5,444,767	A	8/1995	Goetcheus et al.
5,444,774	A	8/1995	Friedes
5,444,823	A	8/1995	Nguyen
5,450,482	A	9/1995	Chen et al.
5,450,483	A	9/1995	Williams
5,452,350	A	9/1995	Reynolds et al. 379/127
5,455,903	A	10/1995	Jolissaint et al.
5,459,780	A	10/1995	Sand
5,463,685	A	10/1995	Gaechter et al.
5,465,286	A	11/1995	Clare et al.
5,467,391	A	11/1995	Donaghue, Jr. et al.
5,469,504	A	11/1995	Blaha
5,473,680	A	12/1995	Porter
5,475,813	A	12/1995	Cieslak et al.
5,479,487	A	12/1995	Hammond
5,481,616	A	1/1996	Freadman
5,488,648	A	1/1996	Womble
5,491,783	A	2/1996	Douglas et al.
5,493,564	A	2/1996	Mullan
5,495,522	A	2/1996	Allen et al.
5,495,523	A	2/1996	Stent et al.
5,496,392	A	3/1996	Sims et al.
5,497,317	A	3/1996	Hawkins et al.
5,497,371	A	3/1996	Ellis et al.
5,497,373	A	3/1996	Hulen et al.
5,500,891	A	3/1996	Harrington et al.
5,506,898	A	4/1996	Costantini et al.
5,509,062	A	4/1996	Carlsen
5,510,829	A	4/1996	Sugiyama et al.
5,511,117	A	4/1996	Zazzera
5,517,620	A	5/1996	Hashimoto et al.
5,519,773	A	5/1996	Dumas et al.
5,524,047	A	6/1996	Brown et al.
5,524,147	A	6/1996	Bean
5,526,353	A	6/1996	Henley et al.
5,528,678	A*	6/1996	Kaplan 379/265.11
5,530,740	A	6/1996	Irribarren et al.
5,530,744	A	6/1996	Charalambous et al.
5,533,103	A	7/1996	Peavey et al.
5,533,107	A	7/1996	Irwin et al. 379/201
5,533,108	A	7/1996	Harris et al.
5,533,110	A	7/1996	Pinard et al.
5,533,115	A	7/1996	Hollenbach et al.
5,535,211	A	7/1996	Yano
5,535,256	A	7/1996	Maloney et al.
5,535,323	A	7/1996	Miller et al.

5,537,470	A	7/1996	Lee	379/309
5,537,630	A	7/1996	Berry et al.	
5,539,811	A	7/1996	Nakamura et al.	
5,544,220	A	8/1996	Trefzger	
5,546,452	A	8/1996	Andrews et al.	
5,550,816	A	8/1996	Hardwick et al.	
5,553,133	A	9/1996	Perkins	
5,555,299	A	9/1996	Maloney et al.	
5,555,426	A	9/1996	Johnson et al.	
5,557,667	A	9/1996	Bruno et al.	
5,559,868	A	9/1996	Blonder	
5,559,877	A	9/1996	Ash et al.	
5,559,878	A	9/1996	Keys et al.	
5,561,711	A	10/1996	Muller	
5,561,841	A	10/1996	Markus	
5,563,805	A	10/1996	Arbuckle et al.	
5,563,937	A	10/1996	Bruno et al.	
5,566,294	A	10/1996	Kojima et al.	
5,570,419	A	10/1996	Cave et al.	
5,570,420	A	10/1996	Bress et al.	379/220
5,572,579	A	11/1996	Orriss et al.	379/142
5,572,643	A	11/1996	Judson	
5,577,100	A	11/1996	McGregor et al.	
5,577,105	A	11/1996	Baum et al.	
5,583,862	A	12/1996	Callon	
5,583,922	A	12/1996	Davis et al.	
5,590,188	A	12/1996	Crockett	
5,592,542	A	1/1997	Honda et al.	
5,592,543	A	1/1997	Smith et al.	
5,594,791	A	1/1997	Szlam et al.	
5,598,532	A	1/1997	Liron	
5,604,737	A	2/1997	Iwami et al.	
5,606,602	A	2/1997	Johnson et al.	
5,608,778	A	3/1997	Partridge, III	
5,608,786	A	3/1997	Gordon	
5,610,910	A	3/1997	Focsaneanu et al.	
5,617,570	A	4/1997	Russell et al.	
5,619,183	A	4/1997	Ziegra et al.	
5,619,557	A	4/1997	Van Berkum	
5,619,648	A	4/1997	Canale et al.	
5,621,789	A	4/1997	McCalmont et al.	379/265
5,621,790	A	4/1997	Grossman et al.	
5,623,600	A	4/1997	Ji et al.	
5,624,265	A	4/1997	Redford et al.	
5,625,404	A	4/1997	Grady et al.	
5,625,676	A	4/1997	Greco et al.	
5,625,682	A	4/1997	Gray et al.	
5,627,764	A	5/1997	Schutzman et al.	
5,627,884	A	5/1997	Williams et al.	
5,630,127	A	5/1997	Moore et al.	
5,632,011	A	5/1997	Landfield et al.	
5,633,920	A	5/1997	Kikinis et al.	
5,633,924	A	5/1997	Kaish et al.	
5,635,918	A	6/1997	Tett	
5,640,445	A	6/1997	David	
5,642,411	A	6/1997	Theis	
5,642,477	A	6/1997	de Carmo et al.	
5,642,511	A	6/1997	Chow et al.	
5,644,720	A	7/1997	Boll et al.	
5,646,981	A	7/1997	Klein	
5,649,105	A	7/1997	Aldred et al.	
5,652,785	A	7/1997	Richardson, Jr. et al.	
5,652,789	A	7/1997	Miner et al.	
5,652,791	A	7/1997	Sunderman et al.	
5,654,961	A	8/1997	Araujo et al.	
5,655,015	A	8/1997	Walsh et al.	
5,657,383	A	8/1997	Gerber et al.	
5,659,542	A	8/1997	Bell et al.	
5,659,604	A	8/1997	Beckmann	379/220
5,659,746	A	8/1997	Bankert et al.	
5,673,304	A	9/1997	Connor et al.	
5,673,311	A	9/1997	Andruska et al.	379/220
5,673,322	A	9/1997	Pepe et al.	
5,675,637	A	10/1997	Szlam et al.	
5,684,870	A	11/1997	Maloney et al.	379/212
5,689,229	A	11/1997	Chaco et al.	
5,692,033	A	11/1997	Farris	
5,696,809	A	12/1997	Voit	
5,696,811	A	12/1997	Maloney et al.	

References Cited

U.S. PATENT DOCUMENTS

5,701,400	A	12/1997	Amado	
5,703,943	A	12/1997	Otto	379/309
5,706,453	A	1/1998	Cheng et al.	
5,708,702	A	1/1998	De Paul et al.	379/230
5,712,901	A	1/1998	Meermans	
5,715,306	A	2/1998	Sunderman et al.	
5,715,307	A	2/1998	Zazzera	
5,715,432	A	2/1998	Xu et al.	
5,717,747	A	2/1998	Boyle, III et al.	
5,721,770	A	2/1998	Kohler	
5,724,412	A	3/1998	Srinivasan	
5,724,418	A	3/1998	Brady	
5,726,984	A	3/1998	Kubler et al.	
5,727,159	A	3/1998	Kikinis	
5,729,594	A	3/1998	Klingman	
5,732,078	A	3/1998	Arango	
5,734,981	A	3/1998	Kennedy, III et al.	
5,737,495	A	4/1998	Adams et al.	
5,737,595	A	4/1998	Cohen et al.	
5,737,726	A	4/1998	Cameron et al.	
5,737,727	A	4/1998	Lehmann et al.	
5,740,238	A	4/1998	Flockhart et al.	
5,740,240	A	4/1998	Jolissaint	
5,742,668	A	4/1998	Pepe et al.	
5,742,670	A	4/1998	Bennett	
5,742,675	A	4/1998	Kilander et al.	379/266
5,742,905	A	4/1998	Pepe et al.	
5,745,687	A	4/1998	Randell	
5,745,878	A	4/1998	Hashimoto et al.	
5,748,884	A	5/1998	Royce et al.	
5,748,907	A	5/1998	Crane	
5,751,706	A	5/1998	Land et al.	
5,751,707	A	5/1998	Voit et al.	
5,751,795	A	5/1998	Hassler et al.	
5,752,059	A	5/1998	Holleran et al.	
5,752,244	A	5/1998	Rose et al.	
5,752,246	A	5/1998	Rogers et al.	
5,754,111	A	5/1998	Garcia	
5,754,636	A	5/1998	Bayless et al.	
5,754,639	A	5/1998	Flockhart et al.	
5,754,655	A	5/1998	Hughes et al.	
5,757,904	A	5/1998	Anderson	
5,760,823	A	6/1998	Brunson et al.	
5,761,289	A	6/1998	Keshav	
5,764,736	A	6/1998	Shachar et al.	
5,764,898	A	6/1998	Tsuji et al.	
5,765,033	A	6/1998	Miloslavsky	
5,768,360	A	6/1998	Reynolds et al.	
5,768,527	A	6/1998	Zhu et al.	
5,774,583	A	6/1998	Sasaki et al.	
5,778,060	A	7/1998	Otto	
5,778,178	A	7/1998	Arunachalam	
5,778,377	A	7/1998	Marlin et al.	
5,784,438	A	7/1998	Martinez	
5,784,451	A	7/1998	Smith, Jr.	
5,784,452	A	7/1998	Carney	
5,787,160	A	7/1998	Chaney et al.	
5,787,163	A	7/1998	Taylor et al.	
5,790,635	A	8/1998	Dezonno	
5,790,650	A	8/1998	Dunn et al.	
5,790,789	A	8/1998	Suarez	
5,790,798	A	8/1998	Beckett, II et al.	
5,793,857	A	8/1998	Barnes et al.	379/220
5,793,861	A	8/1998	Haigh	
5,794,039	A	8/1998	Guck	
5,796,398	A	8/1998	Zimmer	
5,796,729	A	8/1998	Greaney et al.	
5,796,791	A	8/1998	Polcyn	
5,796,813	A	8/1998	Sonnenberg	379/220
5,799,067	A	8/1998	Kikinis et al.	
5,799,297	A	8/1998	Goodridge et al.	
5,802,163	A	9/1998	Miloslavsky	
5,802,253	A	9/1998	Gross et al.	
5,802,283	A	9/1998	Grady et al.	
5,802,314	A	9/1998	Tullis et al.	

References Cited

U.S. PATENT DOCUMENTS

5,901,203	A	5/1999	Morganstein et al.
5,901,209	A	5/1999	Tannenbaum et al.
5,903,631	A	5/1999	Smith et al.
5,903,877	A	5/1999	Berkowitz et al.
5,905,495	A	5/1999	Tanaka et al.
5,905,792	A	5/1999	Miloslavsky 379/265
5,905,793	A	5/1999	Flockhart et al.
5,905,863	A	5/1999	Knowles et al.
5,907,547	A	5/1999	Foladare et al.
5,911,134	A	6/1999	Castonguay et al.
5,911,776	A	6/1999	Guck
5,914,941	A	6/1999	Janky
5,915,001	A	6/1999	Uppaluru
5,915,008	A	6/1999	Dulman
5,915,011	A	6/1999	Miloslavsky
5,915,012	A	6/1999	Miloslavsky
5,916,302	A	6/1999	Dunn et al.
5,917,817	A	6/1999	Dunn et al.
5,917,898	A	6/1999	Bassa et al.
5,918,213	A	6/1999	Bernard et al.
5,920,621	A	7/1999	Gottlieb
5,920,719	A	7/1999	Sutton et al.
5,920,865	A	7/1999	Ariga
5,923,745	A	7/1999	Hurd 379/265.02
5,923,879	A	7/1999	Sasmazel et al.
5,926,535	A	7/1999	Reynolds 379/221.06
5,926,538	A	7/1999	Deryugin et al.
5,926,539	A	7/1999	Shtivelman
5,933,492	A	8/1999	Turovski
5,937,051	A	8/1999	Hurd et al.
5,937,057	A	8/1999	Bell et al.
5,937,162	A	8/1999	Funk et al.
5,937,388	A	8/1999	Davis et al.
5,938,725	A	8/1999	Hara
5,940,075	A	8/1999	Mutschler, III et al.
5,940,478	A	8/1999	Vaudreuil et al.
5,940,479	A	8/1999	Guy et al.
5,940,488	A	8/1999	DeGrazia et al.
5,940,495	A	8/1999	Bondarenko et al.
5,940,496	A	8/1999	Gisby et al.
5,940,497	A	8/1999	Miloslavsky
5,940,598	A	8/1999	Strauss et al.
5,940,823	A	8/1999	Schreiber et al.
5,943,416	A	8/1999	Gisby
5,946,375	A	8/1999	Pattison et al.
5,946,386	A	8/1999	Rogers et al.
5,946,387	A	8/1999	Miloslavsky
5,948,054	A	9/1999	Nielsen
5,949,988	A	9/1999	Feisullin et al.
5,953,332	A	9/1999	Miloslavsky
5,953,405	A	9/1999	Miloslavsky
5,953,406	A	9/1999	LaRue et al.
5,956,482	A	9/1999	Agraharam et al.
5,956,729	A	9/1999	Goetz et al.
5,958,014	A	9/1999	Cave
5,958,016	A	9/1999	Chang et al.
5,958,064	A	9/1999	Judd et al.
5,959,982	A	9/1999	Federkins et al.
5,960,073	A	9/1999	Kikinis et al.
5,960,411	A	9/1999	Hartman et al.
5,963,632	A	10/1999	Miloslavsky
5,963,635	A	10/1999	Szlam et al.
5,966,427	A	10/1999	Shaffer et al.
5,966,695	A	10/1999	Melchione et al.
5,970,065	A	10/1999	Miloslavsky
5,970,134	A	10/1999	Highland et al.
5,974,135	A	10/1999	Breneman et al.
5,974,414	A	10/1999	Stanczak et al.
5,974,444	A	10/1999	Konrad
5,974,448	A	10/1999	Yamauchi et al.
RE36,416	E	11/1999	Szlam et al.
5,978,465	A	11/1999	Corduroy et al.
5,978,467	A	11/1999	Walker et al.
5,978,672	A	11/1999	Hartmaier et al.
5,978,836	A	11/1999	Ouchi

5,982,774	A	11/1999	Foladare et al.
5,982,870	A	11/1999	Pershan et al.
5,982,873	A	11/1999	Flockhart et al.
5,983,218	A	11/1999	Syeda-Mahmood
5,987,102	A	11/1999	Elliott et al.
5,987,117	A	11/1999	McNeil et al.
5,987,118	A	11/1999	Dickerman et al.
5,987,423	A	11/1999	Arnold et al.
5,987,446	A	11/1999	Corey et al.
5,991,365	A	11/1999	Pizano et al.
5,991,390	A	11/1999	Booton
5,991,391	A	11/1999	Miloslavsky
5,991,392	A	11/1999	Miloslavsky
5,991,393	A	11/1999	Kamen
5,991,394	A	11/1999	Dezonno et al.
5,991,395	A	11/1999	Miloslavsky
5,995,606	A	11/1999	Civanlar et al.
5,995,610	A*	11/1999	Smidt et al. 379/207.02
5,995,614	A	11/1999	Miloslavsky
5,995,615	A	11/1999	Miloslavsky
5,996,000	A	11/1999	Shuster
5,999,525	A	12/1999	Krishnaswamy et al.
5,999,609	A	12/1999	Nishimura
5,999,965	A	12/1999	Kelly
6,002,396	A	12/1999	Davies
6,002,760	A	12/1999	Gisby
6,003,034	A	12/1999	Tuli
6,005,845	A	12/1999	Svennesson et al.
6,005,920	A	12/1999	Fuller et al.
6,005,931	A	12/1999	Neyman et al.
6,009,163	A	12/1999	Nabkel et al.
6,009,469	A	12/1999	Mattaway et al.
6,011,792	A	1/2000	Miloslavsky
6,011,844	A	1/2000	Uppaluru et al.
6,011,974	A	1/2000	Cedervall et al.
6,012,152	A	1/2000	Douik et al.
6,014,137	A	1/2000	Burns
6,014,138	A	1/2000	Cain et al.
6,014,379	A	1/2000	White et al.
6,014,437	A	1/2000	Acker et al.
6,014,647	A	1/2000	Nizzari et al.
6,018,578	A	1/2000	Bondarenko et al.
6,018,579	A	1/2000	Petrunka
6,018,761	A	1/2000	Uomini
6,021,262	A	2/2000	Cote et al.
6,021,411	A	2/2000	Brophy et al.
6,021,428	A	2/2000	Miloslavsky
6,023,684	A	2/2000	Pearson
6,023,723	A	2/2000	McCormick et al.
6,026,087	A	2/2000	Mirashrafi et al.
6,026,375	A	2/2000	Hall et al.
6,028,917	A	2/2000	Creamer et al.
6,029,195	A	2/2000	Herz
6,038,293	A	3/2000	McNerney et al.
6,038,537	A	3/2000	Matsuoka
6,041,116	A	3/2000	Meyers
6,044,142	A *	3/2000	Hammarstrom et al. 379/223
6,044,144	A	3/2000	Becker et al.
6,044,146	A	3/2000	Gisby et al.
6,044,368	A	3/2000	Powers
6,046,762	A	4/2000	Sonesh et al.
6,047,060	A	4/2000	Fedorov et al.
6,049,272	A	4/2000	Lee et al.
6,049,547	A	4/2000	Fisher et al.
6,049,779	A	4/2000	Berkson
6,052,514	A	4/2000	Gill et al.
6,055,307	A	4/2000	Behnke et al.
6,055,308	A	4/2000	Miloslavsky et al.
6,055,513	A	4/2000	Katz et al.
6,058,163	A *	5/2000	Pattison et al. 379/265.06
6,058,389	A	5/2000	Chandra et al.
6,058,435	A	5/2000	Sassin et al.
6,061,054	A	5/2000	Jolly
6,064,667	A	5/2000	Gisby et al.
6,064,722	A	5/2000	Clise et al.
6,064,723	A	5/2000	Cohn et al.
6,064,730	A	5/2000	Ginsberg
6,064,973	A	5/2000	Smith et al.
6,067,357	A	5/2000	Kishinsky et al.

References Cited

U.S. PATENT DOCUMENTS

6,069,890	A	5/2000	White et al.
6,070,142	A	5/2000	McDonough et al.
6,070,144	A	5/2000	Ginsberg et al.
6,072,864	A	6/2000	Shtivelman et al.
6,073,013	A	6/2000	Agre et al.
6,073,105	A	6/2000	Sutcliffe et al.
6,073,109	A	6/2000	Flores et al.
6,073,124	A	6/2000	Krishnan et al.
6,075,783	A	6/2000	Voit
6,075,843	A	6/2000	Cave
6,076,101	A	6/2000	Kamakura et al.
6,076,105	A	6/2000	Wolff et al.
6,076,109	A	6/2000	Kikinis
6,078,581	A	6/2000	Shtivelman et al.
6,078,583	A	6/2000	Takahara et al.
6,081,591	A *	6/2000	Skoog 379/230
6,081,592	A	6/2000	Battle
6,085,097	A	7/2000	Savery et al.
6,085,201	A	7/2000	Tso
6,088,340	A	7/2000	Buchholz et al.
6,088,696	A	7/2000	Moon et al.
6,088,717	A	7/2000	Reed et al.
6,094,479	A *	7/2000	Lindeberg et al. 379/220.01
6,094,673	A	7/2000	Dilip et al.
6,097,792	A	8/2000	Thornton
6,097,804	A	8/2000	Gilbert et al.
6,097,938	A	8/2000	Paxson
6,098,065	A	8/2000	Skillen et al.
6,104,711	A	8/2000	Voit
6,104,800	A	8/2000	Benson
6,104,801	A	8/2000	Miloslavsky
6,104,802	A	8/2000	Perlmutter
6,108,688	A	8/2000	Nielsen
6,108,704	A	8/2000	Hutton et al.
6,108,711	A	8/2000	Beck et al.
6,112,085	A	8/2000	Garner et al.
6,115,596	A	9/2000	Raith et al.
6,115,742	A	9/2000	Franklin et al.
6,118,865	A	9/2000	Gisby
6,119,155	A	9/2000	Rossmann et al.
6,119,167	A	9/2000	Boyle et al.
6,122,360	A	9/2000	Neyman et al.
6,122,364	A	9/2000	Petrunka et al.
6,122,365	A	9/2000	Yegoshin
6,122,632	A	9/2000	Botts et al.
6,125,113	A	9/2000	Farris et al.
6,125,126	A	9/2000	Hallenstål
6,128,379	A	10/2000	Smyk
6,128,482	A	10/2000	Nixon et al.
6,128,603	A	10/2000	Dent et al.
6,128,646	A	10/2000	Miloslavsky
6,130,933	A	10/2000	Miloslavsky
6,134,217	A	10/2000	Stiliadis et al.
6,134,235	A	10/2000	Goldman et al.
6,134,315	A	10/2000	Galvin
6,134,318	A	10/2000	O'Neil
6,134,530	A	10/2000	Bunting et al.
6,137,870	A	10/2000	Scherer
6,138,139	A	10/2000	Beck et al.
6,141,345	A	10/2000	Goeddel et al.
6,148,074	A	11/2000	Miloslavsky et al.
6,157,653	A	12/2000	Kline et al.
6,157,655	A	12/2000	Shtivelman
6,157,924	A	12/2000	Austin
6,166,735	A	12/2000	Dom et al.
6,167,255	A	12/2000	Kennedy, III et al.
6,167,395	A	12/2000	Beck et al.
6,167,404	A	12/2000	Morcos et al.
6,170,011	B1	1/2001	Macleod Beck et al.
6,173,052	B1	1/2001	Brady
6,173,316	B1	1/2001	De Boor et al.
6,175,562	B1	1/2001	Cave
6,175,563	B1	1/2001	Miloslavsky
6,175,564	B1	1/2001	Miloslavsky et al.
6,175,620	B1	1/2001	Rouge et al.

6,175,842	B1	1/2001	Kirk et al.
6,178,239	B1	1/2001	Kishinsky et al.
6,181,336	B1	1/2001	Chiu et al.
6,181,736	B1	1/2001	McLaughlin et al.
6,181,788	B1	1/2001	Miloslavsky
6,182,059	B1	1/2001	Angotti et al.
6,182,249	B1	1/2001	Wookey et al.
6,185,184	B1	2/2001	Mattaway et al.
6,185,287	B1	2/2001	Miloslavsky
6,185,291	B1	2/2001	Miloslavsky
6,185,292	B1	2/2001	Miloslavsky
6,185,427	B1	2/2001	Krasner et al.
6,185,535	B1	2/2001	Hedin et al.
6,188,688	B1	2/2001	Buskirk, Jr.
6,188,762	B1	2/2001	Shooster
6,192,250	B1	2/2001	Buskens et al.
6,195,357	B1	2/2001	Polcyn
6,198,738	B1	3/2001	Chang et al.
6,198,739	B1	3/2001	Neyman et al.
6,201,804	B1	3/2001	Kikinis
6,201,863	B1	3/2001	Miloslavsky
6,205,135	B1	3/2001	Chinni et al.
6,205,412	B1	3/2001	Barskiy et al.
6,212,178	B1	4/2001	Beck et al.
6,215,783	B1	4/2001	Neyman
6,219,045	B1	4/2001	Leahy et al.
6,219,413	B1	4/2001	Burg
6,222,919	B1	4/2001	Hollatz et al.
6,226,285	B1	5/2001	Kozdon et al.
6,229,524	B1	5/2001	Chernock et al.
6,229,888	B1	5/2001	Miloslavsky
6,230,197	B1	5/2001	Beck et al.
6,233,234	B1*	5/2001	Curry et al. 370/356
6,233,616	B1	5/2001	Reid
6,236,857	B1	5/2001	Calabrese et al.
6,240,285	B1	5/2001	Blum et al.
6,243,092	B1	6/2001	Okita et al.
6,243,373	B1	6/2001	Turock
6,243,375	B1	6/2001	Speicher
6,243,379	B1	6/2001	Veerina et al.
6,243,713	B1	6/2001	Nelson et al.
6,249,807	B1	6/2001	Shaw et al.
6,253,129	B1	6/2001	Jenkins et al.
6,256,489	B1	7/2001	Lichter et al.
6,256,503	B1	7/2001	Stephens
6,259,692	B1	7/2001	Shtivelman et al.
6,259,774	B1	7/2001	Miloslavsky
6,259,786	B1	7/2001	Gisby
6,263,049	B1	7/2001	Kuhn
6,263,065	B1	7/2001	Durinovic-Johri et al.
6,263,066	B1	7/2001	Shtivelman et al.
6,263,359	B1	7/2001	Fong et al.
6,275,693	B1	8/2001	Lin et al.
6,278,976	B1	8/2001	Kochian
6,278,996	B1	8/2001	Richardson et al.
6,282,429	B1	8/2001	Baiyor et al.
6,282,565	B1	8/2001	Shaw et al.
6,285,316	B1	9/2001	Nir et al.
6,285,364	B1	9/2001	Giordano, III et al.
6,286,033	B1	9/2001	Kishinsky et al.
6,286,084	B1	9/2001	Wexler et al.
6,286,129	B1	9/2001	Agarwal et al.
6,289,094	B1	9/2001	Miloslavsky
6,292,181	B1	9/2001	Banerjee et al.
6,292,553	B1	9/2001	Fellingham et al.
6,295,353	B1	9/2001	Flockhart et al.
6,295,530	B1	9/2001	Ritchie et al.
6,298,041	B1	10/2001	Packer
6,301,480	B1*	10/2001	Kennedy et al. 455/445
6,304,898	B1	10/2001	Shiigi
6,314,089	B1	11/2001	Szlam et al.
6,314,430	B1	11/2001	Chang
6,320,857	B1	11/2001	Tonnby et al.
6,320,951	B1	11/2001	Shtivelman et al.
6,324,276	B1	11/2001	Uppaluru et al.
6,330,323	B1	12/2001	Gottlieb et al.
6,330,426		12/2001	Brown et al.
6,332,022		12/2001	Martinez
6,332,154	B2	12/2001	Beck et al.

References Cited

U.S. PATENT DOCUMENTS

6,332,163	B1	12/2001	Bowman-Amuah	
6,333,980	B1	12/2001	Hollatz et al.	
6,335,927	B1	1/2002	Elliott et al.	
6,337,904	B1	1/2002	Gisby	
6,339,593	B1	1/2002	Kikinis	
6,341,128	B1	1/2002	Svedberg	
6,343,281	B1	1/2002	Kato	
6,345,290	B2	2/2002	Okada et al.	
6,345,300	B1	2/2002	Bakshi et al.	
6,345,305	B1	2/2002	Beck et al.	
6,346,952	B1	2/2002	Shtivelman	
6,347,085	B2	2/2002	Kelly	
6,353,608	B1	3/2002	Cullers et al.	
6,353,667	B1	3/2002	Foster et al.	
6,359,981	B1	3/2002	Neyman et al.	
6,362,838	B1	3/2002	Szlam et al.	
6,363,411	B1	3/2002	Dugan et al.	
6,366,575	B1	4/2002	Barkan et al.	
6,366,586	B1	4/2002	Christie	
6,366,651	B1	4/2002	Griffith et al.	
6,366,658	B1	4/2002	Bjornberg et al.	
6,366,663	B1	4/2002	Bauer et al.	
6,366,925	B1	4/2002	Meltzer et al.	
6,370,238	B1	4/2002	Sansone et al.	
6,370,508	B2	4/2002	Beck et al	
6,370,567	B1	4/2002	Ouchi	
6,373,836	B1	4/2002	Deryugin et al.	
6,373,937	B1	4/2002	Yegoshin	
6,377,568	B1	4/2002	Kelly	
6,377,583	B1	4/2002	Lyles et al.	
6,377,944	B1	4/2002	Busey et al.	
6,377,975	B1	4/2002	Florman	
6,381,640	B1	4/2002	Beck et al.	
6,385,191	B1	5/2002	Coffman et al.	
6,385,202	B1	5/2002	Katseff et al.	
6,385,646	B1	5/2002	Brown et al.	
6,389,007	B1	5/2002	Shenkman et al.	
6,389,133	B1	5/2002	Kamen	
6,393,018	B2	5/2002	Miloslavsky	
6,393,122	B1	5/2002	Belzile	
6,393,278	B1*	5/2002	Buchanan et al.	455/426.1
6,393,481	B1	5/2002	Deo et al.	
6,396,834	B1	5/2002	Bonomi et al.	
6,396,919	B1	5/2002	Shimada et al.	
6,400,725	B1	6/2002	Ross	
6,401,066	B1	6/2002	McIntosh	
6,401,094	B1	6/2002	Stemp et al.	
6,405,033	B1	6/2002	Kennedy, III et al.	
6,407,996	B1	6/2002	Witchalls	
6,407,999	B1	6/2002	Olkkonen et al.	
6,408,064	B1	6/2002	Fedorov et al.	
6,411,806	B1	6/2002	Garner et al.	
6,418,146	B1	7/2002	Miloslavsky	
6,418,199	B1	7/2002	Perrone	
6,424,709	B1	7/2002	Doyle et al.	
6,427,002	B2	7/2002	Campbell et al.	
6,430,174	B1	8/2002	Jennings et al.	
6,430,282	B1	8/2002	Bannister et al.	
6,434,231	B2	8/2002	Neyman et al.	
6,434,530	B1	8/2002	Sloane et al.	
6,434,549	B1	8/2002	Linetsky et al.	
6,442,242	B1	8/2002	McAllister et al.	
6,442,247	B1	8/2002	Garcia	
6,445,788	B1	9/2002	Torba	
6,449,260	B1	9/2002	Sassin et al.	
6,449,270	B1	9/2002	Miloslavsky	
6,449,358	B1	9/2002	Anisimov et al.	
6,449,646	B1	9/2002	Sikora et al.	
6,452,609	B1	9/2002	Katinsky et al.	
6,453,038	B1	9/2002	McFarlane et al.	
6,453,341	B1	9/2002	Miloslavsky	
6,456,615	B1	9/2002	Kikinis	
6,456,619	B1	9/2002	Sassin et al.	
6,459,697	B1	10/2002	Neyman	
6,463,148	B1	10/2002	Brady	

6,470,010	B1	10/2002	Szviatovszki et al.
6,470,080	B2	10/2002	Perlmutter
6,473,787	B2	10/2002	Miloslavsky
6,480,600	B1	11/2002	Neyman et al.
6,487,663	B1	11/2002	Jaisimha et al.
6,489,954	B1	12/2002	Powlette
6,490,350	B2	12/2002	McDuff et al.
6,493,353	B2	12/2002	Kelly et al.
6,493,433	B2	12/2002	Clabaugh et al.
6,493,447	B1	12/2002	Goss et al.
6,496,567	B1	12/2002	Bjornberg et al.
6,496,702	B1	12/2002	Lockhart
6,496,981	B1	12/2002	Wistendahl et al.
6,498,897	B1	12/2002	Nelson et al.
6,499,088	B1	12/2002	Wexler et al.
6,512,825	B1	1/2003	Lindholm et al.
6,515,996	B1	2/2003	Tonnby et al.
6,519,246	B1	2/2003	Strahs
6,519,617	B1	2/2003	Wanderski et al.
6,532,493	B1	3/2003	Aviani, J. et al.
6,535,492	B2	3/2003	Shtivelman
6,536,043	B1	3/2003	Guedalia
6,539,419	B2	3/2003	Beck et al.
6,546,405	B2	4/2003	Gupta et al.
6,549,539	B1	4/2003	Neyman
6,553,114	B1	4/2003	Fisher et al.
6,554,183	B1	4/2003	Sticha et al.
6,560,328	B1	5/2003	Bondarenko et al.
6,560,329	B1	5/2003	Draginich et al.
6,560,607	B1	5/2003	Lassesen
6,563,788	B1	5/2003	Torba et al.
6,567,854	B1	5/2003	Olshansky et al.
6,581,105	B2	6/2003	Miloslavsky et al.
6,594,269	B1	7/2003	Polcyn
6,597,685	B2	7/2003	Miloslavsky et al.
6,600,733	B2	7/2003	Deng
6,600,822	B2	7/2003	Kamen
6,603,762	B1	8/2003	Kikinis
6,603,854	B1	8/2003	Judkins et al.
6,611,498	B1	8/2003	Baker et al.
6,611,590	B1	8/2003	Lu et al.
6,614,780	B2	9/2003	Hakim et al.
6,614,781	B1	9/2003	Elliott et al.
6,625,139	B2	9/2003	Miloslavsky et al.
6,628,666	B1	9/2003	Pickering et al.
6,631,399	B1	10/2003	Stanczak et al.
6,633,910	B1	10/2003	Rajan et al.
6,650,747	B1	11/2003	Bala et al.
6,651,085	B1	11/2003	Woods
6,661,882	B1	12/2003	Muir et al.
6,668,286	B2	12/2003	Bateman et al.
6,678,718	B1	1/2004	Khouri et al.
6,681,010	B1	1/2004	Anderson et al.
6,687,241	B1	2/2004	Goss
6,690,788	B1	2/2004	Bauer et al.
6,693,893	B1	2/2004	Ehlinger
6,704,409	B1	3/2004	Dilip et al.
6,704,410	B1	3/2004	McFarlane et al.
6,704,411	B1	3/2004	Nishidate
6,707,903	B2	3/2004	Burok et al.
6,711,249	B2	3/2004	Weissman et al.
6,711,611	B2	3/2004	Hanhan
6,714,643	B1	3/2004	Gargeya et al.
6,718,032	B1	4/2004	Vrenjak et al.
6,718,366	B2	4/2004	Beck et al.
6,721,306	B1	4/2004	Farris et al.
6,731,626	B1	5/2004	Neyman
6,735,298	B2	5/2004	Neyman et al.
6,744,877	B1	6/2004	Edwards
6,744,878	B1	6/2004	Komissarchik et al.
6,748,211	B1	6/2004	Isaac et al.
6,751,210	B1	6/2004	Shaffer et al.
6,753,784	B1	6/2004	Sznaider et al.
6,754,181	B1	6/2004	Elliott et al.
6,760,322	B1	7/2004	Fukuda et al.
6,760,324	B1	7/2004	Scott et al.
6,760,428	B2	7/2004	Foster
6,760,727	B1	7/2004	Schroeder et al.
6,763,104	B1	7/2004	Judkins et al.

References Cited

U.S. PATENT DOCUMENTS

6,763,369	B1	7/2004	Ytuarte et al.
6,771,765	B1	8/2004	Crowther et al.
6,778,527	B1	8/2004	Amin
6,785,375	B1	8/2004	Beddus et al.
6,785,710	B2	8/2004	Kikinis
6,785,740	B1	8/2004	Yoneda et al.
6,788,779	B2	9/2004	Ostapchuck
6,798,771	B1	9/2004	Low et al.
6,801,520	B2	10/2004	Philonenko
6,801,928	B2	10/2004	Nuestro
6,804,346	B1	10/2004	Mewhinney
6,816,871	B2	11/2004	Lee
6,816,878	B1	11/2004	Zimmers et al.
6,845,154	B1	1/2005	Cave et al
6,847,715	B1	1/2005	Swartz
6,847,825	B1	1/2005	Duvall et al.
6,850,602	B1	2/2005	Chou
6,850,614	B1	2/2005	Collins
6,859,529	B2	2/2005	Duncan et al.
6,865,267	B2	3/2005	Dezonno
6,868,391	B1	3/2005	Hultgren
6,874,119	B2	3/2005	Macleod Beck et al.
6,876,632	B1	4/2005	Takeda
6,879,586	B2	4/2005	Miloslavsky et al.
6,882,996	B2	4/2005	Preisig et al.
6,898,190	B2	5/2005	Shtivelman et al.
6,903,685	B1	6/2005	Arndt et al.
6,907,455	B1	6/2005	Wolfe et al.
6,910,072	B2	6/2005	Macleod Beck et al.
6,912,272	B2	6/2005	Kirk et al.
6,922,411	B1	7/2005	Taylor
6,922,689	B2	7/2005	Shtivelman
6,934,379	B2	8/2005	Falcon et al.
6,934,381	B1	8/2005	Klein et al.
6,944,272	B1	9/2005	Thomas
6,958,994	B2	10/2005	Zhakov et al.
6,965,914	B2	11/2005	Dowling
6,970,844	B1	11/2005	Bierenbaum
6,977,740	B1	12/2005	Mandalia
6,981,020	B2	12/2005	Miloslavsky et al.
6,985,478	B2	1/2006	Pogossiants et al.
6,985,943	B2	1/2006	Deryugin et al.
6,987,977	B2	1/2006	Lockhart
6,996,603	B1	2/2006	Srinivasan
7,006,614	B2	2/2006	Feinberg et al.
7,020,264	B1	3/2006	Neyman et al.
7,031,442	B1	4/2006	Neyman et al.
7,036,128	B1	4/2006	Julia et al.
7,039,176	B2	5/2006	Borodow et al.
7,039,857	B2	5/2006	Beck et al.
7,076,048	B2	7/2006	Lee et al.
7,079,641	B2	7/2006	Ostapchuck
7,080,092	B2	7/2006	Upton
7,088,814	B1	8/2006	Shaffer et al.
7,092,509	B1	8/2006	Mears et al.
7,106,850	B2	9/2006	Campbell et al.
7,110,523	B2	9/2006	Gagle et al.
7,110,525	B1	9/2006	Heller et al.
7,117,244	B2	10/2006	Florman et al.
7,120,700	B2	10/2006	Macleod Beck et al.
7,127,400	B2	10/2006	Koch
7,133,830	B1	11/2006	Hoban et al.
7,136,475	B1	11/2006	Rogers et al.
7,155,496	B2	12/2006	Froyd et al.
7,155,512	B2	12/2006	Lean et al.
7,159,224	B2	1/2007	Sharma et al.
7,167,924	B1	1/2007	Symonds et al.
7,184,747	B2	2/2007	Bogat
7,216,350	B2	5/2007	Martin et al.
7,221,377	B1	5/2007	Okita et al.
7,222,301	B2	5/2007	Makagon et al.
7,231,032	B2	6/2007	Nevman et al.
7,236,486	B2	6/2007	Baker et al.
7,236,584	B2	6/2007	Torba
7,242,760	B2	7/2007	Shires

7,245,711	B2	7/2007	Margolis
7,246,009	B2	7/2007	Hamblen et al.
7,254,219	B1	8/2007	Hansen et al
7,254,641	B2	8/2007	Broughton et al.
7,263,372	B2	8/2007	Lockhart
7,263,671	B2	8/2007	Hull et al.
7,269,263	B2	9/2007	Dedieu et al.
7,272,627	B2	9/2007	Petrovykh
7,277,424	B1	10/2007	Dowling
7,277,536	B2	10/2007	Ostapchuk
7,277,916	B2	10/2007	Nuestro
7,283,519	B2	10/2007	Girard
7,336,649	B1	2/2008	Huang
7,363,228	B2	4/2008	Wyss et al.
7,372,956	B1	5/2008	Kikinis et al.
7,373,405	B2	5/2008	Deryugin et al.
7,373,410	B2	5/2008	Monza et al.
7,376,227	B2	5/2008	Anisimov et al.
7,376,431	B2	5/2008	Niedermeyer
7,401,112	B1	7/2008	Matz et al.
7,415,009	B2	8/2008	Neyman
7,418,094	B2	8/2008	Golitsin et al
7,428,303	B2	9/2008	Campbell et al.
7,434,204	B1	10/2008	Everingham et al.
7,457,279	B1	11/2008	Scott et al.
7,460,496	B2	12/2008	Miloslavsky et al.
7,496,640	B2	2/2009	Hanhan
7,535,479	B2	5/2009	Okita et al.
7,558,383	B2	7/2009	Shtivelman et al.
7,561,887	B2	7/2009	Lockhart
7,564,840	B2	7/2009	Elliott et al.
7,565,428	B2	7/2009	Deryugin et al.
7,609,829	B2	10/2009	Wang et al.
7,610,347	B2	10/2009	Petrovykh
7,619,996	B2	11/2009	Miloslavsky et al
7,669,182	B2	2/2010	Garcia
7,672,998	B1	3/2010	Haskins et
7,706,520	B1	4/2010	Waterson et al.
7,715,332	B2	5/2010	Miloslavsky et al.
7,716,292	B2	5/2010	Kikinis
7,739,325	B1	6/2010	Okita et al.
7,764,231	B1	7/2010	Karr et al.
7,769,161	B1	8/2010	Hession et al.
7,779,067	B2	8/2010	Beck et al.
7,792,773	B2	9/2010	McCord et al.
7,808,977	B2	10/2010	Kikinis
7,823,167	B2	10/2010	Makagon et al.
7,853,717	B2	12/2010	Petrovykh
7,856,095	B2	12/2010	Brown
7,903,807	B2	3/2011	Neyman et al.
7,907,598	B2	3/2011	Anisimov et al.
7,929,978	B2	4/2011	Lockhart
7,957,401	B2	6/2011	Zalenski et al.
8,009,821	B1	8/2011	Apparao et al.
8,018,921	B2	9/2011	Pogossiants et al.
8,024,401	B1	9/2011	Gurbani et al.
8,031,698	B2	10/2011	Neyman
8,036,214	B2	10/2011	Elliott et al.
8,059,812	B1	11/2011	Bundy
8,068,598	B1	11/2011	Russi et al.
8,085,761	B2	12/2011	Elliott et al.
8,089,958	B2	1/2012	Elliott et al.
8,126,133	B1	2/2012	Everingham et al.
8,130,749	B2	3/2012	Kikinis
8,180,662	B2	5/2012	Minert et al.
8,180,666	B2	5/2012	Minert et al.
8,199,891	B2	6/2012	Brown et al.
8,209,207	B2	6/2012	Minert et al.
8,209,209	B2	6/2012	Minert et al.
8,223,948	B2	7/2012	Minert et al.
8,226,477	B1	7/2012	Machado et al.
8,254,404	B2	8/2012	Rabenko et al.
8,254,558	B2	8/2012	Minert et al.
8,270,421	B2	$9 / 2012$	Elliott et al.
8,275,111	B2	9/2012	Golitsin et al.
8,345,856	B1	1/2013	Anisimov et al.
8,351,595	B2	1/2013	Peterson et al.
8,358,769	B2	1/2013	Neyman et al.
8,395,994	B2	3/2013	Stevenson et al.

US RE46,243 E

Page 9

References Cited

U.S. PATENT DOCUMENTS

8,396,205	B1	3/2013	Lowry et al.
8,411,844	B1	4/2013	Anisimov et al.
8,693,347	B2	4/2014	Elliott et al.
9,002,920	B2	4/2015	Deryugin et al.
RE45,583	E	6/2015	Lockhart
9,118,781	B1	8/2015	Kavulak et al.
9,241,258	B2	1/2016	Ku et al.
2001/0000458	A1	4/2001	Shtivelman et al.
2001/0001150	A1	5/2001	Miloslavsky
2001/0005382	A1	6/2001	Cave et al.
2001/0011366	A1	8/2001	Beck et al.
2001/0013041	A1	8/2001	Macleod Beck et al.
2001/0014604	A1	8/2001	Kingdon et al.
2001/0023430	Al	9/2001	Srinivasan
2001/0023448	A1	9/2001	Hanhan
2001/0024497	A1	9/2001	Campbell et al.
2001/0025309	Al	9/2001	Macleod Beck et al.
2001/0028649	A1	10/2001	Pogossiants et al.
2001/0029519	A1	10/2001	Hallinan et al.
2001/0037316	A1	11/2001	Shiloh
2001/0038624	A1	11/2001	Greenberg et al.
2001/0040887	A1*	11/2001	Shtivelman et al. 370/352
2001/0042095	A1	11/2001	Kim et al.
2001/0043586	A1	11/2001	Miloslavsky
2001/0043589	A1	11/2001	Kikinis
2001/0044676	A1	11/2001	Macleod Beck et al.
2001/0044828	Al	11/2001	Kikinis
2001/0054064	A1	12/2001	Kannan
2002/0001300	A1	1/2002	Miloslavsky et al.
2002/0012428	A1	1/2002	Neyman et al.
2002/0013150	A1	1/2002	McKenna et al.
2002/0019844	A1	2/2002	Kurowski et al.
2002/0019846	A1	2/2002	Miloslavsky et al.
2002/0025819	Al	2/2002	Cetusic et al.
2002/0035647	A1	3/2002	Brown et al.
2002/0037076	A1	3/2002	Perlmutter
2002/0041674	A1	4/2002	Kamen
2002/0054579	A1	5/2002	Miloslavsky
2002/0055853	A1	5/2002	Macleod Beck et al.
2002/0056000	A1	5/2002	Albert Coussement
2002/0057671	Al	5/2002	Kikinis
2002/0059164	A1	5/2002	Shtivelman
2002/0059374	A1	5/2002	Nuestro
2002/0060988	A1	5/2002	Shtivelman
2002/0062385	A1	5/2002	Dowling
2002/0064149	A1	5/2002	Elliott et al.
2002/0071529	A1	6/2002	Nelkenbaum
2002/0076031	Al	6/2002	Falcon et al.
2002/0078150	A1	6/2002	Thompson et al.
2002/0087648	A1	7/2002	Petrovykh
2002/0091726	Al	7/2002	Macleod Beck et al.
2002/0095462	A1	7/2002	Beck et al.
2002/0097708	A1	7/2002	Deng
2002/0099738	Al	7/2002	Grant
2002/0101866	A1	8/2002	Miloslavsky et al.
2002/0101880	A1	8/2002	Kim
2002/0103998	A1	8/2002	DeBruine
2002/0105957	A1	8/2002	Bondarenko et al.
2002/0114278	A1	8/2002	Coussement
2002/0114441	A1	8/2002	Coussement
2002/0120719	A1	8/2002	Lee et al.
2002/0123899	A1	9/2002	Hall et al.
2002/0126678	A1	9/2002	Kelly et al.
2002/0126828	A1	9/2002	Kamen
2002/0131399	A1	9/2002	Philonenko
2002/0136167	A1	9/2002	Steele et al.
2002/0150311	A1	10/2002	Lynn
2002/0169834	A1	11/2002	Miloslavsky et al.
2002/0176404	A1	11/2002	Girard
2003/0002479	A1	1/2003	Vortman et al.
2003/0002652	A1	1/2003	Neyman et al.
2003/0002654	A1	1/2003	Torba
2003/0007621	A1	1/2003	Graves et al.
2003/0009530	A1	1/2003	Philonenko et al.
2003/0018702	A1	1/2003	Broughton et al.

2003/0018729 A1 2003/0021259 A1 2003/0021406 A1 2003/0026414 A1 2003/0037113 A1 2003/0043832 A1 2003/0051037 A1 2003/0055884 A1 2003/0058884 A1 2003/0084128 A1 2003/0084349 A1 2003/0088421 Al 2003/0097457 A1 2003/0099343 A1 2003/0115353 A1 2003/0125048 A1 2003/0135592 A1 2003/0161296 A1 2003/0161448 A1 2003/0179729 A1 2003/0212558 A1 2003/0216923 A1 2003/0219029 A1 2003/0220875 A1 2003/0229529 A1 2004/0006739 A1 2004/0017797 A1 2004/0019638 A1 2004/0030557 A1 2004/0047302 A1 2004/0064348 A1 2004/0081183 A1 2004/0083195 A1 2004/0083281 A1 2004/0083479 A1 2004/0083482 A1 2004/0102977 A1 2004/0107025 A1 2004/0111269 A1 2004/0120502 A1 2004/0169675 A1 2004/0179516 A1 2004/0181574 A1 2004/0199580 A1 2004/0208134 A1 2004/0208309 A1 2004/0213400 A1 2004/0223490 A1 2004/0264678 A1 2004/0267892 A1 2005/0013417 A1 2005/0033851 A1 2005/0041678 A1 2005/0128961 A1 2005/0147090 A1 2005/0154792 A1 2005/0207559 A1 2006/0029206 A1 2006/0034262 A1 2006/0079250 A1 2006/0080107 A1 2006/0095568 A1 2006/0109976 Al 2006/0133594 A1 2006/0153173 A1 2006/0209797 A1 2006/0210047 A1 2006/0245421 A1 2007/0002744 A1 2007/0041525 A1 2007/0041567 A1 2007/0071224 A1 2007/0110043 A1 2007/0127707 A1 2007/0143301 A1 2007/0195940 A1 2007/0213073 A1 2007/0274495 A1 2008/0002822 A1

1/2003	Miloslavsky
1/2003	Miloslavsky et al.
1/2003	Ostapchuck
2/2003	Baker et al.
2/2003	Petrovykh
3/2003	Anisimov et al.
3/2003	Sundaram et al.
3/2003	Yuen et al.
3/2003	Kallner et al.
5/2003	Anderson et al.
5/2003	Friedrichs et al.
5/2003	Maes et al.
5/2003	Saran et al.
5/2003	Dezonno
6/2003	Deryugin et al.
7/2003	Lockhart
7/2003	Vetter et al.
8/2003	Butler et al.
8/2003	Parolkar et al.
9/2003	MacLeod Beck et al.
11/2003	Matula
11/2003	Gilmore et al.
11/2003	Pickett
11/2003	Lam et al.
12/2003	Mui et al.
1/2004	Mulligan
1/2004	Chen et al.
1/2004	Makagon et al.
2/2004	Culy et al.
3/2004	Dezonno et al.
4/2004	Humenansky et al.
4/2004	Monza et al.
4/2004	McCord et al.
4/2004	Makagon et al.
4/2004	Bondarenko et al.
4/2004	Makagon et al.
5/2004	Metzler et al.
6/2004	Ransom et al.
6/2004	Koch
6/2004	Strathmeyer et al.
9/2004	Beck et al.
9/2004	Neyman
9/2004	Hanhan
10/2004	Zhakov et al.
10/2004	Neyman et al.
10/2004	Miloslavsky
10/2004	Golitsin et al.
11/2004	Donovan et al.
12/2004	Ostapchuck
12/2004	Kikinis
1/2005	Zimmers et al.
2/2005	Kikinis
2/2005	Nuestro
6/2005	Miloslavsky et al.
7/2005	MacLeod Beck et al.
7/2005	Deryugin et al.
9/2005	Shtivelman et al.
2/2006	Anisimov et al.
2/2006	Pogossiants et al.
4/2006	Lockhart
4/2006	Hill et al.
5/2006	Makagon et al.
5/2006	Sundaram et al.
6/2006	Neyman et al.
7/2006	Beck et al.
9/2006	Anisimov et al.
9/2006	Neyman et al.
11/2006	Ostapchuk
1/2007	Mewhinney et al.
2/2007	Tingley et al.
2/2007	Anisimov et al.
3/2007	Shtivelman et al.
5/2007	Girard
6/2007	Koser et al.
6/2007	Tran
8/2007	Miloslavsky et al.
9/2007	Lockhart
11/2007	Youd et al.
1/2008	Petrovykh

1/2003 Miloslavsky et a
1/2003 Ostapchuck
2/2003 Baker et al
$2 / 2003$ Petrovykh
3/2003 Anisimov et al.
3/2003 Yuen et al.
$3 / 2003$ Kallner et al
5/2003 Anderson et al.
Maes et al.
5/2003 Saran et al.
5/2003 Dezonno
2003 Deryugin et al.
72003 Lockhart
$7 / 2003$ Vetter et al.
2003 Butler et al
9/2003 MacLeod Beck et al.
11/2003 Matula
12003 Gilmore et al
11/2003 Pickett
2 2003 Lam et al
1/2004 Mulligan
1/2004 Chen et al.
2004 Makagon et al
2/2004 Culy et al.
4/2004 Humenansky et al.
4/2004 Monza et al.
4/2004 McCord et al.
12004 Makagon et al.
Bondarenko et
4/2004 Makagon et al.
52004 Metzler et al
6/2004 Koch
6/2004 Strathmeyer et al.
$9 / 2004$ Beck et al
9/2004 Neyman
0/2004 Zhakov et al
10/2004 Neyman et al.
10/2004 Golitsin et al
11/2004 Donovan et al.
12/2004 Ostapchuck
2004 Kikinis
Zimmers et al.
2005 Kikinis
6/2005 Miloslavsky et al.
$7 / 2005$ MacLeod Beck et al
7/2005 Deryugin et al.
$9 / 2005$ Shtivelman et al
2/2006 Anisimov et al.
4/2006 Lockhart
4/2006 Hill et al.
5/2006 Makagon et al.
Sundaram et
7/2006 Beck et al.
9/2006 Anisimov et al.
9/2006 Neyman et al
11/2006 Ostapchuk
Mewhinney et
ingley et al.
3/2007 Shtivelman et al.
5/2007 Girard
6/2007 Tran
8/2007 Miloslavsky et al.
$9 / 2007$ Lock
1/2008 Petrovykh

References Cited

U.S. PATENT DOCUMENTS

2008/0013531	A1	1/2008	Elliott et al.
2008/0025295	A1	1/2008	Elliott et al.
2008/0043728	A1	2/2008	Miloslavsky et al.
2008/0043955	A1	2/2008	Shtivelman et al.
2008/0043975	A1	2/2008	Miloslavsky et al.
2008/0043977	A1	2/2008	Neyman et al.
2008/0046504	A1	2/2008	Deryugin et al.
2008/0046531	A1	2/2008	Shtivelman et al.
2008/0049731	A1	2/2008	Kikinis
2008/0049737	A1	2/2008	Neyman
2008/0049928	A1	2/2008	Miloslavsky et al.
2008/0049929	A1	2/2008	Miloslavsky et al.
2008/0062971	A1	3/2008	Kikinis
2008/0130844	A1	6/2008	Hubbard et al.
2008/0205378	A1	8/2008	Wyss et al.
2008/0222240	A1	9/2008	Deryugin et al.
2008/0285739	A1	11/2008	Golitsin et al.
2009/0089136	A1	4/2009	Minert et al.
2009/0089451	A1	4/2009	Petrovykh
2009/0227267	A1	9/2009	Lockhart
2009/0240346	A1	9/2009	Cadigan, Jr. et al.
2010/0106710	A1	4/2010	Nishizawa et al.
2010/0157979	A1	6/2010	Anisimov et al.
2010/0198930	A1	8/2010	Kikinis
2011/0099602	A1	4/2011	Apparao et al.
2011/0110363	A1	5/2011	Anandani
2011/0178946	A1	7/2011	Minert et al.
2011/0179304	A1	7/2011	Peterson
2011/0179398	A1	7/2011	Peterson
2011/0182418	A1	7/2011	Anisimov et al.
2012/0047266	A1	2/2012	Minert
2012/0066016	A1	3/2012	Minert et al.
2012/0177195	A1	7/2012	Elliott et al.
2012/0195415	A1	8/2012	Wyss et al.
2012/0250849	A1	10/2012	Liu et al.
2013/0016115	A1	1/2013	Minert et al.
2013/0070757	A1	3/2013	Elliott et al.
2013/0129067	A1	5/2013	Neyman et al.
2013/0230160	A1*	9/2013	Neyman et al. 379/142.17
2014/0376708	A1	12/2014	Deryugin et al.
2014/0379936	A1	12/2014	Anisimov et al.
2015/0201021	A1	7/2015	Beck et al.
2015/0244870	A1	8/2015	Neyman et al.

FOREIGN PATENT DOCUMENTS

AT	316736	2/2006
AT	317621	2/2006
AT	318048	3/2006
AT	337678	9/2006
AT	379921	12/2007
AT	380434	12/2007
AT	384398	2/2008
AT	388578	3/2008
AT	401736	8/2008
AT	413059	11/2008
AT	424090	3/2009
AT	465451	5/2010
AT	474415	7/2010
AU	2604797	10/1997
AU	718233 B2	3/1998
AU	5274398	3/1998
AU	6023598	8/1998
AU	6034698	8/1998
AU	6167398	8/1998
AU	6319498	8/1998
AU	6655298	9/1998
AU	6655398	9/1998
AU	7099298	10/1998
AU	735134 B2	3/1999
AU	736449 B2	4/1999
AU	737483 B2	4/1999
AU	743217 B2	4/1999
AU	745404 B2	4/1999
AU	748636 B2	4/1999

References Cited
FOREIGN PATENT DOCUMENTS
CA
CA
CA
CA
CA
CA
$\stackrel{C}{C A}$
$\stackrel{C}{C A}$
CA
CN

(56)	References Cited		JP	10-093713	4/1998
			JP	10-093716	4/1998
	FOREIGN PATENT DOCUMENTS		JP	10-504425	4/1998
			JP	10-116249	5/1998
EP	1142284 B1	7/2010	JP	10-143451	5/1998
EP	2380323 A1	10/2011	JP	10-506766	6/1998
EP	1408678 B1	11/2011	JP	10-214113	8/1998
EP	1057301 B 1	8/2013	JP	10-224477	8/1998
EP	1131728 B1	1/2014	JP	10-509847	9/1998
EP	1625460 B1	5/2014	JP	10-304073	11/1998
ES	2231120 T3	5/2005	JP	10-304074	11/1998
ES	2255657 T3	7/2006	JP	10-327258	12/1998
ES	2256666 T3	7/2006	JP	10-513632	12/1998
ES	2257639 T3	8/2006	JP	11-055741	2/1999
FR	2671252 A1	7/1992	JP	11-506292	6/1999
GB	2273225 A	6/1994	JP	11-183189	7/1999
GB	2306853 A	5/1997	JP	11-508430	7/1999
GB	2315190 A	1/1998	JP	11-508715	7/1999
GB	2324627 A	10/1998	JP	11-317817	11/1999
GB	2369263 A	5/2002	JP	11-512906	11/1999
JP	61-51247	3/1986	JP	11-346266	12/1999
JP	62-200956	9/1987	JP	2000-011005	1/2000
JP	63-149955	6/1988	JP	2000-49847	2/2000
JP	64-7460	1/1989	JP	2000-151819	5/2000
JP	64-77265	3/1989	JP	2000-514985	11/2000
JP	02-170756	7/1990	JP	2000-514986	11/2000
JP	02-298154	12/1990	JP	2000-516432	12/2000
JP	03-052443	3/1991	JP	2000-516795	12/2000
JP	03-160865	7/1991	JP	2000-517142	12/2000
JP	03-177144	8/1991	JP	2001-500677	1/2001
JP	04-40723	2/1992	JP	2001-103533	4/2001
JP	4-66858	6/1992	JP	2001-292236	10/2001
JP	04-265049	9/1992	JP	2001-516993	10/2001
JP	4-336742	11/1992	JP	2001-517027	10/2001
JP	04-371056	12/1992	JP	2001-517029	10/2001
JP	06-044157	2/1994	JP	2001-517038	10/2001
JP	06-046150	2/1994	JP	2001-518754	10/2001
JP	06-066830	3/1994	JP	2001-522201	11/2001
JP	06-069988	3/1994	JP	2001-523930	11/2001
JP	06-83771	3/1994	JP	3226929 B2	11/2001
JP	06-90292	3/1994	JP	2001-524782	12/2001
JP	06-103058	4/1994	JP	2001-526871	12/2001
JP	06-121051	4/1994	JP	2002-503903	2/2002
JP	06-284203	7/1994	JP	2002-503921	2/2002
JP	06-261129	9/1994	JP	2002-504783	2/2002
JP	06-291877	10/1994	JP	2002-518890	6/2002
JP	06-334748	12/1994	JP	2002-519762	7/2002
JP	07-046321	2/1995	JP	2002-525895	8/2002
JP	07-058851	3/1995	JP	2002-528824	9/2002
JP	07-115471	5/1995	JP	2002-529836	9/2002
JP	07-170288	7/1995	JP	2002-529943	9/2002
JP	07-170546	7/1995	JP	2002-529944	9/2002
JP	07-262104	10/1995	JP	2002-529945	9/2002
JP	07-212471	11/1995	JP	2002-529994	9/2002
JP	07-319538	12/1995	JP	2002-530010	9/2002
JP	07-336447	12/1995	JP	2002-534003	10/2002
JP	08-46699	2/1996	JP	2002-537594	11/2002
JP	08-056377	2/1996	JP	2003-502720	1/2003
JP	08-163252	6/1996	JP	2003-507908	2/2003
JP	08-181793	7/1996	JP	2003-510929	3/2003
JP	08-504305	7/1996	JP	3384792 B2	3/2003
JP	08-214076	8/1996	JP	3393119 B2	4/2003
JP	08-214346	8/1996	JP	2003-516672	5/2003
JP	08-510071	10/1996	JP	3453561 B2	10/2003
JP	8-321885	12/1996	JP	3461488 B2	10/2003
JP	8-329118	12/1996	JP	3516656 B2	4/2004
JP	8-331618	12/1996	JP	3516659 B2	4/2004
JP	09-036963	2/1997	JP	354714262	7/2004
JP	09-501812	2/1997	JP	3547397 B2	7/2004
JP	09-504394	4/1997	JP	2004-312730	11/2004
JP	09-149137	6/1997	JP	2005-504452	2/2005
JP	09-163031	6/1997	JP	3615708 B2	2/2005
JP	09-224093	8/1997	JP	3628962 B2	3/2005
JP	09-508508	8/1997	JP	2005-094780	4/2005
JP	09-233118	9/1997	JP	2005-102234	4/2005
JP	09-265408	10/1997	JP	2005-124184	5/2005
JP	10-11374	1/1998	JP	3681403 B2	8/2005
JP	10-13811	1/1998	JP	3681406 B2	8/2005
JP	10-51549	2/1998	JP	3686087 B2	8/2005

US RE46,243 E

wo

wo
wo
WO
wo
wo
WO
WO
wo
wo
wo
wo
wo
wo
wo
WO
wo
wo
wo
wo
wo
wo
wo
WO
wo
WO
WO
wo
WO
wo
wo
wo
wo
wo
wo
wo
wo
WO
wo
WO
wo
wo
wo
wo
wo
WO
wo
wo
wo
wo
wo
WO

References Cited
FOREIGN PATENT DOCUMENTS
3686337 B2
3735124 B2

8/2005
1/2006
9/2006
10/2006
2/2007
3/2008
1/2009
3/2009
7/2009
4/2010
6/2012
2012-513725 B2
10-2011-0098841 A
9208194 A1

9401959 A1
9429995 A1 12/1994
9508236 A2 3/1995
9520860 A1 8/1995
$\begin{array}{lrr}9533325 & \text { A2 } & 12 / 1995 \\ 9614704 & \text { A1 } & 5 / 1996\end{array}$
9620553 A2 7/1996
9623265 A1 8/1996
9627254 A1 9/1996
9701917 A1 1/1997
9712472 A1 4/1997
9713352 A1 4/1997
9716014 A2 5/1997
9718662 A1 5/1997
9720424 A1 6/1997
9722201 A2 6/1997
9723078 A1 6/1997
9726749 A1 7/1997
9728635 A1 8/1997
9729584 A1 8/1997
9734401 A1 9/1997
9736414 A1 10/1997
9737500 A1 10/1997
9738389 A2 10/1997
9738519 A1 10/1997
$\begin{array}{lrr}9750235 & \text { A1 } & 12 / 1997 \\ 9801987 & \text { A1 } & 1 / 1998\end{array}$
9810573 A2 3/1998
9813765 A1 4/1998
9813974 A1 4/1998
9817048 A1 4/1998
9827479 A2 6/1998
9831130 A1 7/1998
9834390 A1 8/1998
9835326 A1 8/1998
9835509 A2 8/1998
9836551 A1 8/1998
9837481 A1 8/1998
9837677 A2 8/1998
9837686 A1 8/1998
9837687 A1 8/1998
9844699 A1 10/1998
9844714 A1 10/1998
9848577 A2 10/1998
9854877 A2 12/1998
9856133 A2 12/1998
9856141 A1 12/1998
9857501 A2 12/1998
9900960 A1 1/1999
9900966 A1 1/1999
9903247 A2 1/1999
9912367 A1 3/1999
9913635 A1 3/1999
9914919 A1 3/1999
9914920 A1 3/1999
9914924 A1 3/1999
9914951 A1 3/1999
9917518 A1 $4 / 1999$
9923806 A1 5/1999
9923807 A1 5/1999
9926395 A1 5/1999
9926424 A2 $5 / 1999$

WO	9927698	A1	$6 / 1999$
WO	9941720	A1	$8 / 1999$
WO	9941890	A2	$8 / 1999$
WO	9941891	A1	$8 / 1999$
WO	9941895	A1	$8 / 1999$
WO	9943137	A1	$8 / 1999$
WO	9925117		$10 / 1999$
WO	9956227	A1	$11 / 1999$
WO	9956229	A1	$11 / 1999$
WO	9965214	A1	$12 / 1999$
WO	9965252	A2	$12 / 1999$
WO	9967718	A1	$12 / 1999$
WO	0007332	A2	$2 / 2000$
WO	0016203	A1	$3 / 2000$
WO	0016207	A1	$3 / 2000$
WO	0016523	A1	$3 / 2000$
WO	0018094	A1	$3 / 2000$
WO	0025238	A1	$5 / 2000$
WO	0026804	A1	$5 / 2000$
WO	0026816	A1	$5 / 2000$
WO	0026817	A1	$5 / 2000$
WO	0027063	A2	$5 / 2000$
WO	0028425	A1	$5 / 2000$
WO	0028702	A1	$5 / 2000$
WO	0035173	A1	$6 / 2000$
WO	0038398	A1	$6 / 2000$
WO	0044159	A1	$7 / 2000$
WO	0049482	A2	$8 / 2000$
WO	0049778	A1	$8 / 2000$
WO	0113606	A1	$2 / 2001$
WO	0124025	A1	$4 / 2001$
WO	0140997	A1	$6 / 2001$
WO	0141372	A1	$6 / 2001$
WO	0143410	A1	$6 / 2001$
WO	0152513	A1	$7 / 2001$
WO	0180214	A1	$10 / 2001$
WO	0180540	A1	$10 / 2001$
WO	0184360	A1	$11 / 2001$
WO	02065741	A2	$8 / 2002$
WO	03010948	A1	$2 / 2003$
WO	2004063854	A2	$7 / 2004$
WO	2005036907	A1	$4 / 2005$
WO	2006055059	A2	$5 / 2006$
WO	0075151	A1	$7 / 2010$
WO			
WO		0	9

OTHER PUBLICATIONS

"Guide for the Use of Micro-Researcher II/SGR (Scroll Graph Section)," NEC Corporation, Third Edition, Chapters 1 \& 5, Jul. 1995, 2 pages.
"Kana: Customer Messaging System," Kana Communications Sales Brochure, Palo Alto, CA, 1996, 12 pages.
"Latest Trend in CTI," Nikkei Communications, No. 248, Jun. 16, 1997, 14 pages.
"Method for Automatic Contextual Transposition Upon Receipt of Item of Specified Criteria," IBM Technical Disclosure Bulletin, vol. 37, No. 2B, Feb. 1994, 1 page.
"New Telephone Service Changing Computer Telephone Business," Nikkei Communications, Nov. 11, 1996, 7 pages.
"Single Line Suffices for Internet Telephone," Nikkei Communications, May 19, 1997, 9 pages.
Bachmann, David W. et al., "NetMod: A Design Tool for LargeScale Heterogeneous Campus Networks," Center for Information Technology Integration (CITI), The University of Michigan, Ann Arbor, MI, Jun. 15, 1990, 34 pages.
Bangun, H. et al., A Network Architecture for Multiuser Networked Games on Demand, International Conference on Information Communications and Signal Processing, ICICS '97, Sep. 9-12, 1997, 5 pages.
Bertsekas, Dimitri et al., "Data Networks," Prentice-Hall, New Jersey, 1987, 5 pages.
Chan, Kevin F. et al., "Interactive Network Planning and Analysis on a Personal Computer," Computer Applications in Power, IEEE, vol. 3, No. 1, Jan. 1990, 5 pages.

References Cited

OTHER PUBLICATIONS

Chau, Sam et al., "Intelligent Network Routing Using CCS7 and ISDN," Global Telecommunications Conference, vol. 3, 6 pages, 1990.

Chaudhuri, Surajit et al., "Optimizing Queries over Multimedia Repositories," Hewlett-Packard Laboratories, Stanford, Mar. 1996, 12 pages.
Chaum, David, "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms," Communications of the ACM, vol. 24, No. 2, Feb. 1981, 8 pages.
Chew, T.-S. et al., "Netplan-a Telecommunications Network Planning Support System," TENCON '92, IEEE Region 10 International Conference, vol. 2, 7 pages, 1992.
Chiu, H. et al., "Conferencing Metaphor," IBM Technical Disclosure Bulletin, vol. 36, No. 2, Feb. 1993, 4 pages.
Cordom, Christopher et al., "Conversant VIS Listens and Talks to Your Customers," AT\&T Technology, vol. 9, No. 2, 4 pages, 1994. D'Hooge, Herman, "The Communicating PC," IEEE Communications Magazine, 6 pages, Apr. 1996.
Durinovic-Johri, Sanja et al., "Advanced Routing Solutions for Toll-Free Customers: Algorithm Design and Performance," Proceedings of the International Teletraffic Congress, ITC-15, 1997, 12 pages.
Festa, Paul, "Vignette Updates StoryServer Platform," CNET News. com, Sep. 16, 1997, 4 pages.
Foster, Robin Harris, "Advanced Definity Call Centers: Working for You and Your Customers," AT\&T Technology, vol. 9, No. 2, 1994, 6 pages.
Francis, Paul et al., "Flexible Routing and Addressing for a Next Generation IP," SIGCOMM, 10 pages, 1994.
Gawrys, G.W., et al., "ISDN: Integrated Network/Premises Solutions for Customer Needs," ICC, 6 pages, 1986.
Gechter, J. et al., "ISDN Service Opportunities in the Intelligent Network," Proceedings of the National Communications Forum, Chicago, IL, vol. 43, No. 1, Oct. 1989, 4 pages.
Harvey, Dean E. et al., "Call Center Solutions," AT\&T Technical Journal, vol. 70, No. 5, 10 pages, Sep./Oct. 1991.
Hofmann, Peter. et al, "@INGate: Integrating Telephony and Internet," IEEE Conference on Protocols for Multimedia Systems, 4 pages, Nov. 1997.
House, Eric, "How to Munge Outgoing From: Field When Using Mail?," Google Discussion Group, Apr. 2, 1997, 1 page.
Hu, Michael Junke et al., "An Object-Relational Database System for the Interactive Multimedia," IEEE International Conference on Intelligent Processing Systems, pp. 1571-1575, Oct. 1997.
International Search Report for PCT/US96/16919, dated Jun. 2, 1997, 3 pages.
International Search Report for PCT/US97/01469, dated Apr. 14, 1997, 1 page.
International Search Report for PCT/US97/05457, dated Jun. 24, 1997, 2 pages.
International Search Report for PCT/US97/11881, dated Oct. 24, 1997, 1 page.
Katz, Michael, "When CTI Meets the Internet," Telecommunications, vol. 31, No. 7, Jul. 1997, 6 pages.
Kaufman, Harvey, "Call Centers in Cyberspace," Communications News, vol. 34, Issue 7, Jul. 1997, 4 pages.
Kramer, Brian, "How to Send a File to the Sender of a Message?," Google Discussion Group, May 27, 1994, 5 pages.
Lee, Chien-I, et al., "A New Storage and Retrieval Method to Support Editing Operations in a Multi-Disk-based Video Server," Fourth International Conference on Parallel and Distributed Information Systems, IEEE, Miami Beach, FL, Dec. 1996, 10 pages.
Lin, Yi-Bing et al., "A Flexible Graphical User Interface for Performance Modeling," Software-Practice and Experience, vol. 25(2), Feb. 1995, 24 pages.
Low, Colin, "The Internet Telephony Red Herring," Global Telecommunications Conference, Nov. 1996, 15 pages.

MacKay, Wendy E., et al., "Virtual Video Editing in Interactive Multimedia Applications," Communications of the ACM, vol. 32, No. 7, Jul. 1989, 9 pages.
Masashi, Tsuboi et al., "Computer Telephony Integration System," CTSTAGE, Oki Electric Research and Development, 174, vol. 64, No, 2, Apr. 1, 1997, 10 pages.
Matsuo, Yasunori, "Microsoft Project for Windows 95," Nikkei Personal Computing, Nikkei Business Publications, Inc., No. 255, Dec. 18, 1995, 2 pages.
Mattison, Rob, "Data Warehousing and Data Mining for Telecommunications," Artech House, Boston, 1997, 7 pages.
Microsoft Dictionary Pages, Microsoft Press, Redmond, WA, 1991, 2 pages.
Murayama, Hideki, "Integrated Customer Supporting System View Workshop/CS, OA Business Personal Computer," NEC Business System, Denpa Press Co., Ltd., vol. 15, No. 12, Dec. 1997, 6 pages. Newton, Harry, "Newton's Telecom Dictionary," Flatiron Publishing, New York, 1994, 7 pages.
Orozco-Barbosa, Luis et al., "Design and Performance Evaluation of Intelligent Multimedia Services," Computer Communications, vol. 20, 1997, 14 pages.
Rangan, P. Venkat, et al., "A Window-Based Editor for Digital Video and Audio," Proceedings of the 25th Hawaii International Conference on System Sciences, IEEE, vol. 2, Jan. 1992, 9 pages. Recker, Mimi M. et al., "Predicting Document Access in Large, Multimedia Repositories," ACM Transactions on Computer-Human Interaction, vol. 3, 1994, 23 pages.
Schmandt, Chris, "Phoneshell: The Telephone as Computer Terminal," Proceedings of ACM Multimedia Conference, 1993, 10 pages. Smith, J.D., An Overview to Computer-Telecommunications Integration (CTI), Telecommunications, Conference Publication No. 404, IEEE, Mar. 26-29, 1995, 5 pages.
Sulkin, Allan, Building the ACD-LAN Connection, Business Communications Review, Jun. 1996, 4 pages.
Szlam, Aleksander et al., "Predictive Dialing Fundamentals," Flatiron Publishing, New York, 1996, 28 pages.
Toji, Ryutaro et al., "A Study of Customer Contact Operation System and Functions," Proceedings of the IECE General Conference, Comm. 2, Mar. 6, 1997, 3 pages.
Tsunemasa, Mizuo., "CTI World 2: World of CTI," Business Communication, vol. 34, No. 2, Feb. 1, 1997, 13 pages.
Van Zijl, Lynette, et al., "A Tool for Graphical Network Modeling and Analysis," IEEE Software, Jan. 1992, 8 pages.
Vazquez, E., et al., Graphical Interface for Communication Network Analysis and Simulation, Department of Telematic Engineering, Technical University of Madrid, IEE, 1991, Spain, 4 pages.
Zenel, Bruce et al., Intelligent Communication Filtering for Limited Bandwidth Environments, Computer Science Department, Columnia University, IEEE, 1995, 7 pages.
T-Server for Alcatel A4400/OXE, Deployment Guide, Framework 7.6, Genesys An Alcatel-Lucent Company, 6 pages.
"Solution Drivers/CTI, CTI Solution Strategy of Seven Computer Vendors, Toward Market Development of Mainly Bank, Insurance and Communications Markets," Computopia, Computer Age Co., Ltd., Japan, vol. 33, No. 379, 5 pages, Apr. 1998.
Beck, C. et al., Interactive process of operating system for multimedia communication center, Genesys Telecom Lab, Inc. 2014, 3 pages.
Bernett, Howard et al., "Assessing Web-Enabled Call Center Technologies," IT Pro, May/Jun. 2001, 7 pages.
Bickley, M. et al., Using Servers to Enhance Control System Capability, 1999 Particle Accelerator Conference, New York, NY, Mar. 29-Apr. 2, 1999, 3 pages.
Bradley, Kirk A. et al., "Detecting Disruptive Routers: A Distributed Network Monitoring Approach," Department of Computer Science, University of California, Davis, Sep. 1, 1998, 10 pages.
Canadian Office Action for Application No. 2,259,912, dated Nov. 19, 2001, 2 pages.
Canadian Office Action for Application No. 2,289,198, dated Jun. 28, 2002, 2 pages.
Canadian Office Action for Application No. 2,302,397, dated Apr. 23, 2002, 2 pages.

US RE46,243 E

References Cited

OTHER PUBLICATIONS

Canadian Office Action for Application No. 2,302,678, dated Apr. 23, 2002, 2 pages.
Canadian Office Action for Application No. 2308590, dated Jun. 28, 2002, 2 pages.
Canadian Office Action for Application No. 2309183, dated Jul. 23, 2002, 2 pages.
Canadian Office Action for Application No. 2320978, dated Jun. 2, 2003, 2 pages.
Canadian Office Action for Application No. 2320978, dated Sep. 26, 2002, 2 pages.
Canadian Office Action for Application No. 2334513, dated May 30, 2003, 2 pages.
Canadian Office Action for Application No. 2347721, dated Aug. 12, 2004, 3 pages.
Canadian Office Action for Application No. 2352973, dated Apr. 17, 2003, 3 pages.
Chinese Office Action for Application No. 20098015 1937.6, dated Jul. 1, 2013, 14 pages.
Chinese Office Action for Application No. 98812258.8 dated Jul. 26, 2002, 5 pages.
Chinese Office Action for Application No. 98812259.6, dated Jan. 10, 2003, 9 pages.
Chinese Office Action for Application No. 98812261.8, dated Jun. 20, 2003, 10 pages.
Chinese Office Action for Application No. 99808531.6, dated Mar. 14, 2003, 14 pages.
Chinese Office Action for Application No. 99811995.4, dated Apr. 8, 2005, 6 pages.
Chinese Office Action for Application No. 99811995.4 , dated Jul. 6, 2007, 11 pages.
Chinese Office Action for Application No. 99811996.2, dated May 9, 2003, 10 pages.
Chinese Office action for Patent Application No. 200980151937.6, dated Feb. 15, 2015, 6 pages.
Chinese Office action with English Translation for Application No. 200980151937.6 dated May 23, 2014, 7 pages.

Chou, Sheng-Lin., et al., "Computer Telephony Integration and Its Applications," IEEE Communications Surveys \& Tutorials, vol. 3, No. 1, 2000, 10 pages.
Curbera, Francisco et al., "Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI," IEEE Internet Computing, 8 pages, Mar/Apr. 2002.
Eren, P. Erhan, et al., "Interactive Object-Based Analysis and Manipulation of Digital Video," IEEE Workshop on Multimedia Signal Processing, 1998, 6 pages.
European Office action Application No. 04011886.1 , dated Mar. 9, 2007, 6 pages.
European Office action for Application No. 00115441.8, dated Feb. 11, 2004, 7 pages.
European Office action for Application No. 00115441.8 , dated Mar. 15, 2005, 4 pages.
European Office Action for Application No. 00115441.8, dated May 18, 2006, 11 pages.
European Office Action for Application No. 00119160.0, dated Jan. 16, 2004, 6 pages.
European Office action for Application No. 00123329.5, dated Jun. 17, 2002, 6 pages.
European Office Action for Application No. 00123331.1 , dated Apr. 18, 2006, 5 pages.
European Office Action for Application No. 00305049.9, dated Dec. 29, 2003, 5 pages.
European Office Action for Application No. 00908266.0 , dated Aug. 10, 2005, 6 pages.
European Office action for Application No. 02400027.5, dated Jan. 21, 2008, 5 pages.
European Office action for Application No. 02756535.7, dated Aug. 5, 2005, 6 pages.
European Office Action for Application No. 03022831.6 , dated Nov. 30, 2006, 7 pages.

European Office Action for Application No. 03800376.0, dated Jul. 8, 2008, 6 pages.
European Office Action for Application No. 04009176.1 , dated Oct. 12, 2011, 8 pages.
European Office Action for Application No. 97904087.0, dated Jun. 25, 2002, 5 pages.
European Office Action for Application No. 97933327.5 , dated Aug. 26, 2002, 4 pages.
European Office Action for Application No. 97933327.5, dated Feb. 7, 2002, 5 pages.
European Office Action for Application No. 98903471.5, dated May 29, 2006, 4 pages.
European Office Action for Application No. 98903471.5, dated Oct. 11, 2004, 6 pages.
European Office Action for Application No. 98908545.1, dated Mar. 15, 2005, 4 pages.
European Office Action for Application No. 98908545.1 , dated Nov. 14, 2003, 10 pages.
European Office Action for Application No. 98924821.6 , dated Aug. 26, 2003, 4 pages.
European Office Action for Application No. 98926248.0, dated Aug. 5, 2004, 4 pages.
European Office Action for Application No. 98926248.0, dated Dec. 11, 2003, 4 pages.
European Office Action for Application No. 98926248.0, dated Oct. 21, 2002, 6 pages.
European Office Action for Application No. 98944799.0, dated Aug. 18, 2005, 7 pages.
European Office Action for Application No. 98944799.0, dated Mar. 26, 2008, 5 pages.
European Office Action for Application No. 98944830.3, dated Jan. 30, 2006, 9 pages.
European Office Action for Application No. 98946907.7, dated Jun. 1, 2006, 6 pages.
European Office Action for Application No. 98946926.7, dated Dec. 8, 2005, 4 pages.
European Office Action for Application No. 98953947.3 , dated Aug. 22, 2006, 6 pages.
European Office Action for Application No. 98953962.2 , dated Oct. 28, 2005, 5 pages.
European Office Action for Application No. 98956309.3 , dated Jun. 8, 2005, 5 pages.
European Office Action for Application No. 99905907.4, dated Oct. 31, 2005, 4 pages.
European Office Action for Application No. 99906856.2, dated Sep. 24, 2007, 5 pages.
European Office Action for Application No. 99906958.6, dated Feb. 22, 2006, 7 pages.
European Office Action for Application No. 99927333.7, dated Aug. 21, 2006, 9 pages.
European Office Action for Application No. 99927340.2 , dated Aug. 9, 2011, 6 pages.
European Office Action for Application No. 99927340.2, dated Nov. 25, 2013, 5 pages.
European Office Action for Application No. 99945479.6, dated Aug. 9, 2006, 6 pages.
European Office Action for Application No. 99945519.9, dated Aug. 20, 2007, 6 pages.
European Office action for Application No. 99956732.4, dated Aug. 17, 2006, 7 pages.
European Office action for Application No. 99956745.6, dated Mar. 14, 2006, 5 pages.
European Office Action for Application No. 99960267.5, dated May 10, 2007, 6 pages.
European Office Action for Application No. 99960279.0, dated Aug. 16, 2005, 6 pages.
European Office Action for Application No. 99965 163.1, dated Jul. 13, 2009, 5 pages.
European Search Report and Written Opinion for Application No. 05783002.8 , dated Mar. 16, 2009, 8 pages.

European Search Report for 0115441.8 (now EP1075153), dated Nov. 6, 2002, 3 pages.

References Cited

OTHER PUBLICATIONS

European Search Report for Application No. 00123329.5 , dated Jan. 30, 2002, 2 pages.
European Search Report for Application No. 00123331.1 , dated Dec. 5, 2003, 6 pages.
European Search Report for Application No. 00305049.9, dated May 7, 2003, 3 pages.
European Search Report for Application No. 00908266.0, dated May 24, 2005, 3 pages.
European Search Report for Application No. 00913226.7, dated Feb. 14, 2005, 3 pages.
European Search Report for Application No. 0119160.0, dated Apr. 17, 2003, 3 pages.
European Search Report for Application No. 01920248.0, dated May 3, 2004, 3 pages.
European Search Report for Application No. 01927387.9, dated Jun. 2, 2006, 3 pages.
European Search Report for Application No. 02400027.5, dated Feb. 20, 2004, 3 pages.
European Search Report for Application No. 02756535.7, dated May 25, 2005, 4 pages.
European Search Report for Application No. 03002575.3, dated Jun. 4, 2003, 3 pages.
European Search Report for Application No. 03008532.8, dated Dec. 27, 2004, 3 pages.
European Search Report for Application No. 03008534.4, dated Jul. 23, 2003, 3 pages.
European Search Report for Application No. 03022831.6, dated Mar. 22, 2006, 3 pages.
European Search Report for Application No. 03023463.7, dated Jun. 14, 2004, 3 pages.
European Search Report for Application No. 03076826.1, dated Sep. 10, 2003, 3 pages.
European Search Report for Application No. 03077174.5, dated Sep. 4, 2003, 4 pages.
European Search Report for Application No. 03077712.2, dated Mar. 29, 2004, 3 pages.
European Search Report for Application No. 03800376, dated May 7, 2007, 3 pages.
European Search Report for Application No. 04007911.3, dated Aug. 17, 2004, 5 pages.
European Search Report for Application No. 04007913.9, dated Aug. 5, 2004, 4 pages.
European Search Report for Application No. 04011886.1, dated Jun. 22, 2006, 5 pages.
European Search Report for Application No. 07018035.1, dated Apr. 23, 2009, 4 pages.
European Search Report for Application No. 97904087.0, dated Nov. 5, 2001, 3 pages.
European Search Report for Application No. 97933327.5, dated Oct. 11, 2001, 3 pages.
European Search Report for Application No. 98903471.5, dated Jul. 26, 2002, 4 pages.
European Search Report for Application No. 98903623.1, dated Apr. 17, 2002, 3 pages.
European Search Report for Application No. 98907371.3, dated Mar. 28, 2002, 3 pages.
European Search Report for Application No. 98924821.6 , dated Jun. 13, 2002, 2 pages.
European Search Report for Application No. 98926248, dated Jul. 18, 2002, 3 pages.
European Search Report for Application No. 98944799.0, dated Aug. 5, 2004, 3 pages.
European Search Report for Application No. 98944830.3, dated Aug. 11, 2004, 3 pages.
European Search Report for Application No. 98946907.7, dated Aug. 11, 2004, 3 pages.
European Search Report for Application No. 98946926.7, dated Aug. 11, 2004, 3 pages.

European Search Report for Application No. 98948163.5, dated Aug. 8, 2000, 3 pages.
European Search Report for Application No. 98948164.3, dated Jun. 15, 2004, 3 pages.
European Search Report for Application No. 98953947.3, dated Aug. 20, 2004, 3 pages.
European Search Report for Application No. 98953962.2, dated Sep. 2, 2004, 3 pages.
European Search Report for Application No. 98956187.3, dated Sep. 16, 2005, 3 pages.
European Search Report for Application No. 98956309.3, dated Sep. 10, 2004, 3 pages.
European Search Report for Application No. 99905907.4, dated Jun. 1, 2005, 3 pages.
European Search Report for Application No. 99906856.2, dated Oct. 4, 2006, 3 pages.
European Search Report for Application No. 99906958.6, dated Aug. 19, 2005, 3 pages.
European Search Report for Application No. 99927333.7, dated Mar. 30, 2005, 5 pages.
European Search Report for Application No. 99927340.2, dated Oct. 18, 2004, 3 pages.
European Search Report for Application No. 99945479.6, dated Mar. 24, 2006, 3 pages.
European Search Report for Application No. 99945519.9, dated Oct. 18, 2005, 3 pages.
European Search Report for Application No. 99945556.1, dated Nov. 16, 2004, 3 pages.
European Search Report for Application No. 99956732.4, dated Apr. 19, 2006, 4 pages.
European Search Report for Application No. 99956745.6, dated Jun. 30, 2005, 3 pages.
European Search Report for Application No. 99960267.5 , dated Jul. 14, 2005, 3 pages.
European Search Report for Application No. 99960279.0, dated Apr. 26, 2005, 3 pages.
European Search Report for Application No. 99965163.1, dated Nov. 19, 2004, 4 pages.
European Search Report for Application No. 99971602.0, dated Feb. 6, 2007, 3 pages.
Held, Gilbert, "Voice Over Data Networks," McGraw Hill, Texas, 1998, 16 pages.
Henderson, Shane G. et al., "Rostering by Interating Integer Programming and Simulation," Proceedings of the 1998 Winter Simulation Conference, Washington D.C., Dec. 13, 1998, 7 pages.
International Preliminary Examination Report for PCT/US01/ 13313, dated Apr. 22, 2002, 4 pages.
International Preliminary Examination Report for PCT/US01/ 40267, dated Dec. 9, 2002, 4 pages.
International Preliminary Examination Report for PCT/US96/ 16919, dated Feb. 18, 1998, 18 pages.
International Preliminary Examination Report for PCT/US97/ 01469, dated Oct. 14, 1998, 8 pages.
International Preliminary Examination Report for PCT/US97/ 11881, dated Mar. 27, 1998, 3 pages.
International Preliminary Examination Report for PCT/US98/ 00631, dated Sep. 10, 1999, 7 pages.
International Preliminary Examination Report for PCT/US98/ 02847, dated Jul. 9, 1999, 5 pages.
International Preliminary Examination Report for PCT/US98/ 13644, dated Jan. 12, 2000, 6 pages.
International Preliminary Examination Report for PCT/US98/ 18646, dated Oct. 30, 2000, 5 pages.
International Preliminary Examination Report for PCT/US98/ 18789, dated Dec. 30, 1999, 6 pages.
International Preliminary Examination Report for PCT/US98/ 22527, dated Jun. 30, 2000, 5 pages.
International Preliminary Examination Report for PCT/US99/ 12841, dated Jan. 22, 2001, 5 pages.
International Preliminary Examination Report for PCT/US99/ 25308, dated Sep. 10, 2000, 3 pages.
International Preliminary Examination Report for PCT/US99/ 25309, dated May 8, 2001, 4 pages.

References Cited

OTHER PUBLICATIONS

International Preliminary Report on Patentability for PCT/US2005/ 027544, dated May 22, 2007, 7 pages.
International Search Report and Written Opinion for PCT/US2009/ 068402, dated Mar. 31, 2010, 10 pages.
International Search Report for PCT/US00/00781, dated Apr. 12, 2000, 2 pages.
International Search Report for PCT/US00/00785, dated Oct. 2, 2000, 2 pages.
International Search Report for PCT/US00/023066, dated Oct. 30, 2000, 1 page.
International Search Report for PCT/US00/27982, dated Jan. 31, 2001, 3 pages.
International Search Report for PCT/US00/27983, dated Mar. 19, 2001, 2 pages.
International Search Report for PCT/US00/27984, dated Mar. 22, 2001, 1 page.
International Search Report for PCT/US01/07457, dated Aug. 30, 2001, 1 page.
International Search Report for PCT/US01/13313, dated Jul. 6, 2001, 1 page.
International Search Report for PCT/US01/40267, dated Jul. 17, 2001, 1 page.
International Search Report for PCT/US02/23080, dated Oct. 1, 2002, 1 page.
International Search Report for PCT/US03/41677, dated Apr. 10, 2006, 1 page.
International Search Report for PCT/US05/27544, dated Jun. 14, 2006, 1 page.
International Search Report for PCT/US98/00631, dated Jun. 18, 1998, 1 page.
International Search Report for PCT/US98/01158, dated Jul. 17, 1998, 1 page.
International Search Report for PCT/US98/02152, dated Jun. 25, 1998, 1 page.
International Search Report for PCT/US98/02847, dated Aug. 6, 1998, 1 page.
International Search Report for PCT/US98/02848, dated Aug. 11, 1998, 1 page.
International Search Report for PCT/US98/02923, dated Aug. 19, 1998, 1 page.
International Search Report for PCT/US98/06334, dated Sep. 1, 1998, 2 pages.
International Search Report for PCT/US98/10357, dated Jan. 14, 1999, 1 page.
International Search Report for PCT/US98/11442, dated Oct. 21, 1998, 2 pages.
International Search Report for PCT/US98/13644, dated Apr. 21, 1999, 2 pages.
International Search Report for PCT/US98/18646, dated Jan. 29, 1999, 2 pages.
International Search Report for PCT/US98/18789, dated Jan. 29, 1999, 3 pages.
International Search Report for PCT/US98/18833, dated Nov. 19, 1998, 1 page.
International Search Report for PCT/US98/18874, dated Jan. 29, 1999, 1 page.
International Search Report for PCT/US98/18989, dated Jan. 25, 1999, 1 page.
International Search Report for PCT/US98/22527, dated Apr. 2, 1999, 2 pages.
International Search Report for PCT/US98/22555, mailed Mar. 3, 1999, 1 page.
International Search Report for PCT/US98/22600, mailed Jun. 4, 1999, 1 page.
International Search Report for PCT/US98/22935, mailed Apr. 14, 1999, 1 page.
International Search Report for PCT/US99/02812, mailed May 11, 1999, 1 page.

International Search Report for PCT/US99/02814, mailed Jun. 17, 1999, 1 page.
International Search Report for PCT/US99/02822, mailed Aug. 18, 1999, 1 page.
International Search Report for PCT/US99/03038, mailed Apr. 23, 1999, 1 page.
International Search Report for PCT/US99/03039, mailed May 11, 1999, 1 page.
International Search Report for PCT/US99/12700, mailed Nov. 30, 1999, 1 page.
International Search Report for PCT/US99/12781, mailed Sep. 9, 1999, 2 pages.
International Search Report for PCT/US99/12841, mailed Sep. 10, 1999, 2 pages.
International Search Report for PCT/US99/20259, dated Feb. 15, 2000, 1 page.
International Search Report for PCT/US99/20387, dated Dec. 7, 1999, 2 pages.
International Search Report for PCT/US99/20461, dated Dec. 23, 1999, 2 pages.
International Search Report for PCT/US99/25117, dated Nov. 1, 2000, 2 pages.
International Search Report for PCT/US99/25265, dated Feb. 18, 2000, 1 page.
International Search Report for PCT/US99/25308, dated Feb. 3, 2000, 1 page.
International Search Report for PCT/US99/25309, dated Feb. 10, 2000, 1 page.
International Search Report for PCT/US99/25310, dated Feb. 10, 2000, 1 page.
International Search Report for PCT/US99/26619, dated Mar. 17, 2000, 1 page.
International Search Report for PCT/US99/26659, dated Feb. 4, 2000, 1 page.
International Search Report for PCT/US99/29043, dated Mar. 20, 2000, 1 page.
International Search Report for PCT/US99/29044, dated May 11, 2000, 1 page.
International Written Opinion for PCT/US98/22527, mailed Dec. 27, 1999, 5 pages.
Japanese Interrogation and Re-Examination Report for Application No. 1999-502827, mailed Oct. 26, 2004, 7 pages.
Japanese Office Action for Application No. 1997-527811, mailed Oct. 10, 2000, 6 pages.
Japanese Office Action for Application No. 1998-505335, mailed Mar. 5, 2002, 7 pages.
Japanese Office Action for Application No. 1998-531244, mailed Jan. 6, 2004, 4 pages.
Japanese Office Action for Application No. 1998-531244, mailed Sep. 10, 2002, 5 pages.
Japanese Office Action for Application No. 1998-536740, mailed Feb. 24, 2004, 5 pages.
Japanese Office Action for Application No. 1998-536740, mailed Sep. 3, 2002, 14 pages.
Japanese Office Action for Application No. 1999-500765, mailed Feb. 10, 2004, 6 pages.
Japanese Office Action for Application No. 1999-500765, mailed Sep. 3, 2002, 11 pages.
Japanese Office Action for Application No. 1999-502827, mailed Dec. 3, 2002, 4 pages.
Japanese Office Action for Application No. 1999-502827, mailed May 28, 2002, 3 pages.
Japanese Office Action for Application No. 1999-502827, mailed Nov. 1, 2005, 8 pages.
Japanese Office action for Application No. 2000-220082, mailed on Apr. 1, 2003, 3 pages.
Japanese Office Action for Application No. 2000-511299, mailed Feb. 3, 2004, 4 pages.
Japanese Office Action for Application No. 2000-511299, mailed May 16, 2006, 7 pages.
Japanese Office Action for Application No. 2000-512333, mailed Sep. 3, 2002, 6 pages.

References Cited

OTHER PUBLICATIONS

Japanese Office Action for Application No. 2000-512334, mailed Sep. 10, 2002, 9 pages.
Japanese Office Action for Application No. 2000-512336, mailed Jul. 23, 2002, 8 pages.
Japanese Office Action for Application No. 2000-512336, mailed Jun. 24, 2003, 4 pages.
Japanese Office Action for Application No. 2000-514448, mailed Sep. 3, 2002, 10 pages.
Japanese Office Action for Application No. 2000-519541, dated May 16, 2005, 4 pages.
Japanese Office Action for Application No. 2000-519541, mailed Aug. 20, 2002, 10 pages.
Japanese Office Action for Application No. 2000-519541, mailed Dec. 2, 2003, 7 pages.
Japanese Office Action for Application No. 2000-519541, mailed Mar. 14, 2006, 6 pages.
Japanese Office Action for Application No. 2000-522718, mailed Sep. 10, 2002, 9 pages.
Japanese Office Action for Application No. 2000-531822, mailed Sep. 24, 2002, 6 pages.
Japanese Office Action for Application No. 2000-531940, mailed Dec. 3, 2002, 4 pages.
Japanese Office Action for Application No. 2000-532958, mailed Aug. 20, 2002, 7 pages.
Japanese Office Action for Application No. 2000-554115, dated Apr. 27, 2005, 5 pages.
Japanese Office Action for Application No. 2000-554115, mailed Jan. 6, 2004, 4 pages.
Japanese Office Action for Application No. 2000-554115, mailed Oct. 1, 2002, 5 pages.
Japanese Office Action for Application No. 2000-556311, mailed Oct. 21, 2003, 6 pages.
Japanese Office Action for Application No. 2000-570673, dated Oct. 4, 2005, 4 pages.
Japanese Office Action for Application No. 2000-570673, mailed Mar. 8, 2005, 6 pages.
Japanese Office Action for Application No. 2000-570673, mailed Oct. 14, 2003, 6 pages.
Japanese Office Action for Application No. 2000-570677, mailed May 11, 2004, 8 pages.
Japanese Office Action for Application No. 2000-570677, mailed Nov. 30, 2004, 10 pages.
Japanese Office Action for Application No. 2000-570941, mailed Oct. 7, 2003, 6 pages.
Japanese Office Action for Application No. 2000-578753, mailed May 11, 2004, 11 pages.
Japanese Office Action for Application No. 2000-580124, mailed Apr. 12, 2005, 6 pages.
Japanese Office Action for Application No. 2000-580124, mailed Oct. 7, 2003, 5 pages.
Japanese Office Action for Application No. 2000-580329, mailed Feb. 15, 2005, 8 pages.
Japanese Office Action for Application No. 2000-580329, mailed May 13, 2008, 8 pages.
Japanese Office Action for Application No. 2000-580329, mailed Oct. 4, 2005, 5 pages.
Japanese Office Action for Application No. 2000-581781, mailed Feb. 3, 2004, 4 pages.
Japanese Office Action for Application No. 2000-581781, mailed Oct. 8, 2002, 4 pages.
Japanese Office Action for Application No. 2000-590363, mailed Apr. 1, 2003, 6 pages.
Japanese Office Action for Application No. 2001-526724, mailed Aug. 1, 2006, 5 pages.
Japanese Office Action for Application No. 2001-526724, mailed Dec. 13, 2005, 5 pages.
Japanese Office Action for Application No. 2001-526724, mailed May 17, 2005, 4 pages.

Japanese Office Action for Application No. 2006-127262, mailed Jun. 1, 2010 (5 pages).
Japanese Office Action for Application No. 2006-127262, mailed Nov. 18, 2008 (7 pages).
Japanese Office Action for Application No. 2011-543586, mailed Jan. 24, 2013, 5 pages.
Japanese Office Action for Application No. 532950, dated Dec. 17, 2002, 6 pages.
Kaukonen, S., et al., "Agent-Based Conferencing Using Mobile IP-Telephony," Proceedings of Multimedia Signal Processing, 1999, 6 pages.
Korean Office Action for Application No. 10-2011-7016735, dated Jun. 13, 2013, 3 pages.
Korean Office Action for Application No. 10-2011-7017067, dated Aug. 21, 2012, 9 pages.
Malabocchia, Fabio, et al., "Mining Telecommunications Data
Bases: An Approach to Support the Business Management," Net-
work Operations and Management Symposium, IEEE, vol. 1, Feb. 1998, 9 pages.
Matsumoto, Akihiko, "Bank CTI/Call Center Using Up Customer Information, Analysis of Six Major Manufacturers' Solutions," Network Computing, Ric Telecom Corporation, Japan, vol. 10, No. 10, Oct. 1, 1998, 13 pages.
Metz, Christopher, "IP Routers: New Tool for Gigabit Networking," On the Wire, IEEE Internet, Nov./Dec. 1998, 5 pages.
Monson-Haefel, Richard, "Enterprise JavaBeans," O'Reilly \& Assoc., 2nd Ed., 1999, 7 pages.
Nariani, Sushil, "Internet Telephony," Whatis.com, Oct. 25, 1999, 2 pages.
Newton's Telecom Dictionary, The Official Dictionary of Telcommunications \& the Internet, 16th Edition, Telecom Books, Feb. 2000, 3 pages.
Rodriguez-Martinez, Manuel et al., "MOCHA: A Self-Extensible Database Middleware System for Distributed Data Sources," International Conference on Management Data-SIGMOD, 2000, 12 pages.
Rosenberg, Arthur M., "Call Center Computer Telephony: Technology Overview," Gartner, Inc., Jan. 1998 (24 pages).
Sekine, Shoji et al., "Front Office Oriented Solution for Customer Satisfaction and Profit Expansion," Hitachi Hyoron Co, Ltd., Japan, vol. 80 , No. 9 , Sep. 1998, 11 pages.
Sevcik, Peter et al., "The Call Center Revolution," Northeast Consulting Technical Paper, Jan. 1, 1997, 12 pages.
Supplemental European Search Report for Application No. 98908545.1, dated Sep. 5, 2002, 4 pages.

Tadamura, Katsumi et al., "Synchronizing Computer Graphics Animation and Audio," IEEE, 1998, 11 pages.
Taisei, Mori et al., "Call Center: Promotion of Information Use with a Direct Link to Core Business with Eye on the Internet Customer," Ric Telecom Corporation, Japan, vol. 10, No. 8, Aug. 1, 1998, 9 pages.
Tang, Jingrong et al., "Advanced Service Architecture for H. 323 Internet Protocol Telephony," Computer Communications, vol. 23, 2000, 14 pages.
Thio, Fu Wang et al., "Distributed Multimedia Database: A Design and Application Study," The Fourth International Conference on High Performance Computing in the Asia-Pacific Region, IEEE, Beijing, China, vol. 2, May 2000, 6 pages.
Toji, Ryutaro et al., "OCN Multimedia Customer Contact System," NTT Technical Journal, The Telecommunication Association, Japan, vol. 10, No. 1, Jan. 1, 1998, 6 pages.
Wagner, Susanne., "Intralingual Speech-to-Text Conversion in Real-Time: Challenges and Opportunities," Challenges of Multidimensional Translation Conference Proceedings, 2005, 10 pages.
Wang, Yong et al., "Real-time scheduling for multi-agent call center automation", Information service agents lab, school of computing science Simon Fraser University, Burnaby, BC Canada, 1999, 13 pages.
Wolter, Roger., "XML Web Services Basics," Microsoft Corporation, Dec. 2001, 4 pages.

* cited by examiner

Fig. 1

Fig. 2

IN-BAND SIGNALING FOR ROUTING

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue; a claim printed with strikethrough indicates that the claim was canceled, disclaimed, or held invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED DOCUMENTS

The present application is a [Continuation-In-Part (CIP) of application Ser. No. 08/879,619, filed Jun. 20, 1997, which is a CIP of Ser. No. 08/802,660 filed Feb. 19, 1997, which is a CIP of Ser. No. 08/797,407 filed Feb. 10, 1997, all of which are incorporated herein in their entirety by reference] reissue of U.S. Pat. No. 6,104,802, filed on Nov. 18, 1997.

FIELD OF THE INVENTION

The present invention is in the field of computer telephony and has particular application to intelligent network call routing.

BACKGROUND OF THE INVENTION

Telephone call processing and switching systems are, at the time of the present patent application, relatively sophisticated, computerized systems, and development and introduction of new systems continues. Much information on the nature of such hardware and software is available in a number of publications accessible to the present inventor and to those with skill in the art in general. For this reason, much minute detail of known systems is not reproduced here, as to do so would obscure the facts of the invention.

One document which provides considerable information on intelligent networks is "ITU-T Recommendation Q.1219, Intelligent Network User's Guide for Capability Set 1", dated Apr., 1994.

At the time of filing the present patent application there continues to be remarkable growth in telephone-based information systems, which are intelligent networks. Recently emerging examples are telemarketing operations and technical support operations, among many others, which have grown apace with development and marketing of, for example, sophisticated computer equipment. More traditional are systems for serving customers of such as large insurance organizations. In some cases organizations develop and maintain their own telephony operations with purchased or leased equipment, and in many other cases, companies are outsourcing such operations to firms that specialize in such services.

In telephony art, much commercial development is in the area of what are known as call center services and systems, wherein an organization maintains one or more call centers manned by agents of the organization to provide services to clients of the organization. The call centers are typically based on a telephony switch such as a PBX, having incoming trunks and station-side ports connected to agent stations having a least a telephone. Incoming calls are routed to agents based in any of many possible routing criteria. In relatively more state-of-the-art call centers the switches are computer enhanced by being connected to processors running applications for providing additional services not pro-
vided by the switch alone. In the art the processes of such enhancement are known as computer telephony integration (CTI). It is to such systems that embodiments of the present invention are principally (but not exclusively) directed. Embodiments will in general be described relative to call centers.
In an intelligent telephony network such as described herein, incoming calls placed from anywhere in the Public Switch Telephone Network (PSTN) are typically routed by computerized systems known in the art as Service Control Points (SCPs.
Additional processors and software may be provided associated with an SCP for further computer enhancement. For example, when a call arrives at a control point, information about the caller may be collected and processed to help determine the final destination of the call. Then according to programmed routing rules, the call may be switched to a call center and then on to an available agent. In many intelligent networks known to the inventor, digital information pertaining to the caller may be sent ahead to a call center by means of a data link separate from the call carrier, the data link implemented between the SCP and the call center, typically through a CTI processor connected to the telephony switch at the call center. Routing in an intelligent network may be accomplished on several levels according to many different protocols.

A problem with routing within a conventional network is that the final destination for a call is often determined before the call leaves the SCP and further routing is largely automated at decentralized telephony switches within the network. This increases the possibility of errors in routing Calls may be incorrectly routed in the first instance, and, since call transfer is a process that takes a certain length of time, there may be changes while a call is routed, so when the call arrives at the destination, the situation may have changed to the point that the cal will have too be re-routed. Further, the information at an SCP for use in determining routing of calls is typically information updated periodically, and not real-time data.

Another recent development in telephony art is what is known as Internet Protocol Network Telephony (IPNT), wherein conventional telephone calls are simulated between computers over the data network known as the Internet, using microphones and speakers operating with the computers and a graphical user interface operable on each connected computer. Several commercial vendors offer software for simulating such telephony, and similar systems may operate with data networks other than the Internet, such as through company Intranets. At the time of the present patent application such data networks are considered largely "dumb" networks rather than intelligent networks, although some routing is done. Calls are routed in the Internet, for example, by IP addresses, and IP switches and hubs are capable of altering the destination of data packets by controlling IP addresses. In embodiments of the invention that follow, although intelligent telephony networks are used in the main for examples of practicing the invention, the features of the invention are meant to apply as well to IPNT.

What is clearly needed is a better system and method to do call routing whereby determination for routing calls can be shared with decentralized routers in the field without using a separate digital network for transmitting data. In such a system determination of final routing can be made as close as possible to final destination, and information used for routing can be maintained in much closer to real time.

SUMMARY OF THE INVENTION

In a preferred embodiment of the present invention a method for routing a telephone call in a network is provided,
comprising steps of (a) attaining, at a first network destination point, routing data associated with the call other than origination identification or first destination identification; (b) forwarding the routing data in-band with the call to a second network point; (c) accessing the routing data at the second network point; and; (d) using the routing data to select a third network destination for the call.

In some embodiments of the method the network is an intelligent telephony network routing telephone calls, and the first destination point is a service control point (SCP). In these embodiments the routing data other than origination identification or first destination identification may be data elicited from a caller. In some embodiments as well, the data is overwritten by a first router at the first network point into one or more data fields conventionally dedicated to information other than the routing data. In such embodiments, in steps (c) and (d) the accessing and using is by a second router at the second network point, and the first router and the second router may negotiate routing path.

In other embodiments the network is a wide area data network., and the telephone calls are simulated calls between two or more computer stations connected to the wide area data network. In the case of call simulation in a wide area network, at the first network destination point a first router writes routing data into one or more data fields in a data packet associated with the call, and forwards the data packet to a second destination point for further routing by a second router using the routing data.

In another aspect of the invention a routing system for telephone calls in a network comprising a first router associated with a first network destination point; and a second router associated with a second network destination point. For a call received at the first network destination point, the first router writes routing data other than call origination identification or first destination identification into one or more data fields conventionally dedicated to other than the routing data, and the second router at the second network destination point uses the routing data from the one or more data fields to further route the call. In systems of the invention the network may be an intelligent telephony network with the first destination point a service control point (SCP) and the second network destination point a computer-telephony integrated (CTI) telephony switch at a call center. In such an embodiment the first router and the second router negotiate based on the data written by the first router into the one or more data fields.

In an alternative aspect of the invention the network may be a wide area data network., and the telephone calls are calls between two or more computer stations connected to the wide area data network rather than between telephones, the computers providing telephone functions. The wide area data network may the Internet, wherein the calls are Internet Protocol Network Telephony calls, or may be an Intranet.

A distinct advantage of the present invention is that no separate data network is necessary in an intelligent telephony network for the purpose of delivering routing data to a second (or further) destination point. Such data arrives with the call or with a data packet associated with the call. Negotiation is still possible, and there is little difficulty in associating the data with an arriving call.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

FIG. 1 is a simplified overview of an intelligent network as known to the inventor before the present invention, but not in the public domain. fion 131 and agent station 132 Similarly call center 122 comprises two agent stations, agent station 133 and agent station 134. Agent stations 131 through 134 are equipped with telephones $136,138,140$, and 142 respectively. In some embodiments, agent stations such as described above may have computer platforms connected to video display units (PCNVDUs), not shown in FIG. 1. It will be apparent to one with skill in the art that there may be many more agent stations and telephones. Call 107 is forwarded over lines 105 or $\mathbf{1 0 6}$ to the appropriate call center, depending upon routing determined at the SCP. Upon reaching the call center, call 107 is then distributed to an available agent at one of
telephones $\mathbf{1 3 6}, \mathbf{1 3 8}, \mathbf{1 4 0}$, or $\mathbf{1 4 2}$, via programmed routing executed from either processor 223 or processor 224.

FIG. 2 is a simplified overview of a system according to an embodiment of the present invention wherein a method of in-band signaling is uniquely applied to provide intelligent routing with routing decisions made closer to final call destination, and affording some level of negotiated routing. The system represented by FIG. 2 contains many of the components described above for the system of FIG. 1. Repetition of element introduction is not repeated for FIG. 2.

A typical means of routing calls is by use of the calling party's number and/or the destination number. It is known in the art to transfer such information when forwarding a call, by means of what is known as Automatic Number Information (ANI number) and Destination Number Identification System (DNIS). Depending on the nature of the equipment used, the network itself, and software, the actual mechanisms for providing these numbers may vary. For example, with older analog telephone equipment and lines, a call is sent to a receiving point by coded voltage difference between a pair of wires. In this case, a wink and blink system is used to establish contact, then ANI and/or DNIS numbers may be provided coded as a header to the call before analog audio signals are established.

As another example, using later digital equipment and controlling software, a data packet having data fields dedicated to ANI and/or DNIS may precede a call, making this information available to a receiving station. Data fields are more recognizable in the digital example, but the preceding coded information sent with an analog call may also be considered to be sent in a dedicated field. The nomenclature of a dedicated data field is used herein to include analog calls as well as digital calls.

In either case, analog or digital, the ANI number and DNIS number may be considered "in-band" information. That is, the information accompanies (or precedes) the telephone call, and is transmitted on the same communication link as the telephone call. In the case of IPNT calls, over, for example, the Internet, information is sent by data packets, including fields for various purposes, such as an IP address, in addition to digital audio data. This data may be considered as in-band data as well, and the in-band fields are dedicated fields for a particular purpose. Also, in each case, the protocols and methods by which the in-band information is transmitted are well-known in the art.

In embodiments of the invention described below, available in-band data fields are adapted to carry routing information associated with a telephone call for purposes of routing calls and negotiating routing with routers located at various levels in a network.

Referring now to FIG. 2, a router application 201 and an instance of a CTI application 202 known to the inventors as T-server execute at adjunct processor 104 in the network cloud. Router application 201 uses information typically elicited from callers or retrieved from a database associated with a call, and uses that information along with possibly additional information available to generate routing for calls according to routing protocol in the network. It will be apparent to one with skill in the art that applications such as router application 201 and T-server application 202 may reside in a single processor, or more than one processor that is associated with SCP 101 without departing from the spirit and scope of the present invention. Separation of these applications and processors is done here for illustrative purposes only.

In a preferred embodiment of the present invention CTI processor $\mathbf{2 2 3}$ executes instances of router application 201 as well as T-server application 202. Similarly, CTI processor 224 executes an instance of router application 201 and T-server application 202. Using this particular configuration of a central router and decentralized routers, in-band signaling is practiced between the routers in various embodiments of the invention to provide intelligent interaction between the routers. Existing data fields are used to forward routing information other than ANI and DNIS numbers by manipulating existing in-band signal fields. Such dedicated fields are completely or partially overwritten with routing data, and this information is then transmitted in-band over telephony lines $\mathbf{1 0 5}$ and 106 as described above.
As just one of many possible examples, if it is determined that call $\mathbf{1 0 7}$ is to go to an agent that speaks Spanish and is trained to provide technical assistance with a particular product, then router application 201 at the network level would, in an embodiment of the invention, overwrite a portion of an in-band signal field with this information. It will be apparent to those with skill in the art that this data set is but one of very many that might be extant in different situations for different organizations.

There are a number of existing fields in telephony that may be utilized. For example, in the AT\& T^{TM} network there is a Customer Data Field (CDPD) provided by the carrier at the SCP and then delivered and used by a G3-type switch. This field may be used to provide in the telephone call a key or actual data, or a combination of the two. In other networks, such as MCI for example, there are similar fields whose conventional use may be coopted for routing purposes. The Destination Number Information Service (DNIS) field may be similarly over written with routing data

Router application 201 has the ability to configure and execute routing data overwrites to different fields generic to different switches and or networks such as AT\&T, MCI, Rockwell, Lucent or Northern Telecom, and so on. The manipulated in-band signal then carries the routing data over, for example, conventional telephony line 105 to telephony switch 123 where an instance of router application 201 residing in CTI processor 223 can read the information and use it to route call 107 to an agent connected to a station-side port at the call center. By utilizing in-band signaling for routing, in some instances network connections 110 and 111 can be eliminated. All routing in such embodiments can be provided in the form of in-band signaling from the network to routers at lower levels.

There are some possible problems which have occurred to the inventor. For example, it is inevitable that there may be some mistakes on occasion in initial routing of calls with in-band data. A problem may arise because in-band signaling for routing purposes may seem at first glance to be single-directional, from the higher-level router to the lower. In various embodiments of the invention, however, a level of negotiation may yet be provided between the higher-level router and the lower. For example, in one embodiment, software may be provided associated with both sending and receiving routers such that if the receiving router is not prepared to handle a particular call by the nature of the in-band routing data, the receiving router may cause the receiving equipment to respond to the call with a busy signal. The busy signal may be interpreted by the sending router as a return signal that the call is refused, and should be routed to an alternative destination. Similarly a number-of-rings (time) protocol could accomplish similar negotiation.

In some embodiments using ISDN lines in place of conventional telephony lines, additional communication between instances of router application 201 in bi-directional fashion is possible, as a return signal may be sent over one of the ISDN channels.

It will be apparent to those with skill in the art that an intelligent network such as the one described with reference to FIG. 2 wherein in-band signaling is manipulated to provide routing instruction may be implemented in a wide variety of architectures without departing from the spirit and scope of the present invention. For example, such an intelligent network scheme may comprise many call-centers and CTI-enhanced telephony switches, may or may not employ a separate network for data communication between routing points in the network, and may use different types of telephony lines or trunks.

In the matter of IPNT, it should be apparent that an Internet call, for example, may be directed to a first destination, which may be adapted to communicate with and elicit information from a caller, and also in some instances to retrieve additional information from stored resources. Routing intelligence at the first destination may then encode all or part of such information in one or more data fields of data packets and direct the data packets to a second destination, wherein the encoded in-band data may be used to further route the call. Negotiation may be accomplished between the first and the second routers resulting in further routing determination, and there is no real limit to the number of iterations that may be performed. Thusly, as in an intelligent network as described above, routing may be forced to levels closer and closer to final destinations, where decisions may be made on information more apt to be closer to real-time.

It will also be apparent to those with skill in the art that the method of the present invention wherein in-band signaling is used may be adapted to differing types of telephony switches without departing from the spirit and scope of the present invention. It is well known that the functions of telephony switches offered by different manufacturers may vary. However, the in-band signaling properties available with these switches are similar so that a router could be adapted to overwrite the data fields therein. A routing application may be programmed to enable the overwrite of in-band signal fields of several different switches that may be employed on the same network. There are many such possibilities many of which have already been described. The spirit and scope of the present invention is limited only by the claims that follow.

What is claimed is:

1. A method for routing a telephone call in a network comprising steps of:
(a) attaining, at a service control point, routing data associated with the call other than origination identification or first destination identification;
(b) writing the routing data in-band, in a data field conventionally dedicated to information other than routing data, with the call to forward to a second network point serviced by a computer-telephony integration (CTI) system;
(c) accessing the routing data at the second network point by the CTI system; and;
(d) using the routing data to select a third network destination for the call.
2. The method of claim $\mathbf{1}$ wherein, in step (a) the routing data other than origination identification or first destination identification is data elicited from a caller.
3. The method of claim $\mathbf{1}$ wherein, in steps (c) and (d) the accessing and using is by a second router at the second network point, and wherein the first router and the second router negotiate routing path.
4. The method of claim 1 wherein the network is a wide area data network, and the telephone calls are simulated calls is between two or more computer stations connected to the wide area data network.
5. The method of claim 4 wherein at the first network destination point a first router writes routing data into one or more data fields in a data packet associated with the call, and forwards the data packet to a second destination point for further routing by a second router using the routing data.
6. A routing system for telephone calls in a network comprising:
a first router associated with a service control point; and
a second router associated with a second network destination point serviced by a computer-telephony [intergration] integration (CTI) system;
wherein, for a call received at the service control point, the first router writes routing data other than call origination identification or first destination identification into one or more data fields in a data packet associated with the call conventionally dedicated to other than the routing data, and the second router at the second network destination point uses the routing data from the one or more data fields to further route the call, and
wherein the first router and the second router negotiate based on the data written by the first router into the one or more data fields.
[7. The system of claim 6 wherein the first router and the second router negotiate based on the data written by the first router into the one or more data fields.]
7. [The system of claim 6] A routing system for telephone calls in a network comprising:
a first router associated with a service control point; and
a second router associated with a second network destination point serviced by a computer-telephony integration (CTI) system;
wherein, for a call received at the service control point, the first router writes routing data other than call origination identification or first destination identification into one or more data fields in a data packet associated with the call conventionally dedicated to other than the routing data, and the second router at the second network destination point uses the routing data from the one or more data fields to further route the call,
wherein the first router and the second router negotiate based on the data written by the first router into the one or more data fields, and
wherein the network is a wide area data network, and the telephone calls are calls between two or more computer stations connected to the wide area data network rather than between telephones, the computers providing telephone functions.
8. The system of claim $\mathbf{8}$ wherein the wide area data network is the Internet, and wherein the calls are Internet Protocol Network Telephony calls.
