

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2015/117204 A1

(43) International Publication Date

13 August 2015 (13.08.2015)

(51) International Patent Classification:

G06F 19/18 (2011.01) *G01N 33/50* (2006.01)
C12Q 1/68 (2006.01)

(21) International Application Number:

PCT/AU2015/050043

(22) International Filing Date:

6 February 2015 (06.02.2015)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2014900363 6 February 2014 (06.02.2014) AU

(71) Applicant: IMMUNEXPRESS PTY LTD [AU/AU]; 6 Leonard Street, Boonah, Queensland 4310 (AU).

(72) Inventors: BRANDON, Richard Bruce; 6 Leonard Street, Boonah, Queensland 4310 (AU). MCHUGH, Leo Charles; 112 10th Avenue East, Seattle, Washington 98122 (US).

(74) Agent: DAVIES COLLISON CAVE; 10/301 Coronation Drive, Milton, Queensland 4064 (AU).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2015/117204 A1

(54) Title: BIOMARKER SIGNATURE METHOD, AND APPARATUS AND KITS THEREFOR

(57) Abstract: The present invention discloses methods, kits, and apparatus as well as reagents and compositions associated therewith for deriving an indicator for use in diagnosing the presence, absence or degree of at least one condition in a biological subject or in prognosing at least one condition in a biological subject. Also disclosed is a biomarker signature for use in diagnosing the presence, absence or degree of at least one condition in a biological subject or in prognosing at least one condition in a biological subject. The present invention further discloses methods, kits and apparatus, as well as reagents and compositions associated therewith, for identifying biomarkers for use in a biomarker signature.

BIOMARKER SIGNATURE METHOD, AND APPARATUS AND KITS THEREFOR

[0001] This application claims priority to Australian Provisional Application No. 2014900363 entitled “Biomarker signature method, and apparatus and kits therefor” filed 6 February 2014, the entire contents of which are incorporated herein by reference.

Background of the Invention

[0002] The present invention relates to method, kit and apparatus and to reagents and compositions associated therewith for deriving an indicator for use in diagnosing the presence, absence or degree of at least one condition in a biological subject or in prognosing at least one condition in a biological subject, to a biomarker signature for use in diagnosing the presence, absence or degree of at least one condition in a biological subject or in prognosing at least one condition in a biological subject, and to a method, kit and apparatus, as well as reagents and compositions associated therewith, for identifying biomarkers for use in a biomarker signature.

Description of the Prior Art

[0003] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that the prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavor to which this specification relates.

[0004] The analysis of gene expression products for diagnostic purposes is known. Such analysis requires identification of one or more genes that can be used to generate a signature for use in distinguishing between different conditions. However, such identification can require the analysis of many gene expression products, which can be mathematically complex, computationally expensive and hence difficult. Much of the biomarker discovery process is devoted to identifying a subset of the data that may have relevant import, from which a signature is derived using a combination of these values to produce a model for diagnostic or prognostic use.

[0005] WO2004/044236 describes a method of determining the status of a subject. In particular, this is achieved by obtaining subject data including respective values for each of a number of parameters, the parameter values being indicative of the current biological status

of the subject. The subject data are compared to predetermined data that includes values for at least some of the parameters and an indication of the condition. The status of the subject, and in particular, the presence and/or absence of the one or more conditions, can then be determined in accordance with the results of the comparison.

[0006] US2010/0028876 describes methods for diagnosing biological states or conditions based on ratios of gene expression data from cell or tissue samples, such as cancer cell or tissue samples, by differentiating between cell types, including cancer cell types. The invention provides sets of genes that are expressed differentially in normal and cancer lung cells and tissues to be able to differentiate these cells and tissues. Such cellular differentiation is important in diagnosing cancer and cancer types. The sets of genes are identified by the degree (fold change) of up or down regulation. These sets of genes can be used to discriminate between normal and malignant cells or tissues, and between classes of malignant cells or tissues. Accordingly, diagnostic assays for classification of tumors, prediction of tumor outcome, selecting and monitoring treatment regimens and monitoring tumor progression/regression also are provided.

[0007] However, traditional methods for biomarker identification and traditional combinations of biomarkers use a relatively large number of biomarkers, which in turn makes tests expensive to perform, limiting their use in practice. In addition, the prior art does not describe the use of immune system biomarker ratios, or a method of identifying minimal sets of immune system biomarker ratios useful in determining the presence, absence, degree or prognosis of immune system-mediated medical conditions.

Summary of the Present Invention

[0008] In one broad form the present invention seeks to provide a method for determining an indicator used in assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition, the method including:

- a) determining a pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject;

- b) determining a derived biomarker value using the pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the pair of immune system biomarkers; and,
- c) determining the indicator using the derived biomarker value.

[0009] Typically the method includes:

- a) determining a first derived biomarker value using a first pair of biomarker values, the first derived biomarker value being indicative of a ratio of concentrations of first and second immune system biomarkers;
- b) determining a second derived biomarker value using a second pair of biomarker values, the second derived biomarker value being indicative of a ratio of concentrations of third and fourth immune system biomarkers; and,
- c) determining the indicator by combining the first and second derived biomarker values.

[0010] Typically the method includes combining the derived biomarker values using a combining function, the combining function being at least one of:

- a) an additive model;
- b) a linear model;
- c) a support vector machine;
- d) a neural network model;
- e) a random forest model;
- f) a regression model;
- g) a genetic algorithm;
- h) an annealing algorithm;
- i) a weighted sum;
- j) a nearest neighbor model; and,
- k) a probabilistic model.

[0011] Typically the method is performed at least in part using an electronic processing device.

[0012] Typically the method includes, in at least one electronic processing device:

- 4 -

- a) obtaining at least two pairs of measured biomarker values, each measured biomarker value being a measured value of a corresponding immune system biomarker of the biological subject;
- b) determining a first derived biomarker value indicative of a ratio of concentrations of first and second immune system biomarkers;
- c) determining a second derived biomarker value indicative of a ratio of third and fourth immune system biomarkers; and,
- d) determining the indicator by combining the first and second derived biomarker values.

[0013] Typically the method includes, in at least one processing device, generating a representation of the indicator.

[0014] Typically the representation includes:

- a) an alphanumeric indication of the indicator;
- b) a graphical indication of a comparison of the indicator to one or more indicator references;
- c) an alphanumeric indication of a likelihood of the subject having at least one medical condition.

[0015] Typically the method includes:

- a) comparing the indicator to an indicator reference; and,
- b) determining a likelihood in accordance with results of the comparison.

[0016] Typically the indicator reference is based on at least one of:

- a) an indicator threshold range;
- b) an indicator threshold; and,
- c) an indicator distribution.

[0017] Typically the indicator reference is derived from indicators determined for a number of individuals in a reference population.

[0018] Typically the indicator reference is based on a distribution of indicators determined for a group of a reference population, the group consisting of individuals diagnosed as having the medical condition or lacking the medical condition.

[0019] Typically the reference population includes:

- a) a plurality of individuals of different sexes;
- b) a plurality of individuals of different ethnicities;
- c) a plurality of healthy individuals;
- d) a plurality of individuals suffering from at least one diagnosed medical condition;
- e) a plurality of individuals lacking the at least one diagnosed medical condition;
- f) a plurality of individuals showing clinical signs of at least one medical condition;
- g) first and second groups of individuals, each group of individuals suffering from a respective diagnosed medical condition; and,
- h) first and second groups of individuals, the first group of individuals suffering from a diagnosed medical condition, and the second group lacking the diagnosed medical condition.

[0020] Typically the indicator is for use in determining the likelihood that a biological subject has at least one medical condition, and wherein the reference population includes:

- a) individuals presenting with clinical signs of the at least one medical condition;
- b) individuals diagnosed as having the at least one medical condition;
- c) individuals diagnosed as lacking the at least one medical condition; and,
- d) healthy individuals.

[0021] Typically the indicator reference is retrieved from a database.

[0022] Typically the likelihood is based on a probability generated using the results of the comparison.

[0023] Typically the indicator is for determining a likelihood of the subject having a first or second condition, and wherein the method includes:

- a) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of first and second conditions; and,
- b) determining the likelihood in accordance with the results of the comparison.

[0024] Typically the method includes:

- a) determining first and second indicator probabilities using the results of the comparisons; and,
- b) combining the first and second indicator probabilities to determine a condition probability indicative of the likelihood.

[0025] Typically the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, the first and second group consisting of individuals diagnosed with the first or second condition respectively.

[0026] Typically the method includes:

- a) obtaining a sample taken from the biological subject, the sample including polynucleotide expression products; and,
- b) quantifying at least some of the polynucleotide expression products within the sample to determine the pair of biomarker values.

[0027] Typically the method includes, determining the indicator at least in part using a ratio of concentrations of the polynucleotide expression products.

[0028] Typically the method includes:

- a) quantifying polynucleotide expression products by:
- b) amplifying at least some polynucleotide expression products in the sample; and,
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products; and,
- d) determining the indicator by determining a difference between the amplification amounts.

[0029] Typically the amplification amount is at least one of:

- a) a cycle time;
- b) a number of cycles;
- c) a cycle threshold;
- d) an amplification time; and,
- e) relative to an amplification amount of another amplified product.

[0030] Typically the method includes determining:

- a) a first derived biomarker value by determining a difference between the amplification amounts of a first pair of polynucleotide expression products;
- b) a second derived biomarker value by determining a difference between the amplification amounts of a second pair of polynucleotide expression products;
- c) determining the indicator by adding the first and second derived biomarker values.

[0031] Typically the immune system biomarker is a biomarker of an immune system of the biological subject that is altered, or whose level of expression is altered, as part of an inflammatory response to damage or pathogenic insult.

[0032] Typically:

- a) the at least two immune system biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
- b) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0033] Typically the mutual correlation range is at least one of:

- a) ± 0.8 ;
- b) ± 0.7 ;
- c) ± 0.6 ;
- d) ± 0.5 ;
- e) ± 0.4 ;
- f) ± 0.3 ;
- g) ± 0.2 ; and,
- h) ± 0.1 .

[0034] Typically each immune system biomarker has a condition correlation with the presence, absence, degree or prognosis of the at least one condition that lies outside a condition correlation range, the condition correlation range being between ± 0.3 .

[0035] Typically the condition correlation range is at least one of:

- a) ± 0.9 ;
- b) ± 0.8 ;
- c) ± 0.7 ;
- d) ± 0.6 ;
- e) ± 0.5 ; and,
- f) ± 0.4 .

[0036] Typically the performance threshold is indicative of an explained variance of at least one of:

- a) 0.4;
- b) 0.5;
- c) 0.6;
- d) 0.7;
- e) 0.8; and,
- f) 0.9.

[0037] Typically the immune system biomarker value is indicative of a level or abundance of a molecule selected from one or more of a nucleic acid molecule and a proteinaceous molecule.

[0038] In some embodiments, the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein the method includes:

- a) determining a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
- b) determining a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene; and,
- c) determining the indicator using the first and second pairs of biomarker values.

[0039] In some embodiments, the indicator is for determining a likelihood of the subject having inSIRS or a healthy condition, and wherein biomarker values are determined from at least one inflammatory response syndrome (IRS) immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *NUMB*, *RAB27A*, *USP3//LOC100130855*, *HIF1A*, *LBXCOR1//PIAS1//CALML4*, *SQRDL*, *C20orf74*, *IL10RB*, *PARP4*, *DNTTIP1*, *MTMR6//LOC646482*, *LAMP2*, *MAPK1*, *SERINC3//TTPAL*, *IGSF6//METTL9*, *RP2*, *C18orf32*, *LOC284757*, *MTMR10//MTMR15*, *SLC12A6*, *LCP1*, *CHP*, *PRR13*, *C20orf177*, *ZFP106*, *DICER1*, *PHF12*, *IFNARI*, *BNIP2*, *UBE2A*, *NIN*, *MBD2//SNORA37*, *TM9SF2*, *RAB8B*, *CLIP1*, *WAS*, *DNAJC3*, *CDADC1*, *KIAA0317*, *MED13L*, *INTS6*, *PDK3*, *MYO5A*, *NUPL1*, *VEZF1*, *CUL4B*,

USP9X//USP9Y, RPS6KA3, IL17RA//CECR7, ELF1, TMX4, TAOK1, ELMO2, STAT5B//STAT5A, PAN3//EEF1A1//CHCHD2, SIPA1L1//SNORD56B//LOC145474//LOC283567, OSBPL1A, SYNJ1, U2AF1, NPEPPS//TBC1D3F//LOC440434, AP1G1, SNTB2, ZNF230//ZNF222, LYRM1, ME2, GALNT1, DYRK1A, ZMYM2, ARID4A, TOB1, DOCK11, ACTR10, ZMYM5//ZMYM2, FNDC3A, NUFIP2, STRADA, SPG11//ISLR, SPATA13//C1QTNF9, BRWD3, BACH1, CLTC, LIG4, C21orf41//BACH1, KPNB1, DHRS7, USP8, LACTB, SYNE2, ZDHHC20//LOC728099, EAPP, MED13//LOC100129112, TAOK3, NLGN3, CIT, RIPK3, CP110, ABHD2, GNA13, GGNBP2, PXN and PTPN1 (hereafter referred to interchangeably herein as “group A IRS immune system biomarker genes” or “group A IRS biomarker genes”); and

b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *AGFG1, BMX//HNRPD1, MCM5, TRIM28, GRWD1, ZNF574, ARRDC2, PELP1, SHPK, GPS1, FAM38A, FBXO31, C16orf58//LOC100128371, NLRC3, JMJD8, CDK10, TRAPPC2L, PRMT7, BRF1, MTA1//LOC647310//LOC100128343, PLD4, DDX54//CCDC42B, PLBD1, IRAK3, FGD4, ARG1, RANGAP1, UNC84B, SAMSNI//LOC388813, PFKL, S100A12, KIF22, LRRN1, CCDC134, LZTR1, GZMM, ICAM2, TMC8, LAT//SPNS1//NPIPL2//LOC728741//LOC730153//NPIPL3//SPIN1//LOC728888//LOC100289169//LOC728734//LOC729602//LOC100288442//LOC100288332, CLEC4D, CDK5RAP1, PPP1R16B, DAZAP1, LMF1, EDC4, IL21R//LOC283888, JMJD7-PLA2G4B//JMJD7//PLA2G4B, TMEM120B//RHOF, ENTPD1//C10orf131, ACSL1, ZC3H7B, CHERP//C19orf44//CALR3, U2AF2, PYGL, SOS2, ANKRD22, MEGF9, MGAM//LOC100124692, IL1R2, IL2RB, FCAR, IL27RA, DHX37, PATZ1, PRDM15, NOSIP, RPTOR, SPG7, DNAJA3, VNN1, SEPT9, THAP11, LPCAT2, MAN2C1, PITPNM2, NOC2L//SAMD11//LOC401010, ZMYM3, FTSJ1, KCNE1, ACTR5, FAM110A, FAM134C, LLGL2, INF2, KDM2B, ACSL4, B4GALT5, CD79B, BCL11B, ERLIN1, TLR4, EVL, SRGN, SLC37A3, GPR141, MSL3, MMP9//LOC100128028, MAP2K6, PHTF1, KLHL36, POLR3E, PCNX, PNKP, TMEM104, TRPV2,*

- 10 -

SEPT1, APH1B, POLE, MED24, MPI, C12orf49, PES1, ERCC1//CD3EAP, CD177, CPD, MEF2A//LYSMD4, C14orf43, RPLP0, CDC25B, SYMPK, ARHGEF18//LOC100128573, PSTPIP2, HERC2//HERC2P2//HERC2P3//LOC440248, MAPK14, F5, PLCG1, ZNF416, AARS, KLHL2, APOBEC3A//APOBEC3B, CMTM1//CKLF, USP11, MAP3K14//LOC100133991, GOLGA3, TMEM204, S100A8, IL1R1, DHPS, PPP2R1A, UBTF, DRG2, DNMT1, USP36, ZBTB4, TSC2, KIAA0195, KIAA0182, ALOX5AP, TGIF2, ST20//C15orf37, FN3KRP, ABCD4, ZFP64, NEO1, PPIL2//YPEL1, RNPS1, NF2, SERPINB1, DDX51, PRPF6, TIMM22, SYS1//SYS1-DBNDD2//DBNDD2, RAB31, KRII, SMARCA4, CLUAP1, C16orf67, C20orf4, CHTF8//HAS3, NPTN, CSRP2BP, AES, ODZ1, MTMR15//MTMR10, SIRPD, EEF2//SNORD37, DKC1//SNORA36A//SNORA56, CEACAM4, C12orf43, RANBP3, EEF2K, LOC338799, PLP2, AKAP8, ELAC2, AKAP1, TBC1D4, ALOX5, WSB1, BAZ1A, ETS2, GGA2, CSTF2//RAD21, METTL9, GYG1, CRAMP1L//HN1L, EVI2B, PPP1R13B, POP5, C20orf3, WDR59, KCNJ15, PGLYRP1, ELAVL1, SLC25A1, PSMD3, CDC42EP3, FTSJ3, C2CD2, RBM19, CDH26, TRMT2B, GTF2F1//LOC100130856, SNRPN//SNURF//IPW//SNORD116-16//SNORD116-18//SNORD116-21//SNORD116-22//SNORD116-17//SNORD116-19//PAR5//PAR-SN//SNORD116-2//SNORD116-25//SNORD116-26//SNORD107//SNORD115-12//SNORD115-5//SNORD115-6//SNORD115-9//SNORD116-11//SNORD116-12//SNORD116-13//SNORD116-28//SNORD116-4//SNORD64//PARI//SNORD109A//SNORD109B//SNORD116-6//SNORD116-3//SNORD116-9//SNORD115-13//SNORD115-1//SNORD115-14//SNORD115-15//SNORD115-21//SNORD115-10//SNORD115-7//SNORD115-16//SNORD115-40//SNORD115-42//SNORD115-11//SNORD115-29//SNORD115-34//SNORD115-36//SNORD115-4//SNORD115-43//HBII-52-24//SNORD116-5//SNORD116-7//SNORD115-26//SNORD115-30//SNORD116-15//SNORD116-8//SNORD115-2//SNORD115-39//SNORD116-14//SNORD116-20//SNORD115-8//SNORD115-3//SNORD115-38//SNORD115-41//SNORD115-22//SNORD115-44//SNORD116-1//SNORD115-17//SNORD115-18//SNORD115-19//SNORD115-20//SNORD116@, SLC9A8, RPA1, ADARBI, AFG3L2, MCTP2, DACH1, SEH1L,

RRP1B, ZNF335, WDR73, TAF15, MOSPD2, WIPI1//ARSG, ARRB2, PLIN5//LRG1, SNRPD3//C22orf13, CTNNBL1, ZNF175, NCF4, DDX27, FBXO21, TDP1, ATXN2L, ILF3, VAPA, DDX19B//DDX19A, NCOR2, KL, MTHFS, TOM1L2//LOC246315, APOBEC3D, EXD2, CDR2//RRN3//LOC100131998//LOC653390, ADCY4, DHX33, CKLF, GTF3C1, PRKCSH, DHX35, HSPH1, CCDC92, BCOR, CCPG1//PIGB//DYXIC1, MCM3AP, FPR1, ZNF460, AKAP8L, DCAF7, RNF24, NSMCE1, PDHA1, SAFB2//SAFB, ITM2B, ZNF236, PI4KA//PI4KAP1//PI4KAP2//LOC100293141, CSTB, C14orf138, ITGAL, ARID3A, COG7, TYROBP, HP//HPR, SRCAP//SNORA30, COG1, GK//GK3P//FTL//LOC652904, C15orf63//SERF2, SERPINA6, SMG6//C17orf6, INO80, C16orf62, RAB35, PEF1, C14orf101, TMEM185A, LIMK2, CTCF, DIABLO//B3GNT4, VPS33A, UNQ1887, TBCB//POLR2I, ABHD13, SLC24A6, EDNRB, CA12, ANAPC5, TMC3, TRIAP1, ABHD12B, TDRD9, EIF2B1, CXorf59, LRRC37A3//LRRC37A2//LRRC37A//ARL17P1//LRRC37A4//LOC100294335//LOC644397, SDS, SYCP2, TBC1D8B, TMEM31, GUCY1B2, PFN1, SLC24A3, ABCC11//LONP2 and ZNF257//ZNF492//ZNF99//ZNF98//LOC646864 (hereafter referred to interchangeably herein as “group B IRS immune system biomarker genes” or “group B IRS biomarker genes”).

[0040] In some embodiments, the indicator is for determining a likelihood of the subject having ipSIRS or a healthy condition, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *LTBP3, LPHN1, NR1D1//THRA, METTL9, PLD4, MAPK14, FAM102A, MYBBP1A//SPNS2, FLJ10232, SEMA4C, LMF1, PLBD1, MAN1C1, B4GALT5, ENGASE, NDRG2, TLR5, WDR4, PATZ1, CD177, LILRA5, SIRPD, ADAMTS10, TCF7, GGT7, GYG1, CDANI, BRF1, GPR84, TMC6//LOC100131096, PGAP3, GRAP//SNORD3B-1//SNORD3B-2//LOC400581, SHPK, NOG, PVRIG//PILRB//STAG3, TDRD9, TMC8, C14orf21, NLRC4, APBA2, TBL3, LDOC1L, C16orf58//LOC100128371, KLHL3, IRAK3,*

JMJD7-PLA2G4B//JMJD7//PLA2G4B, RAB31, IL10RB, NFATC1//LOC100127994, S100A12, SLC2A3//SLC2A14, GPA33, PLXDC1, BCL6//LOC100131635, GTPBP3, SQRD1, CD7, TMEM177//LOC100125918, FBXO31, CACNA1E, LILRA4, FAM38A, UBE2J1, SBF1//SBF1P1, TMEM204, FCAR, CDK4/MARCH9/C3HC4, ZBTB4, PIWIL4, RNASE2//LOC643332, PRMT7, AGFG1, CMTM1//CKLF, MCTP1, ARL11, FMNL3//PRPF40B, FAM151B, BAHDI, OSBPL7, ZAP70, TUBGCP6, MAP2K6, NPTN, C3ARI, CD247, S100A8, TBCD, LMNB1//PCIF1, PFKL, GRWD1, PYGL, UPP1, OMG, SAMSNI//LOC388813, BLCAP, PTPRS, FAM20A, CARD6, SPPL2B, IL2RB, SORT1, BST1, TAF1C//ADAD2, SEMA4F, NCAPH2, MCTP2, ZAK, CCR7, MAN2C1, NEURL4//GPS2//D4S234E, BMX//HNRPD1, TRAPPC6A, LPCAT2, C19orf60, SLC4A10, C14orf101, TP53I3, IL1RN, AIM2, UBE2R2, PNKP, ZNF70, SEPT1, NEO1, MPRIP, DPH1//OVCA2, C16orf67, CD58, RAB27A, EEF2K, CLIC1, MBLAC2, IFNGR2, CRTIC//MAML2, CACNB1, GALNT3, C19orf6, C20orf74, RALB, GPRASP1, CA4, ETS2, RP2, MARS2, RAB32, FAIM3, C20orf24//SLA2, ZNF549, PIGL, PHTF1, IL18RI, IPO4, ZFP106, SLC12A4, DNNTIP1, S100A11, ZNF544, ATXN1, GNLY, MID2, BACH2, INF2, ARFGAP1, MSL3, SOS2, ARL8A, PTPRJ//OR4B1, NAT9, RHOT2//FBXL16, PNPLA1, DNAJC13, GNG5, FAM129C, PXK, C10orf119, BATF, LMO7, KLF2, NRD1, CLCN7, GLA, CFLAR, SYCP2, IMAGE5303689, LPGAT1, PTGDR, LAMP2, ZNF607, INSL3//JAK3, DUSP3, PCNX, CD79B, IRAK1, ZNF550//ZNF549, LOC100130950, SPTLC2, CTSA, RAP2C, ADCY9, MED12L, MTHFD2, CAPI, TORIAIP2//TORIAIP1//IFRG15, CHP, TSEN2, LYRM1, UBE2A, NUPL1, YIPF1, FRMD3, KAL1, CLTC, FLVCR2//RPS24, WSB2, KIAA0040, JAG1, GPR183, N6AMT1, ZNF563, AP3B2, SERPINB2//SERPINB10, CDH2, ITFG1, EDEM2, RNF135, HPSE, DSC1, FOXN2, RASSF2, ZNF420, ZFP28, UBE2G2//SUMO3, PTTG1IP, PRKCB, KIT, PLEK, MAP4K4, GBA//GBAP, CLIP1, EDEM3, SERINC3//TTPAL, TPST2, HNRPLL, TP53BP2, KCND1, GCLM, RIT1, OSCAR, DDX59, EDNRB, ELMO2, RRAGC, AFTPH, DCUNID3//LYRM1, RSBN1, IFI30, SNX1, PTPN1, SEP15, ARMCX5, ALAS1, NFKBIA, STXBP2//LOC554363//LOC100131801, C15orf24, SRI, ASGR2, NSF//LOC728806, TRIM69, SEC23A, PLAUR,

RAB3GAP2//AURKAPSI//AURKA//SNORA36B, MAOB//NATI3, DEDD, SEC23B, COPA, EGF, STRADA, SIAE, C5, SLC30A1, ANXA4, NKG7, ABHD12B, TESK2, LONRF3, PIKFYVE, SH3BGRL3, ARMCX3, NEU1, SPAST, STX6//KIAA1614, TADA3L, LIN37//PSENEN, UBR3, WDR90, RTN2 and TMUB2 (hereafter referred interchangeably herein as “group C IRS immune system biomarker genes” or “group C IRS biomarker genes”); and,

b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *CNNM3, SLC25A45, UNC84B, ARHGEF18//LOC100128573, PIK3IP1, EPHX2, SEPT9, ITPKB, TSPYL2//GPR173, GALT, USP11, CBX7//LOC100128400, MAP3K14//LOC100133991, CDK5RAP1, KLHL36, SPG7, ZNF574, RASA3, KLHL22//KRT18, PYGO2, USP36, LCK, SKI, C5orf45//SQSTM1, PIK3C2B//LOC100130573, ANGEL1, ZCCHC14, CIRBP, ZMIZ2, TMEM120B//RHOF, NOC2L//SAMD11//LOC401010, PPP1R13B, ZNF416, PBXIP1, SMYD5//NOTO, ZNF529, EDC4, LENG8, TBC1D22A//LOC100289878, CORO7, COG8//PDF, CUL9, RASGRF2, CHERP//C19orf44//CALR3, POLR3E, CNNM4, TSC2, XYL1//LOC100130580, TP53, LMBR1L, AKT1, SLC7A6//SLC7A6OS, LDLRAP1, SGSM2, ZNF764//ZNF747, AKAP1, RNPS1, ICAM2, KIF3A, TGIF2, VAC14//LOC100130894, CXXC5, DCAF15, TARBP1, RCAN3, IMP4, LUC7L, SIN3B, TRMT2B, POFUT2, AXIN1, PPIL2//YPEL1, NLRP1//LOC728392, TMEM63A, TMEM208, ZNF362, GNG7, CASS4, ZNF287, DGKE, CEP68, ASXL1, CLUAP1, WDR89, CD40LG, MGC57346//C17orf69, PPIE//CCDC25, FCHO1, TNPO2//SNORD41, CSNK1E//LOC400927, CLYBL, XAB2, METT10D//LOC284009, PRPF6, AKAP8, SH3BP1//PDXP, TOM1L2//LOC246315, ZNF329, ZNF274, FAM119A, SMYD3, UNC84A//C7orf20, ZNF256, PSD4, CCDC130, LIMD2//MAP3K3, ELP2, ZNF8, AFG3L2, TXK, DDX27, FBXL12, TNRC6C, TADAIL, KIAA0355//FLJ21369, ZNF211, ZNF808//ZNF578//ZNF611, SRCAP//SNORA30, BANP//RUNDC2C, ADARB1, CCDC71, KTI12, TCF25, XYL1//LYRM2//ZC3H11A, DET1, ABCF3, PRKCZ, KIAA0141, CHI3L1, RPGRIP1, TTC31, MTMR15//MTMR10, MEF2D, TMEM50B, GLOD4, PRPF8, C14orf43, P2RX5, MSH2, PCCA, DENND4B,*

SLC43A2, MAPK8IP3, TUBGCP5, C19orf2, SEH1L, CCDC104, TRIM62, TDRKH, COG1, POLR1B, AFG3L1, TYK2, RBM3, UBTF, RP11-94I2.2//NBPF16//NBPF11//NBPF15//NBPF8//NBPF20//NBPF10//NBPF14//NBP F1//LOC100288142//NBPF12//KIAA1245//LOC100290137, ZNF41, ZNF461, PI4KA//PI4KAP1//PI4KAP2//LOC100293141, THEM4, BCL11A, CC2D1B, WDR73, BBS2//OGFOD1, RRN3//LOC653390//LOC730092//LOC100131998, NOP58, NUCKS1, ZNHIT6, RXRB, AKT3, FANCM, ERNI, FAM117B, COX11//TOM1L1, ACVR2A, RP3-402G11.5, AHCTF1, CLN8, NVL, SAPS2, DPEP3, PDE3B, DPEP2, GGA1, CCDC50, SNRPN//SNURF//IPW//SNORD116-16//SNORD116-18//SNORD116-21//SNORD116-22//SNORD116-17//SNORD116-19//PAR5//PAR-SN//SNORD116-2//SNORD116-25//SNORD116-26//SNORD107//SNORD115-12//SNORD115-5//SNORD115-6//SNORD115-9//SNORD116-11//SNORD116-12//SNORD116-13//SNORD116-28//SNORD116-4//SNORD64//PARI//SNORD109A//SNORD109B//SNORD116-6//SNORD116-3//SNORD116-9//SNORD115-13//SNORD115-1//SNORD115-14//SNORD115-15//SNORD115-21//SNORD115-10//SNORD115-7//SNORD115-16//SNORD115-40//SNORD115-42//SNORD115-11//SNORD115-29//SNORD115-34//SNORD115-36//SNORD115-4//SNORD115-43//HBII-52-24//SNORD116-5//SNORD116-7//SNORD115-26//SNORD115-30//SNORD116-15//SNORD116-8//SNORD115-2//SNORD115-39//SNORD116-14//SNORD116-20//SNORD115-8//SNORD115-3//SNORD115-38//SNORD115-41//SNORD115-22//SNORD115-44//SNORD116-1//SNORD115-17//SNORD115-18//SNORD115-19//SNORD115-20//SNORD116@, C17orf65//ASB16, ZNF317, SNRNP200, CXorf26, MTBP, NOL11//SNORA38B, CCNL2, ALDOC, PITPNCl, FASTKD2, ZZZ3, PIK3R5, WDR82, GLDN, CHML, C15orf40, DIDO1, CLCC1//GPSM2//C1orf62, SLC35D1, SCRNI, C15orf63//SERF2, ZNF460, SAFB2//SAFB, C16orf54, DDX18, CTPS2, ZNF382, ZNF101, LIPT1//MRPL30, ITGA6, KIF21B, INPP5B, SF3A1//CCDC157, ODF2L, NUAK2, CHCHD5, AHSA2//USP34, YLPM1, TERF2, ZNF830, MAN2B1//MORG1, GPATCH8, SHC1, SEPT4, SFRS2, TMC3, OTUD5, NARG1L, MKL1//KIAA1659, YTHDF1, SLC14A2, GGA3 and EXOC7 (hereafter referred to interchangeably herein as “group D IRS immune system biomarker genes” or “group D IRS biomarker genes”).

[0041] In some embodiments, the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *ALKBH5* // *FLJ13773*, *RPS19BP1*, *RFXANK* // *MEF2B* // *LOC729991*, *NA*, *CDC6*, *C19orf56*, *NA*, *ABCC2*, *THAP11*, *RTN2*, *MAZ*, *TAX1BP3*, *NUTF2*, *MPZL3*, *FBXW5*, *HIST1H2BM*, *CETP*, *PQLC1*, *H2AFX*, *KIAA0101* // *CSNK1G1*, *STK17B*, *SMARCD3*, *LOC100134934* // *CDK3*, *LPCAT4*, *LPP*, *MPZL2*, *ANKRD9*, *PRR13* // *PCBP2*, *MDS2*, *RBM33*, *GATAD2B* // *PLIN2*, *PPTC7*, *MYBL2*, *OIP5*, *PLA2G7*, *CRIP*, *RNF186*, *CCDC125*, *TLE3*, *C3orf35*, *SAP130*, *MXD1*, *ZHX2*, *CDK5RAP3*, *ENTPD1* // *C10orf131*, *NDUFB7*, *POGZ*, *DOK3*, *MCM7*, *IL17F*, *CLPS* and *DUSP11* (hereafter referred to interchangeably herein as “group E IRS immune system biomarker genes” or “group E IRS biomarker genes”); and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *PIWIL4*, *C11orf82*, *ACRC*, *CLPTM1L*, *MAGED2*, *PLAC8*, *ZDHHC4*, *OTX1*, *INSIG1*, *BATF*, *MFSD11*, *DNASE1L1* // *RPL10*, *C15orf24*, *CDS2*, *KEAPI*, *ARD1A*, *POLR2G*, *AHCY*, *SLC39A9*, *CUGBP1*, *FAM96B*, *TM7SF3*, *CTSZ*, *CD63*, *SPPL2A*, *ST3GAL2*, *SEC13*, *TM9SF1*, *IRAK2*, *GOSR2*, *ADIPOR2*, *TG*, *GABRR2*, *TPST2*, *DERL2*, *CCDC101* // *LOC388242*, *VWA5A* // *OR10DIP*, *CD300A*, *MRPS34*, *PSMA7*, *MAPK6*, *JKAMP*, *TLR10*, *RAG1API*, *NEU1*, *SLC30A1*, *PDGFC*, *ATOXI*, *CYBASC3*, *TMEM205* // *hCG_29977*, *FAM108B1*, *ACSS2*, *HIST1H4L*, *AGTRAP*, *RNF114*, *UBQLN2*, *EDF1*, *C20orf197*, *UBE2E1*, *RER1*, *ANKRD10*, *SEC22C*, *TM2D3*, *SLC15A2*, *TRIM28*, *COX15*, *CCDC109A*, *CSTFI*, *AIP*, *ACTRIA*, *HIST1H4I*, *YIF1B*, *TSPAN31*, *VPS26B*, *CNIH*, *TGFBR1*, *NIPA2* // *CYFIP1*, *DDAH2*, *BID*, *CYB5R1*, *CEACAM4*, *KIT*, *GAB2*, *JAG1*, *RPGRIP1*, *VAT1*, *GNB5* // *LOC100129973*, *SSR4* // *IDH3G*, *LAMP1*, *MRPL41*, *RUNX2*, *ITFG1*, *DNASE1*, *ZNRD1* // *NCRNA00171*, *NLRP1* // *LOC728392*, *STT3A*, *MGAT4B* // *SQSTM1*, *KIAA1257* // *ACAD9* //

LOC100132731, KLHL6, PTPN6, GALK2, DAD1 // OR6J1, PDLIM5, TMEM147, TRAM1 // LOC286190, LZTR1, TNPO1, ACSL5, C22orf37, PLK1, SYNE2, PSMD3, FLJ27255, PRKCD, RAB34, RPN2 // EEF1A2, SLC35B1, KCNIP3, PDE3B, PXMP2 // PGAM5, SDF2, HIST1H3I, LOC284757, TMEM33 // DCAF4L1, CSNK2A2, LSM10, PTTG1IP, ADRB3 // GOT1L1, PLXNA2, DIAPH2, BICD2, HAL, RPS6KC1, TMEM106C, CD1E, SLC35A5, C7orf26, IMP3, PICALM, ARF1, FHOD1 // SLC9A5, C19orf55, TOMM40L // NR1I3, INSIG2, NEK9, HCG27, SDHB, CUBN, PRDX3, CEPT1 // DRAM2, ERGIC1, KPNA3, VAV1, ELMO1, CUGBP2, LASP1, COL9A2, MEGF9, ELF4, SUZ12P, SULT1A2 // SULT1A1, FAM123C, FAR2, IER2, RGS2, MYBPH, MFAP3, RCHY1, MGAT1, MFSD4, CDH2, TMEM184C, CTRB2 // CTRB1, MPP4, PHF12, SLBP, ADAM19, HTR1B, TRIM55, CRNN, KLHDC7A, YIPF5, SLC11A1, GABBRI, CAMKV, SLC35F5, CHRNG, CXCL14, METTL6, PHC2, GPR153, TNFRSF10D, BAT2L, GALNT2, DENND3 // C8orf60, CLDN3, F11, CCDC93, FLJ46365, CYP21A2, ETV5, TRPM2, IL20, NBL1 // C1orf151, NGEF, POU6F2, PTEN // PTENP1, NPCIL1, CYP4B1, NFIC, PPARGC1A, PLIN3, THPO, TIMP4, CELSR2, DMBX1, CAMK2B, PPFIA1, HCLSI, SLC6A20, C17orf66 // RSL24D1, PIWIL2, DAZL // DAZ4 // DAZ3 // DAZ2, GAL3ST2, TPD52L1, C19orf34, RASGEF1C, BAALC // FLJ10489, NR4A2 // FLJ46875, HAPLN1, CLDN18, TAS1R1, TIMD4, SKI, CCDC48, MEGF10, OSBPL6, DNAH2, ARID1B, PGC, DCST1, SDK1, CHIA, REG4 // NBPF7, TMEM49 // CLTC // MIR21, TMEM44, NDUFB6 // DFFB, COL25A1, EPHX4, NCRNA00085, NTRK3, PKHD1, SLC2A7, NTRK1, ABHD1 // PREB, SLC4A9, GPNMB, SLC5A1, SLC7A8, RTCD1, PROC, C17orf64, FLJ14100 // C1orf86, NUP50, UNKL, C10orf18, TMEM61, C9orf68, CYTSA, MORN3, RAB17, CNNM3, CCDC28B, SH2D6, BARHL2, T, SNRK, TCP11, KDR, ENAM, UNKL, SPRR2C, GPRI7 // LOC100291428 // LIMS2, C1orf175 // TTC4, CACNA1D, C2orf62, LOC100132686, UNQ6126, TRIM15, GPR113 // SELI, IL22, SCN10A, FAAH, MBOAT7, C7orf51, KIAA1530, TRPM8, C1orf95, DDC // LOC100129427, GABRA1, HCRT1, DCST2, CHODL, PAN3 // EEF1A1 // CHCHD2, LYPD6B, UGT3A1 and SERPINA6 (hereafter referred to interchangeably herein as “group F IRS immune system biomarker genes” or “group F IRS biomarker genes”).

[0042] In some embodiments, the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first, second, third and fourth IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *RPS19BP1*, *RFXANK/MEF2B/LOC729991*, *C19orf56*, *RTN2*, *HIST1H2BM*, *CETP*, *PQLC1*, *H2AFX*, *KIAA0101/CSNK1G1*, *LOC100134934/CDK3*, *LPCAT4*, *LPP*, *MPZL2*, *ANKRD9*, *RBM33*, *MYBL2*, *PLA2G7*, *OIP5*, *CRIP*, *RNF186*, *C3orf35*, *ZHX2*, *NDUFB7* and *DUSP11* (hereafter referred to interchangeably herein as “group G IRS immune system biomarker genes” or “group G IRS biomarker genes”);
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *PIWIL4*, *C11orf82*, *ACRC*, *PLAC8*, *ZDHHC4*, *OTX1*, *INSIG1*, *BATF*, *MFSD11*, *C15orf24*, *CDS2*, *POLR2G*, *SLC39A9*, *FAM96B*, *TM7SF3*, *SPPL2A*, *ADIPOR2*, *GOSR2*, *DERL2*, *TPST2*, *VWA5A/OR10D1P*, *CCDC101/LOC388242*, *MAPK6*, *PSMA7*, *JKAMP*, *TLR10*, *RAG1AP1*, *SLC30A1*, *PDGFC*, *ATOX1*, *TMEM205/hCG_29977*, *FAM108B1*, *UBQLN2*, *EDF1*, *C20orf197*, *RER1*, *UBE2E1*, *ANKRD10*, *SEC22C*, *TM2D3*, *SLC15A2*, *CCDC109A*, *HIST1H4I*, *TSPAN31*, *TGFBR1*, *CNIH*, *DDAH2*, *NIPA2/CYFIP1*, *BID*, *CYB5RI*, *KIT*, *RPGRIP1*, *MRPL41*, *RUNX2*, *ITFG1*, *ZNRD1/NCRNA00171*, *NLRP1/LOC728392*, *KIAA1257/ACAD9/LOC100132731*, *KLHL6*, *GALK2*, *DAD1/OR6J1*, *PDLIM5*, *TRAMI/LOC286190*, *TNPO1*, *ACSL5*, *SYNE2*, *RPN2/EEF1A2*, *SLC35B1*, *KCNIP3*, *TMEM33/DCAF4L1*, *CSNK2A2*, *LSM10*, *PLXNA2*, *DIAPH2*, *HAL*, *RPS6KC1*, *SLC35A5*, *PICALM*, *C19orf55*, *INSIG2*, *SDHB*, *PRDX3*, *CEPT1/DRAM2*, *KPNA3*, *SULT1A2/SULT1A1*, *FAR2*, *MYBPH*, *MFAP3*, *RCHY1*, *CDH2*, *TMEM184C*, *CTRB2/CTRB1*, *SLBP*, *CRNN*, *YIPF5*, *CHRNG*, *SLC35F5*, *METTL6*, *CLDN3*, *CCDC93*, *CYP21A2*, *NBL1/C1orf151*, *NGEF*, *POU6F2*, *NPC1L1*, *PPARGC1A*, *THPO*, *CELSR2*, *DMBX1*, *SLC6A20*,

C17orf66//RSL24D1, GAL3ST2, C19orf34, BAALC//FLJ10489, CLDN18, TASIR1, CCDC48, OSBPL6, SDK1, TMEM49//CLTC//MIR21, TMEM44, NDUFB6//DFFB, NCRNA00085, NTRK3, NTRK1, SLC4A9, SLC5A1, RTCD1, FLJ14100//C1orf86, PROC, C17orf64, UNKL, C9orf68, MORN3, RAB17, CNNM3, CCDC28B, BARHL2, UNKL, LOC100132686, UNQ6126, IL22, FAAH, C7orf51, DCST2, LYPD6B and SERPINA6 (hereafter referred to interchangeably herein as “group H IRS immune system biomarker genes” or “group H IRS biomarker genes”);

- c) the third IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *ALKBH5//FLJ13773, RNA243, ARD1A, CDC6, AHCY, MRPS34, CYBASC3, HIST1H4L, RNF114, TRIM28, CSTF1, CEACAM4, GAB2, GNB5//LOC100129973, THAP11, SSR4//IDH3G, STT3A, NUTF2, MPZL3, TMEM147, RAB34, PDE3B, PXMP2//PGAM5, HIST1H3I, LOC284757, TMEM106C, STK17B, IMP3, HCG27, CUBN, ERGIC1, ELMO1, CUGBP2, COL9A2, MEGF9, SUZ12P, FAM123C, RGS2, PRR13//PCBP2, PHF12, ADAM19, GATAD2B//PLIN2, SLC11A1, PPTC7, PHC2, BAT2L, DENND3//C8orf60, FLJ46365, ETV5, CCDC125, PTEN//PTENP1, TLE3, NFIC, TIMP4, PPFIA1, HCLS1, SAP130, MXD1, NR4A2//FLJ46875, SKI, ARID1B, ENTPD1//C10orf131, POGZ, DOK3, REG4//NBPF7, MCM7, SLC7A8, NUP50, C10orf18, TMEM61, SH2D6, SNRK, SPRR2C, CACNA1D, TRIM15, CLPS, MBOAT7, KIAA1530, C1orf95, GABRA1, HCRTR1, CHODL and PAN3//EEF1A1//CHCHD2* (hereafter referred to interchangeably herein as “group I IRS immune system biomarker genes” or “group I IRS biomarker genes”); and,
- d) the fourth IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *CLPTM1L, MAGED2, DNASE1L1//RPL10, KEAP1, CUGBP1, CTSZ, CD63, ST3GAL2, SEC13, TM9SF1, IRAK2, GABRR2, TG, CD300A, NEU1, ACSS2, AGTRAP, UPF0627, COX15, ABCC2, ACTRI1A, AIP, YIF1B, VPS26B, JAG1, VAT1, LAMP1, DNASE1, MAZ, TAX1BP3, MGAT4B//SQSTM1, FBXW5, PTPN6, LZTR1, PLK1, C22orf37, PSMD3, FLJ27255, PRKCD, SDF2,*

PTTG1IP, ADRB3//GOT1L1, BICD2, CD1E, C7orf26, ARF1, FHOD1//SLC9A5, TOMM40L//NR1I3, NEK9, VAV1, SMARCD3, LASP1, ELF4, IER2, MGAT1, MFSD4, MDS2, MPP4, HTR1B, TRIM55, KLHDC7A, GABBR1, CAMKV, CXCL14, GPR153, TNFRSF10D, GALNT2, F11, IL20, TRPM2, CYP4B1, PLIN3, CAMK2B, PIWIL2, DAZL//DAZ4//DAZ3//DAZ2, TPD52L1, RASGEF1C, HAPLN1, TIMD4, CDK5RAP3, MEGF10, DNAH2, PGC, DCST1, CHIA, COL25A1, EPHX4, PKHD1, SLC2A7, ABHD1//PREB, GPNMB, CYTSA, T, TCP11, ENAM, KDR, GPR17//LOC100291428//LIMS2, Clorf175//TTC4, IL17F, C2orf62, GPR113//SELI, SCN10A, TRPM8, DDC//LOC100129427 and UGT3A1 (hereafter referred to interchangeably herein as “group J IRS immune system biomarker genes” or “group J IRS biomarker genes”).

[0043] In specific embodiments, the first IRS immune system biomarker is a *PLA2G7* expression product, the second IRS immune system biomarker is a *PLAC8* expression product, the third IRS immune system biomarker is a *CEACAM4* expression product and the fourth IRS immune system biomarker is a *LAMP1* expression product.

[0044] In some embodiments, the indicator is for determining a likelihood of the subject having mild sepsis or severe sepsis, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *N4BP2L2//CG030, FAM96A, MINPP1, MORC3//DOPEY2, LSM8, PLEKHA3, MITD1, ATF4, B2M, TMX3, ZNF273, PLEKHF2, UNQ2999, DPM1, OCLM, NADK, GPR65, SFRS3, ZNF28, PFDN4, COQ10B, SLC30A6//DDX50, KPNA5, ATP6V1G1, HAUS2, hCG_2039148, RAB33B, BET1, UBE2V2, ATP6AP2, SUB1//TMEM183A, TMEM188, ABHD3, LAPT4A, RNF138, CCDC82, TMEM179B, PAPD4, VAMP2, CCDC126, ATG3, CHCHD5, RBM39//LOC643167, NAT8B, HAT1, CNOT6L, ZBED5, GOLT1B, TTC33, ACTN1, ACTR6, GNB4, TMEM208, CCNH, C4orf34, HAUS6//SCARNA8, TCTN1, SF3B14, TMEM138, TTC35, DLEU2//DLEU2L, MFSD8, COX7A2L, UGGT2, CEPT1//DRAM2, LEMD3, CREBZF, RPL21P44, ANGEL2, UFM1,*

XPO1, CALM2//C2orf61, PLDN, CLK1//PPIL3, C1orf84, PPA2, FPGT//TNNI3K, ORC4L, SLC25A14, H3F3B//H3F3C, FAM188A, MCM9, KLHL9, NACA, PAFAH1B2, CRLS1, TSSK4, LOC152217, ZNF568, ATP6V0D1//LOC100132855, CDC37L1, FNTA, SHFM1, JKAMP, TMEM126B, MRPL47, DENND1B, ATP6V0E1//SNORA74B, LIN7C, HAUS3//POLN, SLC30A7, VAMP3, OBFC2A, MAGT1, STARD3NL, C5orf15, PSMD10, RERE, RNF139, SFT2D2, SKP1, RNPC3//AMY2B, MYOM1, TIPRL, HPRT1, TRIM21, VRK2, CDKN1B, ANKRA2, RAP2B, FAM127B//FAM127C//FAM127A, FAM126A, TMEM161B, UNQ1887, FANCF, SELT, CYP20A1, RWDD1, ARPP19, SC5DL, TICAM2//TMED7//TMED7-TICAM2, STAM, LEPROTL1, RNF44, DCP1B, TNNT3, UCHL5, UPRT, SON, PIK3C3, SFRS1//FLJ44342, FBXO22//FBXO22OS, SCFD1, C11orf31, TMTC3, CCDC132, TMBIM4//LOC100133322, ATAD1, APH1A, MYNN, HADHB, PIGN, RNA243, SLC38A9, C10orf84, CDKN1A, ATP7A, RPAP2, ZNF451, GSK3B//LOC100129275, TMSB10, KCTD5//PRO0461//PDPK1, VPS29, WIPF3//ZNRF2//LOC441208, SFRS5 and C11orf73 (hereafter referred to interchangeably herein as “group K IRS immune system biomarker genes” or “group K IRS biomarker genes”); and,

- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *C13orf1, PRKCB, APOBEC3A//APOBEC3B, SFRS9, NCAPD2//SCARNA10//FADS1, GATS, LOC284757, TSHZ2, JAK1, MAPK13, RPNI, GNAS, CYTSA, TRPM6, C22orf30, PCMTD1//PXDNL, CCDC69, ARSD, MLL3//BAGE2, NCOR1//C20orf191//LOC100131704, MRPS7, VEZF1, GSR, POU2F1, VPS4A, SMG7, PTP4A2, OSBP, GLCCI1//tcag7.903, DOCK2, PCNX, GLTP, FBXO18, YY2, TCF20, NR2C2//MRPS25, TEX2, Bambi, WHSC1L1, UBTF, FAH, GEMIN4, DDEFIIT1, FAM50A, VPS13D, SATB1//TBC1D5, PARP6, SETD5, PHF21A, IRF4, ZNF217, UBE4A, HIVEP1, HDLBP, GNAI2, MED13L, FOXP1, NSD1, DDOST, TMBIM6, ABLIM1, SYNRG//LOC100131822, KDM3B, ASH1L, NCOA2, GPRIN3, NCOA1, KLF3, LOC100288114//MGC9913, VPS26B, AHCYL1, CDC6, PLCG2, IL16, GIT2, TACC3, MAP4K4, NEK9, FAMI49B1//FAMI49B2, VPS8, ATXN7, WDFY4, ZC3H11A//RP11-74E24.2,*

THRAP3, ZNF346, AP3M2, CD14, CLASP1, ABCC2, ATXN7L1//RINT1//EFCAB10, INO80D, CTPS, LRRC37A3//LRRC37A2//LRRC37A//ARL17P1//LRRC37A4//LOC100294335//LOC644397, DNASE1, LRRN3, ZNF318, PRKAR2A, MRPS15, ANKHD1-EIF4EBP3//ANKHD1//EIF4EBP3, BTF3L4, DGKA, C10orf119, MBD5, C11orf30, CDC2L5, DPP4, DCTN4, TP53BP2, IMPDH2, GOT2, ELMO1 and PARP1 (hereafter referred to interchangeably herein as “group L IRS immune system biomarker genes” or “group L IRS biomarker genes”).

[0045] In some embodiments, the indicator is for determining a likelihood of the subject having mild sepsis or septic shock, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *EEF1DP3, GIMAP7, ZNF839, PYGL, TNFAIP8L2, SFRS9, VIM, GLTP, WDFY4, APPL2, C4orf3, PLD1, LIN7A, ELP2, ZDHHC3, UBAP1//KIF24, C20orf177, FAM149B1//FAM149B2, E2F3, SPATA1, DACH1, FAM47E//STBD1, SVIL//hCG_1783494, METTL9, LRRC42, NUPL1, UPP1, AFF2, SLC16A4, SET, CA4, HCK, C16orf72, EXT1, NOP58, FRZB, C9orf6//IKBKAP, VASP, ASB8//PHB, GTDC1, SLC39A9, FBXO34//KIAA0831, RABGEF1//tcag7.967//tcag7.951//KCTD7//LOC100293333, SLC28A3, WIPI1//ARSG, NFE2, GOLGA1//SCAI, C9orf84, RPS6KA2, PSMA7, C19orf59, ICA1, TOR1AIP2//TOR1AIP1//IFRG15, MSRA, FPR1, TP53I3, FOXL2, CD63, PIGC, CENPBD1, CYB5R1, GNB2, ZNF197, KLF7, NSFL1C, USF2, PARP6, MAP9, TSPO, CSTB, DDA1, SLC36A4, GFOD2, OCRL, ZNF232, APH1B, TALDO1//INTS8, DENND2C//BCAS2, RAB11FIP2, LARS, PLP2, EIF4E2, DNASE1L1//RPL10, AFTPH, TMCO3, RPA2, UQCRC1, ZDHHC3, and ACTRI1* (hereafter referred to interchangeably herein as “group M IRS immune system biomarker genes” or “group M IRS biomarker genes”); and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *CD6, ITPA, PVRIG//PILRB//STAG3, FLT3LG, IL12RB1,*

MAP3K14//LOC100133991, FAM102A, TMC8, TMEM208, TMEM109, C1orf84, NADK, SEPT1, UBA7, CD5, C12orf62, C20orf112, FOXP4, EIF4A2//SNORA4, ZNF487//LOC439911, KCTD13, IL18BP//NUMA1, KPNA5, EDC4, ZNF587//ZNF417, NBR2, RPL28, ZNF738, SHFM1, CNO, C9orf82, RPL5//SNORA66//SNORD21//FAM69A, VAMP2, SIT1, SFRS3, LCK, IRF9, MRPS21, NEFM//LOC100129717, RCN2, BET1, C19orf6, SH2D1A, GLS, OR1C1, RBM14//RBM4, CCDC97, TUT1, MRPL14, ENOPH1, NAGK, DPM1, MPV17, SH2D3C, TMEM204, C3orf42, ARSD, FAM96A, LSM8, ATP5G1, KTI12, ARL4C, C11orf31, C16orf58//LOC100128371, CCDC109B//HIGD1A//CCDC13, NUDT21, ZFP106, ACTR6, LIX1L, MEF2D, ZNF407, TMEM18, NAT11, DNAJC24, PLEKHA3, GPN2, SMCR7, C7orf23//DMTF1, PPM1G, CNOT6L, NACA, FNTA, GRIA2, N4BP2L2//CG030, ENOSF1//TYMS, THBS4, LUC7L2, MOCS2, ZNF383, AKNA, UBE2Z, FLJ34077, SH3KBP1, POLR2F//LOC100131530, IL1A, UBE2V2, KIAA1919, PRKCB, SHOC2, RBM46, GRPEL2, KCNG3, PCDH10, XAB2, VPS52, MCCC2, NSMCE4A, PTP4A2, SNX2, COQ10A, C6orf182, RNF44, MOGS, DIRAS3, Mitochondrial, KIAA1826, SGK196, NSUN5//NSUN5B//NSUN5C, Mitochondrial, MORF4L2, MAK16//C8orf41, PILRB//PVRIG//STAG3, SAAL1, TMX3, PTPRG, MAPK1, DNAJA3, LEAP2, LMOD3, ASB6, MTMR10//MTMR15, HIBADH, MORC1, CORO1A//LOC606724, SFXN2, HSN2, AAAS, INHBA, MRPS7, LRRFIP1, KCTD7//RABGEF1, DCDC2//KAAG1, SLC03A1, DENND4B, CFTR, MOG, QRFPR, BAT2//SNORA38, ITPR3, C3orf22, TNFRSF4, ZNF646//ZNF668, GCM2, CDK4//TSPAN31, FXC1, RNMT, CHST4, POLR3E, PDE8B, C6orf146, CHCHD5, TARBP1, TAD1L, PREX2, TRAP1//DNASE1, ZNHIT6, RGP1//GBA2, SMCP, ZC3H15, TRAPP4, SARNP//DNAJC14, GNAS, C14orf104, IL20RA, WAC, SLIT3, C4orf39, TSEN54, PPP1R13B, TRIM35, HGC6.3, YIPF3, HQ0644/PRO0644, FAM13C//PHYHIPL, BCCIP//DHX32, ACADM, SUB1//TMEM183A, KPNA1, SPAG17//WDR3, KIAA1549, DIABLO//B3GNT4, ZBTB44, EIF1AD, RUNX1T1, TRIL, PTPLB, DHDDS, UPK1A, OTUB1, C1orf182, HAPLN2, SOBP, RYR3, LRRC17, TKTL2, TMBIM6, and GDNF (hereafter referred to interchangeably herein as “group N IRS immune system biomarker genes” or “group N IRS biomarker genes”).

[0046] In some embodiments, the indicator is for determining a likelihood of the subject having severe sepsis or septic shock, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *SIRPG* // *SIRPA*, *GATA3*, *FAM102A*, *UPF3A*, *ATP13A5*, *CACNA1I* and *RANBP17* // *USP12* (hereafter referred to interchangeably herein as “group O IRS immune system biomarker genes” or “group O IRS biomarker genes”); and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from the following IRS immune system biomarker genes: *GABRA6*, *HAPLN1*, *YSK4*, *FOXL2*, *TLL1*, *MECOM*, *COL3A1*, *HRG*, *SLC22A3*, *C8orf45*, *SCN7A* and *SNTG1* (hereafter referred to interchangeably herein as “group P IRS immune system biomarker genes” or “group P IRS biomarker genes”).

[0047] In another broad form the present invention seeks to provide apparatus for determining an indicator used in assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition, the apparatus including at least one electronic processing device that:

- a) determines a pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject;
- b) determines a derived biomarker value using the pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the pair of immune system biomarkers; and,
- c) determines the indicator using the derived biomarker value.

[0048] In another broad form the present invention seeks to provide a composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at

least one pair of reverse transcribed mRNAs comprising a first pair and a second pair of reverse transcribed mRNAs, wherein the first pair comprises a *PLAC8* reverse transcribed mRNA and a *PLA2G7* reverse transcribed mRNA and wherein the second pair comprises a *CEACAM4* reverse transcribed mRNA and a *LAMP1* reverse transcribed mRNA.

[0049] In another broad form the present invention seeks to provide a composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group A IRS immune system biomarker genes and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group B IRS immune system biomarker genes.

[0050] In another broad form the present invention seeks to provide a composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group C IRS immune system biomarker genes and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group D IRS immune system biomarker genes.

[0051] In another broad form the present invention seeks to provide a composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group E IRS immune system biomarker genes and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group F IRS immune system biomarker genes .

[0052] In another broad form the present invention seeks to provide a composition comprising at least two pairs of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least two pairs of reverse transcribed mRNAs comprising a first pair and a second pair of reverse transcribed mRNAs, wherein the first pair comprises a reverse transcribed mRNA from a first IRS immune system biomarker gene and a reverse transcribed mRNA from a

second IRS immune system biomarker gene, and wherein the second pair comprises a reverse transcribed mRNA from a third IRS immune system biomarker gene and a reverse transcribed mRNA from a fourth IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes, wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker genes, and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes.

[0053] In another broad form the present invention seeks to provide a composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group K IRS immune system biomarker genes and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group L IRS immune system biomarker genes.

[0054] In another broad form the present invention seeks to provide a composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group M IRS immune system biomarker genes and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group N IRS immune system biomarker genes.

[0055] In another broad form the present invention seeks to provide a composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group O IRS immune system biomarker genes and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group P IRS immune system biomarker genes.

[0056] The at least one oligonucleotide primer or probe can be hybridized to an individual one of the reverse transcribed mRNAs.

[0057] The reverse transcribed mRNAs can be derived from components of the immune system.

[0058] The reverse transcribed mRNAs can be derived from leukocytes.

[0059] The reverse transcribed mRNAs can be derived from blood cells.

[0060] The reverse transcribed mRNAs can be derived from peripheral blood cells.

[0061] The composition can further comprise a labeled reagent for detecting the reverse transcribed mRNAs.

[0062] The labeled reagent can be a labeled said at least one oligonucleotide primer or probe.

[0063] The labeled reagent can be a labeled said reverse transcribed mRNA.

[0064] The labeled reagent can be a labeled oligonucleotide linker or tag for labeling a said reverse transcribed mRNA.

[0065] In another broad form the present invention seeks to provide a kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of inSIRS and ipSIRS, the kit comprising at least one pair of reagents comprising a first pair of reagents and a second pair of reagents, wherein the first pair of reagents comprises (i) a reagent that allows quantification of a polynucleotide expression product of the *PLA2G7* gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of the *PLAC8* gene, wherein the second pair of reagents comprises: (iii) a reagent that allows quantification of a polynucleotide expression product of the *CEACAM4* gene; and (iv) a reagent that allows quantification of a polynucleotide expression product of the *LAMP1* gene.

[0066] In another broad form the present invention seeks to provide a kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of inSIRS and a healthy condition, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS

immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group A IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group B IRS immune system biomarker genes.

[0067] In another broad form the present invention seeks to provide a kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of ipSIRS and a healthy condition, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group C IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group D IRS immune system biomarker genes.

[0068] In another broad form the present invention seeks to provide a kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of inSIRS and ipSIRS, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group E IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group F IRS immune system biomarker genes.

[0069] In another broad form the present invention seeks to provide a kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of inSIRS and ipSIRS, the kit comprising at least two pairs of reagents comprising a first pair of reagents and a second pair of reagents, wherein the first pair of reagents comprises (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, and wherein the second pair of reagents comprises (i) a reagent that allows

quantification of a polynucleotide expression product of a third IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a fourth IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes, wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker genes, and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes.

[0070] In another broad form the present invention seeks to provide a kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of mild sepsis and severe sepsis, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group K IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group L IRS immune system biomarker genes.

[0071] In another broad form the present invention seeks to provide a kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of mild sepsis and septic shock, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group M IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group N IRS immune system biomarker genes.

[0072] In another broad form the present invention seeks to provide a kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of severe sepsis and septic shock, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a

polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group O IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group P IRS immune system biomarker genes.

[0073] In another broad form the present invention seeks to provide a method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of inSIRS and ipSIRS, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the pair of biomarker values comprises at least one of:

- a) a first pair of biomarker values comprising first and second biomarker values corresponding to first and second biomarkers, wherein the first immune system biomarker represents a polynucleotide expression product of the *PLA2G7* gene and wherein the second immune system biomarker representing a polynucleotide expression product of the *PLAC8* gene, and
- b) a second pair of biomarker values comprises third and fourth biomarker values corresponding to third and fourth immune system biomarkers, respectively, wherein the third immune system biomarker represents a polynucleotide expression product of the *CEACAM4* gene and wherein the fourth immune system biomarker represents a polynucleotide expression product of the *LAMP1* gene.

[0074] Typically the indicator-determining method comprises: determining the first pair and second pair of biomarker values and determining a first derived biomarker value calculated using the first pair of biomarker values and a second derived biomarker value calculated using the second pair of biomarker values; and determining the indicator based on a combination of the first and second derived biomarker values.

[0075] In another broad form the present invention seeks to provide a method for inhibiting the development or progression of inSIRS in a subject, the method comprising: exposing the subject to a treatment regimen for treating inSIRS based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of inSIRS in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group A IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group B IRS immune system biomarker genes.

[0076] In another broad form the present invention seeks to provide a method for inhibiting the development or progression of ipSIRS in a subject, the method comprising: exposing the subject to a treatment regimen for treating ipSIRS based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of ipSIRS in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one

corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group C IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group D IRS immune system biomarker genes.

[10077] In another broad form the present invention seeks to provide a method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of inSIRS and ipSIRS, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to of first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system

biomarker gene, wherein the first IRS immune system biomarker gene is selected from group E IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group F IRS immune system biomarker genes.

[0078] In another broad form the present invention seeks to provide a method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of inSIRS and ipSIRS, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least two pairs of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least two derived biomarker values using the at least two pairs of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of each pair of immune system biomarkers; and (c) determining the indicator based on the at least two derived biomarker values, wherein the at least one pair of biomarker values comprises a first pair of biomarker values comprising first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, and a second pair of biomarker values comprising third and fourth biomarker values corresponding to third and fourth immune system biomarkers, respectively, wherein the third immune system biomarker represents a polynucleotide expression product of a third IRS immune system biomarker gene and wherein the fourth immune system biomarker represents a polynucleotide expression product of a fourth IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes, wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker genes, and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes.

[0079] In another broad form the present invention seeks to provide a method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of mild sepsis and severe sepsis, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group K IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group L IRS immune system biomarker genes.

[0080] In another broad form the present invention seeks to provide a method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of mild sepsis and septic shock, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value

being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group M IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group N IRS immune system biomarker genes.

[0081] In another broad form the present invention seeks to provide a method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of severe sepsis and septic shock, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group O IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group P IRS immune system biomarker genes.

[0082] In some embodiments, the method comprises taking the sample from the subject and obtaining the indicator according to the indicator-determining method.

[0083] In some embodiments, the method comprises: sending the sample taken from the subject to a laboratory at which the indicator is determined.

[0084] Typically, the sample comprises cells obtained from the subject or a nucleic acid sample thereof.

[0085] In another broad form the present invention seeks to provide a method for differentiating between inSIRS and ipSIRS in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of inSIRS and ipSIRS, respectively; and,
- e) determining a likelihood of the subject having inSIRS or ipSIRS in accordance with the results of the comparison.

[0086] In another broad form the present invention seeks to provide a method for differentiating between inSIRS and a healthy condition in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a

concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group A IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group B IRS immune system biomarker genes;

- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of inSIRS and healthy condition, respectively; and,
- e) determining a likelihood of the subject having inSIRS or the healthy condition in accordance with the results of the comparison.

[0087] In another broad form the present invention seeks to provide a method for differentiating between ipSIRS and a healthy condition in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group C IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group D IRS immune system biomarker genes;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of ipSIRS and healthy condition, respectively; and,
- e) determining a likelihood of the subject having ipSIRS or the healthy condition in accordance with the results of the comparison.

[0088] In another broad form the present invention seeks to provide a method for differentiating between inSIRS and ipSIRS in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group E IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group F IRS immune system biomarker genes;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of inSIRS and ipSIRS, respectively; and,
- e) determining a likelihood of the subject having inSIRS or ipSIRS in accordance with the results of the comparison.

[0089] In another broad form the present invention seeks to provide a method for differentiating between inSIRS and ipSIRS in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes;

- ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of a third IRS immune system biomarker gene and a fourth IRS immune system biomarker gene, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker genes and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of inSIRS and ipSIRS, respectively; and,
- e) determining a likelihood of the subject having inSIRS or ipSIRS in accordance with the results of the comparison.

[0090] In another broad form the present invention seeks to provide a method for differentiating between mild sepsis and severe sepsis in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group K IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group L IRS immune system biomarker genes;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of mild sepsis and severe sepsis, respectively; and,
- e) determining a likelihood of the subject having mild sepsis or severe sepsis in accordance with the results of the comparison.

[0091] In another broad form the present invention seeks to provide a method for differentiating between mild sepsis and septic shock in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group M IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group N IRS immune system biomarker genes;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of mild sepsis and septic shock, respectively; and,
- e) determining a likelihood of the subject having mild sepsis or septic shock in accordance with the results of the comparison.

[0092] In another broad form the present invention seeks to provide a method for differentiating between severe sepsis and septic shock in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group O IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group P IRS immune system biomarker genes;

- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of severe sepsis and septic shock, respectively; and,
- e) determining a likelihood of the subject having severe sepsis or septic shock in accordance with the results of the comparison.

[0093] Typically the method includes determining:

- a) a first derived biomarker value indicative of a ratio of concentrations of the polynucleotide expression products using the first pair of biomarker values;
- b) a second derived biomarker value indicative of a ratio of concentrations of the polynucleotide expression products using the first pair of biomarker values; and,
- c) determining the indicator by combining the first and second derived biomarker values.

[0094] Typically the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, the first and second group consisting of individuals diagnosed with inSIRS and ipSIRS respectively.

[0095] In another broad form the present invention seeks to provide a method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of:
 - i) a first pair of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;

- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

[0096] In another broad form the present invention seeks to provide a method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group A IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group B IRS immune system biomarker genes;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

[0097] In another broad form the present invention seeks to provide a method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression

product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group C IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group D IRS immune system biomarker genes;

- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

[0098] In another broad form the present invention seeks to provide a method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group E IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group F IRS immune system biomarker genes;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

[0099] In another broad form the present invention seeks to provide a method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of:
 - i) a first pair of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes;
 - ii) a second pair of polynucleotide expression products of a third IRS immune system biomarker gene and a fourth IRS immune system biomarker gene, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker genes and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

[0100] In another broad form the present invention seeks to provide a method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide

expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group K IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group L IRS immune system biomarker genes;

- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

[0101] In another broad form the present invention seeks to provide a method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the second IRS immune system biomarker gene is selected from group M IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group N IRS immune system biomarker genes;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

[0102] In another broad form the present invention seeks to provide a method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;

- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group O IRS immune system biomarker genes and wherein the second IRS immune system biomarker gene is selected from group P IRS immune system biomarker genes;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

[0103] Typically the method includes determining:

- a) a first derived biomarker value by determining a difference between the amplification amounts of the first pair of polynucleotide expression products;
- b) a second derived biomarker value by determining a difference between the amplification amounts of the second pair of polynucleotide expression products;
- c) determining the indicator by adding the first and second derived biomarker values.

[0104] Typically the method includes determining:

- a) comparing the indicator to first and second indicator references, wherein the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, one of the first and second groups consisting of individuals diagnosed with the medical condition; and,
- b) determining a likelihood of the subject having the medical condition in accordance with the results of the comparison.

[0105] Typically the amplification amount is at least one of:

- a) a cycle time;
- b) a number of cycles;
- c) a cycle threshold;
- d) an amplification time; and,

e) relative to an amplification amount of another amplified product.

[0106] In another broad form the present invention seeks to provide a method for use in assessing the likelihood of a biological subject having a medical condition, the method including, in one or more processing devices:

- a) determining a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
- b) determining an indicator indicative of a ratio of the concentrations of the polynucleotide expression products using the pair of biomarker values;
- c) retrieving previously determined first and second indicator references from a database, the first and second indicator references being determined based on indicators determined from first and second groups of a reference population, one of the groups consisting of individuals diagnosed with the medical condition;
- d) comparing the indicator to the first and second indicator references;
- e) using the results of the comparison to determine a probability indicative of the subject having the medical condition; and,
- f) generating a representation of the probability, the representation being displayed to a user to allow the user to assess the likelihood of a biological subject having at least one medical condition.

[0107] Typically the method includes determining:

- a) a first derived biomarker value indicative of a ratio of concentrations of the polynucleotide expression products using the first pair of biomarker values;
- b) a second derived biomarker value indicative of a ratio of concentrations of the polynucleotide expression products using the first pair of biomarker values; and,
- c) determining the indicator by combining the first and second derived biomarker values.

[0108] In another broad form the present invention seeks to provide apparatus for determining an indicator used in determining the likelihood of a biological subject having at least one medical condition, the apparatus including:

- a) a sampling device that obtains a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) a measuring device that quantifies polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
- c) at least one processing device that:
 - i) receives an indication of the pair of biomarker values from the measuring device;
 - ii) determines an indicator using a ratio of the concentration of the first and second polynucleotide expression products using the biomarker values; and,
 - iii) compares the indicator to at least one indicator reference; and,
 - iv) determines a likelihood of the subject having the at least one medical condition using the results of the comparison; and,
 - v) generates a representation of the indicator and the likelihood for display to a user.

[0109] In another broad form the present invention seeks to provide a method for differentiating between inSIRS and ipSIRS in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) in a measuring device:
 - i) amplifying at least some polynucleotide expression products in the sample;
 - ii) determining an amplification amount representing a degree of amplification required to obtain a defined level of polynucleotide expression products including:

- (1) amplification amounts for a first pair of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
- (2) amplification amounts for a second pair of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;

c) in a processing system:

- i) retrieving the amplification amounts;
- ii) determining an indicator by:
 - (1) determining a first derived biomarker value indicative of a ratio of concentrations of the first pair of polynucleotide expression products by determining a difference between the amplification amounts for the first pair;
 - (2) determining a second derived biomarker value indicative of a ratio of concentrations of the second pair of polynucleotide expression products by determining a difference between the amplification amounts for the second pair;
 - (3) determining the indicator by adding the first and second derived biomarker values;
- iii) retrieving previously determined first and second indicator references from a database, wherein the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, the first and second group consisting of individuals diagnosed with inSIRS and ipSIRS respectively;
- iv) comparing the indicator to the first and second indicator references;
- v) using the results of the comparison to determine a probability of the subject being classified within the first or second group;
- vi) generating a representation at least partially indicative of the indicator and the probability; and,
- vii) providing the representation to a user to allow the user to assess the likelihood of a biological subject having at least one medical condition.

[0110] In another broad form the present invention seeks to provide a method for determining an indicator used in assessing a likelihood of a biological subject having a

presence, absence, degree or prognosis of at least one medical condition, the method including:

- a) determining a plurality of biomarker values, each biomarker value being indicative of a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject;
- b) determining the indicator using a combination of the plurality of biomarker values, wherein:
 - i) at least two biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
 - ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0111] Typically the method includes:

- c) determining a plurality of measured biomarker values, each measured biomarker value being a measured value of a corresponding biomarker of the biological subject; and,
- d) determining the indicator by applying a function to at least one of the measured biomarker values to determine at least one derived biomarker value, the at least one derived biomarker value being indicative of a value of a corresponding derived biomarker.

[0112] Typically the function includes at least one of:

- a) multiplying two biomarker values;
- b) dividing two biomarker values;
- c) adding two biomarker values;
- d) subtracting two biomarker values;
- e) a ratio of two biomarker values;
- f) a weighted sum of at least two biomarker values;

- g) a log sum of at least two biomarker values; and,
- h) a sigmoidal function of at least two biomarker values.

[0113] Typically the method includes determining at least one derived biomarker value corresponding to a ratio of two measured biomarker values.

[0114] Typically the method includes combining at least two biomarker values to determine an indicator value representing the indicator.

[0115] Typically the method includes combining at least two biomarker values using a combining function, the combining function being at least one of:

- a) an additive model;
- b) a linear model;
- c) a support vector machine;
- d) a neural network model;
- e) a random forest model;
- f) a regression model;
- g) a genetic algorithm;
- h) an annealing algorithm;
- i) a weighted sum;
- j) a nearest neighbor model; and,
- k) a probabilistic model.

[0116] Typically at least one of the at least two biomarkers is a derived biomarker.

[0117] Typically the method includes:

- a) determining a first derived biomarker value, the first derived biomarker value being indicative of a ratio of concentrations of the first and second immune system biomarkers;
- b) determining a second derived biomarker value, the second derived biomarker value being indicative of a ratio of concentrations of the third and fourth measured immune system biomarkers; and,
- c) adding the first and second derived biomarker values to generate an indicator value.

[0118] Typically the method is performed at least in part using an electronic processing device.

[0119] Typically the method includes, in the electronic processing device:

- a) receiving a plurality of measured biomarker values, each measured biomarker value being a measured value of a corresponding immune system biomarker;
- b) applying a function to at least one of the measured biomarker values to determine at least one derived biomarker value, the at least one derived biomarker value being indicative of a value of a corresponding derived biomarker; and,
- c) combining at least one derived biomarker value and at least one other biomarker value to determine the indicator.

[0120] Typically the mutual correlation range is at least one of:

- a) ± 0.8 ;
- b) ± 0.7 ;
- c) ± 0.6 ;
- d) ± 0.5 ;
- e) ± 0.4 ;
- f) ± 0.3 ;
- g) ± 0.2 ; and,
- h) ± 0.1 .

[0121] Typically each biomarker has a condition correlation with the presence, absence, degree or prognosis of the at least one condition that lies outside a condition correlation range, the condition correlation range being between ± 0.3 .

[0122] Typically the condition correlation range is at least one of:

- a) ± 0.9 ;
- b) ± 0.8 ;
- c) ± 0.7 ;
- d) ± 0.6 ;
- e) ± 0.5 ; and,
- f) ± 0.4 .

[0123] Typically the performance threshold is indicative of an explained variance of at least one of:

- a) 0.4;
- b) 0.5;
- c) 0.6;
- d) 0.7;
- e) 0.8; and,
- f) 0.9.

[0124] Typically the biomarker value is indicative of a level or abundance of a molecule selected from one or more of a nucleic acid molecule and a proteinaceous molecule.

[0125] Typically the method includes generating a representation of the indicator.

[0126] Typically the representation includes:

- a) an alphanumeric indication of the indicator;
- b) a graphical indication of a comparison of the indicator to one or more indicator references;
- c) an alphanumeric indication of a likelihood of the subject having at least one medical condition.

[0127] Typically the method includes:

- a) comparing the indicator to an indicator reference; and,
- b) determining a likelihood in accordance with results of the comparison.

[0128] Typically the indicator reference is based on at least one of:

- a) an indicator threshold range;
- b) an indicator threshold; and,
- c) an indicator distribution.

[0129] Typically the indicator reference is derived from indicators determined for a number of individuals in a reference population.

[0130] Typically the indicator reference is based on a distribution of indicators determined for a group of a reference population, the group consisting of individuals diagnosed with the medical condition.

[0131] Typically the reference population includes:

- a) a plurality of individuals of different sexes;
- b) a plurality of individuals of different ethnicities;

- c) a plurality of healthy individuals;
- d) a plurality of individuals suffering from at least one diagnosed medical condition;
- e) a plurality of individuals showing clinical signs of at least one medical condition; and,
- f) first and second groups of individuals, each group of individuals suffering from a respective diagnosed medical condition.

[0132] Typically the indicator is for use in determining the likelihood that a biological subject has at least one medical condition, and wherein the reference population includes:

- a) individuals presenting with clinical signs of at least one medical condition;
- b) individuals diagnosed with the at least one medical condition; and,
- c) healthy individuals.

[0133] Typically the indicator reference is retrieved from a database.

[0134] Typically the likelihood is based on a probability generated using the results of the comparison.

[0135] Typically the indicator is for determining a likelihood of the subject having a first or second condition, and wherein the method includes:

- a) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of first and second conditions; and,
- b) determining the likelihood in accordance with the results of the comparison.

[0136] Typically the method includes:

- a) determining first and second indicator probabilities using the results of the comparisons; and,
- b) combining the first and second indicator probabilities to determine a condition probability indicative of the likelihood.

[0137] Typically the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, the first and second group consisting of individuals diagnosed with the first or second condition respectively.

[0138] Typically the method includes:

- a) obtaining a sample taken from the biological subject, the sample including polynucleotide expression products;

- b) quantifying at least some of the polynucleotide expression products within the sample to determine at least a pair of biomarker values;
- c) determining the indicator at least in part using the pair of biomarker values;

[0139] Typically the method includes, determining the indicator at least in part using a ratio of concentrations of the polynucleotide expression products.

[0140] Typically the method includes:

- a) quantifying polynucleotide expression products by:
- b) amplifying at least some polynucleotide expression products in the sample; and,
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products; and,
- d) determining the indicator by determining a difference between the amplification amounts.

[0141] Typically the amplification amount is at least one of:

- a) a cycle time;
- b) a number of cycles;
- c) a cycle threshold;
- d) an amplification time; and,
- e) relative to an amplification amount of another amplified product.

[0142] Typically the method includes determining:

- a) a first derived biomarker value by determining a difference between the amplification amounts of a first pair of polynucleotide expression products;
- b) a second derived biomarker value by determining a difference between the amplification amounts of a second pair of polynucleotide expression products;
- c) determining the indicator by adding the first and second derived biomarker values.

[0143] Typically the immune system biomarker is an IRS biomarker of an immune system of the biological subject that is altered, or whose level of expression is altered, as part of an inflammatory response to damage or pathogenic insult.

[0144] Typically the indicator is for determining a likelihood of the subject having at least one of inSIRS and ipSIRS, and wherein the method includes:

- a) determining a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
- b) determining a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene; and,
- c) determining the indicator using the first and second pairs of biomarker values.

[0145] Typically the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein the method includes:

- a) determining a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
- b) determining a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene; and,
- c) determining the indicator using the first and second pairs of biomarker values.

[0146] Typically the indicator is for determining a likelihood of the subject having inSIRS or a healthy condition, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group A IRS immune system biomarker genes; and
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group B IRS immune system biomarker genes.

[0147] Typically the indicator is for determining a likelihood of the subject having ipSIRS or a healthy condition, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group C IRS immune system biomarker genes; and,

- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group D IRS immune system biomarker genes.

[0148] Typically the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group E IRS immune system biomarker genes; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group F IRS immune system biomarker genes.

[0149] Typically the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first, second, third and fourth IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group G IRS immune system biomarker genes;
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group H IRS immune system biomarker genes;
- c) the third IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group I IRS immune system biomarker genes; and,
- d) the fourth IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group J IRS immune system biomarker genes.

[0150] Typically the first IRS immune system biomarker is a *PLA2G7* expression product, the second IRS immune system biomarker is a *PLAC8* expression product, the third IRS

immune system biomarker is a *CEACAM4* expression product and the fourth IRS immune system biomarker is a *LAMP1* expression product.

[0151] Typically the indicator is for determining a likelihood of the subject having mild sepsis or severe sepsis, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group K IRS immune system biomarker genes; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group L IRS immune system biomarker genes.

[0152] Typically the indicator is for determining a likelihood of the subject having mild sepsis or septic shock, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group M IRS immune system biomarker genes; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group N IRS immune system biomarker genes.

[0153] Typically the indicator is for determining a likelihood of the subject having severe sepsis or septic shock, and wherein biomarker values are determined from at least one IRS immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group O IRS immune system biomarker genes; and,

- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group P IRS immune system biomarker genes.

[0154] In another broad form the present invention seeks to provide apparatus for determining an indicator used in assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition, the apparatus including a processing device that:

- a) determines a plurality of biomarker values, each biomarker value being indicative of a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject;
- b) determines the indicator using a combination of the plurality of biomarker values, wherein:
 - i) at least two biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
 - ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0155] In one broad form the present invention seeks to provide a method for determining an indicator for use in diagnosing the presence, absence, degree or prognosis of at least one condition in a biological subject, the method including:

- a) determining a plurality of biomarker values, each biomarker value being indicative of a value measured or derived for at least one corresponding biomarker of the biological subject;
- b) determining the indicator using a combination of the plurality of biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition, wherein:

- i) at least two markers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
- ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0156] Typically the method includes:

- a) determining a plurality of measured biomarker values, each measured biomarker value being a measured value of a corresponding biomarker of the biological subject; and,
- b) applying a function to at least one of the measured biomarker values to determine at least one derived biomarker value, the at least one derived biomarker value being indicative of a value of a corresponding derived biomarker.

[0157] Typically the function includes at least one of:

- a) multiplying two biomarker values;
- b) dividing two biomarker values;
- c) adding two biomarker values;
- d) subtracting two biomarker values;
- e) a weighted sum of at least two biomarker values;
- f) a log sum of at least two biomarker values; and,
- g) a sigmoidal function of at least two biomarker values.

[0158] Typically the method includes determining at least one derived biomarker value corresponding to a ratio of two measured biomarker values.

[0159] Typically the method includes combining at least two biomarker values to determine an indicator value representing the indicator.

[0160] Typically the method includes combining at least two biomarker values using a combining function, the combining function being at least one of:

- a) an additive model;
- b) a linear model;
- c) a support vector machine;

- d) a neural network model;
- e) a random forest model;
- f) a regression model;
- g) a genetic algorithm;
- h) an annealing algorithm;
- i) a weighted sum;
- j) a nearest neighbor model; and,
- k) a probabilistic model.

[0161] Typically at least one of the at least two biomarkers is a derived biomarker.

[0162] Typically the method includes:

- a) determining a first derived biomarker value, the first derived biomarker value being a ratio of first and second measured biomarker values;
- b) determining a second derived biomarker value, the second derived biomarker value being a ratio of third and fourth measured biomarker values; and,
- c) adding the first and second derived biomarker values to generate an indicator value.

[0163] Typically the method includes:

- a) determining an indicator value;
- b) comparing the indicator value to at least one indicator value range; and,
- c) using a result of the comparison in diagnosing the presence, absence, degree or prognosis of at least one condition.

[0164] Typically the method is performed at least in part using an electronic processing device.

[0165] Typically the method includes, in the electronic processing device:

- a) receiving a plurality of measured biomarker values, each measured biomarker value being a measured value of a corresponding biomarker of the biological subject;
- b) applying a function to at least one of the measured biomarker values to determine at least one derived biomarker value, the at least one derived biomarker value being indicative of a value of a corresponding derived biomarker; and,

- c) combining at least one derived biomarker value and at least one other biomarker value to determine an indicator value.

[0166] Typically the method includes generating a representation in accordance with the at least one indicator value.

[0167] Typically the method includes:

- a) comparing the indicator value to at least one indicator value range; and,
- b) displaying a result of the comparison.

[0168] Typically the mutual correlation range is at least one of:

- a) ± 0.8 ;
- b) ± 0.7 ;
- c) ± 0.6 ;
- d) ± 0.5 ;
- e) ± 0.4 ;
- f) ± 0.3 ;
- g) ± 0.2 ; and,
- h) ± 0.1 .

[0169] Typically each biomarker has a condition correlation with the presence, absence, degree or prognosis of the at least one condition that lies outside a condition correlation range, the condition correlation range being between ± 0.3 .

[0170] Typically the condition correlation range is at least one of:

- a) ± 0.9 ;
- b) ± 0.8 ;
- c) ± 0.7 ;
- d) ± 0.6 ;
- e) ± 0.5 ; and,
- f) ± 0.4 .

[0171] Typically the performance threshold is indicative of an explained variance of at least one of:

- a) 0.4;
- b) 0.5;

- c) 0.6;
- d) 0.7;
- e) 0.8; and,
- f) 0.9.

[0172] Typically the biomarker value is indicative of a level or abundance of a molecule or entity selected from one or more of:

- a) A nucleic acid molecule;
- b) A proteinaceous molecule;
- c) An amino acid
- d) A carbohydrate;
- e) A lipid;
- f) A steroid;
- g) An inorganic molecule;
- h) An ion;
- i) A drug;
- j) A chemical;
- k) A metabolite;
- l) A toxin;
- m) A nutrient;
- n) A gas;
- o) A cell;
- p) A pathogenic organism; and,
- q) A non-pathogenic organism.

[0173] In another broad form the present invention seeks to provide apparatus for determining an indicator for use in diagnosing the presence, absence, degree or prognosis of at least one condition in a biological subject, the apparatus including an electronic processing device that:

- a) determines a plurality of biomarker values, each biomarker value being indicative of a value measured or derived for at least one corresponding biomarker of the biological subject;

- b) determines the indicator using a combination of the plurality of biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition, wherein:
 - i) at least two biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
 - ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0174] In another broad form the present invention seeks to provide a diagnostic signature for use in diagnosing the presence, absence, degree or prognosis of at least one condition in a biological subject, the diagnostic signature defining a combination of at least two biomarker values corresponding to values of biomarkers that can be measured for or derived from the biological subject, wherein:

- a) at least two biomarkers have a mutual correlation for the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
- b) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of the at least two biomarkers to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being a variance explained of at least 0.3.

[0175] Typically the diagnostic signature defines a function to be applied to at least one measured biomarker value to determine at least one derived biomarker value, the at least one derived biomarker value being indicative of a value of a corresponding derived biomarker.

[0176] Typically the function includes at least one of:

- a) multiplying two biomarker values;
- b) dividing two biomarker values;
- c) adding two biomarker values;
- d) subtracting two biomarker values;

- e) a weighted sum of at least two biomarker values;
- f) a log sum of at least two biomarker values; and,
- g) a sigmoidal function of at least two biomarker values.

[0177] Typically the at least one derived biomarker value corresponds to a ratio of two measured biomarker values.

[0178] Typically the diagnostic signature defines a combination of at least two biomarker values for determining an indicator value representing the indicator.

[0179] Typically the diagnostic signature defines a combining function for combining at least two biomarker values, the combining function being at least one of:

- a) an additive model;
- b) a linear model;
- c) a support vector machine;
- d) a neural network model;
- e) a random forest model;
- f) a regression model;
- g) a genetic algorithm;
- h) an annealing algorithm; and,
- i) a weighted sum.

[0180] Typically at least one of the at least two biomarkers is a derived biomarker.

[0181] Typically the diagnostic signature defines:

- a) a first derived biomarker value, the first derived biomarker value being a ratio of first and second measured biomarker values;
- b) a second derived biomarker value, the second derived biomarker value being a ratio of third and fourth measured biomarker values; and,
- c) a combination of the first and second derived biomarker values to generate an indicator value.

[0182] Typically the diagnostic signature defines at least one indicator value range and wherein comparison of at least one indicator value to the at least one indicator value range is used in diagnosing the presence, absence, degree or prognosis of at least one condition.

[0183] Typically the mutual correlation range is at least one of:

- a) ± 0.8 ;
- b) ± 0.7 ;
- c) ± 0.6 ;
- d) ± 0.5 ;
- e) ± 0.4 ;
- f) ± 0.3 ;
- g) ± 0.2 ; and,
- h) ± 0.1 .

[0184] Typically each biomarker has a condition correlation with the presence, absence, degree or prognosis of the at least one condition that lies outside a condition correlation range, the condition correlation range being between ± 0.3 .

[0185] Typically the condition correlation range is at least one of:

- a) ± 0.9 ;
- b) ± 0.8 ;
- c) ± 0.7 ;
- d) ± 0.6 ;
- e) ± 0.5 ; and,
- f) ± 0.4 .

[0186] Typically the performance threshold is indicative of an explained variance of at least one of:

- a) 0.4;
- b) 0.5;
- c) 0.6;
- d) 0.7;
- e) 0.8; and,
- f) 0.9.

[0187] Typically the biomarker value is indicative of a level or abundance of a molecule or entity selected from one or more of:

- a) A nucleic acid molecule;
- b) A proteinaceous molecule;
- c) An amino acid

- d) A carbohydrate;
- e) A lipid;
- f) A steroid;
- g) An inorganic molecule;
- h) An ion;
- i) A drug;
- j) A chemical;
- k) A metabolite;
- l) A toxin;
- m) A nutrient;
- n) A gas;
- o) A cell;
- p) A pathogenic organism; and,
- q) A non-pathogenic organism.

[0188] In another broad form the present invention seeks to provide a method of identifying biomarkers for use in a diagnostic signature, the diagnostic signature being for use in diagnosing the presence, absence, degree or prognosis of at least one condition in a biological subject, the method including:

- a) for a number of candidate biomarkers, ranking the candidate biomarkers in accordance with the ability of each biomarker to distinguish between the presence, absence, degree or prognosis of at least one condition in a biological subject;
- b) selecting at least two candidate biomarkers in accordance with the ranking, the at least two biomarkers having a mutual correlation for the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ;
- c) determining a performance value of a combination of the at least two candidate biomarkers; and,
- d) defining a diagnostic signature in accordance with the combination of the at least two biomarkers if the performance value is greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0189] Typically the method includes determining a combination of at least two candidate biomarkers using a combining function, the combining function being at least one of:

- a) an additive model;
- b) a linear model;
- c) a support vector machine;
- d) a neural network model;
- e) a random forest model;
- f) a regression model;
- g) a genetic algorithm;
- h) an annealing algorithm; and,
- i) a weighted sum.

[0190] Typically the method includes:

- a) selecting a next combining function;
- b) determining if a performance value of a combination of the at least two candidate biomarkers determined by the next combining function is greater than or equal to a performance threshold; and,
- c) if the performance value is not greater than or equal to a performance threshold, repeating steps a) and b) for successive combining functions.

[0191] Typically the method includes:

- a) selecting two candidate biomarkers;
- b) determining if a performance value of a combination of the two candidate biomarkers is greater than or equal to a performance threshold; and,
- c) if the performance value is not greater than or equal to a performance threshold:
 - i) combining the selected candidate biomarkers with at least one additional candidate biomarker; and,
 - ii) repeating steps a) and b) with at least one additional candidate biomarker.

[0192] Typically the method includes combining a number of candidate biomarkers up to a limit.

[0193] Typically the method includes:

- a) selecting a highest ranked candidate biomarker;
- b) selecting a next highest ranked candidate biomarker;

- c) for the selected candidate markers, determining if the mutual correlation for the candidate biomarkers within the mutual correlation range; and,
- d) if not, repeating steps b) and c) until two candidate biomarkers are selected having a mutual correlation within the mutual correlation range.

[0194] Typically the method includes:

- a) defining at least two groups of candidate biomarkers, candidate biomarkers in different groups having a mutual correlation within the mutual correlation range;
- b) ranking the candidate biomarkers in each group; and,
- c) selecting candidate biomarkers from the different groups.

[0195] Typically the method includes:

- a) using reference data for at least one individual to define a number of groups indicative of the presence, absence, degree or prognosis of the at least one condition; and,
- b) using at least one analysis technique to identify a number of candidate biomarkers that are potentially useful for distinguishing the groups.

[0196] Typically the method includes using reference values measured for reference biomarkers for the at least one individual to identify the candidate biomarkers.

[0197] Typically the method includes using reference values to filter reference biomarkers to determine candidate biomarkers.

[0198] Typically at least one of the candidate biomarkers is a derived biomarker derived from at least one of the reference biomarkers using a function.

[0199] Typically the derived biomarkers are derived from filtered biomarkers.

[0200] Typically the method includes:

- a) applying a function to at least one of the reference values to determine at least one derived reference biomarker value, the at least one derived reference biomarker value being indicative of a value of a corresponding derived reference biomarker; and,
- b) determining at least one candidate biomarker using the at least one derived reference biomarker value.

[0201] Typically the method includes:

- a) using reference data for at least one individual to define a number of groups indicative of the presence, absence, degree or prognosis of the at least one condition; and,
- b) for each group, combining a range of at least two reference biomarker values to determine an indicator value range for the group.

[0202] Typically the mutual correlation range is at least one of:

- a) ± 0.8 ;
- b) ± 0.7 ;
- c) ± 0.6 ;
- d) ± 0.5 ;
- e) ± 0.4 ;
- f) ± 0.3 ;
- g) ± 0.2 ; and,
- h) ± 0.1 .

[0203] Typically each biomarker has a condition correlation with the presence, absence, degree or prognosis of the at least one condition that lies outside a condition correlation range, the condition correlation range being between ± 0.3 .

[0204] Typically the condition correlation range is at least one of:

- a) ± 0.9 ;
- b) ± 0.8 ;
- c) ± 0.7 ;
- d) ± 0.6 ;
- e) ± 0.5 ; and,
- f) ± 0.4 .

[0205] Typically the performance threshold is indicative of an explained variance of at least one of:

- a) 0.4;
- b) 0.5;
- c) 0.6;
- d) 0.7;
- e) 0.8; and,

f) 0.9.

[0206] In another broad form the present invention seeks to provide apparatus for identifying markers for use in a diagnostic signature, the diagnostic signature being for use in diagnosing the presence, absence, degree or prognosis of at least one condition in a biological subject, the apparatus including an electronic process device that:

- a) for a number of candidate biomarkers, ranks the candidate biomarkers in accordance with the ability of each biomarker to distinguish between the presence, absence, degree or prognosis of at least one condition in a biological subject;
- b) selects at least two candidate biomarkers in accordance with the ranking, the at least two biomarkers having a mutual correlation for the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ;
- c) determines a performance value of a combination of the at least two candidate biomarkers; and,
- d) defines a diagnostic signature in accordance with the combination of the at least two biomarkers if the performance value is greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0207] In another broad form the present invention seeks to provide a method for diagnosing the presence or absence of inSIRS or a healthy condition in a biological subject, the method comprising: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from inSIRS and a healthy condition, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one

condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group A IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group B IRS biomarker genes.

[0208] In another broad form the present invention seeks to provide a method for diagnosing the presence or absence of ipSIRS or a healthy condition in a biological subject, the method comprising: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from ipSIRS and a healthy condition, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group C IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group D IRS biomarker genes.

[0209] In another broad form the present invention seeks to provide a method for diagnosing the presence or absence of inSIRS or ipSIRS in a biological subject, the method comprising: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker

values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from inSIRS and ipSIRS, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group E IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group F IRS biomarker genes.

[0210] In another broad form the present invention seeks to provide a method for diagnosing the presence or absence of inSIRS or ipSIRS in a biological subject, the method comprising: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from inSIRS and ipSIRS, wherein: (i) at least four IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least four IRS biomarkers is selected from a first IRS biomarker group, wherein at least one other of the at least four IRS biomarkers is selected from a second IRS biomarker group, wherein at least one other of the at least four IRS biomarkers is selected from a third IRS biomarker group, and wherein at least one other of the at least four IRS biomarkers is selected from a fourth IRS biomarker group, wherein the first IRS

biomarker group consists of polynucleotide and/or polypeptide expression products from group G IRS biomarker genes, wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group H IRS biomarker genes, wherein the third IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group I IRS biomarker genes and wherein the fourth IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group J IRS biomarker genes.

[0211] Suitably, the first IRS biomarker is a *PLA2G7* expression product, the second IRS biomarker is a *PLAC8* expression product, the third IRS biomarker is a *CEACAM4* expression product and the fourth IRS biomarker is a *LAMP1* expression product.

[0212] In another broad form the present invention seeks to provide a method for diagnosing the presence or absence of mild sepsis or severe sepsis in a biological subject, the method comprising: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from mild sepsis and severe sepsis, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group K IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group L IRS biomarker genes.

[0213] In another form the present invention seeks to provide a method for diagnosing the presence or absence of mild sepsis or septic shock in a biological subject, the method

comprising: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from mild sepsis and septic shock, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group M IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group N IRS biomarker genes.

[0214] In another form the present invention seeks to provide a method for diagnosing the presence or absence of severe sepsis or septic shock in a biological subject, the method comprising: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from severe sepsis and septic shock, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a

second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group O IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group P IRS biomarker genes.

[0215] In another broad form the present invention seeks to provide a kit comprising: (i) a reagent that allows quantification of a first IRS biomarker; and (ii) a reagent that allows quantification of a second IRS biomarker, wherein the first and second IRS biomarkers have a mutual correlation in respect of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a stage of ipSIRS selected from mild sepsis, severe sepsis and septic shock, which at least one condition lies within a mutual correlation range of between ± 0.9 , and wherein a combination of respective biomarker values for the first and second IRS biomarkers that are measured for or derived from a biological subject has a performance value greater than or equal to a performance threshold representing the ability of the combination of the first and second IRS biomarkers to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being a variance explained of at least 0.3.

[0216] Suitably, the kit further comprises: (iii) a reagent that allows quantification of a third IRS biomarker; and (iv) a reagent that allows quantification of a fourth IRS biomarker, wherein the third and fourth IRS biomarkers have a mutual correlation in respect of at the least one condition that lies within a mutual correlation range of between ± 0.9 , and wherein a combination of respective biomarker values for the third and fourth IRS biomarkers that are measured for or derived from a biological subject has a performance value greater than or equal to a performance threshold representing the ability of the combination of the third and fourth IRS biomarkers to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being a variance explained of at least 0.3.

[0217] Suitably, the kit is for diagnosing the presence or absence of inSIRS or a healthy condition, wherein the first IRS biomarker is selected from a first IRS biomarker group and wherein the second IRS biomarker is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group A IRS biomarker genes and wherein the second IRS biomarker group

consists of polynucleotide and/or polypeptide expression products from group B IRS biomarker genes.

[0218] Suitably, the kit is for diagnosing the presence or absence of ipSIRS or a healthy condition, wherein the first IRS biomarker is selected from a first IRS biomarker group and wherein the second IRS biomarker is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group C IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group D IRS biomarker genes.

[0219] Suitably, the kit is for diagnosing the presence or absence of inSIRS or ipSIRS, wherein the first IRS biomarker is selected from a first IRS biomarker group and wherein the second IRS biomarker is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group E IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group F IRS biomarker genes.

[0220] Suitably, the kit is for diagnosing the presence or absence of inSIRS or ipSIRS, wherein the first IRS biomarker is selected from a first IRS biomarker group, wherein the second IRS biomarker is selected from a second IRS biomarker group, wherein the third IRS biomarker is selected from a third IRS biomarker group and wherein the fourth IRS biomarker is selected from a fourth IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group G IRS biomarker genes, wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group H IRS biomarker genes, wherein the third IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group I IRS biomarker genes and wherein the fourth IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group J IRS biomarker genes.

[0221] Suitably, the first IRS biomarker is a *PLA2G7* expression product, the second IRS biomarker is a *PLAC8* expression product, the third IRS biomarker is a *CEACAM4* expression product and the fourth IRS biomarker is a *LAMP1* expression product.

[0222] Suitably, the kit is for diagnosing the presence or absence of mild sepsis or severe sepsis, wherein the first IRS biomarker is selected from a first IRS biomarker group and

wherein the second IRS biomarker is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group K IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group L IRS biomarker genes.

[0223] Suitably, the kit is for diagnosing the presence or absence of mild sepsis or septic shock, wherein the first IRS biomarker is selected from a first IRS biomarker group and wherein the second IRS biomarker is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group M IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group N IRS biomarker genes.

[0224] Suitably, the kit is for diagnosing the presence or absence of severe sepsis or septic shock, wherein the first IRS biomarker is selected from a first IRS biomarker group and wherein the second IRS biomarker is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group O IRS biomarker genes and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group P IRS biomarker genes.

[0225] In another broad form the present invention seeks to provide a method for treating, preventing or inhibiting the development of at least one condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS (*e.g.*, mild sepsis, severe sepsis or septic shock) in a subject, the method comprising (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining an indicator using a combination of the plurality of IRS biomarker values, the indicator being at least partially indicative of the presence, absence or degree of the at least one condition, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at

least one condition, the performance threshold being indicative of an explained variance of at least 0.3; and (c) administering to the subject, on the basis that the indicator indicates the presence of inSIRS, an effective amount of an agent that treats or ameliorates the symptoms or reverses or inhibits the development of inSIRS, or administering to the subject, on the basis that the indicator indicates the presence of ipSIRS or a particular stage of ipSIRS, an effective amount of an agent that treats or ameliorates the symptoms or reverses or inhibits the development of ipSIRS or the particular stage of ipSIRS.

[0226] Suitably, the method further comprises: (1) determining a plurality of measured IRS biomarker values, each measured IRS biomarker value being a measured value of an IRS biomarker of the biological subject; and (2) applying a function to at least one of the measured IRS biomarker values to determine at least one derived IRS biomarker value, the at least one derived IRS biomarker value being indicative of a value of a corresponding derived IRS biomarker.

[0227] Suitably, the function includes at least one of: (a) multiplying two IRS biomarker values; (b) dividing two IRS biomarker values; (c) adding two IRS biomarker values; (d) subtracting two IRS biomarker values; (e) a weighted sum of at least two IRS biomarker values; (f) a log sum of at least two IRS biomarker values; and (g) a sigmoidal function of at least two IRS biomarker values.

[0228] In another broad form the present invention seeks to provide a method of monitoring the efficacy of a particular treatment regimen in a subject towards a desired health state, the method comprising: a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject after treatment with a treatment regimen; (b) determining an indicator using a combination of the plurality of IRS biomarker values, the indicator being at least partially indicative of the presence, absence or degree of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance

threshold being indicative of an explained variance of at least 0.3, and (c) determining that the treatment regimen is effective for changing the health status of the subject to the desired health state on the basis that the indicator indicates the presence of a healthy condition or the presence of a condition of a lower degree relative to the degree of the condition in the subject before treatment with the treatment regimen.

[0229] In another broad form the present invention seeks to provide a method of correlating a biomarker signature with an effective treatment regimen for a condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS (e.g., mild sepsis, severe sepsis and septic shock), the method comprising: (a) determining a biomarker signature defining a combination of at least two IRS biomarker values corresponding to values of at least two IRS biomarkers that can be measured for or derived from a biological subject having the condition and for whom an effective treatment has been identified, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of the condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the condition, or to provide a prognosis for the condition, the performance threshold being indicative of an explained variance of at least 0.3; and (b) correlating the biomarker signature so determined with an effective treatment regimen for the condition.

[0230] In another broad form the present invention seeks to provide a method of determining whether a treatment regimen is effective for treating a subject with a condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS (e.g., mild sepsis, severe sepsis and septic shock), the method comprising: (a) determining a plurality of post-treatment IRS biomarker values, each post-treatment IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject after treatment with the treatment regimen; (b) determining a post-treatment indicator using a combination of the plurality of post-treatment IRS biomarker values, the post-treatment indicator being at least partially indicative of the presence, absence or degree of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS, wherein: (i) at the least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies

within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the post-treatment indicator has a performance value greater than or equal to a performance threshold representing the ability of the post-treatment indicator to diagnose the presence, absence or degree of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein the post-treatment indicator indicates whether the treatment regimen is effective for treating the condition in the subject on the basis that post-treatment indicator indicates the presence of a healthy condition or the presence of a condition of a lower degree relative to the degree of the condition in the subject before treatment with the treatment regimen.

[0231] In another broad form the present invention seeks to provide a method of correlating a biomarker signature with a positive or negative response or a side effect to a treatment regimen, the method comprising: (a) determining a biomarker signature defining a combination of at least two IRS biomarker values corresponding to values of at least two IRS biomarkers that can be measured for or derived from a biological subject following commencement of the treatment regimen, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS (e.g., mild sepsis, severe sepsis and septic shock), which lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3; and (b) correlating the biomarker signature so determined with a positive or negative response to the treatment regimen.

[0232] In another broad form the present invention seeks to provide a method of determining a positive or negative response to a treatment regimen and/or a side effect of a treatment regimen by a subject with a condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS (e.g., mild sepsis, severe sepsis and septic shock), the method: (a) correlating a reference biomarker signature with a positive or negative response or a side effect to the treatment regimen, wherein the biomarker signature defines a combination of at least two IRS

biomarker values corresponding to values of at least two IRS biomarkers that are measured for or derived from a control biological subject or control group, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS (e.g., mild sepsis, severe sepsis and septic shock), which lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3; (b) determining a sample biomarker signature defining a combination of at least two IRS biomarker values corresponding to values of at least two IRS biomarkers that are measured for or derived from a biological subject following commencement of the treatment regimen, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS, which lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3; wherein the sample biomarker signature indicates whether the subject is responding positively or negatively to the treatment regimen and/or is developing a side effect from the treatment regimen, based on the correlation of the reference biomarker signature with the positive or negative response or side effect to the treatment regimen.

[0233] In another broad form the present invention seeks to provide a method of determining a positive or negative response to a treatment regimen and/or a side effect to a treatment regimen by a biological subject, the method comprising: (a) determining a sample biomarker signature defining a combination of at least two IRS biomarker values corresponding to values of at least two IRS biomarkers that are measured for or derived from a biological subject following commencement of the treatment regimen, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of at least one condition selected from a

healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS (e.g., mild sepsis, severe sepsis and septic shock), which lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein the sample biomarker signature is correlated with a positive or negative response to the treatment regimen and/or to a side effect from the treatment regimen; and (b) determining whether the subject is responding positively or negatively to the treatment regimen and/or is developing a side effect from the treatment regimen based on the sample biomarker signature.

Brief Description of the Drawings

[0234] An example of the present invention will now be described with reference to the accompanying drawings, in which: -

[0235] Figure 1A is a flowchart of an example of a method for deriving an indicator for use in diagnosing the presence, absence or degree of at least one condition or in providing a prognosis of at least one condition in a biological subject;

[0236] Figure 1B is a flowchart of an example of a method for identifying biomarkers for use in a biomarker signature;

[0237] Figure 2 is a schematic diagram of an example of a distributed computer architecture;

[0238] Figure 3 is a schematic diagram of an example of a processing system of Figure 2;

[0239] Figure 4 is a schematic diagram of an example of a computer system of Figure 2;

[0240] Figure 5 is a flowchart of a specific example of a method for identifying biomarkers for use in a biomarker signature;

[0241] Figure 6A is a flowchart of a first example of a method for selecting candidate biomarkers;

[0242] Figure 6B is a flowchart of a second example of a method for selecting candidate biomarkers;

[0243] Figure 7 is a flowchart of a second example of a method for use in diagnosing the presence, absence or degree of at least one condition or in providing a prognosis of at least one condition in a biological subject;

[0244] Figure 8A is a plot of 941 mRNA biomarkers against the AUC for differentiating between healthy condition and post-surgical inflammation (PS) (also referred to herein as “infection-negative SIRS” (inSIRS)), for individual biomarkers having an AUC greater than 0.7;

[0245] Figure 8B is a box and whisker plot showing the best mRNA biomarker for separating healthy condition and PS;

[0246] Figure 8C is a plot of the AUC for the diagnostic ability of 1000 derived biomarkers in separating healthy condition and PS with all derived biomarkers having an AUC of 1.0;

[0247] Figure 8D is a box and whisker plot of the best performing derived biomarker, based on AUC, for separating healthy condition and PS;

[0248] Figures 8E and 8F are two plots showing the correlation to each other of the biomarkers in each group;

[0249] Figures 8G and 8H are two plots demonstrating the AUC of the biomarkers in each group (groups 1 and 2);

[0250] Figure 8I is a box and whisker plot showing that when biomarkers are derived from group 1 and group 2 that a greater overall AUC is obtained;

[0251] Figure 9A is a plot of the 941 mRNA biomarkers against the AUC for differentiating between healthy condition and sepsis (also referred to herein as “infection-positive SIRS” (ipSIRS)) with all individual biomarkers having an AUC greater than 0.7;

[0252] Figure 9B is a box and whisker plot showing the best mRNA biomarker for separating healthy condition and sepsis;

[0253] Figure 9C is a plot of the AUC for the diagnostic ability of 1000 derived biomarkers in separating healthy condition and sepsis with all derived biomarkers having an AUC of 1.0;

[0254] Figure 9D is a box and whisker plot of the best performing derived biomarker, based on AUC, for separating healthy condition and sepsis;

[0255] Figures 9E and 9F show the correlation to each other of the biomarkers groups correlated to each group;

[0256] Figures 9G and 9H are two plots demonstrating the AUC of the biomarkers in each group (bucketgroups 1 and 2);

[0257] Figure 9I is a box and whisker plot showing that when biomarkers are derived from bucketgroup 1 and bucketgroup 2 that a greater overall AUC is obtained;

[0258] Figure 10A is a plot of the 359 mRNA biomarkers against the AUC for differentiating between PS and sepsis with all individual biomarkers having had an AUC greater than 0.7;

[0259] Figure 10B is a box and whisker plot showing the best mRNA biomarker for separating PS and sepsis;

[0260] Figure 10C is a plot of the AUC for the diagnostic ability of 1000 derived biomarkers in separating PS and sepsis with all derived biomarkers having an AUC of 0.9;

[0261] Figure 10D is a box and whisker plot of the best derived biomarker for separating PS and sepsis;

[0262] Figures 10E is a plot showing the correlation of the biomarkers in each bucketgroup to the condition;

[0263] Figures 10F is a box and whisker plot showing that when biomarkers are derived from bucketgroup 1 and bucketgroup 2 that a greater overall AUC is obtained;

[0264] Figures 10G is a plot demonstrating the AUC of the biomarkers in each of four bucketgroups;

[0265] Figure 10H is a box and whisker plot showing that when biomarkers are derived from each of the four bucketgroups a greater overall AUC is obtained;

[0266] Figure 11A is a plot of the 66 mRNA biomarkers against the AUC for differentiating between mild sepsis and severe sepsis with all individual biomarkers selected having an AUC greater than 0.7;

[0267] Figure 11B is a box and whisker plot showing the best mRNA biomarker for separating mild sepsis and severe sepsis;

[0268] Figure 11C is a plot of the AUC for the diagnostic ability of 1000 derived biomarkers in separating mild sepsis and severe sepsis with all derived biomarkers have an AUC of at least 0.87;

[0269] Figure 11D is a box and whisker plot of the best performing derived biomarker, based on AUC, for separating mild sepsis and severe sepsis;

[0270] Figures 11E and 11F are plots showing the correlation to each other of the biomarkers in each group;

[0271] Figures 11G and 11H are plots demonstrating the AUC of the biomarkers in each group;

[0272] Figure 11I is a box and whisker plot showing that when biomarkers are derived from group 1 and group 2 that a greater overall AUC is obtained;

[0273] Figure 12A is a plot of the 48 mRNA biomarkers against the AUC for differentiating between mild sepsis and septic shock (also referred to herein as “infection-positive SIRS-shock” (ipSIRS-shock)) with all individual biomarkers having an AUC greater than 0.7;

[0274] Figure 12B is a box and whisker plot showing the best mRNA biomarker for separating mild sepsis and septic shock;

[0275] Figure 12C is a plot of the AUC for the diagnostic ability of 1000 derived biomarkers in separating mild sepsis and septic shock with all derived biomarkers having an AUC of at least 0.793;

[0276] Figure 12D is a box and whisker plot of the best performing derived biomarker, based on AUC, for separating mild sepsis and septic shock;

[0277] Figures 12E and 12F are plots showing the correlation to each other of the biomarkers in each group;

[0278] Figures 12G and 12H are plots demonstrating the AUC of the biomarkers in each group;

[0279] Figure 12I is a box and whisker plot showing that when biomarkers are derived from group 1 and group 2 that a greater overall AUC is obtained;

[0280] Figure 13A is a plot of the 61 mRNA biomarkers against the AUC for differentiating between severe sepsis and septic shock with all individual biomarkers selected having an AUC greater than 0.7;

[0281] Figure 13B is a box and whisker plot showing the best mRNA biomarker for separating severe sepsis and septic shock;

[0282] Figure 13C is a plot of the AUC for the diagnostic ability of 1000 derived biomarkers in separating severe sepsis and septic shock with all derived biomarkers have an AUC of at least 0.821;

[0283] Figure 13D is a box and whisker plot of the best performing derived biomarker, based on AUC, for separating severe sepsis and septic shock;

[0284] Figures 13E and 13F are plots showing the correlation to each other of the biomarkers in each group;

[0285] Figures 13G and 13H are plots demonstrating the AUC of the biomarkers in each group;

[0286] Figure 13I is a box and whisker plot showing that when biomarkers are derived from group 1 and group 2 that a greater overall AUC is obtained;

[0287] Figure 14 is a user interface illustrating an example of a thermal cycler protocol;

[0288] Figure 15 is a diagram of an example of a report; and,

[0289] Figures 16A to 16L are box and whisker plots for the top twelve biomarker combinations for distinguishing between healthy condition and PS;

[0290] Figures 17A to 17L are box and whisker plots for the top twelve biomarker combinations for distinguishing between healthy condition and sepsis;

[0291] Figures 18A to 18L are box and whisker plots for the top twelve biomarker combinations for distinguishing between PS and sepsis;

[0292] Figures 19A to 19L are box and whisker plots for the top twelve biomarker combinations for distinguishing between sepsis and severe sepsis;

[0293] Figures 20A to 20L are box and whisker plots for the top twelve biomarker combinations for distinguishing between severe sepsis and septic shock;

[0294] Figures 21A to 21L are box and whisker plots for the top twelve biomarker combinations for distinguishing between sepsis and septic shock;

[0295] Figure 22 is a graph of the effect on AUC of adding biomarkers to a biomarker signature;

[0296] Figure 23 is a graph showing an example of the ability of the biomarker signature to distinguish between PS and sepsis for two patient populations;

[0297] Figure 24 is a flowchart of an example of a method for determining indicator references;

[0298] Figures 25A and 25B are a flowchart of an example of a method for validating an indicator derived from biomarker measurements;

[0299] Figures 26 is an example showing the comparison of an indicator value to an indicator reference; and,

[0300] Figures 27A and 27B are example representation of indicator values.

Detailed Description of the Preferred Embodiments

[0301] An example of a method for determining an indicator for use in diagnosing the presence, absence or degree of at least one condition in or of a biological subject, or in monitoring the progression of at least one condition in or of the subject, or in prognosing at least one condition in or of the subject, will now be described with reference to Figure 1A.

[0302] For the purpose of explanation, a number of different terms will be used. For example, the term “biomarker” refers to a measurable parameter, or combination of parameters, that can be used as an indicator of a biological state and includes, without limitation, proteins, nucleic acids, carbohydrates, lipids, metabolites, gases, steroids, ions, nutrients, toxins, cells, pathogenic organisms, non-pathogenic organisms, organic compounds and inorganic compounds. Biomarkers also encompass non-blood-borne factors, non-analyte physiological markers of health status, or other factors or biomarkers not measured from samples (e.g., biological samples such as bodily fluids), such as “clinical” or “phenotypic” parameters, including, without limitation, age, ethnicity, gender, species, breed, genetic information, white blood cell count, diastolic blood pressure and systolic blood pressure, bone density, height, weight, waist and hip circumference, body-mass index, as well as others

such as Type I or Type II diabetes mellitus or gestational diabetes mellitus (collectively referred to here as diabetes), resting heart rate, homeostatic model assessment (HOMA), HOMA insulin resistance (HOMA-IR), intravenous glucose tolerance (SI(IVGT)), resting heart rate, β cell function, macrovascular function, microvascular function, atherogenic index, low-density lipoprotein/high-density lipoprotein ratio, intima-media thickness, body temperature, sequential organ failure assessment (SOFA) and the like. The “biomarkers” could also include “immune response biomarkers”, which will be described in more detail below.

[0303] The term “biomarker value” refers to a value measured or derived for at least one corresponding biomarker of the biological subject and which is typically at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject. Thus, the biomarker values could be measured biomarker values, which are values of biomarkers measured for the subject, or alternatively could be derived biomarker values, which are values that have been derived from one or more measured biomarker values, for example by applying a function to the one or more measured biomarker values.

[0304] Biomarker values can be of any appropriate form depending on the manner in which the values are determined. For example, the biomarker values could be determined using high-throughput technologies such as mass spectrometry, sequencing platforms, array and hybridization platforms, immunoassays, flow cytometry, or any combination of such technologies and in one preferred example, the biomarker values relate to a level of activity or abundance of an expression product or other measurable molecule, quantified using a technique such as PCR, sequencing or the like. In this case, the biomarker values can be in the form of amplification amounts, or cycle times, which are a logarithmic representation of the concentration of the biomarker within a sample, as will be appreciated by persons skilled in the art and as will be described in more detail below.

[0305] The term “reference biomarkers” is used to refer to biomarkers whose activity has been quantified for a sample population of one or more individuals having one or more conditions, stages of one or more conditions, subtypes of one or more conditions or different prognoses. The term “reference data” refers to data measured for one or more individuals in a sample population, and may include quantification of the level or activity of the biomarkers

measured for each individual, information regarding any conditions of the individuals, and optionally any other information of interest.

[0306] The term “candidate biomarkers” refers to a subset of the reference biomarkers that have been identified as being potentially useful in distinguishing between different groups of individuals, such as individuals suffering from different conditions, or having different stages or prognoses. The number of candidate biomarkers will vary, but is typically about 200.

[0307] The term “signature biomarkers” is used to refer to a subset of the candidate biomarkers that have been identified for use in a biomarker signature that can be used in performing a clinical assessment, such as to rule in or rule out a specific condition, different stages or severity of conditions, subtypes of different conditions or different prognoses. The number of signature biomarkers will vary, but is typically of the order of 10 or less.

[0308] The term “biomarker signature” means a combination of at least two biomarker values corresponding to values of biomarkers that can be measured for or derived from one or more biological subjects, which combination is characteristic for a discrete condition, stage of condition, subtype of condition or a prognosis for a discrete condition, stage of condition, subtype of condition.

[0309] The terms “biological subject”, “subject”, “individual” and “patient” are used interchangeably herein to refer to an animal subject, particularly a vertebrate subject, and even more particularly a mammalian subject. Suitable vertebrate animals that fall within the scope of the invention include, but are not restricted to, any member of the phylum Chordata, subphylum vertebrata including primates, rodents (*e.g.*, mice rats, guinea pigs), lagomorphs (*e.g.*, rabbits, hares), bovines (*e.g.*, cattle), ovines (*e.g.*, sheep), caprines (*e.g.*, goats), porcines (*e.g.*, pigs), equines (*e.g.*, horses), canines (*e.g.*, dogs), felines (*e.g.*, cats), avians (*e.g.*, chickens, turkeys, ducks, geese, companion birds such as canaries, budgerigars etc.), marine mammals (*e.g.*, dolphins, whales), reptiles (snakes, frogs, lizards, etc.), and fish. A preferred subject is a primate (*e.g.*, a human, ape, monkey, chimpanzee).

[0310] As used herein, the term SIRS (“systemic inflammatory response syndrome”) refers to a clinical response arising from a non-specific insult with two or more of the following measureable clinical characteristics; a body temperature greater than 38° C or less than 36° C, a heart rate greater than 90 beats per minute, a respiratory rate greater than 20 per minute, a white blood cell count (total leukocytes) greater than 12,000 per mm³ or less than 4,000 per

mm³, or a band neutrophil percentage greater than 10%. From an immunological perspective, it may be seen as representing a systemic response to insult (e.g., major surgery) or systemic inflammation. As used herein, “inSIRS” (which includes within its scope “post-surgical” (PS) inflammation) includes the clinical response noted above but in the absence of a systemic infectious process. By contrast, “ipSIRS” (also referred to herein as “sepsis”) includes the clinical response noted above but in the presence of a presumed or confirmed infection. Confirmation of infection can be determined using microbiological culture or isolation of the infectious agent. From an immunological perspective, ipSIRS may be seen as a systemic response to microorganisms, whether it is a local, peripheral or systemic infection.

[0311] As used herein, the term “degree” of a condition refers to the seriousness, severity, stage or state of a condition. For example, a condition may be characterized as mild, moderate or severe. A person of skill in the art would be able to determine or assess the degree of a particular condition. For example, the degree of a condition may be determined by comparing the likelihood or length of survival of a subject having a condition with the likelihood or length of survival in other subjects having the same condition. In other embodiments, the degree of a condition may be determined by comparing the clinical signs of a subject having a condition with the degree of the clinical signs in other subjects having the same condition.

[0312] It will be appreciated that the above described terms and associated definitions are used for the purpose of explanation only and are not intended to be limiting.

[0313] In this example, the method includes determining a plurality of biomarker values at step 100, each biomarker value being indicative of a value measured or derived for at least one biomarker of the biological subject.

[0314] The biomarker values and biomarkers corresponding to the biomarker values can be of any appropriate form and in particular can relate to any attribute of a subject for which a value can be quantified. This technique is particularly suited to high-throughput technologies such as mass spectrometry, sequencing platforms, array and hybridization platforms, or any combination of such technologies and in one preferred example, the biomarker values relate to a level of activity or abundance of an expression product or other measurable molecule.

[0315] The biomarker values could be measured biomarker values, which are values of biomarkers measured for the subject, or alternatively could be derived biomarker values,

which are values that have been derived from one or more measured biomarker values, for example by applying a function to the one or more measured biomarker values. As used herein, biomarkers to which a function has been applied are referred to as “derived markers”.

[0316] The biomarker values may be determined in any one of a number of ways. In one example, the process of determining the biomarker values can include measuring the biomarker values, for example by performing tests on the biological subject. More typically however, the step of determining the biomarker values includes having an electronic processing device receive or otherwise obtain biomarker values that have been previously measured or derived. This could include for example, retrieving the biomarker values from a data store such as a remote database, obtaining biomarker values that have been manually input, using an input device, or the like.

[0317] At step 110, the indicator is determined using a combination of the plurality of biomarker values, the indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition.

[0318] The biomarker values can be combined in any one of a number of ways and this can include for example adding, multiplying, subtracting, or dividing biomarker values to determine an indicator value. This step is performed so that multiple biomarker values can be combined into a single indicator value, providing a more useful and straightforward mechanism for allowing the indicator to be interpreted and hence used in diagnosing the presence, absence or degree of the at least one condition in the subject, or prognosing the at least one condition in the subject.

[0319] Assuming the method is performed using an electronic processing device, at step 120 an indication of the indicator is optionally displayed or otherwise provided to the user. In this regard, the indication could be a graphical or alphanumeric representation of an indicator value. Alternatively however, the indication could be the result of a comparison of the indicator value to predefined thresholds or ranges, or alternatively could be an indication of the presence, absence, degree or prognosis for at least one condition, derived using the indicator.

[0320] In order to ensure an effective diagnosis or prognosis can be determined, at least two of the biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 . This

requirement means that the two biomarkers are not entirely correlated in respect of each other when considered in the context of the condition(s) being diagnosed or prognosed. In other words, at least two of the biomarkers in the combination respond differently as the condition changes, which adds significantly to their ability when combined to discriminate between at least two conditions, to diagnose the presence, absence or degree of at least one condition, and/or to provide a prognosis of at least condition in or of the biological subject. As used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative (or).

[0321] Typically, the requirement that biomarkers have a low mutual correlation means that the biomarkers may relate to different biological attributes or domains such as but not limited to different molecular functions, different biological processes and different cellular components. Illustrative examples of molecular function include addition of or removal of one of more of the following moieties to or from a protein, polypeptide, peptide, nucleic acid (*e.g.*, DNA, RNA): linear, branched, saturated or unsaturated alkyl (*e.g.*, C₁–C₂₄ alkyl); phosphate; ubiquitin; acyl; fatty acid, lipid, phospholipid; nucleotide base; hydroxyl and the like. Molecular functions also include signaling pathways, including without limitation, receptor signaling pathways and nuclear signaling pathways. Non-limiting examples of molecular functions also include cleavage of a nucleic acid, peptide, polypeptide or protein at one or more sites; polymerization of a nucleic acid, peptide, polypeptide or protein; translocation through a cell membrane (*e.g.*, outer cell membrane; nuclear membrane); translocation into or out of a cell organelle (*e.g.*, Golgi apparatus, lysosome, endoplasmic reticulum, nucleus, mitochondria); receptor binding, receptor signaling, membrane channel binding, membrane channel influx or efflux; and the like.

[0322] Illustrative examples of biological processes include: stages of the cell cycle such as meiosis, mitosis, cell division, prophase, metaphase, anaphase, telophase and interphase, stages of cell differentiation; apoptosis; necrosis; chemotaxis; immune responses including adaptive and innate immune responses, pro-inflammatory immune responses, autoimmune responses, tolerogenic responses and the like. Other illustrative examples of biological processes include generating or breaking down adenosine triphosphate (ATP), saccharides, polysaccharides, fatty acids, lipids, phospholipids, sphingolipids, glycolipids, cholesterol,

nucleotides, nucleic acids, membranes (*e.g.*, cell plasma membrane, nuclear membrane), amino acids, peptides, polypeptides, proteins and the like.

[0323] Representative examples of cellular components include organelles, membranes, as for example noted above, and others.

[0324] It will be appreciated that the use of biomarkers that have different biological attributes or domains provides further information than if the biomarkers were related to the same or common biological attributes or domains.

[0325] In this regard, it will be appreciated if the at least two biomarkers are highly correlated to each other, the use of both biomarkers would add little diagnostic/prognostic improvement compared to the use of a single one of the biomarkers. Accordingly, the method uses biomarkers that are not well correlated with each other, thereby ensuring that the inclusion of each biomarker in the method adds significantly to the discriminative ability of the indicator.

[0326] Despite this, in order to ensure that the indicator can accurately be used in performing the discrimination between at least two conditions or the diagnosis of the presence, absence or degree of at least one condition or the prognosis of at least one condition, the indicator has a performance value that is greater than or equal to a performance threshold. The performance threshold may be of any suitable form but is to be typically indicative of an explained variance of at least 0.3, or an equivalent value of another performance measure.

[0327] It has been found that utilizing a combination of biomarkers that have a mutual correlation between ± 0.9 and using these in a combination that provides an explained variance of at least 0.3, this allows an indicator to be defined that is suitable for ensuring that an accurate discrimination, diagnosis or prognosis can be obtained whilst minimizing the number of biomarkers that are required.

[0328] It will be appreciated that in this context, the biomarkers used within the above-described method can define a biomarker signature for the at least one condition, which includes a minimal number of biomarkers, whilst maintaining sufficient performance to allow the biomarker signature to be used in making a clinically relevant diagnosis, prognosis, or differentiation. Minimizing the number of biomarkers used minimizes the costs associated with performing diagnostic or prognostic tests and in the case of nucleic acid expression

products, allows the test to be performed utilizing relatively straightforward techniques such as nucleic acid array, and polymerase chain reaction (PCR) processes, or the like, allowing the test to be performed rapidly in a clinical environment.

[0329] Furthermore, producing a single indicator value allows the results of the test to be easily interpreted by a clinician or other medical practitioner, so that test can be used for reliable diagnosis in a clinical environment.

[0330] An example of the process for generating a suitable biomarker signature for use in the method of Figure 1A will now be described with reference to Figure 1B.

[0331] In particular, it is typical to generate a biomarker signature by analyzing a large number of biomarkers and then selecting a combination of biomarkers that meet the above described criteria.

[0332] In this example, at step 150 the process includes ranking a number of candidate biomarkers in accordance with the ability of each biomarker to distinguish between the presence, absence, degree or prognosis of at least one condition in a biological subject.

[0333] The candidate biomarkers can be obtained in any appropriate matter, but typically this would involve acquiring reference data including reference biomarker values relating to a number of reference biomarkers that have been measured or derived for one or more reference individuals having different presences, absences, degrees or prognoses of the one or more conditions of interest. Thus, it will be appreciated that the candidate biomarkers can include measured and/or derived biomarkers, as will be described in more detail below.

[0334] The reference data typically includes measurements of a plurality of reference biomarkers, the measurements including information regarding the activity, such as the level, abundance or functional activity, of any expression product or measurable molecule, as will be described in more detail below. The reference data may also include information such as clinical data regarding one or more conditions suffered by each individual. This can include information regarding a presence, absence, degree or progression of a condition, phenotypic information, such as details of phenotypic traits, genetic or genetically regulated information, amino acid or nucleotide related genomics information, results of other tests including imaging, biochemical and hematological assays, other physiological scores such as a SOFA

(Sequential Organ Failure Assessment) score, or the like and this is not intended to be limiting, as will be apparent from the description below.

[0335] The candidate biomarkers can include some or all of the reference biomarkers, depending on the preferred implementation. Thus, for example, reference biomarker values could be analyzed to determine correlations between the reference biomarkers and the at least one condition, with the reference biomarkers being coarsely filtered to remove those with a low correlation, for example with a correlation with the condition that is below 0.3.

[0336] At step 160 at least two candidate biomarkers are selected based on the ranking and a mutual correlation. In particular, at least two candidate biomarkers are selected which have a mutual correlation within a mutual correlation range of ± 0.9 . Thus, this process excludes any biomarkers which are highly mutually correlated, when considered in the context of the one or more conditions, and which would not therefore add significantly to the ability to discriminate between the presence, absence, degree or prognosis of at least one condition.

[0337] At step 170 a performance value of a combination of the selected candidate biomarkers is determined. As mentioned above the combination may be any combination of the candidate biomarker values, such as addition, subtraction, multiplication, or division of the candidate biomarker values, and this will not therefore be described in any further detail.

[0338] At step 180 it is determined if the performance value of the combination exceeds a performance threshold, the performance threshold being equivalent to an explained variance of at least 0.3. If so, the combination of the candidate biomarkers can be used to define a biomarker signature. Otherwise, the previous steps can be repeated, for example by determining alternative combinations of the candidate biomarkers, selecting different candidate biomarkers, or adding additional candidate biomarkers as will be described in more detail below. In this regard, it will be appreciated that other measures could be used, and reference to an explained variance of at least 0.3 is intended to be a particular example for illustrative purposes.

[0339] Accordingly, the above described method can be utilized to select a combination of candidate biomarkers that are suitable for use as signature biomarkers in a biomarker signature for diagnosing the presence, absence, degree or prognosis of at least one condition in a biological subject, for example using the method of Figure 1A above.

[0340] In one example, this is achieved by ensuring that at least two of the biomarkers used are not highly mutually correlated, thereby ensuring that each of these biomarkers contributes to the performance of the resulting signature.

[0341] A number of further features will now be described.

[0342] In one example, the method includes determining a plurality of measured biomarker values, each measured biomarker value being a measured value of a corresponding biomarker of the biological subject and applying a function to at least one of the measured biomarker values to determine at least one derived biomarker value, the at least one derived biomarker value being indicative of a value of a corresponding derived biomarker.

[0343] The function used will therefore vary depending on the preferred implementation. In one example, the function includes at least one of multiplying two biomarker values; dividing two biomarker values; adding two biomarker values; subtracting two biomarker values; a weighted sum of at least two biomarker values; a log sum of at least two biomarker values; and, a sigmoidal function of at least two biomarker values.

[0344] More typically the function is division of two biomarker values, so that the derived biomarker value corresponds to a ratio of two measured biomarker values. There are a number of reasons why the ratio might be preferred. For example, use of a ratio is self-normalizing, meaning variations in measuring techniques will automatically be accommodated. For example, if the input concentration of a sample is doubled, the relative proportions of biomarkers will remain the same. As a result, the type of function therefore has a stable profile over a range of input concentrations, which is important because input concentration is a known variable for expression data. Additionally, many biomarkers are nodes on biochemical pathways, so the ratio of biomarkers gives information about the relative activation of one biological pathway to another, which is a natural representation of biological change within a system. Finally, ratios are typically easily interpreted.

[0345] The method typically includes combining at least two biomarker values to determine an indicator value representing the indicator. This is usually achieved by combining at least two biomarker values using a combining function, such as: an additive model; a linear model; a support vector machine; a neural network model; a random forest model; a regression model; a genetic algorithm; an annealing algorithm; and a weighted sum.

[0346] In one example, at least one of the at least two biomarkers is a derived biomarker and in a preferred example, the combining function is addition of derived biomarker values that are ratios, in which case the method includes determining first and second derived biomarker values from ratios of first and second and third and fourth measured biomarker values, and then adding the first and second derived biomarker values to generate an indicator value.

[0347] In one example, the method includes determining an indicator value, comparing the indicator value to at least one indicator value range, and using a result of the comparison in diagnosing the presence, absence, degree or prognosis of at least one condition.

[0348] The above-described process is typically performed using an electronic processing device, forming part of a processing system such as a computer system or the like. In this case, the method typically involves having the electronic processing device receive a plurality of measured biomarker values, apply a function to at least one of the measured biomarker values to determine the at least one derived biomarker value and combining at least one derived biomarker value and at least one other biomarker value to determine an indicator value.

[0349] The electronic processing device can then generate a representation in accordance with the at least one indicator value, for example by displaying a numerical indication of the indicator value. More typically however the electronic processing device compares the indicator value to at least one indicator value range and displays a result of the comparison. This can be used to compare the indicator to defined ranges representing specific stages, progressions or prognoses of one or more conditions, allowing an indication of the respective stage, progression or prognosis to be displayed.

[0350] The mutual correlation range is typically at least one of: ± 0.8 ; ± 0.7 ; ± 0.6 ; ± 0.5 ; ± 0.4 ; ± 0.3 ; ± 0.2 ; and ± 0.1 . In this regard, it will be appreciated that the smaller the mutual correlation range used, the less correlated the biomarkers will be and hence the more useful these will be in discriminating between the specific stages, progressions or prognoses of one or more conditions.

[0351] It is also typical for the biomarkers used to have at least a minimum correlation with the condition. In one example, each biomarker has a condition correlation with the presence, absence, degree or prognosis of the at least one condition that lies outside a condition correlation range, the condition correlation range being between ± 0.3 . However, it will be

appreciated that the greater the range, the greater the correlation between the biomarker and condition, and hence the more use this will be in performing a diagnosis. Accordingly, the condition correlation is more typically one of: ± 0.9 ; ± 0.8 ; ± 0.7 ; ± 0.6 ; ± 0.5 ; and ± 0.4 .

[0352] Furthermore, it will be appreciated that the greater the performance of the indicator, the greater use the indicator will be in performing the diagnosis. Accordingly, the performance threshold is typically indicative of an explained variance of at least one of: 0.4; 0.5; 0.6; 0.7; 0.8; and 0.9.

[0353] As described above, the biomarker value can be of any suitable form. However, the technique is particularly suited to biomarker values indicative of a level or abundance of a molecule selected from one or more of: a nucleic acid molecule; a proteinaceous molecule; an amino acid; a carbohydrate; a lipid; a steroid; an inorganic molecule; an ion; a drug; a chemical; a metabolite; a toxin; a nutrient; a gas; a cell; a pathogenic organism; and a non-pathogenic organism.

[0354] When determining biomarkers for use in a biomarker signature, the method typically includes selecting a combining function, determining if a performance value of a combination of the at least two candidate biomarkers determined by the combining function is greater than or equal to a performance threshold and if the performance value is not greater than or equal to a performance threshold, repeating these steps for successive different combining functions. Thus, this allows a number of different combining functions to be tried successively, allowing the best combining function to be identified.

[0355] The method typically further includes selecting two candidate biomarkers, determining if a performance value of a combination of the two candidate biomarkers is greater than or equal to a performance threshold and if not, combining the selected candidate biomarkers with at least one additional candidate biomarker before repeating the steps with at least one additional candidate biomarker. This allows a larger number of biomarkers to be used in the event two biomarkers are insufficient, and this can be repeated, with increasing numbers of candidate biomarkers used in combination and compared to the performance threshold until the required performance is reached, or up until a defined number limit of candidate biomarkers is reached.

[0356] To ensure the required mutual correlation is met when selecting the candidate biomarkers, the method typically includes selecting a highest and a next highest ranked

candidate biomarker, for the selected candidate biomarkers, determining if the mutual correlation for the candidate biomarkers within the mutual correlation range and if not repeating these steps until two candidate biomarkers are selected having a mutual correlation within the mutual correlation range. Alternatively however this can be achieved by defining at least two groups of candidate biomarkers, candidate biomarkers in different groups having a mutual correlation within the mutual correlation range, ranking the candidate biomarkers in each group and selecting candidate biomarkers from the different groups.

[0357] In general, the candidate biomarkers are determined by using reference data for at least one individual to define a number of groups indicative of the presence, absence, degree or prognosis of the at least one condition and then using at least one analysis technique to identify a number of candidate biomarkers that are potentially useful for distinguishing the groups. The groups can also be used to establish a range of at least two reference biomarker values to determine an indicator value range for the group.

[0358] In one example, reference values measured for reference biomarkers for the at least one individual can then be used to identify the candidate biomarkers, for example by filtering reference biomarkers to determine candidate biomarkers based on a correlation of each biomarker with the condition.

[0359] In one example, the process is performed by one or more processing systems operating as part of a distributed architecture, an example of which will now be described with reference to Figure 2.

[0360] In this example, the arrangement includes a number of processing systems 201 and computer systems 203 interconnected via one or more communications networks, such as the Internet 202, and/or a number of local area networks (LANs) 204. It will be appreciated that the configuration of the networks 202, 204 is for the purpose of example only, and in practice the processing and computer systems 201, 203 can communicate via any appropriate mechanism, such as via wired or wireless connections, including, but not limited to mobile networks, private networks, such as an 802.11 networks, the Internet, LANs, WANs, or the like, as well as via direct or point-to-point connections, such as Bluetooth, or the like.

[0361] The use of separate terms “processing system” and “computer system” is for illustrative purposes and to enable distinction between different devices, optionally having different functionality. For example, the processing and computer systems 201, 203 could

represent servers and clients respectively, as will become apparent from the following description. However, this is not intended to be limiting and in practice any suitable computer network architecture can be used.

[0362] An example of a suitable processing system 201 is shown in Figure 3. In this example, the processing system 201 includes an electronic processing device, such as at least one microprocessor 300, a memory 301, an optional input/output device 302, such as a keyboard and/or display, and an external interface 303, interconnected via a bus 304 as shown. In this example the external interface 303 can be utilized for connecting the processing system 201 to peripheral devices, such as the communications networks 202, 204, databases 211, other storage devices, or the like. Although a single external interface 303 is shown, this is for the purpose of example only, and in practice multiple interfaces using various methods (*e.g.*, Ethernet, serial, USB, wireless or the like) may be provided.

[0363] In use, the microprocessor 300 executes instructions in the form of applications software stored in the memory 301 to perform required processes, such as communicating with other processing or computer systems 201, 203. Thus, actions performed by a processing system 201 are performed by the processor 300 in accordance with instructions stored as applications software in the memory 301 and/or input commands received via the I/O device 302, or commands received from other processing or computer systems 201, 203. The applications software may include one or more software modules, and may be executed in a suitable execution environment, such as an operating system environment, or the like.

[0364] Accordingly, it will be appreciated that the processing systems 201 may be formed from any suitable processing system, such as a suitably programmed computer system, PC, web server, network server, or the like. In one particular example, the processing systems 201 are standard processing system such as a 32-bit or 64-bit Intel Architecture based processing system, which executes software applications stored on non-volatile (*e.g.*, hard disk) storage, although this is not essential. However, it will also be understood that the processing system could be or could include any electronic processing device such as a microprocessor, microchip processor, logic gate configuration, firmware optionally associated with implementing logic such as an FPGA (Field Programmable Gate Array), or any other electronic device, system or arrangement.

[0365] As shown in Figure 4, in one example, the computer systems 203 include an electronic processing device, such as at least one microprocessor 400, a memory 401, an input/output device 402, such as a keyboard and/or display, and an external interface 403, interconnected via a bus 404 as shown. In this example the external interface 403 can be utilized for connecting the computer system 203 to peripheral devices, such as the communications networks 202, 204, databases, other storage devices, or the like. Although a single external interface 403 is shown, this is for the purpose of example only, and in practice multiple interfaces using various methods (*e.g.*, Ethernet, serial, USB, wireless or the like) may be provided.

[0366] In use, the microprocessor 400 executes instructions in the form of applications software stored in the memory 401 to perform required processes, for example to allow communication with other processing or computer systems 201, 203. Thus, actions performed by a processing system 203 are performed by the processor 400 in accordance with instructions stored as applications software in the memory 401 and/or input commands received from a user via the I/O device 402. The applications software may include one or more software modules, and may be executed in a suitable execution environment, such as an operating system environment, or the like.

[0367] Accordingly, it will be appreciated that the computer systems 203 may be formed from any suitable processing system, such as a suitably programmed PC, Internet terminal, lap-top, hand-held PC, smart phone, PDA, tablet, or the like. Thus, in one example, the processing system 300 is a standard processing system such as a 32-bit or 64-bit Intel Architecture based processing system, which executes software applications stored on non-volatile (*e.g.*, hard disk) storage, although this is not essential. However, it will also be understood that the processing systems 203 can be any electronic processing device such as a microprocessor, microchip processor, logic gate configuration, firmware optionally associated with implementing logic such as an FPGA (Field Programmable Gate Array), or any other electronic device, system or arrangement.

[0368] It will also be noted that whilst the processing and computer systems 201, 203 are shown as single entities, it will be appreciated that this is not essential, and instead one or more of the processing and/or computer systems 201, 203 can be distributed over

geographically separate locations, for example by using processing systems provided as part of a cloud based environment.

[0369] Examples of the above-described method(s) will now be described in further detail. For the purpose of these examples, it is assumed that the process is performed by one or more of the processing systems 201, acting as diagnostic servers. Interaction by a user is via a user computer system 203, which is used to allow a user to submit raw data, for example obtained from measurements on a subject, with the processing system 201 generating the indicator, allowing this to be displayed on the computer system 203.

[0370] However, it will be appreciated that the above-described configuration assumed for the purpose of the following examples is not essential, and numerous other configurations may be used. It will also be appreciated that the partitioning of functionality between the processing and computer systems 201, 203 may vary, depending on the particular implementation.

[0371] An example of a specific method for identifying biomarkers for using a biomarker signature will now be described with reference to Figure 5.

[0372] In this example, at step 500 reference data is obtained from at least one individual. The reference data is typically in the form of measured biomarker values obtained for at least one individual for different stages of the at least one condition.

[0373] The reference data may be acquired in any appropriate manner but typically this involves obtaining gene expression product data from a plurality of individuals, selected to include individuals diagnosed with one or more conditions of interest, as well as healthy individuals. Detection of either types of gene expression in use of any of the methods described herein is encompassed by the present invention. The terms “expression” or “gene expression” refer to production of RNA only or production of RNA and translation of RNA into proteins or polypeptides. Thus, the term “expression products” encompass (i) polynucleotides including RNA transcripts and corresponding nucleic acids including complementary cDNA copies of RNA transcripts, and (ii) polypeptides encoded by RNA transcripts. The conditions are typically medical, veterinary or other health status conditions and may include any illness, disease, stages of disease, disease subtypes, severities of disease, diseases of varying prognoses or the like. The terms “healthy individual”, “healthy subject” and the like are used herein to refer to a subject, in particular a mammal, having no diagnosed

disease, disorder, infirmity, or ailment. The condition of such an individual or subject is referred to herein as a “healthy condition” such that in one example a condition can include healthy. In specific embodiments, a healthy subject lacks SIRS (e.g., inSIRS or ipSIRS).

[0374] In order to achieve this, gene expression product data are collected, for example by obtaining a biological sample, such as a peripheral blood sample, and then performing a quantification process, such as a nucleic acid amplification process, including PCR (Polymerase Chain Reaction) or the like, in order to assess the activity, and in particular, level or abundance of a number of reference biomarkers. Quantified values indicative of the relative activity are then stored as part of the reference data.

[0375] Example reference biomarkers could include expression products such as nucleic acid or proteinaceous molecules, as well as other molecules relevant in making a clinical assessment. The number of biomarkers measured for use as reference biomarkers will vary depending upon the preferred implementation, but typically include a large number such as, 1000, 5000, 10000 or above, although this is not intended to be limiting.

[0376] The individuals also typically undergo a clinical assessment allowing any conditions to be clinically identified, and with an indication of any assessment or condition forming part of the reference data. Whilst any conditions can be assessed, in one example the process is utilized specifically to identify conditions such as SIRS (Systemic Inflammatory Response Syndrome) (M S Rangel-Frausto, D Pittet, M Costigan, T Hwang, C S Davis, and R P Wenzel, “The Natural History of the Systemic Inflammatory Response Syndrome (SIRS). a Prospective Study.”, *JAMA : the Journal of the American Medical Association* 273, no. 2 (January 11, 1995): 117–123.). SIRS is an overwhelming whole body reaction that may have an infectious or non-infectious etiology, whereas sepsis is SIRS that occurs during infection. Both are defined by a number of non-specific host response parameters including changes in heart and respiratory rate, body temperature and white cell counts (Mitchell M Levy *et al.*, “2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference”, *Critical Care Medicine* 31, no. 4 (April 2003): 1250–1256.; K Reinhart, M Bauer, N C Riedemann, and C S Hartog, “New Approaches to Sepsis: Molecular Diagnostics and Biomarkers”, *Clinical Microbiology Reviews* 25, no. 4 (October 3, 2012): 609–634) To differentiate these conditions they are referred herein to as SIRS (both conditions), infection-negative SIRS (SIRS without infection, hereafter referred to as “inSIRS”) and infection-positive SIRS

(sepsis, SIRS with a known or suspected infection, hereafter referred to as “ipSIRS”). The causes of SIRS are multiple and varied and can include, but are not limited to, trauma, burns, pancreatitis, endotoxemia, surgery, adverse drug reactions, and infections (local and systemic). It will be appreciated from the following, however, that this can be applied to a range of different conditions, and reference to SIRS or sepsis is not intended to be limiting.

[0377] Additionally, the reference data may include additional biomarkers such as one or more phenotypic or clinical parameters of the individuals and/or their relatives. Phenotypic parameters can include information such as the gender, ethnicity, age, hair color, eye color, height, weight, waist and hip circumference, or the like. Also, in the case of the technology being applied to individuals other than humans, this can also include information such as designation of a species, breed or the like. Clinical traits may include genetic information, white blood cell count, diastolic blood pressure and systolic blood pressure, bone density, body-mass index, diabetes, resting heart rate, HOMA, HOMA-IR, IVGT, resting heart rate, β cell function, macrovascular function, microvascular function, atherogenic index, low-density lipoprotein/high-density lipoprotein ratio, intima-media thickness, body temperature, SOFA and the like.

[0378] Accordingly, in one example the reference data can include for each of the reference individuals information relating to at least one and desirably to a plurality of reference biomarkers and a presence, absence, degree or progression of a condition, .

[0379] The reference data may be collected from individuals presenting at a medical center with clinical signs relating to relevant any conditions of interest, and may involve follow-on consultations in order to confirm clinical assessments, as well as to identify changes in biomarkers, and/or clinical signs, and/or severity of clinical signs, over a period of time. In this latter case, the reference data can include time series data indicative of the progression of a condition, and/or the activity of the reference biomarkers, so that the reference data for an individual can be used to determine if the condition of the individual is improving, worsening or static. It will also be appreciated that the reference biomarkers are preferably substantially similar for the individuals within the sample population, so that comparisons of measured activities between individuals can be made.

[0380] This reference data could also be collected from a single individual over time, for example as a condition within the individual progresses, although more typically it would be

obtained from multiple individuals each of which has a different stage of the one or more conditions of interest.

[0381] It will be appreciated that once collected, the reference data can be stored in the database 211 allowing this to be subsequently retrieved by the processing system 201 for subsequent analysis. The processing system 201 also typically stores an indication of an identity of each of the reference biomarkers.

[0382] In one example, the measurements are received as raw data, which then undergoes preliminary processing. Such raw data corresponds to information that has come from a source without modification, such as outputs from instruments such as PCR machines, array (e.g., microarray) scanners, sequencing machines, clinical notes or any other biochemical, biological, observational data, or the like. This step can be used to convert the raw data into a format that is better suited to analysis. In one example this is performed in order to normalize the raw data and thereby assist in ensuring the biomarker values demonstrate consistency even when measured using different techniques, different equipment, or the like. Thus, the goal of normalization is to remove the variation within the samples that is not directly attributable to the specific analysis under consideration. For example, to remove variances caused by differences in sample processing at different sites. Classic examples of normalization include z-score transformation for generic data, or popular domain specific normalizations, such as RMA normalization for microarrays.

[0383] However, it will also be appreciated that in some applications, such as a single sample experiment run on a single data acquisition machine, this step may not strictly be necessary, in which case the function can be a Null function producing an output identical to the input.

[0384] In one example, the preferred approach is a paired function approach over log normalized data. Log normalization is a standard data transformation on microarray data, because the data follow a log-normal distribution when coming off the machine. Applying a log transform turns the data into process-friendly normal data.

[0385] At step 505 different groups are defined using the reference data.

[0386] Prior to this occurring, the processing system 201 optionally removes a validation subgroup of individuals from the reference data to allow the processing system 201 to determine the candidate biomarkers using the reference data without the validation subgroup

so that the validation subgroup can be subsequently used to validate the candidate biomarkers or signatures including a number of the candidate biomarkers. Thus, data from the validation subgroup is used to validate the efficacy of the candidate or signature biomarkers in identifying the presence, absence, degree, stage, severity, prognosis or progression of any one or more of the conditions to ensure the potential or signature biomarkers are effective.

[0387] In one example, this is achieved by having the processing system 201 flag individuals within the validation subgroup or alternatively store these in either an alternative location within the database 211 or an alternative database to the reference data. The validation subgroup of individuals is typically selected randomly and may optionally be selected to include individuals having different phenotypic traits. When a validation subgroup of individuals is removed, the remaining individuals will simply be referred to as reference data for ease throughout the remaining description.

[0388] The reference data (*i.e.*, excluding the validation subgroup) are classified into groups. The groups may be defined in any appropriate manner and may be defined based on any one or more of an indication of a presence, absence, degree, stage, severity, prognosis or progression of a condition, other tests or assays, or measured biomarkers associated with the individuals.

[0389] For example, a first selection of groups may be to identify one or more groups of individuals suffering from SIRS, one or more groups of individuals suffering ipSIRS, one or more groups of individuals suffering inSIRS, and one or more groups of healthy individuals. Further groups may also be defined for individuals suffering from other conditions. The groups may include overlapping groups, so for example it may be desirable to define groups of healthy individuals and individuals having SIRS, with further being defined to distinguish inSIRS patients from ipSIRS patients, as well as different degree of inSIRS or ipSIRS, with these groups having SIRS in common, but each group of patients differing in whether a clinician has determined the presence of an infection or not. Additionally, further subdivision may be performed based on phenotypic traits, so groups could be defined based on gender, ethnicity or the like so that a plurality of groups of individuals suffering from a condition are defined, with each group relating to a different phenotypic trait.

[0390] It will also be appreciated, however, that identification of different groups can be performed in other manners, for example on the basis of particular activities of biomarkers

within the biological samples of the reference individuals, and accordingly, reference to conditions is not intended to be limiting and other information may be used as required.

[0391] The manner in which classification into groups is performed may vary depending on the preferred implementation. In one example, this can be performed automatically by the processing system 201, for example, using unsupervised methods such as Principal Components Analysis (PCA), or supervised methods such as k-means or Self Organizing Map (SOM). Alternatively, this may be performed manually by an operator by allowing the operator to review reference data presented on a Graphical User Interface (GUI), and define respective groups using appropriate input commands.

[0392] At step 510 biomarkers are filtered based on their ability to distinguish between the groups. This process typically examines the activity of the reference biomarkers for individuals within and across the groups, to identify reference biomarkers whose activities differ between and hence can distinguish groups. A range of different analysis techniques can be utilized including, for example, regression or correlation analysis techniques. Examples of the techniques used can include established methods for parametrized model building such as Partial Least Squares, Random Forest or Support Vector Machines, usually coupled to a feature reduction technique for the selection of the specific subset of the biomarkers to be used in a signature.

[0393] Such techniques are known and described in a number of publications. For example, the use of Partial Least Squares is described in “Partial least squares: a versatile tool for the analysis of high-dimensional genomic data” by Boulesteix, Anne-Laure and Strimmer, Korbinian, from *Briefings in Bioinformatics* 2007 vol 8. no. 1, pg 32-44. Support Vector machines are described in “LIBSVM: a library for support vector machines” by Chang, C.C. and Lin, C.J. from ACM Transactions on Intelligent Systems and Technology (TIST), 2011 vol 2, no. 3, pg 27. Standard Random Forest in R language is described in “Classification and Regression by random Forest” by Liaw, A. and Wiener, M., in *R news* 2002, vol2, no. 3, pg 18-22.

[0394] The analysis techniques are implemented by the processing system 201, using applications software, which allows the processing system 201 to perform multiple ones of the analysis techniques in sequence. This is advantageous as the different analysis techniques typically have different biases and can therefore be used to identify different potential

biomarkers that can distinguish the groups, thereby reducing the risk of clinically relevant biomarkers being overlooked.

[0395] In one example, the process involves filtering out any biomarkers that demonstrate a correlation with the groups, and hence with the condition, that is below a certain correlation threshold, such as 0.3.

[0396] At step 515 derived biomarkers are generated from the filtered reference biomarkers using one or more functions. The nature of the derived biomarkers and the functions used will vary depending upon the preferred implementation. For example, functions can include division, subtraction, multiplication, addition of two markers, sigmoidal functions applied to the product of two biomarkers, negative logs of the division of two biomarkers, least-squares regression applied to two vectors of markers to produce a function (equation) output, concordance correlation coefficient of two vectors of categorical biomarkers, or the like.

[0397] In general, the function is selected based on a number of rules. These rules can include: utility, functions that provide the best results; interpretability, functions that can be understood in terms of biological function; output, functions that produce informative outputs; simplicity; performance assessment; least number of biomarkers for best performance; number of biomarkers at a statistical overfitting threshold or the like.

[0398] In one example, the preferred function is division, with the resulting biomarkers being different ratios. It will be appreciated that the division can be performed in multiple different ways, so that for three biomarkers, nine different derived biomarkers can be determined.

[0399] At step 520 a performance measure is determined for each of the candidate biomarkers, including the filtered reference biomarkers and any derived markers. The performance measure may be of any suitable form and typically includes a correlation or performance explained measure that is indicative of a correlation of the corresponding biomarker and its ability to distinguish between groups. In one example, the performance function used to determine the performance measure is a standard univariate statistical test over all candidate biomarkers. Other examples however include a t-test, a non-parametric equivalent or area under receiver operator curve, chi squared or regression analyses or their equivalents, extensions or derivatives may be used.

[0400] The outcome of the applying the performance function to each in the candidate selection step is a ranked list of biomarkers, with the top N ranked biomarkers proceeding to the next stage. The biomarkers falling below this threshold are no longer considered. The threshold applied may be an absolute number or proportion of all biomarkers, or determined by performance, such as a p value ≤ 0.05 . The threshold should be chosen to contain a sufficiently large number of biomarkers to bias towards including sufficiently independent biomarkers (*i.e.*, low mutual correlation).

[0401] At step 525, the processing system 201 selects a next two candidate biomarkers based on the performance measure and on a mutual correlation. In this regard, two markers that are highly correlated with each other in terms of the context of the condition will not necessarily improve the ability to distinguish a particular presence, absence, degree or prognosis of the condition any more than a single one of the markers. Accordingly, it is typical to select biomarkers that have a high performance measure in respect of the condition, but which have a mutual correlation that falls below a mutual correlation threshold. The mutual correlation threshold used will vary depending upon the preferred implementation, and is typically selected to be as low as possible, as described above. Examples of the manner in which the biomarkers are selected will be described in more detail below with respect to Figures 6A and 6B.

[0402] At step 530, the processing system 201 determines a performance of a next candidate biomarker combination. In this regard, the processing system 201 will use a combining function such as addition, to combine the biomarker values of the selected candidate biomarkers and use this to determine an indicator value based on the combination of biomarker values. The performance can be determined in any suitable manner, such as using statistical measurements, correlation measurements, concordance measurements or aggregate performance measurements such as averages. In one particular example, the performance measure is a ‘variance explained’ (VE). A VE of “1” means that using the biomarkers, you can perfectly classify/predict the disease. A VE of “0.8” means that your markers account for 80% of the result in practice.

[0403] Accordingly, at step 535 the processing system 201 compares the performance of the indicator to a performance threshold and determines if this is exceeded at step 540. In the event that the threshold is exceeded, this indicates that the selected combination of markers

provides the required degree of discrimination allowing the presence, absence, degree or prognosis of the condition to be determined.

[0404] In the event that the threshold is not exceeded at step 540, it is determined if all combinations have been considered at step 545. In this regard, it is possible that multiple different combinations of the two selected biomarkers to be tried, so if each possible combination has not been considered, the processing system 201 returns to step 530 to determine the performance of a next candidate biomarker combination. In this regard, the combinations used will typically be ordered in terms of preference, so that preferred combinations are tried first, with less preferred combinations being tried only in the event that preferred combinations prove unsuccessful.

[0405] Once all candidate biomarker combinations have been considered for the two candidate biomarkers selected, and if the performance threshold has still not been exceeded, the process moves onto step 550 to compare the current number of candidate biomarkers being considered to a limit. In this regard, the limit is used to control the overall number of biomarkers in the biomarker signature, thereby minimizing signature size and hence the cost of performing the associated measurements and diagnosis.

[0406] If the limit has not been exceeded an additional biomarker is added based on the correlation and performance at step 560, with the process moving onto step 530 to determine a performance of the next candidate biomarker combination. Otherwise if a limit has been reached, then an alternative next two candidate biomarkers are selected at step 525. Thus, this process allows additional candidate biomarkers to be progressively included, with a combination of the multiple candidate biomarkers being compared to the performance threshold, to determine if the required performance is met. If this is not achieved before the number of candidate biomarkers reaches the limit, the process is recommenced using two different candidate biomarkers.

[0407] Once the performance threshold has been exceeded at step 540, the selected candidate biomarkers can be defined as signature biomarkers for inclusion in a biomarker signature for the one or more conditions at step 565.

[0408] It should be noted that before the biomarker signature is finalized at step 565, additional checks might be performed, to ensure that the candidate biomarkers included in the signature should not be excluded for any reason. For example, candidate biomarkers might

be excluded for cost considerations as some combinations of candidate biomarkers may cost more than others. For example, a larger number of biomarkers may cost more than a smaller number, and the additional cost may not be justified by a small improvement in performance. Alternatively, the cost might be increased if multiple different tests are required in order to measure required biomarker values.

[0409] Biomarkers might also be excluded from use for legal reasons, for example if their use is restricted for approval or intellectual property reasons. Some biomarkers may be difficult to measure from a technical perspective, for example very low expression *in vivo*, which increases variability and therefore reduces robustness.

[0410] The performance of each biomarker combination panel may also include some variability, typically expressed as confidence intervals around the reported performance. Although a point estimate for one panel may be higher than for another, if the difference given the variability is not significant, the combinations may be considered equivalent.

[0411] Once a particular combination of signature biomarkers has been defined, at step 570 the processing system 201 can determine an indicator value range associated with each group. In particular, the range of reference biomarker values for the signature biomarkers within each group are used to calculate indicator value ranges for each group. These can then be compared to an indicator value calculated for a biological subject having an unknown presence absence, degree or progression of the at least one condition and used to identify a group to which the subject would belong and hence the presence, absence, degree or progression of the condition.

[0412] Thus, the above-described process iteratively assesses the biomarkers, initially selecting two biomarkers, with various combinations of these being considered to determine if these have the required performance for use in diagnosing the presence, absence, degree or progression of a condition. In the event that the required performance is not provided, additional biomarkers can be added and further combinations tried. Thus the process can consider three biomarkers, four biomarkers, five biomarkers, six biomarkers, seven biomarkers, eight biomarkers, nine biomarkers or more. Typically this is performed to a limit which may be defined based for example on the number of biomarkers that can practically be measured within given cost or process parameters. In the event that the

required performance is not obtained the process moves onto to select alternative candidate biomarkers with this being repeated.

[0413] Thus it will be appreciated that the above process initially selects those biomarkers which have the suitable performance and which are not highly correlated on the basis that these provide the maximum performance. The ability of these biomarkers to distinguish is then tested and in the event that this is insufficient, further biomarkers can be added to a limit. If this still does not provide the required discriminatory performance alternative biomarkers can be selected.

[0414] The process of selecting two candidate biomarkers at step 525 can be achieved in any number of ways depending upon the preferred implementation and examples of this will now be described with reference to Figures 6A and 6B.

[0415] In the example of Figure 6A, at step 600 biomarkers are grouped according to their mutual similarity. Thus, highly correlated biomarkers are put together in common groups. Biomarkers within the group are ranked at step 610 based on their performance measure in terms of their correlation with the condition, with the highest ranked biomarkers from two of the groups being selected at step 620 to define the next two candidate biomarkers. It will be appreciated if additional candidate biomarkers are required, these can be selected from different groups to the first two candidate biomarkers.

[0416] An alternative process is shown in Figure 6B. In this example, at step 650 biomarkers are ranked based on their performance at discriminating the condition(s). At step 660 a next highest biomarker is selected, with the remaining biomarkers being re-ranked on the combination of their similarity with the selected biomarker, for example using mutual information, as well as their performance. The next highest biomarker is then selected at step 680 with this process being repeated as required.

[0417] Accordingly, it will be appreciated that the above-described processes provide mechanisms for selecting a combination of biomarkers, and more typically derived biomarkers, that can be used to form a biomarker signature, which in turn can be used in diagnosing the presence, absence or degree of at least one condition or in providing a prognosis of at least one condition. In this regard, the biomarker signature defines the biomarkers that should be measured (*i.e.*, the signature biomarkers), how derived biomarker values should be determined for measured biomarker values, and then how biomarker values

should be subsequently combined to generate an indicator value. The biomarker signature can also specify defined indicator value ranges that indicate a particular presence, absence, degree or prognosis of one or more conditions.

[0418] An example of the method of using a biomarker signature described above will now be described with reference to Figure 7.

[0419] In this example, at step 700 a plurality of measured biomarker values are measured for a biological subject whose condition is unknown, with these typically being provided to the processing system 201, for example by download from measuring equipment or the like.

[0420] After any required processing, such as normalization or the like, at step 710, the processing system 201 applies one or more functions to the measured biomarker values to determine any required derived biomarker values. A derived biomarker value and another biomarker value (*i.e.*, another derived biomarker value or a measured biomarker value) are combined to generate an indicator value, which can then be displayed or otherwise used in determining the presence, absence, degree or prognosis of one or more conditions. Thus, this can involve simply displaying the indicator value, allowing an assessment to be made by a medical practitioner or alternatively may involve further processing, such as comparing the indicator to defined indicator value ranges that indicate a particular presence, absence, degree or prognosis of one or more conditions, with the results of the comparison being displayed.

[0421] Accordingly, in the above-described method the biomarker signature defines the biomarker values that need to be measured and/or derived, allowing the processing system 201 to automatically generate an indicator value based on received measured biomarker values. Once this has been completed, the processing system 201 can compare the indicator value to the indicator value ranges, and either display results of the comparison, or alternatively interpret the results of the comparison, allowing an indicator to be displayed that is indicative of the presence, absence, degree or prognosis of a condition. This can then be used by a medical practitioner as required in performing a medical diagnosis of the biological subject.

[0422] Using the above-described methods it has been identified that the use of ratios of “immune system biomarkers” is particularly beneficial when assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition.

[0423] As used herein, the term “immune system biomarker” refers to a biomarker of the host's immune system that is altered, or whose level of expression is altered, as part of an inflammatory response to damage or pathogenic insult, including metabolic, toxic, neurotoxic, iatrogenic, thermal or chemical insults, illustrative examples of which include trauma, surgery, drugs including chemotherapeutic drugs, radiation, disease including pathogenic infection, metabolic disease and ischemia, as well as foreign or implanted substances.

[0424] The term “immune system”, as used herein, refers to cells, molecular components and mechanisms, including antigen-specific and non-specific categories of the adaptive and innate immune systems, respectively, that provide a defense against damage and insults and matter, the latter comprised of antigenic molecules, including but not limited to tumors, pathogens, and self-reactive cells.

[0425] The term “innate immune system” refers to a host's non-specific reaction to insult to include antigen-nonspecific defense cells, molecular components and mechanisms that come into action immediately or within several hours after exposure to almost any insult or antigen. Elements of the innate immunity include for example phagocytic cells (monocytes, macrophages, dendritic cells, polymorphonuclear leukocytes such as neutrophils, reticuloendothelial cells such as Kupffer cells, and microglia), cells that release inflammatory mediators (basophils, mast cells and eosinophils), natural killer cells (NK cells) and physical barriers and molecules such as keratin, mucous, secretions, complement proteins, immunoglobulin M (IgM), acute phase proteins, fibrinogen and molecules of the clotting cascade, and cytokines. Effector compounds of the innate immune system include chemicals such as lysozymes, IgM, mucous and chemoattractants (*e.g.*, cytokines or histamine), complement and clotting proteins.

[0426] The term “adaptive immune system” refers to antigen-specific cells, molecular components and mechanisms that emerge over several days, and react with and remove a specific antigen. The adaptive immune system develops throughout a host's lifetime. The adaptive immune system is based on leukocytes, and is divided into two major sections: the humoral immune system, which acts mainly *via* immunoglobulins produced by B cells, and the cell-mediated immune system, which functions mainly *via* T cells.

[0427] Accordingly, in one example, an indicator is determined that correlates to a ratio of immune system biomarkers, which can be used in assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition.

[0428] In this example, the method includes determining a pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject.

[0429] The biomarker values are used to determine a derived biomarker value using the pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the pair of immune system biomarkers.

[0430] Thus, if the biomarker values are the concentrations of the biomarkers, then the derived biomarker value will be based on a ratio of the biomarker values. However, if the biomarker values are related to the concentrations of the biomarkers, for example if they are logarithmically related by virtue of the biomarker values being based on PCR cycle times, or the like, then the biomarker values may be combined in some other manner, such as by subtracting the cycle times to determine a derived biomarker value indicative of a ratio of the concentrations.

[0431] The derived biomarker is then used to determine the indicator, either by using the derived biomarker value as an indicator value, or by performing additional processing, such as comparing the derived biomarker value to a reference or the like, as will be described in more detail below.

[0432] In any event, combining biomarker values to determine a ratio of concentrations of immune system biomarkers, and then using this to determine an indicator allows indicators to be determined for use in determining a likelihood of a subject suffering from a range of different conditions, depending on the immune system biomarkers selected, which as it will be appreciated can be performed using the above described process.

[0433] A number of further features will now be described.

[0434] In one example, the process involves determining a first derived biomarker value using a first pair of biomarker values, the first derived biomarker value being indicative of a ratio of concentrations of first and second immune system biomarkers, determining a second

derived biomarker value using a second pair of biomarker values, the second derived biomarker value being indicative of a ratio of concentrations of third and fourth immune system biomarkers and determining the indicator by combining the first and second derived biomarker values. Thus, in this example, two pairs of derived biomarker values can be used, which can assist in increasing the ability of the indicator to reliably determine the likelihood of a subject having a condition.

[0435] The derived biomarker values could be combined using a combining function such as an additive model; a linear model; a support vector machine; a neural network model; a random forest model; a regression model; a genetic algorithm; an annealing algorithm; a weighted sum; a nearest neighbor model; and a probabilistic model.

[0436] In one example, the indicator is compared to an indicator reference, with a likelihood being determined in accordance with results of the comparison. The indicator reference is typically derived from indicators determined for a number of individuals in a reference population. The reference population typically includes individuals having different characteristics, such as a plurality of individuals of different sexes; and/or ethnicities, with different groups being defined based on different characteristics, with the subject's indicator being compared to indicator references derived from individuals with similar characteristics. The reference population can also include a plurality of healthy individuals, a plurality of individuals suffering from at least one diagnosed medical condition, a plurality of individuals showing clinical signs of at least one medical condition and/or first and second groups of individuals, each group of individuals suffering from a respective diagnosed medical condition.

[0437] It will be appreciated that the individuals selected will depend on the intended use of the indicator. In particular, when the indicator is for use in determining the likelihood that a biological subject has a specific medical condition, the sample population includes individuals presenting with clinical signs of the specific medical condition, individuals diagnosed with the specific medical condition and healthy individuals. This ensures that the assessment of indicator validity applies regardless of not or whether the individual has the specific condition or not.

[0438] It will also be appreciated that the sample population could also include a plurality of individuals of different sexes, ethnicities, ages, or the like, allowing the control value ranges

to be common across populations. However, this is not essential, and alternatively control value thresholds could be established that are specific to a particular sub-set of the population. In this case, it would be necessary to ensure that the control value threshold ranges used are appropriate for the subject under consideration.

[0439] The indicator can also be used for determining a likelihood of the subject having a first or second condition, in other words to distinguish between the conditions. In this case, this would typically be achieved by comparing the indicator to first and second indicator references, the first and second indicator references being indicative of first and second conditions and determining the likelihood in accordance with the results of the comparison. In particular, this can include determining first and second indicator probabilities using the results of the comparisons and combining the first and second indicator probabilities, for example using a Bayes method, to determine a condition probability corresponding to the likelihood of the subject having one of the conditions. In this situation the first and second conditions could include two medical conditions, or a single medical condition and a healthy condition.

[0440] In this case, the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, the first and second group consisting of individuals diagnosed with the first or second condition respectively. In this regard, this can be achieved by determining first and second groups of individuals, each group of individuals having a presence or absence of a diagnosed medical condition and determining first and second indicator references for the first and second groups respectively. This allows the indicator to be used to distinguish between first and second conditions, which could include different medical conditions, as well as healthy conditions. It will also be appreciated that whilst two groups are described, this is not essential and three or more groups could also be defined.

[0441] The process is usually performed using at least one electronic processing device, such as a suitably programmed computer system or the like.

[0442] In this case, the electronic processing device typically obtains at least two pairs of measured biomarker values, either by receiving these from a measuring or other quantifying device, or by retrieving these from a database or the like. The processing device then determines a first derived biomarker value indicative of a ratio of concentrations of first and

second immune system biomarkers and a second derived biomarker value indicative of a ratio of third and fourth immune system biomarkers. The processing device then determines the indicator by combining the first and second derived biomarker values.

[0443] The processing device can then generate a representation of the indicator, for example by generating an alphanumeric indication of the indicator, a graphical indication of a comparison of the indicator to one or more indicator references or an alphanumeric indication of a likelihood of the subject having at least one medical condition.

[0444] The method would also typically include obtaining a sample taken from the biological subject, the sample including polynucleotide expression products and quantifying at least some of the polynucleotide expression products within the sample to determine the pair of biomarker values. This can be achieved using any suitable technique, and will depend on the nature of the immune system biomarkers.

[0445] For example, if the indicator is based on a ratio of concentrations of the polynucleotide expression products, this process would typically include quantifying polynucleotide expression products by amplifying at least some polynucleotide expression products in the sample, determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products and determining the indicator by determining a difference between the amplification amounts. In this regard, the amplification amount is generally a cycle time, a number of cycles, a cycle threshold and an amplification time.

[0446] In this case, the method includes determining a first derived biomarker value by determining a difference between the amplification amounts of a first pair of polynucleotide expression products, determining a second derived biomarker value by determining a difference between the amplification amounts of a second pair of polynucleotide expression products and determining the indicator by adding the first and second derived biomarker values.

[0447] As previously discussed, the at least two immune system biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 and the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to

diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0448] Typically the mutual correlation range is one of ± 0.8 ; ± 0.7 ; ± 0.6 ; ± 0.5 ; ± 0.4 ; ± 0.3 ; ± 0.2 ; and, ± 0.1 .

[0449] Typically each immune system biomarker has a condition correlation with the presence, absence, degree or prognosis of the at least one condition that lies outside a condition correlation range, the condition correlation range being between ± 0.3 and more typically ± 0.9 ; ± 0.8 ; ± 0.7 ; ± 0.6 ; ± 0.5 ; and, ± 0.4 . Typically the performance threshold is indicative of an explained variance of at least one of 0.4; 0.5; 0.6; 0.7; 0.8; and, 0.9.

[0450] The above-described method has been used to identify 1650 biomarkers of inflammatory response syndromes (also referred to interchangeably herein as “IRS biomarkers” or “IRS immune system biomarkers”), which are useful for assisting in distinguishing: (1) between SIRS affected subjects (*i.e.*, subjects having inSIRS or ipSIRS) and healthy subjects or subjects not affected by SIRS; (2) between subjects with inSIRS and subjects with ipSIRS; and/or (3) between subjects with different stages of ipSIRS (*e.g.*, sepsis, severe sepsis and septic shock). Based on this identification, the present inventors have developed various methods, compositions, apparatus and kits, which take advantage of these biomarkers to provide an indicator for use in diagnosing the presence, absence or degree of at least one condition, or for prognosing at least one condition, wherein the at least one condition is selected from a healthy condition (*e.g.*, a normal condition or one in which inSIRS and inSIRS are absent), inSIRS, ipSIRS, or a stage of ipSIRS (*e.g.*, a stage of ipSIRS with a particular severity, illustrative examples of which include mild sepsis, severe sepsis and septic shock). In advantageous embodiments, the methods and kits involve monitoring the expression of IRS biomarker genes in cells of the immune systems, including blood cells (*e.g.*, immune cells such as leukocytes), which may be reflected in changing patterns of RNA levels or protein production that correlate for example with the presence of active disease or response to disease.

[0451] The IRS biomarkers are expression products of genes (also referred to interchangeably herein as “IRS biomarker genes” or IRS immune system biomarker genes”), including polynucleotide and polypeptide expression products. As used herein, polynucleotide expression products of IRS biomarker genes are referred to herein as “IRS

biomarker polynucleotides.” Polypeptide expression products of the IRS biomarker genes are referred to herein as “IRS biomarker polypeptides.” The term “gene”, as used herein, refers to a stretch of nucleic acid that codes for a polypeptide or for an RNA chain that has a function. While it is the exon region of a gene that is transcribed to form RNA (e.g., mRNA), the term “gene” also includes regulatory regions such as promoters and enhancers that govern expression of the exon region.

[0452] Suitably, the IRS biomarker genes are selected from the group consisting of: *PRKCZ*, *SKI*, *RER1*, *TASIR1*, *VAMP3*, *AGTRAP*, *VPS13D*, *KLHDC7A*, *NBL1/C1orf151*, *MDS2*, *RCAN3*, *LDLRAP1*, *MAN1C1*, *SH3BGRL3*, *DHDDS*, *HCRT1*, *CCDC28B*, *LCK*, *ZNF362*, *THRAP3*, *PPIE/CCDC25*, *CAPI*, *CTPS*, *C1orf84*, *FAAH*, *DMBX1*, *CYP4B1*, *BTF3L4*, *LRRC42*, *C1orf175/TTC4*, *TMEM61*, *FPGT/TNNI3K*, *ACADM*, *SPATA1*, *EPHX4*, *RPAP2*, *RPL5/SNORA66/SNORD21/FAM69A*, *RTCD1*, *SLC30A7*, *RNPC3/AMY2B*, *CELSR2*, *AHCYL1*, *CEPT1/DRAM2*, *CHIA*, *LIXIL*, *UPF0627*, *MRPS21*, *TNFAIP8L2*, *SMCP*, *DCST1*, *RAG1API*, *C1orf182*, *HAPLN2*, *NTRK1*, *CD1E*, *TOMM40L/NR1I3*, *POU2F1*, *TIPRL*, *SFT2D2*, *CACNA1E*, *SMG7*, *OCLM*, *RGS2*, *ZC3H11A/RP11-74E24.2*, *MFSD4*, *IL20*, *RPS6KC1*, *C1orf95*, *ARF1*, *GALNT2*, *TNFRSF4*, *NADK*, *FLJ14100/C1orf86*, *GPR153*, *RERE*, *SLC2A7*, *SDHB*, *RNF186*, *DDOST*, *GPN2*, *RPA2*, *PEF1*, *PTP4A2*, *TRIM62*, *PHC2*, *LSMI0*, *MRPS15*, *RRAGC*, *COL9A2*, *TESK2*, *NRD1*, *KTI12*, *CC2D1B*, *YIPF1*, *JAK1*, *SLC35D1*, *DIRAS3*, *ZZZ3*, *GNG5*, *ZNHIT6*, *ODF2L*, *SEP15*, *BARHL2*, *GCLM*, *CLCC1/GPSM2/C1orf62*, *SORT1*, *SLC16A4*, *PHTF1*, *RSBN1*, *DENND2C/BCAS2*, *CD58*, *SPAG17/WDR3*, *REG4/NBPF7*, *RP11-*

94I2.2/NBPF16/NBPF11/NBPF15/NBPF8/NBPF20/NBPF10/NBPF14/NBPF1/LOC100288142/NBPF12/KIAA1245/LOC100290137, *APH1A*, *POGZ*, *TDRKH*, *THEM4*, *S100A11*, *CRNN*, *SPRR2C*, *S100A12*, *S100A8*, *GATAD2B/PLIN2*, *DENND4B*, *PBXIP1*, *PYGO2*, *SHC1*, *DCST2*, *GBA/GBAP*, *ASH1L*, *RIT1*, *MEF2D*, *AIM2*, *COPA*, *DEDD*, *TAD1L*, *GPA33*, *CD247*, *F5*, *PIGC*, *KIAA0040*, *TOR1AIP2/TOR1AIP1/IFRG15*, *STX6/KIAA1614*, *EDEM3*, *UCHL5*, *DENND1B*, *DDX59*, *KIF21B*, *ARL8A*, *CYB5R1*, *MYBPH*, *CHI3L1*, *PIK3C2B/LOC100130573*, *NUAK2*, *NUCKS1*, *FAIM3*, *PLXNA2*, *SLC30A1*, *LPGAT1*, *ANGEL2*, *RAB3GAP2/AURKAPSI/AURKA/SNORA36B*, *TP53BP2*, *NVL*, *TMEM63A*, *PARP1*, *ITPKB*, *TARBP1*, *CHML*, *AKT3*, *SMYD3*, *AHCTF1*, *ORIC1*, *NCOA1*, *HADHB*, *ABHD1/PREB*, *SPAST*, *SLC30A6/DDX50*, *CRIP*, *MSH2*, *FOXN2*,

CCDC104, VRK2, AHSA2//USP34, OTX1, AFTPH, CEP68, PLEK, ANXA4, MXD1, NAGK, SMYD5//NOTO, MTHFD2, TTC31, SEMA4F, TMSB10, SH2D6, GNLY, KCNIP3, CNNM4, CNNM3, ZAP70, LIPT1//MRPL30, MAP4K4, IL1R2, IL1R1, IL18R1, POLR1B, CHCHD5, IL1RN, PSD4, DDX18, INSIG2, TMEM177//LOC100125918, RALB, PROC, GPR17//LOC100291428//LIMS2, IMP4, FAM123C, ACVR2A, MBD5, LYPD6B, SLC4A10, UBR3, HAT1, ITGA6, ZAK, OSBPL6, PLEKHA3, ZC3H15, COL3A1, GLS, OBFC2A, COQ10B, MARS2, CFLAR, NOP58, FAM117B, CYP20A1, FASTKD2, PIKFYVE, C2orf62, SLC11A1, AGFG1, CHRNG, EIF4E2, TRPM8, LRRKIP1, GAL3ST2, TMEM18, LAPT4A, SF3B14, TP53I3, UNQ2999, GPR113//SELI, MPV17, PPM1G, NLRC4, CDC42EP3, HNRPLL, COX7A2L, KCNG3, CALM2//C2orf61, BCL11A, XPO1, NAT8B, DUSP11, MOGS, SNRNP200, SEMA4C, MITD1, IL1A, SLC35F5, CCDC93, CLASPI, SAP130, YSK4, GTDC1, ORC4L, NR4A2//FLJ46875, DPP4, GALNT3, SCN7A, FRZB, STK17B, CLK1//PPIL3, MPP4, INO80D, KLF7, FAM119A, NGEF, ARL4C, RAB17, HDLBP, LRRN1, SETD5, IRAK2, C3orf42, TSEN2, NR2C2//MRPS25, UBE2E1, C3orf35, SNRK, ZNF197, GNAI2, ALAS1, PRKCD, CACNA1D, PXK, PTPRG, ATXN7, SLC35A5, SLC15A2, CCDC48, DNAJC13, CLDN18, GYG1, SELT, MED12L, RAP2B, MYNN, ABCF3, VPS8, HRG, EIF4A2//SNORA4, LPP, CCDC50, LOC152217, TADA3L, SEC13, TIMP4, METTL6, DAZL//DAZ4//DAZ3//DAZ2, SATB1//TBC1D5, SCN10A, SEC22C, ZDHHC3, ZDHHC3, SLC6A20, UQCRC1, PRKAR2A, IMPDH2, CCDC71, UBA7, CAMKV, WDR82, LMOD3, FOXP1, MORC1, ATG3, GSK3B//LOC100129275, HCLSI, KPNA1, PTPLB, C3orf22, RPN1, KIAA1257//ACAD9//LOC100132731, FOXL2, MECOM, PLD1, GNB4, MRPL47, KLHL6, THPO, ETV5, BCL6//LOC100131635, ATP13A5, TMEM44, KIAA1530, TACC3, CNO, BST1, KLF3, TMEM33//DCAF4L1, KIT, ENAM, FAM47E//STBD1, ENOPHI, PDLM5, CCDC109B//HIGD1A//CCDC13, EGF, PCDH10, RAB33B, TMEM184C, RBM46, GRIA2, C4orf39, KLHL2, TLL1, F11, SLBP, HAUS3//POLN, PPARGC1A, TLR10, C4orf34, TXK, RPL21P44, KDR, RCHY1, CNOT6L, PLAC8, HPSE, GPRIN3, PPA2, COL25A1, C4orf3, QRFPR, MFSD8, MAP9, PDGFC, TKTL2, ACSL1, SUB1//TMEM183A, CARD6, MCCC2, TNPO1, PDE8B, PAPD4, THBS4, FAM151B, RASGRF2, SNX2, LMNB1//PCIF1, MEGF10, LEAP2, TCF7, KDM3B, CXXC5, SLC4A9, ANKHD1-EIF4EBP3//ANKHD1//EIF4EBP3, KIAA0141, GRPEL2, MFAP3, GABRA6, GABRA1, DOCK2, RANBP17//USP12,

ERGIC1, ATP6V0E1//SNORA74B, ZNF346, NSD1, CLPTM1L, UGT3A1, GDNF, TTC33, hCG_2039148, MOCS2, SLC38A9, CCDC125, ANKRA2, HAPLN1, CCNH, TMEM161B, MBLAC2, MCTP1, TICAM2//TMED7//TMED7-TICAM2, KIF3A, C5orf15, SKP1, CXCL14, KLHL3, CD14, YIPF5, LARS, DCTN4, CCDC69, ATOX1, TIMD4, ADAM19, SLIT3, RNF44, DOK3, MGAT4B//SQSTM1, C5orf45//SQSTM1, RASGEF1C, MGAT1, IRF4, HIVEP1, E2F3, HIST1H4I, HIST1H2BM, MOG, ZNRD1//NCRNA00171, TRIM15, HCG27, BAT2//SNORA38, CYP21A2, ITPR3, MAPK14, MAPK13, PNPLA1, SFRS3, CDKN1A, FOXP4, CUL9, RUNX2, ZNF451, SOBP, C6orf182, KIAA1919, RWDD1, KPNA5, TPD52L1, ARG1, RAB32, ARID1B, SLC22A3, SERPINB1, C6orf146, GCM2, ATXN1, DCDC2//KAAG1, HIST1H3I, HIST1H4L, GABBR1, RNA243, DDAH2, CLIC1, NEUI, RXRB, VPS52, TCP11, CLPS, PGC, ZNF318, YIPF3, MRPL14, PLA2G7, PKHD1, IL17F, HTR1B, GABRR2, UBE2J1, BACH2, MCM9, VNN1, IL20RA, FLJ27255, T, RPS6KA2, HGC6.3, UNC84A//C7orf20, SDK1, ZDHHC4, C7orf26, GLCCII//tcag7.903, GPNMB, CCDC126, WIPF3//ZNRF2//LOC441208, GPR141, STARD3NL, POU6F2, CDC2L5, ZMIZ2, UPP1, ZNF273, KCTD7//RABGEF1, RABGEF1//tcag7.967//tcag7.951//KCTD7//LOC100293333, CCDC132, PVRIG//PILRB//STAG3, PILRB//PVRIG//STAG3, C7orf51, GNB2, LRRC17, LRRN3, CFTR, LSM8, LUC7L2, MGAM//LOC100124692, GIMAP7, INSIG1, RBM33, ICA1, FAM126A, HIBADH, TRIL, SCRN1, ELMO1, INHBA, CAMK2B, NPC1L1, DDC//LOC100129427, NSUN5//NSUN5B//NSUN5C, CLDN3, C7orf23//DMTF1, SRI, BET1, MCM7, GATS, ATXN7L1//RINT1//EFCAB10, KIAA1549, SLC37A3, SMARCD3, MLL3//BAGE2, CLN8, MSRA, PIWIL2, NEFM//LOC100129717, EPHX2, LEPROTL1, MAK16//C8orf41, AP3M2, FNTA, SGK196, UBE2V2, FLJ46365, SNTG1, TRIM55, C8orf45, PREX2, PLEKHF2, BAALC//FLJ10489, TTC35, MTBP, ZHX2, RNF139, TG, DENND3//C8orf60, TNFRSF10D, TRIM35, GSR, WHSC1L1, PCMTD1//PXDNL, NCOA2, TRAMI//LOC286190, RUNX1T1, EXT1, DDEF1HT1, CDC37L1, UBE2R2, UBAP1//KIF24, GALT, RGPI//GBA2, TGFBR1, C9orf6//IKBKAP, IMAGE5303689, ATP6V1G1, TLR4, SET, MRPL41, C9orf68, HAUS6//SCARNA8, KLHL9, C9orf82, NDUFB6//DFFB, SIT1, FAM108B1, TRPM6, FRMD3, SLC28A3, BICD2, C9orf84, AKNA, MEGF9, C5, GOLGA1//SCAI, SH2D3C, FAM102A, FLJ10232, ASB6, BAT2L, EDF1, FBXW5, C10orf18, FBXO18, GATA3, CUGBP2, VIM, STAM, WAC, BAMBI, ZNF487//LOC439911, ALOX5, WDFY4, SRGN, CCDC109A, FAMI49B1//FAMI49B2,

MINPP1, PTEN//PTENP1, ENTPD1//C10orf131, ABCC2, SFXN2, SHOC2, ACSL5, BCCIP//DHX32, FAM188A, CUBN, SVIL//hCG_1783494, FAM13C//PHYHIPL, ATAD1, ANKRD22, FLJ34077, COX15, ERLIN1, ACTRI1A, ABLIM1, RAB11FIP2, C10orf84, PRDX3, C10orf119, NSMCE4A, TALDO1//INTS8, TNNT3, FXC1, PDE3B, DNAJC24, PTPRJ//OR4B1, C11orf31, TMEM109, CD6, CD5, TMEM138, POLR2G, TMEM179B, NAT11, OTUB1, RBM14//RBM4, AIP, PPFIA1, IL18BP//NUMA1, C11orf30, C11orf82, TMEM126B, C11orf73, PIWIL4, LOC100132686, PAFAH1B2, UBE4A, TRAPPC4, SC5DL, VWA5A//OR10D1P, STT3A, VPS26B, TRIM21, ZBED5, SAAL1, FANCF, LIN7C, PHF21A, CUGBP1, OSBP, CYBASC3, TUT1, SLC25A45, LTBP3, EIF1AD, GAB2, CREBZF, PICALM, SLC36A4, CCDC82, KIAA1826, MPZL3, MPZL2, H2AFX, SIAE, ZBTB44, HSN2, ADIPOR2, NCAPD2//SCARNA10//FADSI, PTPN6, CLEC4D, CDKN1B, GOLT1B, FAR2, FGD4, TMEM106C, TMBIM6, C12orf62, PRR13//PCBP2, DGKA, COQ10A, TSPAN31, CDK4/MARCH9/C3HC4, LEMD3, IRAK3, TMTC3, ACTR6, TCTN1, PXMP2//PGAM5, DCP1B, SLC2A3//SLC2A14, C3ARI, PLBD1, TM7SF3, ASB8//PHB, LMBR1L, FMNL3//PRPF40B, AAAS, NFE2, GPR84, CD63, SARNP//DNAJC14, NACA, CDK4//TSPAN31, TMBIM4//LOC100133322, IL22, LIN7A, HAL, APPL2, GLTP, GIT2, VPS29, PPTC7, DDX54//CCDC42B, SLC24A6, SDS, RBM19, MED13L, C12orf49, FBXO21, WSB2, TAOK3, CIT, RAB35, RPLP0, PXN, TRIAP1, SFRS9, POP5, UNQ1887, C12orf43, ANAPC5, KDM2B, MORN3, TMEM120B//RHOF, LOC338799, DIABLO//B3GNT4, VPS33A, CLIP1, PITPNM2, EIF2B1, CCDC92, NCOR2, DHX37, DDX51, POLE, GOLGA3, ZMYM2, SPATA13//C1QTNF9, NUPL1, PAN3//EEF1A1//CHCHD2, ALOX5AP, EEF1DP3, KL, UFM1, NARG1L, ITM2B, FNDC3A, CDADC1, ARL11, LMO7, DNAJC3, TM9SF2, CLYBL, PCCA, ABHD13, LAMP1, TMCO3, UPF3A, ZMYM5//ZMYM2, ZDHHC20//LOC728099, PARP4, MTMR6//LOC646482, HSPH1, N4BP2L2//CG030, ELF1, LCP1, KPNA3, C13orf1, DLEU2//DLEU2L, GUCY1B2, INTS6, DACH1, TBC1D4, EDNRB, UGGT2, GPR183, LIG4, ANKRD10, RASA3, RNASE2//LOC643332, RPGRIP1, IRF9, TSSK4, C14orf21, SCFD1, FANCM, ABHD12B, PTGDR, FBXO34//KIAA0831, C14orf101, ACTRI10, ARID4A, JKAMP, HIF1A, SYNE2, EXD2, SLC39A9, SFRS5, PCNX, SIPA1L1//SNORD56B//LOC145474//LOC283567, YLPM1, BATF, FLVCR2//RPS24, GPR65, TDP1, EVL, ZNF839, TDRD9, INF2, PLD4, MTA1//LOC647310//LOC100128343, NDRG2, DAD1//OR6J1, SLC7A8, IPO4, TM9SF1,

ADCY4, RIPK3, EAPP, BAZ1A, NFKBIA, SEC23A, C14orf104, C14orf138, SOS2, NIN, PYGL, CNIH, DHRS7, WDR89, ACTN1, NUMB, C14orf43, ABCD4, KIAA0317, NEK9, ANGEL1, SPTLC2, SERPINA6, DICER1, BCL11B, ANKRD9, PPP1R13B, AKT1, BRF1, TUBGCP5, SNRPN//SNURF//IPW//SNORD116-16//SNORD116-18//SNORD116-21//SNORD116-22//SNORD116-17//SNORD116-19//PAR5//PAR-SN//SNORD116-2//SNORD116-25//SNORD116-26//SNORD107//SNORD115-12//SNORD115-5//SNORD115-6//SNORD115-9//SNORD116-11//SNORD116-12//SNORD116-13//SNORD116-28//SNORD116-4//SNORD64//PARI//SNORD109A//SNORD109B//SNORD116-6//SNORD116-3//SNORD116-9//SNORD115-13//SNORD115-1//SNORD115-14//SNORD115-15//SNORD115-21//SNORD115-10//SNORD115-7//SNORD115-16//SNORD115-40//SNORD115-42//SNORD115-11//SNORD115-29//SNORD115-34//SNORD115-36//SNORD115-4//SNORD115-43//HBII-52-24//SNORD116-5//SNORD116-7//SNORD115-26//SNORD115-30//SNORD116-15//SNORD116-8//SNORD115-2//SNORD115-39//SNORD116-14//SNORD116-20//SNORD115-8//SNORD115-3//SNORD115-38//SNORD115-41//SNORD115-22//SNORD115-44//SNORD116-1//SNORD115-17//SNORD115-18//SNORD115-19//SNORD115-20//SNORD116@, APBA2, MTMR15//MTMR10, RYR3, BAHDI, CHP, JMJD7-PLA2G4B//JMJD7//PLA2G4B, HAUS2, C15orf63//SERF2, B2M, TRIM69, PLDN, SQRDL, GALK2, USP8, GLDN, MAPK6, LACTB, RAB8B, APH1B, USP3//LOC100130855, SNX1, LBXCOR1//PIAS1//CALML4, NEO1, MPI, FBXO22//FBXO22OS, RCN2, FAH, IL16, ABHD2, SLC03A1, MCTP2, MEF2A//LYSMD4, NIPA2//CYFIP1, HERC2//HERC2P2//HERC2P3//LOC440248, MTMR10//MTMR15, C15orf24, SLC12A6, LPCAT4, INO80, OIP5, ZFP106, CDAN1, SPG11//ISLR, SPPL2A, GNB5//LOC100129973, MYO5A, ARPP19, RAB27A, CCPG1//PIGB//DYXIC1, BNIP2, CA12, FAM96A, KIAA0101//CSNK1G1, TLE3, PARP6, NPTN, MAN2C1, IMP3, MTHFS, ST20//C15orf37, TMC3, AP3B2, C15orf40, WDR73, NTRK3, DET1, TM2D3, WDR90, RHOT2//FBXL16, TMEM204, CRAMP1L//HN1L, MAPK8IP3, TBL3, TSC2, KCTD5//PRO0461//PDPK1, CLUAP1, DNASE1, DNAJA3, CP110, C16orf62, LYRM1, METTL9, EEF2K, POLR3E, PLK1, PRKCB, IL21R//LOC283888, SULT1A2//SULT1A1, ATXN2L,
LAT//SPNS1//NPIPL2//LOC728741//LOC730153//NPIPL3//SPIN1//LOC728888//LOC100289169//LOC728734//LOC729602//LOC100288442//LOC100288332, KIF22, MAZ,

CORO1A//LOC606724, ITGAL, SRCAP//SNORA30, ZNF646//ZNF668, C16orf67, TMEM188, LPCAT2, CETP, CKLF, CMTM1//CKLF, TMEM208, CTCF, THAP11, NUTF2, EDC4, SLC7A6//SLC7A6OS, PRMT7, SNTB2, VPS4A, DDX19B//DDX19A, CHST4, HP//HPR, PLCG2, KLHL36, KIAA0182, BANP//RUNDC2C, TRAPPC2L, SPG7, CDK10, TCF25, AFG3L1, LUC7L, AXIN1, JMJD8, LMF1, UNKL, UNKL, CLCN7, MRPS34, RNPS1, NLRC3, TRAPI//DNASE1, ADCY9, CORO7, C16orf72, RRN3//LOC653390//LOC730092//LOC100131998, XYLT1//LYRM2//ZC3H11A, DCUN1D3//LYRMI, IGSF6//METTL9, CDR2//RRN3//LOC100131998//LOC653390, COG7, GGA2, NSMCE1, GTF3C1, CCDC101//LOC388242, C16orf54, KCTD13, SEPT1, ZNF764//ZNF747, C16orf58//LOC100128371, ITFG1, ABCC11//LONP2, NUDT21, BBS2//OGFOD1, CSNK2A2, GOT2, FAM96B, FHOD1//SLC9A5, ATP6V0DI//LOC100132855, GFOD2, SLC12A4, DPEP3, DPEP2, CHTF8//HAS3, COG8//PDF, TERF2, AARS, ST3GAL2, VAC14//LOC100130894, AP1G1, WDR59, CTRB2//CTRBI, TAF1C//ADAD2, FBXO31, ZCCHC14, FAM38A, CENPBD1, TIMM22, RPA1, DPH1//OVCA2, SGSM2, ARRB2, LOC100130950, DNAH2, PIGL, TRPV2, MP RIP, DRG2, ALKBH5//FLJ13773, SMCR7, WSB1, TAOK1, CPD, SUZ12P, RNF135, ZNF830, TAF15, GGNBP2, LASP1, PSMD3, CDC6, NBR2, TMUB2, MGC57346//C17orf69, NSF//LOC728806, GOSR2, NPEPPS//TBC1D3F//LOC440434, KPNB1, CDK5RAP3, ATP5G1, UBE2Z, XYLT2//LOC100130580, NOG, DGKE, AKAP1, TMEM49//CLTC//MIR21, CLTC, CA4, C17orf64, DCAF7, PITPNC1, NOL11//SNORA38B, MAP2K6, COG1, CD300A, TMEM104, MRPS7, KIAA0195, TSEN54, LLGL2, LOC100134934//CDK3, MFSD11, SEPT9, TNRC6C, TMC8, ENGASE, RPTOR, GPS1, FN3KRP, TBCD, GEMIN4, GLOD4, SLC43A2, PRPF8, SMG6//C17orf6, METT10D//LOC284009, SHPK, TAX1BP3, P2RX5, MYBBP1A//SPNS2, PELP1, PFN1, ZNF232, DHX33, DERL2, NLRP1//LOC728392, ASGR2, NEURL4//GPS2//D4S234E, ZBTB4, TP53, VAMP2, PIK3R5, ELAC2, NCOR1//C20orf191//LOC100131704, ZNF287, TOM1L2//LOC246315, GRAP//SNORD3B-1//SNORD3B-2//LOC400581, ALDOC, SDF2, RAB34, PHF12, NUFIP2, OMG, EVI2B, C17orf66//RSL24D1, SYNRG//LOC100131822, PLXDC1, CACNB1, PGAP3, MED24, NR1D1//THRA, CCR7, STAT5B//STAT5A, FAM134C, VAT1, DUSP3, C17orf65//ASB16, UBTF, GPATCH8, MAP3K14//LOC100133991, OSBPL7, SLC35B1, TOB1, COX11//TOMIL1, VEZFI, SFRS1//FLJ44342, SEPT4,

MED13//LOC100129112, LIMD2//MAP3K3, STRADA, FTSJ3, CD79B, ICAM2, ERN1, TEX2,
LRRC37A3//LRRC37A2//LRRC37A//ARL17P1//LRRC37A4//LOC100294335//LOC644397, GNA13, WIPI1//ARSG, FAM20A, NAT9, GGA3, H3F3B//H3F3C, EXOC7, SFRS2, TMC6//LOC100131096, USP36, CD7, RAB31, VAPA, SEH1L, HQ0644/PRO0644, RNMT, RNF138, GALNT1, ELP2, PIK3C3, SLC14A2, ME2, SERPINB2//SERPINB10, ZNF407, ZNF236, NFATC1//LOC100127994, ENOSF1//TYMS, MYOM1, AFG3L2, ABHD3, OSBPL1A, CDH2, DSC1, PSTPIP2, C18orf32, MBD2//SNORA37, PIGN, TMX3, PQLC1, GZMM, ARID3A, CIRBP, DAZAP1, SPPL2B, NFIC, VAV1, ARHGEF18//LOC100128573, STXBP2//LOC554363//LOC100131801, C19orf59, ZNF317, ILF3, SMARCA4, PRKCSH, IER2, CCDC130, DCAF15, IL27RA, KLF2, SIN3B, DDA1, GTPBP3, FAM129C, FCHO1, ARRDC2, IFI30, C19orf60, CRTCI//MAML2, RFXANK//MEF2B//LOC729991, ZNF101, ZNF738, ZNF257//ZNF492//ZNF99//ZNF98//LOC646864, C19orf2, KIAA0355//FLJ21369, USF2, TMEM147, LIN37//PSENEN, C19orf55, TBCB//POLR2I, ZNF382, ZNF568, ZNF420, ZNF383, CCDC97, ZNF574, CD177, ZNF230//ZNF222, VASP, GRWD1, FLT3LG, ZNF175, NCRNA00085, PPP2RIA, ZNF808//ZNF578//ZNF611, LENG8, FCAR, RPL28, U2AF2, LOC100288114//MGC9913, ZFP28, ZNF460, ZNF549, ZNF211, ZNF587//ZNF417, ZNF274, ZNF544, ZNF8, TRIM28, C19orf6, C19orf34, GNG7, AES, EEF2//SNORD37, PLIN5//LRG1, PLIN3, PTPRS, SAFB2//SAFB, RANBP3, GTF2F1//LOC100130856, XAB2, ELAVL1, ADAMTS10, FBXL12, DNMT1, TYK2, KEAP1, KRI1, TMEM205//hCG_29977, ZNF563, MAN2B1//MORG1, C19orf56, DHPS, TNPO2//SNORD41, LPHN1, NDUFB7, AKAP8, AKAP8L, CHERP//C19orf44//CALR3, INSL3//JAK3, IL12RB1, UPK1A, TYROBP, ZNF529, ZNF461, ZNF607, YIF1B, PRR13, CEACAM4, PLAUR, TRAPP C6A, ERCC1//CD3EAP, RTN2, SYMPK, PGLYRP1, NOSIP, PNKP, NKG7, FPRI, ZNF28, OSCAR, MBOAT7, LILRA5, LILRA4, ZNF550//ZNF549, ZNF416, ZNF256, ZNF329, FAM110A, ITPA, CDC25B, CDS2, CRLS1, CSRP2BP, SEC23B, SLC24A3, HCK, ASXL1, ACSS2, C20orf4, TGIF2, C20orf24//SLA2, RPN2//EEF1A2, CTNNBL1, ACTR5, PPP1R16B, DHX35, PLCG1, MYBL2, SYS1//SYS1-DBNDD2//DBNDD2, DNNTIP1, CTS4, MMP9//LOC100128028, DDX27, SLC9A8, RNF114, PTPN1, TSHZ2, PFDN4, CSTF1, CASS4, GNAS, C20orf177, CDH26, C20orf197, LOC284757, ARFGAP1, PRPF6, NSFL1C, SIRPD,

SIRPG//SIRPA, RNF24, RASSF2, TMX4, JAG1, C20orf74, C20orf3, C20orf112, CDK5RAP1, AHCY, GGT7, EDEM2, RBM39//LOC643167, BLCAP, SERINC3//TTPAL, ZNF335, ELMO2, B4GALT5, DPM1, ZFP64, ZNF217, CTSZ, SYCP2, PSMA7, DIDO1, YTHDF1, CHODL, BACH1, C21orf41//BACH1, IL10RB, IFNARI, IFNGR2, SON, MORC3//DOPEY2, DYRK1A, KCNJ15, ETS2, RRP1B, PFKL, TRPM2, ADARB1, SAMSNI//LOC388813, N6AMT1, SYNJ1, TMEM50B, KCNE1, PRDM15, C2CD2, WDR4, U2AF1, CSTB, UBE2G2//SUMO3, PTTG1IP, POFUT2, MCM3AP, IL17RA//CECR7, C22orf37, LZTR1, PPIL2//YPEL1, CYTSA, SNRPD3//C22orf13, NF2, LIMK2, SLC5A1, MCM5, NCF4, GGA1, SH3BP1//PDXP, POLR2F//LOC100131530, APOBEC3A//APOBEC3B, APOBEC3D, ATF4, CACNA1I, ZC3H7B, CCDC134, TSPO, NUP50, TBC1D22A//LOC100289878, RP3-402G11.5, SAPS2, NCAPH2, BID, SLC25A1, KLHL22//KRT18, PI4KA//PI4KAP1//PI4KAP2//LOC100293141, MAPK1, ZNF70, TPST2, SF3A1//CCDC157, PES1, PIK3IP1, PATZ1, C22orf30, IL2RB, CSNK1E//LOC400927, UNC84B, CBX7//LOC100128400, RPS19BP1, MKL1//KIAA1659, RANGAP1, TCF20, LDOC1L, UNQ6126, TUBGCP6, SBF1//SBF1P1, MSL3, MOSPD2, BMX//HNRPD1, PDHA1, YY2, PDK3, GK//GK3P//FTL//LOC652904, CXorf59, ATP6AP2, USP9X//USP9Y, RP2, USP11, RBM3, FTSJ1, WAS, PLP2, TSPYL2//GPR173, MAGED2, UBQLN2, NLGN3, ACRC, UPRT, CXorf26, ATP7A, DIAPH2, CSTF2//RAD21, ARMCX3, ARMCX5, GPRASP1, TMEM31, TBC1D8B, MID2, DOCK11, LONRF3, UBE2A, SH2D1A, OCRL, SLC25A14, HPRT1, CD40LG, AFF2, SSR4//IDH3G, FAM50A, DKC1//SNORA36A//SNORA56, ARSD, KAL1, CTPS2, RPS6KA3, BCOR, MAOB//NAT13, ZNF41, OTUD5, KCND1, ZMYM3, MAGT1, BRWD3, TRMT2B, GLA, MORF4L2, PSMD10, ACSL4, LAMP2, CUL4B, ODZ1, ELF4, RAP2C, FAM127B//FAM127C//FAM127A, TMEM185A, ARD1A, IRAK1, DNASE1L1//RPL10, SH3KBP1, Mitochondrial, Mitochondrial, CCNL2, INPP5B, TLR5, ADRB3//GOTIL1, NOC2L//SAMD11//LOC401010 and SHFM1 (hereafter referred to interchangeably herein as “the full list of IRS immune system biomarker genes” or “full list IRS biomarker genes”).

[0453] The methods, compositions, apparatus and kits of the present invention take advantage of the IRS biomarkers broadly described above and elsewhere herein to provide an indicator for use in diagnosing the presence, absence or degree of the at least one condition selected from a healthy condition (e.g., a normal condition or one in which inSIRS and

inSIRS are absent), inSIRS, ipSIRS or a stage of ipSIRS (e.g., a stage of ipSIRS with a particular severity such as mild sepsis, severe sepsis and septic shock), or in providing a prognosis of the at least one condition, which may involve: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values (also referred to herein as a “biomarker signature”), the indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition, wherein: (i) at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0454] In advantageous embodiments, the diagnostic or prognostic methods, compositions, apparatus and kits of the present invention involve: (1) determining a plurality of measured IRS biomarker values, each measured IRS biomarker value being a measured value of an IRS biomarker of the biological subject; and (2) applying a function to at least one of the measured IRS biomarker values to determine at least one derived IRS biomarker value, the at least one derived IRS biomarker value being indicative of a value of a corresponding derived IRS biomarker. The function suitably includes at least one of: (a) multiplying two IRS biomarker values; (b) dividing two IRS biomarker values; (c) adding two IRS biomarker values; (d) subtracting two IRS biomarker values; (e) a weighted sum of at least two IRS biomarker values; (f) a log sum of at least two IRS biomarker values; and (g) a sigmoidal function of at least two IRS biomarker values.

[0455] In some embodiments, the diagnostic or prognostic methods, compositions, apparatus and kits involve: determining at least one derived IRS biomarker value corresponding to a ratio of two measured IRS biomarker values. In these examples, the diagnostic or prognostic methods, apparatus and kits suitably include combining at least two IRS biomarker values to determine an indicator value representing the indicator and in illustrative examples of this

type, the at least two IRS biomarker values are combined using a combining function (e.g., any one or more of: an additive model; a linear model; a support vector machine; a neural network model; a random forest model; a regression model; a genetic algorithm; an annealing algorithm; weighted sum; a nearest neighbor model; and a probabilistic model). Suitably, the diagnostic or prognostic methods, apparatus and kits include: (a) determining a first derived IRS biomarker value, the first derived IRS biomarker value being a ratio of first and second measured IRS biomarker values; (b) determining a second derived IRS biomarker value, the second derived IRS biomarker value being a ratio of third and fourth measured IRS biomarker values; and (c) adding the first and second derived IRS biomarker values to generate an indicator value.

[0456] In some embodiments, the methods, compositions, kits and apparatus of the present invention are useful for diagnosing that inSIRS or a healthy condition is present or absent in the biological subject, which suitably involve: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from inSIRS and a healthy condition, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group A IRS biomarker genes as defined herein, and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group B IRS biomarker genes as defined herein.

[0457] In other embodiments, the methods, apparatus and kits are useful for diagnosing that ipSIRS or a healthy condition is present or absent in the biological subject, which suitably involve: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from ipSIRS and a healthy condition, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group C IRS biomarker genes, as defined herein, and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group D IRS biomarker genes as defined herein.

[0458] In still other embodiments, the methods, apparatus and kits are useful for diagnosing that inSIRS or ipSIRS is present or absent in the biological subject, which suitably involve: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from inSIRS and ipSIRS, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3,

wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group E IRS biomarker genes as defined herein, and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group F IRS biomarker genes as defined herein.

[0459] In other embodiments, the methods, apparatus and kits are useful for diagnosing that inSIRS or ipSIRS is present or absent in the biological subject, which suitably involve: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from inSIRS and ipSIRS, wherein: (i) at least four IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least four IRS biomarkers is selected from a first IRS biomarker group, wherein at least one other of the at least four IRS biomarkers is selected from a second IRS biomarker group, wherein at least one other of the at least four IRS biomarkers is selected from a third IRS biomarker group, and wherein at least one other of the at least four IRS biomarkers is selected from a fourth IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group G IRS biomarker genes as defined herein, wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group H IRS biomarker genes as defined herein, wherein the third IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group I IRS biomarker genes as defined herein, and wherein the fourth IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group J IRS biomarker genes as defined herein.

[0460] In still other embodiments, the methods, apparatus and kits are useful for diagnosing that mild sepsis or severe sepsis is present or absent in the biological subject, which suitably involve: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from mild sepsis and severe sepsis, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group K IRS biomarker genes as defined herein, and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group L IRS biomarker genes as defined herein.

[0461] In still other embodiments, the methods, apparatus and kits are useful for diagnosing that mild sepsis or septic shock is present or absent in the biological subject, which suitably involve: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from mild sepsis and septic shock, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3,

wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group M IRS biomarker genes as defined herein, and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group N IRS biomarker genes as defined herein.

[0462] In still other embodiments, the methods, apparatus and kits are useful for diagnosing that severe sepsis or septic shock is present or absent in the biological subject, which suitably involve: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one IRS biomarker of a biological subject; (b) determining the indicator using a combination of the plurality of IRS biomarker values, the at least one indicator being at least partially indicative of the presence, absence, degree or prognosis of the at least one condition selected from severe sepsis and septic shock, wherein: (i) at least two IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein at least one of the at least two IRS biomarkers is selected from a first IRS biomarker group and wherein at least one other of the at least two IRS biomarkers is selected from a second IRS biomarker group, wherein the first IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group O IRS biomarker genes as defined herein, and wherein the second IRS biomarker group consists of polynucleotide and/or polypeptide expression products from group P IRS biomarker genes as defined herein.

[0463] As used herein, the terms “diagnosis”, “diagnosing” and the like are used interchangeable herein to encompass determining the likelihood that a subject will develop a condition, or the existence or nature of a condition in a subject. These terms also encompass determining the severity of disease or episode of disease, as well as in the context of rational therapy, in which the diagnosis guides therapy, including initial selection of therapy, modification of therapy (e.g., adjustment of dose or dosage regimen), and the like. By

“likelihood” is meant a measure of whether a biological subject with particular measured or derived biomarker values actually has a condition (or not) based on a given mathematical model. An increased likelihood for example may be relative or absolute and may be expressed qualitatively or quantitatively. For instance, an increased likelihood may be determined simply by determining the subject's measured or derived biomarker values for at least two IRS biomarkers and placing the subject in an “increased likelihood” category, based upon previous population studies. The term “likelihood” is also used interchangeably herein with the term “probability”.

[0464] In some embodiments, the biomarkers, including IRS biomarkers, are obtained from a biological sample. The term “biological sample” as used herein refers to a sample that may be extracted, untreated, treated, diluted or concentrated from an animal. The biological sample is suitably a biological fluid such as whole blood, serum, plasma, saliva, urine, sweat, ascitic fluid, peritoneal fluid, synovial fluid, amniotic fluid, cerebrospinal fluid, tissue biopsy, and the like. In certain embodiments, the biological sample contains blood, especially peripheral blood, or a fraction or extract thereof. Typically, the biological sample comprises blood cells such as mature, immature or developing leukocytes, including lymphocytes, polymorphonuclear leukocytes, neutrophils, monocytes, reticulocytes, basophils, coelomocytes, hemocytes, eosinophils, megakaryocytes, macrophages, dendritic cells natural killer cells, or fraction of such cells (e.g., a nucleic acid or protein fraction). In specific embodiments, the biological sample comprises leukocytes including peripheral blood mononuclear cells (PBMC). By “obtained from” is meant to come into possession. Biological or reference samples so obtained include, for example, nucleic acid extracts or polypeptide extracts isolated or derived from a particular source. For instance, the extract may be isolated directly from a biological fluid or tissue of a subject.

[0465] The term “nucleic acid” or “polynucleotide” as used herein includes RNA, mRNA, miRNA, cRNA, cDNA mtDNA, or DNA. The term typically refers to a polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms of DNA or RNA.

[0466] “Protein”, “polypeptide” and “peptide” are used interchangeably herein to refer to a polymer of amino acid residues and to variants and synthetic analogues of the same.

[0467] In some embodiments, biomarker signatures are determined through analysis of measured or derived IRS biomarker values for IRS biomarkers of one or more control subjects that have or do not have a condition. These biomarkers are referred to herein as “reference IRS biomarkers”. In specific examples, individual control subjects are selected from “healthy control subjects”, “non-healthy control subjects”, “SIRS control subjects”, “inSIRS control subjects”, “ipSIRS control subjects”, “control subjects with a particular stage of ipSIRS”, illustrative examples of which include “mild sepsis control subjects”, “severe sepsis control subjects” and “septic shock control subjects”, etc.), which are also referred to herein as control groups (e.g., “healthy control group”, “non-healthy control group”, “SIRS control group”, “inSIRS control group”, “ipSIRS control group”, “ipSIRS stage group”, illustrative examples of which include “mild sepsis control group”, “severe sepsis control group”, and “septic shock control group”, etc.).

[0468] Suitably, an individual measured or derived IRS biomarker value corresponds to the level or amount of a respective IRS biomarker or to a function that is applied to that level or amount. As used herein the terms “level” and “amount” are used interchangeably herein to refer to a quantitative amount (e.g., weight or moles), a semi-quantitative amount, a relative amount (e.g., weight % or mole % within class), a concentration, and the like. Thus, these terms encompass absolute or relative amounts or concentrations of IRS biomarkers in a sample.

[0469] In some embodiments, the presence, absence, degree or prognosis of at least one condition in a biological subject is established by determining a plurality of IRS biomarker values, wherein each IRS biomarker value is indicative of a value measured or derived for at least one IRS biomarker in a biological sample obtained from the biological subject. These biomarkers are referred to herein as “sample IRS biomarkers”. In accordance with the present invention, a sample IRS biomarker corresponds to a reference IRS biomarker (also referred to herein as a “corresponding IRS biomarker”). By “corresponding IRS biomarker” is meant an IRS biomarker that is structurally and/or functionally similar to a reference IRS biomarker. Representative corresponding IRS biomarkers include expression products of allelic variants (same locus), homologues (different locus), and orthologues (different organism) of reference IRS biomarker genes. Nucleic acid variants of reference IRS biomarker genes and encoded IRS biomarker polynucleotide expression products can contain nucleotide substitutions,

deletions, inversions and/or insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions (as compared in the encoded product). For nucleotide sequences, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of a reference IRS polypeptide.

[0470] Generally, variants of a particular IRS biomarker gene or polynucleotide will have at least about 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular nucleotide sequence as determined by sequence alignment programs known in the art using default parameters. In some embodiments, the IRS biomarker gene or polynucleotide displays at least about 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to a nucleotide sequence selected from any one of SEQ ID NO: 1-1650, as summarized in Table 1.

[0471] Corresponding IRS biomarkers also include amino acid sequences that display substantial sequence similarity or identity to the amino acid sequence of a reference IRS biomarker polypeptide. In general, an amino acid sequence that corresponds to a reference amino acid sequence will display at least about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 97, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% or even up to 100% sequence similarity or identity to a reference amino acid sequence selected from any one of SEQ ID NO: 1651-3284, as summarized in Table 2.

[0472] In some embodiments, calculations of sequence similarity or sequence identity between sequences are performed as follows:

[0473] To determine the percentage identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison

purposes). In some embodiments, the length of a reference sequence aligned for comparison purposes is at least 30%, usually at least 40%, more usually at least 50%, 60%, and even more usually at least 70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide at the corresponding position in the second sequence, then the molecules are identical at that position. For amino acid sequence comparison, when a position in the first sequence is occupied by the same or similar amino acid residue (*i.e.*, conservative substitution) at the corresponding position in the second sequence, then the molecules are similar at that position.

[0474] The percentage identity between the two sequences is a function of the number of identical amino acid residues shared by the sequences at individual positions, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences. By contrast, the percentage similarity between the two sequences is a function of the number of identical and similar amino acid residues shared by the sequences at individual positions, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

[0475] The comparison of sequences and determination of percentage identity or percentage similarity between sequences can be accomplished using a mathematical algorithm. In certain embodiments, the percentage identity or similarity between amino acid sequences is determined using the Needleman and Wünsch, (1970, *J. Mol. Biol.* 48: 444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at <http://www.gcg.com>), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In specific embodiments, the percent identity between nucleotide sequences is determined using the GAP program in the GCG software package (available at <http://www.gcg.com>), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A non-limiting set of parameters (and the one that should be used unless otherwise specified) includes a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.

[0476] In some embodiments, the percentage identity or similarity between amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller (1989, *Cabios*, 4: 11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

[0477] The nucleic acid and protein sequences described herein can be used as a “query sequence” to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, *et al.*, (1990, *J Mol Biol.*, 215: 403-10). BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to 53010 nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to YYYYYY protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.*, (1997, *Nucleic Acids Res.*, 25: 3389-3402). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (*e.g.*, XBLAST and NBLAST) can be used.

[0478] Corresponding IRS biomarker polynucleotides also include nucleic acid sequences that hybridize to reference IRS biomarker polynucleotides, or to their complements, under stringency conditions described below. As used herein, the term “hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions” describes conditions for hybridization and washing. “Hybridization” is used herein to denote the pairing of complementary nucleotide sequences to produce a DNA-DNA hybrid or a DNA-RNA hybrid. Complementary base sequences are those sequences that are related by the base-pairing rules. In DNA, A pairs with T and C pairs with G. In RNA, U pairs with A and C pairs with G. In this regard, the terms “match” and “mismatch” as used herein refer to the hybridization potential of paired nucleotides in complementary nucleic acid strands. Matched nucleotides hybridize efficiently, such as the classical A-T and G-C base pair mentioned above. Mismatches are other combinations of nucleotides that do not hybridize efficiently.

[0479] Guidance for performing hybridization reactions can be found in Ausubel *et al.*, (1998, *supra*), Sections 6.3.1-6.3.6. Aqueous and non-aqueous methods are described in that

reference and either can be used. Reference herein to low stringency conditions include and encompass from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1 M to at least about 2 M salt for hybridization at 42° C, and at least about 1 M to at least about 2 M salt for washing at 42° C. Low stringency conditions also may include 1% Bovine Serum Albumin (BSA), 1 mM EDTA, 0.5 M NaHPO₄ (pH 7.2), 7% SDS for hybridization at 65° C, and (i) 2 × SSC, 0.1% SDS; or (ii) 0.5% BSA, 1 mM EDTA, 40 mM NaHPO₄ (pH 7.2), 5% SDS for washing at room temperature. One embodiment of low stringency conditions includes hybridization in 6 × sodium chloride/sodium citrate (SSC) at about 45° C, followed by two washes in 0.2 × SSC, 0.1% SDS at least at 50° C (the temperature of the washes can be increased to 55° C for low stringency conditions). Medium stringency conditions include and encompass from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5 M to at least about 0.9 M salt for hybridization at 42° C, and at least about 0.1 M to at least about 0.2 M salt for washing at 55° C. Medium stringency conditions also may include 1% Bovine Serum Albumin (BSA), 1 mM EDTA, 0.5 M NaHPO₄ (pH 7.2), 7% SDS for hybridization at 65° C, and (i) 2 × SSC, 0.1% SDS; or (ii) 0.5% BSA, 1 mM EDTA, 40 mM NaHPO₄ (pH 7.2), 5% SDS for washing at 60-65° C. One embodiment of medium stringency conditions includes hybridizing in 6 × SSC at about 45° C, followed by one or more washes in 0.2 × SSC, 0.1% SDS at 60° C. High stringency conditions include and encompass from at least about 31% v/v to at least about 50% v/v formamide and from about 0.01 M to about 0.15 M salt for hybridization at 42° C, and about 0.01 M to about 0.02 M salt for washing at 55° C. High stringency conditions also may include 1% BSA, 1 mM EDTA, 0.5 M NaHPO₄ (pH 7.2), 7% SDS for hybridization at 65° C, and (i) 0.2 × SSC, 0.1% SDS; or (ii) 0.5% BSA, 1 mM EDTA, 40 mM NaHPO₄ (pH 7.2), 1% SDS for washing at a temperature in excess of 65° C. One embodiment of high stringency conditions includes hybridizing in 6 × SSC at about 45° C, followed by one or more washes in 0.2 × SSC, 0.1% SDS at 65° C.

[0480] In certain embodiments, a corresponding IRS biomarker polynucleotide is one that hybridizes to a disclosed nucleotide sequence under very high stringency conditions. One embodiment of very high stringency conditions includes hybridizing 0.5 M sodium phosphate, 7% SDS at 65° C, followed by one or more washes at 0.2 × SSC, 1% SDS at 65° C.

[0481] Other stringency conditions are well known in the art and a skilled addressee will recognize that various factors can be manipulated to optimize the specificity of the hybridization. Optimization of the stringency of the final washes can serve to ensure a high degree of hybridization. For detailed examples, see Ausubel *et al.*, *supra* at pages 2.10.1 to 2.10.16 and Sambrook *et al.* (1989, *supra*) at sections 1.101 to 1.104.

[0482] The IRS biomarkers disclosed herein each have significant sensitivity and specificity for diagnosing the presence, absence or degree of at least condition selected from a healthy condition (e.g., a normal condition or one in which inSIRS and inSIRS are absent), inSIRS, ipSIRS or a stage of ipSIRS (e.g., a stage of ipSIRS with a particular severity such as mild sepsis, severe sepsis and septic shock). Accordingly, it is feasible to use individual IRS biomarkers in methods, apparatus and kits that do not rely on the use of low mutual correlation between biomarkers to diagnose the presence, absence or degree of the at least condition. In illustrative examples of this type, the invention contemplates methods, kits and apparatus that are useful for diagnosing that inSIRS or a healthy condition is present or absent in a biological subject, which suitably involve: (1) correlating a reference biomarker signature with the presence or absence of a condition selected from inSIRS and a healthy condition, wherein the reference biomarker signature evaluates at least one IRS biomarker; (2) obtaining a biomarker signature of a sample from a subject, wherein the sample biomarker signature evaluates for an individual IRS biomarker in the reference biomarker signature a corresponding IRS biomarker; and (3) diagnosing the presence or absence of the condition in the subject based on the sample biomarker signature and the reference biomarker signature, wherein an individual IRS biomarker is an expression product of an IRS biomarker gene selected from the group A and group B IRS biomarker genes as defined herein.

[0483] In other non-limiting examples, the methods, apparatus and kits are useful for diagnosing that ipSIRS or a healthy condition is present or absent in the biological subject, which suitably involve: (1) correlating a reference biomarker signature with the presence or absence of a condition selected from ipSIRS and a healthy condition, wherein the reference biomarker signature evaluates at least one IRS biomarker; (2) obtaining a biomarker signature of a sample from a subject, wherein the sample biomarker signature evaluates for an individual IRS biomarker in the reference biomarker signature a corresponding IRS biomarker; and (3) diagnosing the presence or absence of the condition in the subject based

on the sample biomarker signature and the reference biomarker signature, wherein an individual IRS biomarker is an expression product of an IRS biomarker gene selected from the group C and group D IRS biomarker genes as defined herein.

[0484] In still other non-limiting examples, the methods, apparatus and kits are useful for diagnosing that inSIRS or ipSIRS is present or absent in the biological subject, which suitably involve: (1) correlating a reference biomarker signature with the presence or absence of a condition selected from inSIRS and ipSIRS, wherein the reference biomarker signature evaluates at least one IRS biomarker; (2) obtaining a biomarker signature of a sample from a subject, wherein the sample biomarker signature evaluates for an individual IRS biomarker in the reference biomarker signature a corresponding IRS biomarker; and (3) diagnosing the presence or absence of the condition in the subject based on the sample biomarker signature and the reference biomarker signature, wherein an individual IRS biomarker is an expression product of an IRS biomarker gene selected from the group E and group F IRS biomarker genes as defined herein.

[0485] In still other illustrative examples, the methods, apparatus and kits are useful for diagnosing that mild sepsis or severe sepsis is present or absent in the biological subject, which suitably involve: (1) correlating a reference biomarker signature with the presence or absence of a condition selected from mild sepsis and severe sepsis, wherein the reference biomarker signature evaluates at least one IRS biomarker; (2) obtaining a biomarker signature of a sample from a subject, wherein the sample biomarker signature evaluates for an individual IRS biomarker in the reference biomarker signature a corresponding IRS biomarker; and (3) diagnosing the presence or absence of the condition in the subject based on the sample biomarker signature and the reference biomarker signature, wherein an individual IRS biomarker is an expression product of an IRS biomarker gene selected from the group K and group L IRS biomarker genes as defined herein.

[0486] In still other illustrative examples, the methods, apparatus and kits are useful for diagnosing that mild sepsis or septic shock is present or absent in the biological subject, which suitably involve: (1) correlating a reference biomarker signature with the presence or absence of a condition selected from mild sepsis and septic shock, wherein the reference biomarker signature evaluates at least one IRS biomarker; (2) obtaining a biomarker signature of a sample from a subject, wherein the sample biomarker signature evaluates for

an individual IRS biomarker in the reference biomarker signature a corresponding IRS biomarker; and (3) diagnosing the presence or absence of the condition in the subject based on the sample biomarker signature and the reference biomarker signature, wherein an individual IRS biomarker is an expression product of an IRS biomarker gene selected from the group M and group N IRS biomarker genes as defined herein.

[0487] In other non-limiting examples, the methods, apparatus and kits are useful for diagnosing that severe sepsis or septic shock is present or absent in the biological subject, which suitably involve: (1) correlating a reference biomarker signature with the presence or absence of a condition selected from severe sepsis and septic shock, wherein the reference biomarker signature evaluates at least one IRS biomarker; (2) obtaining a biomarker signature of a sample from a subject, wherein the sample biomarker signature evaluates for an individual IRS biomarker in the reference biomarker signature a corresponding IRS biomarker; and (3) diagnosing the presence or absence of the condition in the subject based on the sample biomarker signature and the reference biomarker signature, wherein an individual IRS biomarker is an expression product of an IRS biomarker gene selected from the group O and group P IRS biomarker genes as defined herein.

[0488] The biomarkers may be quantified or detected using any suitable technique. In specific embodiments, the biomarkers, including the IRS biomarkers, are quantified using reagents that determine the level or abundance of individual biomarkers. Non-limiting reagents of this type include reagents for use in nucleic acid- and protein-based assays.

[0489] In illustrative nucleic acid-based assays, nucleic acid is isolated from cells contained in the biological sample according to standard methodologies (Sambrook, *et al.*, 1989, *supra*; and Ausubel *et al.*, 1994, *supra*). The nucleic acid is typically fractionated (e.g., poly A⁺ RNA) or whole cell RNA. Where RNA is used as the subject of detection, it may be desired to convert the RNA to a complementary DNA. In some embodiments, the nucleic acid is amplified by a template-dependent nucleic acid amplification technique. A number of template dependent processes are available to amplify the IRS biomarker sequences present in a given template sample. An exemplary nucleic acid amplification technique is the polymerase chain reaction (referred to as PCR), which is described in detail in U.S. Pat. Nos. 4,683,195, 4,683,202 and 4,800,159, Ausubel *et al.* (*supra*), and in Innis *et al.*, ("PCR Protocols", Academic Press, Inc., San Diego Calif., 1990). Briefly, in PCR, two primer

sequences are prepared that are complementary to regions on opposite complementary strands of the biomarker sequence. An excess of deoxynucleotide triphosphates are added to a reaction mixture along with a DNA polymerase, *e.g.*, *Taq* polymerase. If a cognate IRS biomarker sequence is present in a sample, the primers will bind to the biomarker and the polymerase will cause the primers to be extended along the biomarker sequence by adding on nucleotides. By raising and lowering the temperature of the reaction mixture, the extended primers will dissociate from the biomarker to form reaction products, excess primers will bind to the biomarker and to the reaction products and the process is repeated. A reverse transcriptase PCR amplification procedure may be performed in order to quantify the amount of mRNA amplified. Methods of reverse transcribing RNA into cDNA are well known and described in Sambrook *et al.*, 1989, *supra*. Alternative methods for reverse transcription utilize thermostable, RNA-dependent DNA polymerases. These methods are described in WO 90/07641. Polymerase chain reaction methodologies are well known in the art.

[0490] In certain advantageous embodiments, the template-dependent amplification involves quantification of transcripts in real-time. For example, RNA or DNA may be quantified using the Real-Time PCR technique (Higuchi, 1992, *et al.*, *Biotechnology* **10**: 413-417). By determining the concentration of the amplified products of the target DNA in PCR reactions that have completed the same number of cycles and are in their linear ranges, it is possible to determine the relative concentrations of the specific target sequence in the original DNA mixture. If the DNA mixtures are cDNAs synthesized from RNAs isolated from different tissues or cells, the relative abundance of the specific mRNA from which the target sequence was derived can be determined for the respective tissues or cells. This direct proportionality between the concentration of the PCR products and the relative mRNA abundance is only true in the linear range of the PCR reaction. The final concentration of the target DNA in the plateau portion of the curve is determined by the availability of reagents in the reaction mix and is independent of the original concentration of target DNA. In specific embodiments, multiplexed, tandem PCR (MT-PCR) is employed, which uses a two-step process for gene expression profiling from small quantities of RNA or DNA, as described for example in US Pat. Appl. Pub. No. 20070190540. In the first step, RNA is converted into cDNA and amplified using multiplexed gene specific primers. In the second step each individual gene is quantitated by real time PCR.

[0491] In certain embodiments, target nucleic acids are quantified using blotting techniques, which are well known to those of skill in the art. Southern blotting involves the use of DNA as a target, whereas Northern blotting involves the use of RNA as a target. Each provides different types of information, although cDNA blotting is analogous, in many aspects, to blotting or RNA species. Briefly, a probe is used to target a DNA or RNA species that has been immobilized on a suitable matrix, often a filter of nitrocellulose. The different species should be spatially separated to facilitate analysis. This often is accomplished by gel electrophoresis of nucleic acid species followed by “blotting” on to the filter. Subsequently, the blotted target is incubated with a probe (usually labeled) under conditions that promote denaturation and rehybridization. Because the probe is designed to base pair with the target, the probe will bind a portion of the target sequence under renaturing conditions. Unbound probe is then removed, and detection is accomplished as described above. Following detection/quantification, one may compare the results seen in a given subject with a control reaction or a statistically significant reference group or population of control subjects as defined herein. In this way, it is possible to correlate the amount of an IRS biomarker nucleic acid detected with the progression or severity of the disease. As used herein, the term “probe” refers to a molecule that binds to a specific sequence or sub-sequence or other moiety of another molecule. Unless otherwise indicated, the term “probe” typically refers to a nucleic acid probe that binds to another nucleic acid, also referred to herein as a “target polynucleotide”, through complementary base pairing. Probes can bind target polynucleotides lacking complete sequence complementarity with the probe, depending on the stringency of the hybridization conditions. Probes can be labeled directly or indirectly and include primers within their scope. By “primer” is meant an oligonucleotide which, when paired with a strand of DNA, is capable of initiating the synthesis of a primer extension product in the presence of a suitable polymerizing agent. The primer is preferably single-stranded for maximum efficiency in amplification but can alternatively be double-stranded. A primer must be sufficiently long to prime the synthesis of extension products in the presence of the polymerization agent. The length of the primer depends on many factors, including application, temperature to be employed, template reaction conditions, other reagents, and source of primers. For example, depending on the complexity of the target sequence, the primer may be at least about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500, to one base shorter in

length than the template sequence at the 3' end of the primer to allow extension of a nucleic acid chain, though the 5' end of the primer may extend in length beyond the 3' end of the template sequence. In certain embodiments, primers can be large polynucleotides, such as from about 35 nucleotides to several kilobases or more. Primers can be selected to be "substantially complementary" to the sequence on the template to which it is designed to hybridize and serve as a site for the initiation of synthesis. By "substantially complementary", it is meant that the primer is sufficiently complementary to hybridize with a target polynucleotide. Desirably, the primer contains no mismatches with the template to which it is designed to hybridize but this is not essential. For example, non-complementary nucleotide residues can be attached to the 5' end of the primer, with the remainder of the primer sequence being complementary to the template. Alternatively, non-complementary nucleotide residues or a stretch of non-complementary nucleotide residues can be interspersed into a primer, provided that the primer sequence has sufficient complementarity with the sequence of the template to hybridize therewith and thereby form a template for synthesis of the extension product of the primer.

[0492] Also contemplated are biochip-based technologies such as those described by Hacia *et al.* (1996, *Nature Genetics* 14: 441-447) and Shoemaker *et al.* (1996, *Nature Genetics* 14: 450-456). Briefly, these techniques involve quantitative methods for analyzing large numbers of genes rapidly and accurately. By tagging genes with oligonucleotides or using fixed nucleic acid probe arrays, one can employ biochip technology to segregate target molecules as high-density arrays and screen these molecules on the basis of hybridization. See also Pease *et al.* (1994, *Proc. Natl. Acad. Sci. U.S.A.* 91: 5022-5026); Fodor *et al.* (1991, *Science* 251: 767-773). Briefly, nucleic acid probes to IRS biomarker polynucleotides are made and attached to biochips to be used in screening and diagnostic methods, as outlined herein. The nucleic acid probes attached to the biochip are designed to be substantially complementary to specific expressed IRS biomarker nucleic acids, *i.e.*, the target sequence (either the target sequence of the sample or to other probe sequences, for example in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occur. This complementarity need not be perfect; there may be any number of base pair mismatches, which will interfere with hybridization between the target sequence and the nucleic acid probes of the present invention. However, if the number of mismatches is so great that no hybridization can occur under even the least stringent of hybridization conditions, the

sequence is not a complementary target sequence. In certain embodiments, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being desirable, are used to build in a redundancy for a particular target. The probes can be overlapping (*i.e.* have some sequence in common), or separate.

[0493] In an illustrative biochip analysis, oligonucleotide probes on the biochip are exposed to or contacted with a nucleic acid sample suspected of containing one or more IRS biomarker polynucleotides under conditions favoring specific hybridization. Sample extracts of DNA or RNA, either single or double-stranded, may be prepared from fluid suspensions of biological materials, or by grinding biological materials, or following a cell lysis step which includes, but is not limited to, lysis effected by treatment with SDS (or other detergents), osmotic shock, guanidinium isothiocyanate and lysozyme. Suitable DNA, which may be used in the method of the invention, includes cDNA. Such DNA may be prepared by any one of a number of commonly used protocols as for example described in Ausubel, *et al.*, 1994, *supra*, and Sambrook, *et al.*, 1989, *supra*.

[0494] Suitable RNA, which may be used in the method of the invention, includes messenger RNA, complementary RNA transcribed from DNA (cRNA) or genomic or subgenomic RNA. Such RNA may be prepared using standard protocols as for example described in the relevant sections of Ausubel, *et al.* 1994, *supra* and Sambrook, *et al.* 1989, *supra*).

[0495] cDNA may be fragmented, for example, by sonication or by treatment with restriction endonucleases. Suitably, cDNA is fragmented such that resultant DNA fragments are of a length greater than the length of the immobilized oligonucleotide probe(s) but small enough to allow rapid access thereto under suitable hybridization conditions. Alternatively, fragments of cDNA may be selected and amplified using a suitable nucleotide amplification technique, as described for example above, involving appropriate random or specific primers.

[0496] Usually the target IRS biomarker polynucleotides are detectably labeled so that their hybridization to individual probes can be determined. The target polynucleotides are typically detectably labeled with a reporter molecule illustrative examples of which include chromogens, catalysts, enzymes, fluorochromes, chemiluminescent molecules, bioluminescent molecules, lanthanide ions (*e.g.*, Eu³⁴), a radioisotope and a direct visual label. In the case of a direct visual label, use may be made of a colloidal metallic or non-

metallic particle, a dye particle, an enzyme or a substrate, an organic polymer, a latex particle, a liposome, or other vesicle containing a signal producing substance and the like. Illustrative labels of this type include large colloids, for example, metal colloids such as those from gold, selenium, silver, tin and titanium oxide. In some embodiments in which an enzyme is used as a direct visual label, biotinylated bases are incorporated into a target polynucleotide.

[0497] The hybrid-forming step can be performed under suitable conditions for hybridizing oligonucleotide probes to test nucleic acid including DNA or RNA. In this regard, reference may be made, for example, to NUCLEIC ACID HYBRIDIZATION, A PRACTICAL APPROACH (Homes and Higgins, eds.) (IRL press, Washington D.C., 1985). In general, whether hybridization takes place is influenced by the length of the oligonucleotide probe and the polynucleotide sequence under test, the pH, the temperature, the concentration of mono- and divalent cations, the proportion of G and C nucleotides in the hybrid-forming region, the viscosity of the medium and the possible presence of denaturants. Such variables also influence the time required for hybridization. The preferred conditions will therefore depend upon the particular application. Such empirical conditions, however, can be routinely determined without undue experimentation.

[0498] After the hybrid-forming step, the probes are washed to remove any unbound nucleic acid with a hybridization buffer. This washing step leaves only bound target polynucleotides. The probes are then examined to identify which probes have hybridized to a target polynucleotide.

[0499] The hybridization reactions are then detected to determine which of the probes has hybridized to a corresponding target sequence. Depending on the nature of the reporter molecule associated with a target polynucleotide, a signal may be instrumentally detected by irradiating a fluorescent label with light and detecting fluorescence in a fluorimeter; by providing for an enzyme system to produce a dye which could be detected using a spectrophotometer; or detection of a dye particle or a colored colloidal metallic or non-metallic particle using a reflectometer; in the case of using a radioactive label or chemiluminescent molecule employing a radiation counter or autoradiography. Accordingly, a detection means may be adapted to detect or scan light associated with the label which light may include fluorescent, luminescent, focused beam or laser light. In such a case, a charge

couple device (CCD) or a photocell can be used to scan for emission of light from a probe:target polynucleotide hybrid from each location in the micro-array and record the data directly in a digital computer. In some cases, electronic detection of the signal may not be necessary. For example, with enzymatically generated color spots associated with nucleic acid array format, visual examination of the array will allow interpretation of the pattern on the array. In the case of a nucleic acid array, the detection means is suitably interfaced with pattern recognition software to convert the pattern of signals from the array into a plain language genetic profile. In certain embodiments, oligonucleotide probes specific for different IRS biomarker polynucleotides are in the form of a nucleic acid array and detection of a signal generated from a reporter molecule on the array is performed using a 'chip reader'. A detection system that can be used by a 'chip reader' is described for example by Pirrung *et al.* (U.S. Patent No. 5,143,854). The chip reader will typically also incorporate some signal processing to determine whether the signal at a particular array position or feature is a true positive or maybe a spurious signal. Exemplary chip readers are described for example by Fodor *et al.* (U.S. Patent No., 5,925,525). Alternatively, when the array is made using a mixture of individually addressable kinds of labeled microbeads, the reaction may be detected using flow cytometry.

[0500] In certain embodiments, the IRS biomarker is a target RNA (e.g., mRNA) or a DNA copy of the target RNA whose level is measured using at least one nucleic acid probe that hybridizes under at least low, medium, or high stringency conditions to the target RNA or to the DNA copy, wherein the nucleic acid probe comprises at least 15 (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more) contiguous nucleotides of an IRS biomarker polynucleotide. In some embodiments, the measured level or abundance of the target RNA or its DNA copy is normalized to the level or abundance of a reference RNA or a DNA copy of the reference RNA. Suitably, the nucleic acid probe is immobilized on a solid or semi-solid support. In illustrative examples of this type, the nucleic acid probe forms part of a spatial array of nucleic acid probes. In some embodiments, the level of nucleic acid probe that is bound to the target RNA or to the DNA copy is measured by hybridization (e.g., using a nucleic acid array). In other embodiments, the level of nucleic acid probe that is bound to the target RNA or to the DNA copy is measured by nucleic acid amplification (e.g., using a polymerase chain reaction (PCR)). In still other embodiments, the level of nucleic

acid probe that is bound to the target RNA or to the DNA copy is measured by nuclease protection assay.

[0501] In other embodiments, IRS biomarker protein levels are assayed using protein-based assays known in the art. For example, when an IRS biomarker protein is an enzyme, the protein can be quantified based upon its catalytic activity or based upon the number of molecules of the protein contained in a sample. Antibody-based techniques may be employed including, for example, immunoassays, such as the enzyme-linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).

[0502] In specific embodiments, protein-capture arrays that permit simultaneous detection and/or quantification of a large number of proteins are employed. For example, low-density protein arrays on filter membranes, such as the universal protein array system (Ge, 2000 *Nucleic Acids Res.* 28(2):e3) allow imaging of arrayed antigens using standard ELISA techniques and a scanning charge-coupled device (CCD) detector. Immuno-sensor arrays have also been developed that enable the simultaneous detection of clinical analytes. It is now possible using protein arrays, to profile protein expression in bodily fluids, such as in sera of healthy or diseased subjects, as well as in subjects pre- and post-drug treatment.

[0503] Exemplary protein capture arrays include arrays comprising spatially addressed antigen-binding molecules, commonly referred to as antibody arrays, which can facilitate extensive parallel analysis of numerous proteins defining a proteome or subproteome. Antibody arrays have been shown to have the required properties of specificity and acceptable background, and some are available commercially (e.g., BD Biosciences, Clontech, Bio-Rad and Sigma). Various methods for the preparation of antibody arrays have been reported (see, e.g., Lopez *et al.*, 2003 *J. Chromatogram. B* 787:19-27; Cahill, 2000 *Trends in Biotechnology* 7:47-51; U.S. Pat. App. Pub. 2002/0055186; U.S. Pat. App. Pub. 2003/0003599; PCT publication WO 03/062444; PCT publication WO 03/077851; PCT publication WO 02/59601; PCT publication WO 02/39120; PCT publication WO 01/79849; PCT publication WO 99/39210). The antigen-binding molecules of such arrays may recognize at least a subset of proteins expressed by a cell or population of cells, illustrative examples of which include growth factor receptors, hormone receptors, neurotransmitter receptors, catecholamine receptors, amino acid derivative receptors, cytokine receptors, extracellular matrix receptors, antibodies, lectins, cytokines, serpins, proteases, kinases,

phosphatases, ras-like GTPases, hydrolases, steroid hormone receptors, transcription factors, heat-shock transcription factors, DNA-binding proteins, zinc-finger proteins, leucine-zipper proteins, homeodomain proteins, intracellular signal transduction modulators and effectors, apoptosis-related factors, DNA synthesis factors, DNA repair factors, DNA recombination factors and cell-surface antigens.

[0504] Individual spatially distinct protein-capture agents are typically attached to a support surface, which is generally planar or contoured. Common physical supports include glass slides, silicon, microwells, nitrocellulose or PVDF membranes, and magnetic and other microbeads.

[0505] Particles in suspension can also be used as the basis of arrays, providing they are coded for identification; systems include color coding for microbeads (*e.g.*, available from Luminex, Bio-Rad and Nanomics Biosystems) and semiconductor nanocrystals (*e.g.*, QDotsTM, available from Quantum Dots), and barcoding for beads (UltraPlexTM, available from Smartbeads) and multmetal microrods (NanobarcodesTM particles, available from Surromed). Beads can also be assembled into planar arrays on semiconductor chips (*e.g.*, available from LEAPS technology and BioArray Solutions). Where particles are used, individual protein-capture agents are typically attached to an individual particle to provide the spatial definition or separation of the array. The particles may then be assayed separately, but in parallel, in a compartmentalized way, for example in the wells of a microtiter plate or in separate test tubes.

[0506] In operation, a protein sample, which is optionally fragmented to form peptide fragments (see, *e.g.*, U.S. Pat. App. Pub. 2002/0055186), is delivered to a protein-capture array under conditions suitable for protein or peptide binding, and the array is washed to remove unbound or non-specifically bound components of the sample from the array. Next, the presence or amount of protein or peptide bound to each feature of the array is detected using a suitable detection system. The amount of protein bound to a feature of the array may be determined relative to the amount of a second protein bound to a second feature of the array. In certain embodiments, the amount of the second protein in the sample is already known or known to be invariant.

[0507] In specific embodiments, the IRS biomarker is a target polypeptide whose level is measured using at least one antigen-binding molecule that is immuno-interactive with the

target polypeptide. In these embodiments, the measured level of the target polypeptide is normalized to the level of a reference polypeptide. Suitably, the antigen-binding molecule is immobilized on a solid or semi-solid support. In illustrative examples of this type, the antigen-binding molecule forms part of a spatial array of antigen-binding molecule. In some embodiments, the level of antigen-binding molecule that is bound to the target polypeptide is measured by immunoassay (*e.g.*, using an ELISA). Reference herein to “immuno-interactive” includes reference to any interaction, reaction, or other form of association between molecules and in particular where one of the molecules is, or mimics, a component of the immune system.

[0508] All the essential reagents required for detecting and quantifying the biomarkers of the invention, including IRS biomarkers, may be assembled together in a kit. In some embodiments, the kit comprises: (i) a reagent that allows quantification (*e.g.*, determining the level or abundance) of a first biomarker; and (ii) a reagent that allows quantification (*e.g.*, determining the level or abundance) of a second biomarker, wherein the first and second biomarkers have a mutual correlation in respect of at least one condition (*e.g.*, at least one of a healthy condition and one or more diseases such as but not limited to inSIRS, ipSIRS or a stage of ipSIRS (*e.g.*, a stage of ipSIRS with a particular severity such as mild sepsis, severe sepsis and septic shock)) that lies within a mutual correlation range of between ± 0.9 , and wherein a combination of respective biomarker values for the first and second biomarkers that are measured for or derived from a biological subject has a performance value greater than or equal to a performance threshold representing the ability of the combination of the first and second biomarkers to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being a variance explained of at least 0.3. In some embodiments, the kit further comprises (iii) a reagent that allows quantification (*e.g.*, determining the level or abundance) of a third biomarker; and (iv) a reagent that allows quantification (*e.g.*, determining the level or abundance) of a fourth biomarker, wherein the third and fourth biomarkers have a mutual correlation in respect of at least one condition that lies within a mutual correlation range of between ± 0.9 , and wherein a combination of respective biomarker values for the third and fourth biomarkers that are measured for or derived from a biological subject has a performance value greater than or equal to a performance threshold representing the ability of the combination of the third and fourth biomarkers to diagnose the presence, absence or

degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being a variance explained of at least 0.3.

[0509] In advantageous embodiments, the kits of the present invention are useful for diagnosing the presence, absence or degree of at least one condition, or for providing a prognosis for at least one condition, wherein the at least one condition is selected from a healthy condition, inSIRS, ipSIRS or a stage of ipSIRS. In these embodiments, IRS biomarkers are suitably selected from a group as broadly described above and elsewhere herein.

[0510] In the context of the present invention, “kit” is understood to mean a product containing the different reagents necessary for carrying out the methods of the invention packed so as to allow their transport and storage. Materials suitable for packing the components of the kit include crystal, plastic (polyethylene, polypropylene, polycarbonate and the like), bottles, vials, paper, envelopes and the like. Additionally, the kits of the invention can contain instructions for the simultaneous, sequential or separate use of the different components contained in the kit. The instructions can be in the form of printed material or in the form of an electronic support capable of storing instructions such that they can be read by a subject, such as electronic storage media (magnetic disks, tapes and the like), optical media (CD-ROM, DVD) and the like. Alternatively or in addition, the media can contain Internet addresses that provide the instructions.

[0511] A “reagent that allows quantification of a biomarker” means a compound or material, or set of compounds or materials, which allow quantification of the biomarker. In specific embodiments, the compound, material or set of compounds or materials permit determining the expression level of a gene (e.g., an IRS biomarker gene), including without limitation the extraction of RNA material, the determination of the level of a corresponding RNA, etc., primers for the synthesis of a corresponding cDNA, primers for amplification of DNA, and/or probes capable of specifically hybridizing with the RNAs (or the corresponding cDNAs) encoded by the genes, TaqMan probes, etc.

[0512] The kits may also optionally include appropriate reagents for detection of labels, positive and negative controls, washing solutions, blotting membranes, microtiter plates, dilution buffers and the like. For example, a nucleic acid-based detection kit may include (i) a biomarker polynucleotide (e.g., an IRS biomarker polynucleotide) (which may be used as a

positive control), (ii) a primer or probe that specifically hybridizes to a biomarker polynucleotide (*e.g.*, an IRS biomarker polynucleotide). Also included may be enzymes suitable for amplifying nucleic acids including various polymerases (reverse transcriptase, *Taq*, SequenaseTM, DNA ligase etc. depending on the nucleic acid amplification technique employed), deoxynucleotides and buffers to provide the necessary reaction mixture for amplification. Such kits also generally will comprise, in suitable means, distinct containers for each individual reagent and enzyme as well as for each primer or probe. Alternatively, a protein-based detection kit may include (i) a biomarker polypeptide (*e.g.*, an IRS biomarker polypeptide) (which may be used as a positive control), (ii) an antibody that binds specifically to a biomarker polypeptide (*e.g.*, an IRS biomarker polypeptide). The kit can also feature various devices (*e.g.*, one or more) and reagents (*e.g.*, one or more) for performing one of the assays described herein; and/or printed instructions for using the kit to quantify the expression of a biomarker gene (*e.g.*, an IRS biomarker gene).

[0513] The reagents described herein, which may be optionally associated with detectable labels, can be presented in the format of a microfluidics card, a chip or chamber, a microarray or a kit adapted for use with the assays described in the examples or below, *e.g.*, RT-PCR or Q PCR techniques described herein. The term “microarray” refers to an arrangement of hybridizable array elements, *e.g.*, probes (including primers), ligands, biomarker nucleic acid sequence or protein sequences on a substrate.

[0514] The reagents also have utility in compositions for detecting and quantifying the biomarkers of the invention. For example, a reverse transcriptase may be used to reverse transcribe RNA transcripts, including mRNA, in a nucleic acid sample, to produce reverse transcribed transcripts, including reverse transcribed mRNA (also referred to as “cDNA”). The nucleic acid sample is suitably derived from components of the immune system, representative examples of which include components of the innate and adaptive immune systems as broadly discussed for example above. In specific embodiments, the reverse transcribed RNA is derived blood cells (*e.g.*, peripheral blood cells). Suitably, the reverse transcribed RNA is derived leukocytes.

[0515] The reagents are suitably used to quantify the reverse transcribed transcripts. For example, oligonucleotide primers that hybridize to the reverse transcribed transcript can be used to amplify at least a portion of the reverse transcribed transcript *via* a suitable nucleic

acid amplification technique, *e.g.*, RT-PCR or Q PCR techniques described herein. Alternatively, oligonucleotide probes may be used to hybridize to the reverse transcribed transcript for the quantification, using a nucleic acid hybridization analysis technique (*e.g.*, microarray analysis), as described for example above. Thus, in some embodiments, a respective oligonucleotide primer or probe is hybridized to a complementary nucleic acid sequence of a reverse transcribed transcript in the compositions of the invention. The compositions typically comprise labeled reagents for detecting and/or quantifying the reverse transcribed transcripts. Representative reagents of this type include labeled oligonucleotide primers or probes that hybridize to RNA transcripts or reverse transcribed RNA, labeled RNA, labeled reverse transcribed RNA as well as labeled oligonucleotide linkers or tags (*e.g.*, a labeled RNA or DNA linker or tag) for labeling (*e.g.*, end labeling such as 3' end labeling) RNA or reverse transcribed RNA. The primers, probes, RNA or reverse transcribed RNA (*i.e.*, cDNA) (whether labeled or non-labeled) may be immobilized or free in solution. Representative reagents of this type include labeled oligonucleotide primers or probes that hybridize to reverse transcribed and transcripts as well as labeled reverse transcribed transcripts. The label can be any reporter molecule as known in the art, illustrative examples of which are described above and elsewhere herein.

[0516] The present invention also encompasses non-reverse transcribed RNA embodiments in which cDNA is not made and the RNA transcripts are directly the subject of the analysis. Thus, in other embodiments, reagents are suitably used to quantify RNA transcripts directly. For example, oligonucleotide probes can be used to hybridize to transcripts for quantification of immune system biomarkers of the invention, using a nucleic acid hybridization analysis technique (*e.g.*, microarray analysis), as described for example above. Thus, in some embodiments, a respective oligonucleotide probe is hybridized to a complementary nucleic acid sequence of an immune system biomarker transcript in the compositions of the invention. In illustrative examples of this type, the compositions may comprise labeled reagents that hybridize to transcripts for detecting and/or quantifying the transcripts. Representative reagents of this type include labeled oligonucleotide probes that hybridize to transcripts as well as labeled transcripts. The primers or probes may be immobilized or free in solution.

[0517] The term “immobilized” means that a molecular species of interest is fixed to a solid support, suitably by covalent linkage. This covalent linkage can be achieved by different means depending on the molecular nature of the molecular species. Moreover, the molecular species may be also fixed on the solid support by electrostatic forces, hydrophobic or hydrophilic interactions or Van-der-Waals forces. The above described physico-chemical interactions typically occur in interactions between molecules. In particular embodiments, all that is required is that the molecules (*e.g.*, nucleic acids or polypeptides) remain immobilized or attached to a support under conditions in which it is intended to use the support, for example in applications requiring nucleic acid amplification and/or sequencing or in antibody-binding assays. For example, oligonucleotides or primers are immobilized such that a 3' end is available for enzymatic extension and/or at least a portion of the sequence is capable of hybridizing to a complementary sequence. In some embodiments, immobilization can occur via hybridization to a surface attached primer, in which case the immobilized primer or oligonucleotide may be in the 3'-5' orientation. In other embodiments, immobilization can occur by means other than base-pairing hybridization, such as the covalent attachment.

[0518] The term “solid support” as used herein refers to a solid inert surface or body to which a molecular species, such as a nucleic acid and polypeptides can be immobilized. Non-limiting examples of solid supports include glass surfaces, plastic surfaces, latex, dextran, polystyrene surfaces, polypropylene surfaces, polyacrylamide gels, gold surfaces, and silicon wafers. In some embodiments, the solid supports are in the form of membranes, chips or particles. For example, the solid support may be a glass surface (*e.g.*, a planar surface of a flow cell channel). In some embodiments, the solid support may comprise an inert substrate or matrix which has been “functionalized”, such as by applying a layer or coating of an intermediate material comprising reactive groups which permit covalent attachment to molecules such as polynucleotides. By way of non-limiting example, such supports can include polyacrylamide hydrogels supported on an inert substrate such as glass. The molecules (*e.g.*, polynucleotides) can be directly covalently attached to the intermediate material (*e.g.*, a hydrogel) but the intermediate material can itself be non-covalently attached to the substrate or matrix (*e.g.*, a glass substrate). The support can include a plurality of particles or beads each having a different attached molecular species.

[0519] The present invention also extends to the management of inSIRS, ipSIRS or particular stages of ipSIRS, or prevention of further progression of inSIRS, ipSIRS or particular stages of ipSIRS (e.g., mild sepsis, severe sepsis and septic shock), or assessment of the efficacy of therapies in subjects following positive diagnosis for the presence of inSIRS, ipSIRS or particular stage of ipSIRS (e.g., mild sepsis, severe sepsis and septic shock) in a subject. The management of inSIRS or ipSIRS conditions is generally highly intensive and can include identification and amelioration of the underlying cause and aggressive use of therapeutic compounds such as, vasoactive compounds, antibiotics, steroids, antibodies to endotoxin, anti-tumor necrosis factor agents, recombinant protein C. In addition, palliative therapies as described for example in Cohen and Glauser (1991, Lancet 338: 736-739) aimed at restoring and protecting organ function can be used such as intravenous fluids and oxygen and tight glycemic control. Therapies for ipSIRS are reviewed in Healy (2002, *Ann Pharmacother.* 36(4): 648-54) and Brindley (2005, *CJEM.* 7(4): 227) and Jenkins (2006, *J Hosp Med.* 1(5): 285-295).

[0520] Typically, the therapeutic agents will be administered in pharmaceutical (or veterinary) compositions together with a pharmaceutically acceptable carrier and in an effective amount to achieve their intended purpose. The dose of active compounds administered to a subject should be sufficient to achieve a beneficial response in the subject over time such as a reduction in, or relief from, the symptoms of inSIRS, ipSIRS or particular stages of ipSIRS. The quantity of the pharmaceutically active compound(s) to be administered may depend on the subject to be treated inclusive of the age, sex, weight and general health condition thereof. In this regard, precise amounts of the active compound(s) for administration will depend on the judgment of the practitioner. In determining the effective amount of the active compound(s) to be administered in the treatment or prevention of inSIRS, ipSIRS or particular stages of ipSIRS, the medical practitioner or veterinarian may evaluate severity of any symptom associated with the presence of inSIRS, ipSIRS or particular stages of ipSIRS including, inflammation, blood pressure anomaly, tachycardia, tachypnea fever, chills, vomiting, diarrhea, skin rash, headaches, confusion, muscle aches, seizures. In any event, those of skill in the art may readily determine suitable dosages of the therapeutic agents and suitable treatment regimens without undue experimentation.

[0521] The therapeutic agents may be administered in concert with adjunctive (palliative) therapies to increase oxygen supply to major organs, increase blood flow to major organs and/or to reduce the inflammatory response. Illustrative examples of such adjunctive therapies include non-steroidal-anti-inflammatory drugs (NSAIDs), intravenous saline and oxygen.

[0522] In specific embodiments of the present invention, the methods, apparatus and kits described above and elsewhere herein are contemplated for use in methods of treating, preventing or inhibiting the development of at least one condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS (*e.g.*, mild sepsis, severe sepsis or septic shock) in a subject. These methods (also referred to herein as “treatment methods”) generally comprise: (a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one (*e.g.*, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarker of a biological subject; (b) determining an indicator using a combination of the plurality of IRS biomarker values, the indicator being at least partially indicative of the presence, absence or degree of the at least one condition, wherein: (i) at least two (*e.g.*, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3; and (c) administering to the subject, on the basis that the indicator indicates the presence of inSIRS, an effective amount of an agent that treats or ameliorates the symptoms or reverses or inhibits the development of inSIRS, or administering to the subject, on the basis that the indicator indicates the presence of ipSIRS or a particular stage of ipSIRS, an effective amount of an agent that treats or ameliorates the symptoms or reverses or inhibits the development of ipSIRS or the particular stage of ipSIRS.

[0523] In advantageous embodiments, the treatment methods comprise: (1) determining a plurality of measured IRS biomarker values, each measured IRS biomarker value being a measured value of an IRS biomarker of the biological subject; and (2) applying a function to at least one of the measured IRS biomarker values to determine at least one derived IRS

biomarker value, the at least one derived IRS biomarker value being indicative of a value of a corresponding derived IRS biomarker. The function suitably includes at least one of: (a) multiplying two IRS biomarker values; (b) dividing two IRS biomarker values; (c) adding two IRS biomarker values; (d) subtracting two IRS biomarker values; (e) a weighted sum of at least two IRS biomarker values; (f) a log sum of at least two IRS biomarker values; and (g) a sigmoidal function of at least two IRS biomarker values.

[0524] In some embodiments the methods, apparatus and kits of the present invention are used for monitoring, treatment and management of conditions that can lead to inSIRS or ipSIRS, illustrative examples of which include retained placenta, meningitis, endometriosis, shock, toxic shock (*i.e.*, sequelae to tampon use), gastroenteritis, appendicitis, ulcerative colitis, Crohn's disease, inflammatory bowel disease, acid gut syndrome, liver failure and cirrhosis, failure of colostrum transfer in neonates, ischemia (in any organ), bacteremia, infections within body cavities such as the peritoneal, pericardial, thecal, and pleural cavities, burns, severe wounds, excessive exercise or stress, hemodialysis, conditions involving intolerable pain (*e.g.*, pancreatitis, kidney stones), surgical operations, and non-healing lesions. In these embodiments, the methods or kits of the present invention are typically used at a frequency that is effective to monitor the early development of inSIRS, ipSIRS or particular stages of ipSIRS, to thereby enable early therapeutic intervention and treatment of that condition. In illustrative examples, the diagnostic methods or kits are used at least at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 hour intervals or at least 1, 2, 3, 4, 5 or 6 day intervals, or at least weekly, fortnightly or monthly.

[0525] The present invention can be practiced in the field of predictive medicine for the purpose of diagnosis or monitoring the presence or development of a condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS in a subject, and/or monitoring response to therapy efficacy.

[0526] The biomarker signatures and corresponding indicators of the present invention further enable determination of endpoints in pharmacotranslational studies. For example, clinical trials can take many months or even years to establish the pharmacological parameters for a medicament to be used in treating or preventing inSIRS, ipSIRS or a particular stage of ipSIRS (*e.g.*, mild sepsis, severe sepsis and septic shock). However, these parameters may be associated with a biomarker signature and corresponding indicator of a

health state (e.g., a healthy condition). Hence, the clinical trial can be expedited by selecting a treatment regimen (e.g., medicament and pharmaceutical parameters), which results in a biomarker signature associated with a desired health state (e.g., healthy condition). This may be determined for example by: a) determining a plurality of IRS biomarker values, each IRS biomarker value being indicative of a value measured or derived for at least one (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarker of a biological subject after treatment with a treatment regimen; (b) determining an indicator using a combination of the plurality of IRS biomarker values, the indicator being at least partially indicative of the presence, absence or degree of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS, wherein: (i) at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, and (c) determining that the treatment regimen is effective for changing the health status of the subject to the desired health state (e.g., healthy condition) on the basis that the indicator indicates the presence of a healthy condition or the presence of a condition of a lower degree relative to the degree of the condition in the subject before treatment with the treatment regimen. As used herein, the term “degree” refers to the extent or stage of a condition. Thus, for example, mild sepsis is a stage or degree of sepsis that is lower than severe sepsis. Similarly, severe sepsis is a stage or degree of sepsis that is lower than septic shock. Accordingly, this aspect of the present invention advantageously provides methods of monitoring the efficacy of a particular treatment regimen in a subject (for example, in the context of a clinical trial) already diagnosed with a condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS. These methods take advantage of measured or derived IRS biomarker values that correlate with treatment efficacy to determine, for example, whether measured or derived IRS biomarker values of a subject undergoing treatment partially or completely normalize during the course of or following therapy or otherwise shows changes associated with responsiveness to the therapy.

[0527] As used herein, the term “treatment regimen” refers to prophylactic and/or therapeutic (*i.e.*, after onset of a specified condition) treatments, unless the context specifically indicates otherwise. The term “treatment regimen” encompasses natural substances and pharmaceutical agents (*i.e.*, “drugs”) as well as any other treatment regimen including but not limited to dietary treatments, physical therapy or exercise regimens, surgical interventions, and combinations thereof.

[0528] Accordingly, the invention provides methods of correlating a biomarker signature with an effective treatment regimen for a condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS (*e.g.*, mild sepsis, severe sepsis and septic shock), wherein the methods generally comprise: (a) determining a biomarker signature defining a combination of at least two (*e.g.*, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarker values corresponding to values of at least two IRS biomarkers that can be measured for or derived from a biological subject having the condition and for whom an effective treatment has been identified, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of the condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the condition, or to provide a prognosis for the condition, the performance threshold being indicative of an explained variance of at least 0.3; and (b) correlating the biomarker signature so determined with an effective treatment regimen for the condition. The term “correlating” generally refers to determining a relationship between one type of data with another or with a state. In specific embodiments, an indicator or biomarker signature is correlated to a global probability or a particular outcome, using receiver operating characteristic (ROC) curves.

[0529] The invention further provides methods of determining whether a treatment regimen is effective for treating a subject with a condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS (*e.g.*, mild sepsis, severe sepsis and septic shock). These methods generally comprise: (a) determining a plurality of post-treatment IRS biomarker values, each post-treatment IRS biomarker value being indicative of a value measured or derived for at least one (*e.g.*, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarker of a biological subject after treatment with the treatment regimen; (b) determining a post-treatment indicator using a

combination of the plurality of post-treatment IRS biomarker values, the post-treatment indicator being at least partially indicative of the presence, absence or degree of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS, wherein: (i) at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the post-treatment indicator has a performance value greater than or equal to a performance threshold representing the ability of the post-treatment indicator to diagnose the presence, absence or degree of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein the post-treatment indicator indicates whether the treatment regimen is effective for treating the condition in the subject on the basis that post-treatment indicator indicates the presence of a healthy condition or the presence of a condition of a lower degree relative to the degree of the condition in the subject before treatment with the treatment regimen.

[0530] The invention can also be practiced to evaluate whether a subject is responding (*i.e.*, a positive response) or not responding (*i.e.*, a negative response) to a treatment regimen or has a side effect to a treatment regimen. This aspect of the invention provides methods of correlating a biomarker signature with a positive or negative response or a side effect to a treatment regimen, which generally comprise: (a) determining a biomarker signature defining a combination of at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarker values corresponding to values of at least two IRS biomarkers that can be measured for or derived from a biological subject following commencement of the treatment regimen, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS, which lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3; and (b) correlating the biomarker signature so determined with a positive or negative response to the treatment regimen. As used herein, the term “positive response” means that the result of the treatment regimen includes some

clinically significant benefit, such as the prevention, or reduction of severity, of symptoms, or a slowing of the progression of the condition. By contrast, the term “negative response” means that the treatment regimen provides no clinically significant benefit, such as the prevention, or reduction of severity, of symptoms, or increases the rate of progression of the condition.

[0531] The invention also encompasses methods of determining a positive or negative response to a treatment regimen and/or a side effect of a treatment regimen by a subject with a condition selected from inSIRS, ipSIRS or a particular stage of ipSIRS. These methods generally comprise: (a) correlating a reference biomarker signature with a positive or negative response or a side effect to the treatment regimen, wherein the biomarker signature defines a combination of at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarker values corresponding to values of at least two IRS biomarkers that are measured for or derived from a control biological subject or control group, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS, which lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3; (b) determining a sample biomarker signature defining a combination of at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarker values corresponding to values of at least two IRS biomarkers that are measured for or derived from a biological subject following commencement of the treatment regimen, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS, which lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3; wherein the sample biomarker signature

indicates whether the subject is responding positively or negatively to the treatment regimen and/or is developing a side effect from the treatment regimen, based on the correlation of the reference biomarker signature with the positive or negative response or side effect to the treatment regimen.

[0532] In related embodiments, the present invention further contemplates methods of determining a positive or negative response to a treatment regimen and/or a side effect to a treatment regimen by a biological subject. These methods generally comprise: (a) determining a sample biomarker signature defining a combination of at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) IRS biomarker values corresponding to values of at least two IRS biomarkers that are measured for or derived from a biological subject following commencement of the treatment regimen, wherein: (i) the at least two IRS biomarkers have a mutual correlation in respect of at least one condition selected from a healthy condition, inSIRS, ipSIRS or a particular stage of ipSIRS, which lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and (ii) the combination of at least two biomarker values has a performance value greater than or equal to a performance threshold representing the ability of the combination of at least two biomarker values to diagnose the presence, absence or degree of the at least one condition, or to provide a prognosis for the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3, wherein the sample biomarker signature is correlated with a positive or negative response to the treatment regimen and/or to a side effect from the treatment regimen; and (b) determining whether the subject is responding positively or negatively to the treatment regimen and/or is developing a side effect from the treatment regimen based on the sample biomarker signature.

[0533] This above methods can be practiced to identify responders or non-responders relatively early in the treatment process, *i.e.*, before clinical manifestations of efficacy. In this way, the treatment regimen can optionally be discontinued, a different treatment protocol can be implemented and/or supplemental therapy can be administered. Thus, in some embodiments, a sample IRS biomarker signature is obtained within about 2 hours, 4 hours, 6 hours, 12 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 10 weeks, 12 weeks, 4 months, six months or longer of commencing therapy.

[0534] A number of non-limiting example signatures for use in diagnosing respective conditions will now be described. For the purpose of illustration, the above-described process was used to select biomarkers that provided the theoretical best diagnostic biomarkers, selected from combinations including measured and/or derived biomarkers. Following this, other measured and/or derived biomarkers were grouped based on their correlation to the best diagnostic biomarkers, with the ability of biomarkers within these groups to act as a diagnostic signature then being assessed.

[0535] The results set out in detail below highlight that as long as the above-described criteria are met, the resulting signatures provide the required discriminatory ability for use in diagnosing the presence, absence, degree or prognosis of at least one condition in a biological subject.

Signature Derivation

[0536] An illustrative process for the identification of mRNA biomarkers for use in diagnostic algorithms will now be described.

Summary

[0537] Peripheral blood samples were obtained from healthy controls and patients retrospectively diagnosed by a panel of physicians with either inSIRS or ipSIRS (blood culture positive). ipSIRS patients were further classified retrospectively into “mild”, “severe” or “shock” based on clinical parameters. Total RNA from patient samples was then used in gene expression analysis (GeneChip® and / or quantitative PCR (qPCR)). Gene expression data were analyzed using a variety of statistical approaches to identify individual and derived markers. Derived markers were divided into groups based on how they correlated to each of the markers in the top-performing (based on AUC) ratio. This ratio approach provides the best diagnostic power with respect to AUC for separating: healthy and post-surgical (PS) (also referred to herein as “inSIRS”) conditions; healthy and sepsis (also referred to herein as “ipSIRS”); inSIRS and ipSIRS; mild ipSIRS and severe ipSIRS; mild ipSIRS and septic shock; and severe ipSIRS and septic shock.

Clinical Trials

[0538] Clinical trials were performed to determine whether certain mRNA transcripts could distinguish between healthy controls and various patient groups and within patient groups. Intensive care sepsis, post-surgical and inSIRS patients, as well as healthy controls were

prospectively enrolled and attended a single visit where blood was collected for gene expression and mRNA analyses using Affymetrix exon arrays and/or quantitative real-time PCR (qRT-PCR). A definitive diagnosis of infection-positive SIRS (mild, severe or shock) or inSIRS was unlikely to be known at the time patients were enrolled, and thus confirmation of a diagnosis and the assignment of patients to the cohorts were made retrospectively.

[0539] Patients who had clinical signs and/or symptoms of ipSIRS or inSIRS were consented and enrolled into the study as soon as possible after they had been identified, in most cases within 24 hours of admission. Final assessment of whether the participant had inSIRS, ipSIRS (mild, severe, or shock) was made retrospectively as clinical information and blood culture results became available.

[0540] Study participants were all over 18 years and either they or their surrogate decision maker signed and dated the clinical trial information sheet and consent form. All of the control participants were considered to be in good health based on a brief physical examination and their medical history at the time of enrolment.

[0541] Patients or their surrogate decision maker were offered the opportunity to participate in this study if the patient presented with signs and symptoms of either inSIRS or ipSIRS at the time of admission to ICU (using criteria based on the American College of Physicians and the Society of Critical Care Medicine standard definitions). That is, inSIRS and ipSIRS participants needed a variable combination of clinical conditions including two or more of the following within the last 24 hours: temperature $>38^{\circ}\text{C}$ or $<36^{\circ}\text{C}$; heart rate >90 beats/min; respiratory rate >20 breathes/min or a PaCO_2 of $<4.3\text{kPa}$ ($<32\text{ mm Hg}$); and evidence of a white blood cell count $<4,000\text{ cells/mm}^3$ ($<4 \times 10^9\text{ cells/L}$) or $>12,000\text{ cells/mm}^3$ ($>12 \times 10^9\text{ cells/L}$) or $>10\%$ immature neutrophils (band forms). Participants were excluded if they had any chronic systemic immune-inflammatory disorders including SLE, Crohn's disease, insulin-dependent diabetes mellitus (IDDM); were transplant recipients or were currently receiving chemotherapy treatment for cancer. Most patients had other underlying co-morbidities. All study participants were 18 years of age or older and had a body mass index of less than 40.

[0542] Demography, vital signs measurements (blood pressure, heart rate, respiratory rate, oxygen saturation, temperature), hematology (full blood count), clinical chemistry (urea, electrolytes, liver function enzymes, blood glucose) as well as microbial status was recorded.

[0543] Blood was collected for the purpose of extraction of high quality RNA into PAXgene™ tubes (PreAnalytix Inc., Valencia, CA, USA). Blood for bacterial culture was collected into BacTec Plus Aerobic (10ml) and BacTec Plus Anaerobic (10mL) tubes (Becton Dickinson) tubes for the detection of aerobic and anaerobic bacterial growth respectively.

[0544] A PAXgene blood RNA kit available from Qiagen Inc. (Valencia, CA, USA) was used to isolate total RNA from PAXgene tubes. Isolation begins with a centrifugation step to pellet nucleic acids in the PAXgene blood RNA tube. The pellet is washed and re-suspended and incubated in optimized buffers together with Proteinase K to bring about protein digestion. An additional centrifugation is carried out to remove residual cell debris and the supernatant is transferred to a fresh microcentrifuge tube. Ethanol is added to adjust binding conditions, and the lysate is applied to the PAXgene RNA spin column. During brief centrifugation, RNA is selectively bound to the silica-gel membrane as contaminants pass through. Remaining contaminants are removed in three efficient wash steps and RNA is then eluted in Buffer BR5. Determination of RNA quantity and quality was performed using an Agilent Bioanalyzer and Absorbance 260/280 ratio using a spectrophotometer.

Processing of Samples

[0545] Measurement of specific mRNA levels in a tissue sample can be achieved using a variety of technologies. A common and readily available technology that covers most of the known human mRNAs is GeneChip® analysis using Affymetrix technology. Details on the technology and methodology can be found at www.affymetrix.com. GeneChip® analysis has the advantage of being able to analyze thousands of RNA transcripts at a time. Another common and readily available technology is qPCR (quantitative polymerase chain reaction), which has the advantage of being able to analyze, in real-time and quantitatively, hundreds of RNA transcripts at a time. Details on one of these technologies (TaqMan®), chemistries and methodologies can be found on the Life Technologies website including published protocols entitled; “Protocol: Introduction to TaqMan SYBR Green Chemistry for Real-Time PCR” and “TaqMan Gene Expression Assays Protocol.” Both GeneChip® and qPCR were used in the discovery and proof-of-concept stages for biomarker identification. qPCR was used exclusively for biomarker feasibility testing.

Analysis, Interpretation of Data and Selection of Biomarkers and Derived Biomarkers*Healthy Control versus inSIRS*

[0546] A list of 941 mRNA individual markers with an AUC of at least 0.7 for separating the two conditions of Healthy and inSIRS was generated. Figure 8A plots these markers against the AUC and Figure 8B is a box and whisker plot of the best mRNA biomarker for separating the two conditions (AGFG1 – ArfGAP with FG repeats 1). The conditions of Healthy and inSIRS are perfectly separated when using this mRNA biomarker alone.

[0547] From the 941 individual markers at least 1000 derived markers (ratios) were generated that had an AUC of 1.0. A plot of the AUC of these derived markers for separating the conditions of Healthy and inSIRS is shown in Figure 8C with the top performing ratio shown as a box and whisker plot in Figure 8D. The AUC for AGFG1 and PVRIG (poliovirus receptor related immunoglobulin domain containing) has a ratio is 1.0.

[0548] All 941 individual markers were then broken into two groups – those that correlate to AGFG1 and those that correlate to PVRIG. Figures 8E and 8F demonstrate the correlation between the two groups based on their similarity to either AGFG1 or PVRIG. In these plots the groups are referred to as either group 1 (AGFG1) or group 2 (PVRIG). It can be seen that each “group” contains those markers that are most highly correlated to each other.

[0549] The markers in each “group” also correlate strongly (as demonstrated by AUC greater than 0.7 for all markers) to the condition being studied (in this instance Healthy versus inSIRS (PS)) as shown in Figures 8G and 8H.

[0550] By choosing mRNAs from these two groups to create derived markers a better AUC for separating Healthy and inSIRS is obtained than when markers are chosen from within groups ($p < 2.558e-13$) as demonstrated in Figure 8I, which shows a greater overall AUC is obtained compared to when using markers from either group 1 or group 2 alone. The mean AUC for markers derived from groups 1 and 2 is over 0.97, whereas the mean AUC for markers derived from either group 1 or 2 alone is less than 0.9.

Healthy Control Versus ipSIRS

[0551] A list of 941 mRNA individual markers with an AUC of at least 0.7 for separating the two conditions of Healthy and ipSIRS was generated. Figure 9A plots these markers against the AUC and Figure 9B is a box and whisker plot of the best mRNA biomarker for separating the two conditions (LTBP3 – latent transforming growth factor beta binding protein 3). The

conditions of Healthy and ipSIRS are perfectly separated when using this mRNA biomarker alone.

[0552] From the 941 individual markers at least 1000 derived markers (ratios) were generated that had an AUC of 1.0. A plot of the AUC of these derived markers for separating the conditions of Healthy and inSIRS is shown in Figure 9C with the top performing ratio shown as a box and whisker plot in Figure 9D. The AUC for LTBP3 and LPHN1 (latrophilin 1) as a ratio is 1.0.

[0553] All 941 individual markers were then broken into two groups – those that correlate to LTBP3 and those that correlate to LPHN1. Both plots in Figures 9E and 9F demonstrate the correlation between the two groups based on their similarity to either LTBP3 or LPHN1. It can be seen that each “group” contains those markers that are most highly correlated to each other.

[0554] The markers in each “group” also correlate strongly (as demonstrated by AUC greater than 0.7 for all markers) to the condition being studied (in this instance Healthy versus ipSIRS (sepsis)), as shown in Figures 9G and 9H.

[0555] By choosing mRNAs from these two groups to create derived markers a better AUC for separating Healthy and ipSIRS is obtained than when markers are chosen from within groups ($p < 2.2e-16$) as demonstrated in Figure 9I, which shows an improved AUC compared to using markers from either group 1 or group 2 alone. The mean AUC for markers derived from groups 1 and 2 is over 0.97, whereas the mean AUC for markers derived from either group 1 or 2 alone is less than 0.8.

inSIRS versus ipSIRS

[0556] A list of 359 mRNA individual markers with an AUC of at least 0.7 for separating the two conditions of inSIRS and ipSIRS was generated. Figure 10A plots these markers against the AUC and Figure 10B is a box and whisker plot of the best mRNA biomarker for separating the two conditions (PIWIL4 – piwi-like RNA mediated gene silencing 4). The conditions of inSIRS (PS) and ipSIRS (sepsis) are well separated when using this mRNA biomarker alone.

[0557] From the 359 individual markers 1000 derived markers (ratios) were generated that had an AUC greater than 0.9. A plot of the AUC of these derived markers for separating the

conditions of inSIRS and ipSIRS is shown in Figure 10C with the top performing ratio of *PLA2G7* (phospholipase A2, Group VII, (platelet activating factor acetyl hydrolase, plasma)) and *PLAC8* (placenta-specific 8) shown as a box and whisker plot in Figure 10D.

[0558] All 359 individual markers were then broken into two groups – those that correlate to *PLA2G7* and those that correlate to *PLAC8*. The plot in Figure 10E demonstrates that the markers in each “group” correlate strongly (as demonstrated by AUC greater than 0.7 for all markers) to the condition being studied (in this instance inSIRS (PS) versus ipSIRS (sepsis)).

[0559] By choosing mRNAs from these two groups to create derived markers a better AUC for separating inSIRS (PS) and ipSIRS (sepsis) is obtained than when markers are chosen from within groups ($p < 5.78e-5$) as demonstrated in Figure 10F compared to when using markers from either group 1 or group 2 alone. The mean AUC for markers derived from groups 1 and 2 is over 0.80, whereas the mean AUC for markers derived from either group 1 or 2 alone is less than 0.8.

[0560] In an alternative embodiment, the markers were broken into four groups – those that correlate to *CEACAM4* (bucket 3), those that correlate to *LAMP1* (bucket 4), those that correlate to *PLA2G7* (bucket 1) and those that correlate to *PLAC8* (bucket 2). The plots in Figure 10G demonstrate the markers in each group correlate strongly (as demonstrated by AUC greater than 0.7 for all markers) to the condition being studied (*i.e.*, inSIRS (PS) versus ipSIRS (sepsis)). Like the two-bucket embodiment discussed above, choosing mRNAs from four groups to create derived markers results in an overall better AUC for separating inSIRS (PS) and ipSIRS (sepsis), as compared to when markers are chosen from within groups ($p < 0.2564$, as demonstrated in Figure 10H compared to when using markers from any one of groups 1 to 4. The mean AUC for markers derived from groups 1 to 4 is over 0.8 whereas the mean AUC for markers derived from any one of groups 1 to 4 is less than 0.8

Mild ipSIRS versus Severe ipSIRS

[0561] A list of 66 mRNA individual markers with an AUC of at least 0.7 for separating the two conditions of mild ipSIRS and severe ipSIRS was generated. Figure 11A plots these markers against the AUC and Figure 11B is a box and whisker plot of the best mRNA biomarker for separating the two conditions (*N4BP2L2* – NEDD4 binding protein 2-like 2). The conditions of mild ipSIRS and severe ipSIRS are well separated when using this mRNA biomarker alone.

[0562] From the 66 individual markers at least 1000 derived markers (ratios) were generated that had an AUC of 0.87. A plot of the AUC of these derived markers for separating the conditions of mild ipSIRS and severe ipSIRS is shown in Figure 11C with the top performing ratio shown as a box and whisker plot in Figure 11D. The AUC for *N4BP2L2* and *ZC3H11A* (zinc finger CCCH-type containing 11A) as a ratio is 0.983.

[0563] All 66 individual markers were then broken into two groups – those that correlate to *N4BP2L2* and those that correlate to *ZC3H11A*. Both plots in Figures 11E and 11F demonstrate the correlation between the two groups based on their similarity to either *N4BP2L2* or *ZC3H11A*. In these plots the groups are referred to as either group 1 (*N4BP2L2*) or group 2 (*ZC3H11A*). It can be seen that each “group” contains those markers that are most highly correlated to each other. The markers in each “group” also correlate strongly (as demonstrated by AUC greater than 0.7 for all markers) to the condition being studied (in this instance mild ipSIRS versus severe ipSIRS).

[0564] By choosing mRNAs from these two groups to create derived markers a better AUC for separating mild ipSIRS and severe ipSIRS is obtained than when markers are chosen from within groups ($p < 2.2e-16$) as demonstrated in Figure 11I, compared to when using markers from either group 1 or group 2 alone. The mean AUC for markers derived from groups 1 and 2 is over 0.89, whereas the mean AUC for markers derived from either group 1 or 2 alone is less than 0.6.

Mild ipSIRS versus ipSIRS – shock

[0565] A list of 48 mRNA individual markers with an AUC of at least 0.7 for separating the two conditions of mild ipSIRS and ipSIRS - shock was generated. Figure 12A plots these markers against the AUC and Figure 12B is a box and whisker plot of the best mRNA biomarker for separating the two conditions (*CD6* – *CD6* molecule). The conditions of mild ipSIRS and ipSIRS shock are well separated when using this mRNA biomarker alone.

[0566] From the 48 individual markers at least 1000 derived markers (ratios) were generated that had an AUC of at least 0.793. A plot of the AUC of these derived markers for separating the conditions of mild ipSIRS and ipSIRS shock is shown in Figure 12C with the top performing ratio shown as a box and whisker plot in Figure 12D. The AUC for *VAMP2* and *UBAPI* (ubiquitin associated protein 1) as a ratio is 0.978.

[0567] All 48 individual markers were then broken into two groups – those that correlate to *VAMP2* and those that correlate to *UBAP1*. Both plots in Figure 12E and 12F demonstrate the correlation between the two groups based on their similarity to either *VAMP2* or *UBAP1*. In these plots the groups are referred to as either group 1 (*VAMP2*) or group 2 (*UBAP1*). It can be seen that each “group” contains those markers that are most highly correlated to each other. The markers in each “group” also correlate strongly (as demonstrated by AUC greater than 0.7 for all markers) to the condition being studied (in this instance mild ipSIRS versus ipSIRS - shock).

[0568] By choosing mRNAs from these two groups to create derived markers a better AUC for separating mild ipSIRS and ipSIRS - shock is obtained than when markers are chosen from within groups ($p < 2.2e-16$) as demonstrated in Figure 12I, compared to when using markers from either group 1 or group 2 alone. The mean AUC for markers derived from groups 1 and 2 is over 0.87, whereas the mean AUC for markers derived from either group 1 or 2 alone is less than 0.65.

Severe ipSIRS versus ipSIRS – shock

[0569] A list of 61 mRNA individual markers with an AUC of at least 0.7 for separating the two conditions of severe ipSIRS and ipSIRS - shock was generated. Figure 13A plots these markers against the AUC and Figure 13B is a box and whisker plot of the best mRNA biomarker for separating the two conditions (*SIRPG* – signal regulatory protein gamma). The conditions of severe ipSIRS and ipSIRS - shock are well separated when using this mRNA biomarker alone.

[0570] From the 61 individual markers at least 1000 derived markers (ratios) were generated that had an AUC of at least 0.821. A plot of the AUC of these derived markers for separating the conditions of severe ipSIRS and ipSIRS - shock is shown in Figure 13C with the top performing ratio shown as a box and whisker plot in Figure 13D. The AUC for *GATA3* (GATA binding protein 3) and *MECOM* (MDS1 and EVI1 complex locus) as a ratio is 0.936.

[0571] All 61 individual markers were then broken into two groups – those that correlate to *GATA3* and those that correlate to *MECOM*. Both plots in Figures 13E and 13F demonstrate the correlation between the two groups based on their similarity to either *GATA3* or *MECOM*. In these plots the groups are referred to as either group 1 (*GATA3*) or group 2 (*MECOM*). It can be seen that each “group” contains those markers that are most highly

correlated to each other. The markers in each “group” also correlate strongly (as demonstrated by AUC greater than 0.7 for all markers) to the condition being studied (in this instance severe ipSIRS versus ipSIRS - shock).

[0572] By choosing mRNAs from these two groups to create derived markers a better AUC for separating severe ipSIRS and ipSIRS - shock is obtained than when markers are chosen from within groups ($p < 2.2e-16$) as demonstrated in Figure 13I compared to when using markers from either group 1 or group 2 alone. The mean AUC for markers derived from groups 1 and 2 is over 0.82, whereas the mean AUC for markers derived from either group 1 or 2 alone is less than 0.7.

Signature Usage

[0573] Use of the above described markers and resulting signatures in patient populations and benefits in respect of differentiating inSIRS and ipSIRS, will now be described.

[0574] An assay capable of differentiating patients with inSIRS and ipSIRS can be used in multiple patient populations including:

- 1) Intensive Care Unit (medical and surgical ICU)
- 2) Post-surgical and medical wards
- 3) Emergency Department
- 4) Medical clinics.

[0575] Patients admitted to intensive care (ICU) often have ipSIRS, or develop ipSIRS during their ICU stay. The ultimate aim of intensive care is to ensure the patient survives and is discharged to a general ward in the minimum time. Patients in intensive care with diagnosed ipSIRS are usually administered a number of therapeutic compounds – many of which have opposing actions on the immune system and many of which could be counterproductive depending on the severity of ipSIRS (mild sepsis, severe sepsis, septic shock). Monitoring intensive care patients on a regular basis with biomarkers of the present invention will allow medical practitioners to differentiate inSIRS from ipSIRS and determine the stage of ipSIRS and hence choice of therapies, when to start and stop therapies, and patient management procedures, and ultimately response to therapy. Information provided by these biomarkers will therefore allow medical intensivists to tailor and modify therapies to ensure patients survive and spend less time in intensive care. Less time in intensive care leads

to considerable savings in medical expenses including through less occupancy time and appropriate use and timing of medications.

[0576] Surgical and general medical patients often develop inSIRS post-surgery or as a consequence of their condition or procedures and have a higher risk of developing ipSIRS. Post-operative and medical care in such patients therefore involves monitoring for signs of inSIRS and ipSIRS and differentiating between these two conditions. The treatment and management of inSIRS and ipSIRS patients post-surgically and in general wards is different, since inSIRS patients can be put on mild anti-inflammatory drugs or anti-pyretics and ipSIRS patients must be started on antibiotics as soon as possible for best outcomes. Monitoring post-surgical and medical patients on a regular basis with biomarkers of the present invention will allow nursing and medical practitioners to differentiate inSIRS and ipSIRS at an early stage and hence make informed decisions on choice of therapies and patient management procedures, and ultimately response to therapy. Information provided by these biomarkers will therefore allow medical practitioners to tailor and modify therapies to ensure patients recover quickly from surgery or other condition and do not develop ipSIRS. Less time in hospital and less complications leads to considerable savings in medical expenses including through less occupancy time and appropriate use and timing of medications.

[0577] Further, patients presenting to emergency departments often have a fever, which is one (of four) of the clinical signs of inSIRS. Such patients need to be assessed to determine if they have either inSIRS or ipSIRS. As mentioned above, the treatment and management of pyretic, inSIRS and septic patients are different. By way of example, a patient with a fever without other inSIRS clinical signs and no obvious source of infection may be sent home, or provided with other non-hospital services, without further hospital treatment. However, a patient with a fever may have early ipSIRS and not admitting such a patient may put their life at risk. Because these biomarkers can differentiate inSIRS and ipSIRS they will allow medical practitioners to triage emergency department patients quickly and effectively. Accurate triage decision-making insures that patients requiring hospital treatment are given it, and those that don't are provided with other appropriate services.

[0578] Further still, patients presenting to medical clinics often have any one of the four clinical signs of inSIRS (increased heart rate, increased respiratory rate, abnormal white blood cell count, fever or hypothermia). Many different clinical conditions can present with

one of the four clinical signs of inSIRS and such patients need to be assessed to determine if they have either inSIRS or ipSIRS and to exclude other differential diagnoses. By way of example, a patient with colic might also present with clinical signs of increased heart rate. Differential diagnoses could be (but not limited to) appendicitis, urolithiasis, cholecystitis, pancreatitis, enterocolitis. In each of these conditions it would be important to determine if there was a systemic inflammatory response (inSIRS) or whether an infection was contributing to the systemic response to the condition (ipSIRS). The treatment and management of patients with and without systemic inflammation and/or infection are different. Because these biomarkers can differentiate patients with a systemic inflammatory response to infection from those with a systemic inflammatory response without infection (inSIRS and ipSIRS), and determine the degree of systemic involvement, the use of them will allow medical practitioners to determine the next medical procedure(s) to perform to satisfactorily resolve the patient issue.

Determining the Extent of Systemic Inflammation in Sick Patients and Those With inSIRS and ipSIRS

[0579] As mentioned above, patients presenting to medical clinics often have any one of the four clinical signs of inSIRS. However, many different clinical conditions can present with one of the four clinical signs of inSIRS and such patients need to be assessed to determine if they have inSIRS, and if so the extent of inSIRS, or ipSIRS, and if so the extent of ipSIRS, and to exclude other differential diagnoses.

[0580] By way of example, a patient with respiratory distress is likely to present with clinical signs of increased respiratory rate. Differential diagnoses could be (but not limited to) asthma, pneumonia, congestive heart failure, physical blockage of airways, allergic reaction, collapsed lung, pneumothorax. In each of these conditions it would be important to determine if there was a systemic inflammatory response (inSIRS) or whether an infection was contributing to the condition. The treatment and management of patients with and without systemic inflammation and/or infection are different. Because these biomarkers can differentiate patients with a systemic inflammatory response to infection from those with a systemic inflammatory response without infection (inSIRS and ipSIRS), and determine the degree of systemic involvement, the use of them will allow medical practitioners to determine the next medical procedure(s) to perform to satisfactorily resolve the patient issue. Patients with a collapsed lung, pneumothorax or a physical blockage are unlikely to have a

large systemic inflammatory response and patients with congestive heart failure, allergic reaction or asthma are unlikely to have a large systemic inflammatory response due to infection. The extent of both inSIRS and ipSIRS, as indicated by biomarkers presented in this patent, also provides clinicians with information on next treatment and management steps. For example, a patient with respiratory distress and a strong biomarker response indicating ipSIRS is likely to be immediately hospitalized, placed on antibiotics and a chest X-ray performed. A patient with respiratory distress and a strong biomarker response indicating inSIRS but not ipSIRS is likely to be hospitalized and chest X-rayed along with other investigative diagnostic procedures, such as MRI, ECG, and angiogram. A patient with respiratory distress with a short history and no inSIRS or ipSIRS is likely to undergo further examination at a local clinic rather than requiring hospitalization.

[0581] Again, and as mentioned above, patients presenting to emergency departments often have a fever, which is one (of four) of the clinical signs of inSIRS. Such patients need to be assessed to determine if they have either inSIRS or ipSIRS. Further it is important to determine how sick they are to be able to make a Judgment call on whether to admit the patient or not. Accurate triage decision-making insures that patients requiring hospital treatment are given it, and those that don't are provided with other appropriate services.

[0582] Patients in ICU often have inSIRS and ipSIRS and it is important to differentiate these two conditions as treatment regimens differ. In patients with inSIRS it is important to determine the extent of the inflammatory response so that appropriate treatments and management regimens can be put in place. For example, a patient newly determined to have inSIRS that is not extensive may be able to be put on mild medication such a non-steroidal anti-inflammatory. A patient newly determined to have extensive inSIRS (e.g. trauma) may require stronger anti-inflammatory medication such as steroids to reduce the potential impact of the side effects of inflammation (swelling). In patients with ipSIRS it is also important to determine the extent of the inflammatory response to infection so that appropriate treatments and management regimens can be put in place or stopped. For example, for a patient with a persistent strong ipSIRS response the clinician may consider either changing, or adding to, the antibiotic treatment regimen in the absence of traditional bacterial culture and sensitivity results. Further, patients that are known to have had ipSIRS and have been on antimicrobial therapy for an extended period but have since demonstrated (by testing using biomarkers)

that they no longer have either an inSIRS or ipSIRS can therefore be safely taken off intravenous antibiotics.

Determining the Severity of ipSIRS

[0583] Patients admitted to intensive care (ICU) often have ipSIRS, or develop ipSIRS during their ICU stay. It is known that the severity of sepsis can be considered to be a continuum from less severe, or sepsis, to more severe, or severe sepsis, to the most severe, or septic shock. More severe sepsis (ipSIRS) requires more aggressive, immediate and tailored intervention compared to sepsis (although all are acute conditions). Patients in intensive care with diagnosed ipSIRS are usually administered a number of therapeutic compounds – many of which have opposing actions on the immune system and many of which could be counterproductive depending on the severity of ipSIRS (sepsis, severe sepsis, septic shock). Monitoring intensive care patients on a regular basis with biomarkers of the present invention will allow medical practitioners to determine the severity of ipSIRS (mild, severe or shock) and hence choice of therapies and patient management procedures, and ultimately response to therapy. Information provided by these biomarkers disclosed herein will therefore allow medical practitioners to tailor, modify or cease therapies and/or care to ensure patients survive and spend less time in intensive care. Less time in intensive care leads to considerable savings in medical expenses including through less occupancy time and appropriate use and timing of medications.

First Example Workflow

[0584] A first example workflow will now be described. The workflow involves up to seven steps depending upon availability of automated platforms. The assay uses quantitative, real-time determination of the amount of each transcript in the sample based on the detection of fluorescence on a qRT-PCR instrument (e.g. Applied Biosystems 7500 Fast Dx Real-Time PCR Instrument, Applied Biosystems, Foster City, CA, catalogue number 440685; K082562). Transcripts are each amplified, detected, and quantified in a separate reaction well using a probe that is visualized in the FAM channel (by example). The reported score is calculated using interpretive software provided separately to the kit but designed to integrate with RT-PCR machines.

[0585] The workflow below describes the use of manual processing and a pre-prepared kit.

Pre-analytical

- [0586] Blood collection
- [0587] Total RNA isolation

Analytical

- [0588] Reverse transcription (generation of cDNA)
- [0589] qPCR preparation
- [0590] qPCR
- [0591] Software, Interpretation of Results and Quality Control
- [0592] Output.

Kit Contents

- [0593] Diluent
- [0594] RT Buffer
- [0595] RT Enzyme Mix
- [0596] qPCR Buffer
- [0597] Primer/Probe Mix
- [0598] AmpliTaq Gold® (or similar)
- [0599] High Positive Control
- [0600] Low Positive Control
- [0601] Negative Control

Blood Collection

- [0602] The specimen used is a 2.5mL sample of blood collected by venipuncture using the PAXgene® collection tubes within the PAXgene® Blood RNA System (Qiagen, kit catalogue # 762164; Becton Dickinson, Collection Tubes catalogue number 762165; K042613). An alternate collection tube is Tempus® (Life Technologies).

Total RNA Isolation

- [0603] Blood (2.5mL) collected into a PAXgene RNA tube is processed according to the manufacturer's instructions. Briefly, 2.5mL sample of blood collected by venipuncture using the PAXgene™ collection tubes within the PAXgene™ Blood RNA System (Qiagen, kit catalogue # 762164; Becton Dickinson, Collection Tubes catalogue number 762165; K042613). Total RNA isolation is performed using the procedures specified in the PAXgene™ Blood RNA kit (a component of the PAXgene™ Blood RNA System). The

extracted RNA is then tested for purity and yield (for example by running an A_{260/280} ratio using a Nanodrop® (Thermo Scientific)) for which a minimum quality must be (ratio > 1.6). RNA should be adjusted in concentration to allow for a constant input volume to the reverse transcription reaction (below). RNA should be processed immediately or stored in single-use volumes at or below -70°C for later processing.

Reverse Transcription

[0604] Determine the appropriate number of reaction equivalents to be prepared (master mix formulation) based on a plate map and the information provided directly below. Each clinical specimen is run in singleton.

- a) **Each batch run must include the following specimens:**
- b) High Control, Low Control, Negative Control, and No Template Control (Test Diluent instead of sample) in singleton each

Program the ABI 7500 Fast Dx Instrument as detailed below.

- c) Launch the software.
- d) Click Create New Document
- e) In the New Document Wizard, select the following options:
 - i) Assay: Standard Curve (Absolute Quantitation)
 - ii) Container: 96-Well Clear
 - iii) Template: Blank Document (or select a laboratory-defined template)
 - iv) Run Mode: **Standard 7500**
 - v) Operator: Enter operator's initials
 - vi) Plate name: [default]
- f) Click Finish
- g) Select the Instrument tab in the upper left
- h) In the Thermal Cycler Protocol area, Thermal Profile tab, enter the following times:
 - i) 25 °C for 10 minutes
 - ii) 45 °C for 45 minutes
 - iii) 93 °C for 10 minutes
 - iv) Hold at 25 °C for 60 minutes

[0605] In a template-free area, remove the test Diluent and RT-qPCR Test RT Buffer to room temperature to thaw. Leave the RT-qPCR Test RT Enzyme mix in the freezer and/or on a cold block.

[0606] In a template-free area, assemble the master mix in the order listed below.

RT Master Mix – Calculation:

	Per well	$\times N$
RT-qPCR Test RT Buffer	3.5 μ L	$3.5 \times N$
RT-qPCR Test RT Enzyme mix	1.5 μ L	$1.5 \times N$
Total Volume	5 μL	5 $\times N$

[0607] Gently vortex the master mix then pulse spin. Add the appropriate volume (5 μ L) of the RT Master Mix into each well at room temperature.

[0608] Remove clinical specimens and control RNAs to thaw. (If the specimens routinely take longer to thaw, this step may be moved upstream in the validated method.)

[0609] Vortex the clinical specimens and control RNAs, then pulse spin. Add 10 μ L of control RNA or RT-qPCR Test Diluent to each respective control or negative well.

[0610] Add 10 μ L of sample RNA to each respective sample well (150 ng total input for RT; OD₂₆₀/OD₂₈₀ ratio greater than 1.6). Add 10 μ L of RT-qPCR Test Diluent to the respective NTC well.

[0611] **Note:** The final reaction volume per well is 15 μ L.

RT Master Mix	Samples
	5 μ L
<u>RNA sample</u>	10 μ L
Total Volume (per well)	15 μL

[0612] Mix by gentle pipetting. Avoid forming bubbles in the wells.

[0613] Cover wells with a seal.

[0614] Spin the plate to remove any bubbles (1 minute at 400 x g).

[0615] Rapidly transfer to ABI 7500 Fast Dx Instrument pre-programmed as detailed above.

[0616] Click Start. Click Save and Continue. Before leaving the instrument, it is recommended to verify that the run started successfully by displaying a time under Estimated Time Remaining.

[0617] qPCR master mix may be prepared to coincide roughly with the end of the RT reaction. For example, start about 15 minutes before this time. See below.

[0618] When RT is complete (*i.e.* resting at 25 °C; stop the hold at any time before 60 minutes is complete), spin the plate to collect condensation (1 minute at 400 x g).

qPCR Preparation

[0619] Determine the appropriate number of reaction equivalents to be prepared (master mix formulation) based on a plate map and the information provided in RT Preparation above.

[0620] Program the ABI 7500 Fast Dx with the settings below.

- a) Launch the software.
- b) Click Create New Document
- c) In the New Document Wizard, select the following options:
 - i) Assay: Standard Curve (Absolute Quantitation)
 - ii) Container: 96-Well Clear
 - iii) Template: Blank Document (or select a laboratory-defined template)
 - iv) Run Mode: **Standard 7500**
 - v) Operator: Enter operator's initials
 - vi) Plate name: Enter desired file name
- d) Click Next
- e) In the Select Detectors dialog box:
 - i) Select the detector for the first biomarker, and then click Add>>.
 - ii) Select the detector second biomarker, and then click Add>>, etc.
 - iii) Passive Reference: ROX
- f) Click Next
- g) Assign detectors to appropriate wells according to plate map.
 - i) Highlight wells in which the first biomarker assay will be assigned
 - ii) Click use for the first biomarker detector
 - iii) Repeat the previous two steps for the other biomarkers
 - iv) Click Finish

- h) Ensure that the Setup and Plate tabs are selected
- i) Select the Instrument tab in the upper left
- j) In the Thermal Cycler Protocol area, Thermal Profile tab, perform the following actions, with the results shown in Figure 14:
 - i) Delete Stage 1 (unless this was completed in a laboratory-defined template).
 - ii) Enter sample volume of 25 μ L.
 - iii) 95 °C 10 minutes
 - iv) 40 cycles of 95 °C for 15 seconds, 63 °C for 1 minute
 - v) Run Mode: Standard 7500
 - vi) Collect data using the “stage 2, step 2 (63.0@1:00)” setting
- k) Label the wells as below using this process: Right click over the plate map, then select Well Inspector. With the Well Inspector open, select a well or wells. Click back into the Well Inspector and enter the Sample Name. Close the Well Inspector when completed.
 - i) CONH for High Control
 - ii) CONL for Low Control
 - iii) CONN for Negative Control
 - iv) NTC for No Template Control
 - v) [Accession ID] for clinical specimens
- l) Ensure that detectors and quenchers are selected as listed below.
 - i) FAM for CEACAM biomarker 1; quencher=none
 - ii) FAM for LAMP1 biomarker 2; quencher=none, etc.
 - iii) FAM for PLA2G7; quencher=none
 - iv) FAM for PLAC8; quencher=none
 - v) Select “ROX” for passive reference

qPCR

[0621] In a template-free area, remove the assay qPCR Buffer and assay Primer/Probe Mixes for each target to room temperature to thaw. Leave the assay AmpliTaq Gold in the freezer and/or on a cold block.

[0622] Still in a template-free area, prepare qPCR Master Mixes for each target in the listed order at room temperature.

qPCR Master Mixes – Calculation Per Sample

	Per well	$\times N$
qPCR Buffer	11 μ L	11 $\times N$
Primer/Probe Mix	3.4 μ L	3.4 $\times N$
AmpliTaq Gold [®]	0.6 μ L	0.6 $\times N$
Total Volume	15 μL	15 $\times N$

[0623] Gently mix the master mixes by flicking or by vortexing, and then pulse spin. Add 15 μ L of qPCR Master Mix to each well at room temperature.

[0624] In a template area, add 130 μ L of SeptiCyte Lab Test Diluent to each cDNA product from the RT Reaction. Reseal the plate tightly and vortex the plate to mix thoroughly.

[0625] Add 10 μ L of diluted cDNA product to each well according to the plate layout.

[0626] Mix by gentle pipetting. Avoid forming bubbles in the wells.

[0627] Cover wells with an optical seal.

[0628] Spin the plate to remove any bubbles (1 minute at 400 x g).

[0629] Place on real-time thermal cycler pre-programmed with the settings above.

[0630] Click Start. Click Save and Continue. Before leaving the instrument, it is recommended to verify that the run started successfully by displaying a time under Estimated Time Remaining.

[0631] Note: Do not open the qPCR plate at any point after amplification has begun. When amplification has completed, discard the unopened plate.

Software, Interpretation of Results and Quality Control

[0632] Software is specifically designed to integrate with the output of PCR machines and to apply an algorithm based on the use of multiple biomarkers. The software takes into account appropriate controls and reports results in a desired format.

[0633] When the run has completed on the ABI 7500 Fast Dx Instrument, complete the steps below in the application 7500 Fast System with 21 CFR Part 11 Software, ABI software SDS v1.4.

[0634] Click on the Results tab in the upper left corner.

[0635] Click on the Amplification Plot tab in the upper left corner.

[0636] In the Analysis Settings area, select an auto baseline and manual threshold for all targets. Enter 0.01 as the threshold.

[0637] Click on the Analyze button on the right in the Analysis Settings area.

[0638] From the menu bar in the upper left, select File then Close.

[0639] Complete the form in the dialog box that requests a reason for the change. Click OK.

[0640] Transfer the data file (.sds) to a separate computer running the specific assay RT-qPCR Test Software.

[0641] Launch the assay RT-qPCR Test Software. Log in.

[0642] From the menu bar in the upper left, select File then Open.

[0643] Browse to the location of the transferred data file (.sds). Click OK.

[0644] The data file will then be analyzed using the assay's software application for interpretation of results.

Interpretation of Results and Quality Control

Results

[0645] Launch the interpretation software. Software application instructions are provided separately.

[0646] Following upload of the .sds file, the Software will automatically generate classifier scores for controls and clinical specimens.

[0647] Controls

[0648] The Software compares each CON (control) specimen (CONH, CONL, CONN) to its expected result. The controls are run in singleton.

Control specimen		
Designation	Name	Expected result
CONH	High Control	Score range
CONL	Low Control	Score range
CONN	Negative Control	Score range
NTC	No Template Control	Fail (no Ct for all targets)

[0649] If CONH, CONL, and/or CONN fail the batch run is invalid and no data will be reported for the clinical specimens. This determination is made automatically by the interpretive software. The batch run should be repeated starting with either a new RNA preparation or starting at the RT reaction step.

[0650] If NTC yields a result other than Fail (no Ct for all targets), the batch run is invalid and no data may be reported for the clinical specimens. This determination is made by visual inspection of the run data. The batch run should be repeated starting with either a new RNA preparation or starting at the RT reaction step.

[0651] If a second batch run fails, please contact technical services. If both the calibrations and all controls are valid, then the batch run is valid and specimen results will be reported.

[0652] Specimens

[0653] Note that a valid batch run may contain both valid and invalid specimen results.

[0654] Analytical criteria (e.g. Ct values) that qualify each specimen as passing or failing (using pre-determined data) are called automatically by the software.

[0655] Scores out of range – reported.

[0656] Quality Control

[0657] Singletons each of the Negative Control, Low Positive Control, and High Positive Control must be included in each batch run. The batch is valid if no flags appear for any of these controls.

[0658] A singleton of the No Template Control is included in each batch run and Fail (no Ct for all targets) is a valid result indicating no amplifiable material was detectable in the well.

[0659] The negative control must yield a Negative result. If the negative control is flagged as Invalid, then the entire batch run is invalid.

[0660] The low positive and high positive controls must fall within the assigned ranges. If one or both of the positive controls are flagged as Invalid, then the entire batch run is invalid.

Example Output

[0661] A possible example output from the software is presented below in Figure 15. The format of such a report depends on many factors including; quality control, regulatory authorities, cut-off values, the algorithm used, laboratory and clinician requirements, likelihood of misinterpretation.

[0662] In this instance the assay is called “SeptiCyte Lab Test”. The result is reported as a number (5.8), a call (“Sepsis Positive”), a position on a 0-12 scale, and a probability of the patient having sepsis based on historical results and the use of a pre-determined cut-off (using results from clinical trials). Results of controls within the assay are also reported. Other information that could be reported might include: previous results and date and time of such results, probability of severe sepsis or septic shock, a scale that provides cut-off values for historical testing results that separate the conditions of healthy, inSIRS and ipSIRS (mild, severe and shock) such that those patients with higher scores are considered to have more severe inSIRS or ipSIRS.

Second Example Workflow

[0663] A second example workflow will now be described. Machines have been, and are being, developed that are capable of processing a patient sample at point-of-care, or near point-of-care. Such machines require few molecular biology skills to run and are aimed at non-technical users. The idea is that the sample would be pipetted directly into a disposable cartridge that is then inserted into the machine. The user presses “Start” and within 2-3 hours a result is generated. The cartridge contains all of the required reagents to perform Steps 2-5 in the example workflow above and the machine has appropriate software incorporated to allow Steps 6 and 7 to be performed.

[0664] Fresh, whole, anti-coagulated blood can be pipetted into an Idylla Cartridge (Biocartis NV) or similar (Unyvero, Curetis AG; Enigma ML, Enigma Diagnostics; DiagCore, STAT Diagnostica; Savannah, Quidel Corp; ePlex, GenMark Dx), and on-screen instructions on the Idylla machine followed to test for differentiating inSIRS and ipSIRS (by example). Inside the Idylla machine RNA is first extracted from the whole blood and is then converted into cDNA. The cDNA is then used in qRT-PCR reactions. The reactions are followed in real time and Ct values calculated. On-board software generates a result output (see Figure XX). Appropriate quality control measures for RNA quality, no template controls, high and low template controls and expected Ct ranges ensure that results are not reported erroneously.

Example Biomarker Ratios

[0665] Example biomarker ratios (the top 12 based on AUC) that are capable of separating different conditions are shown in the box and whisker plots as listed below, with each showing perfect separation.

- Figures 16A to 16L show Healthy Versus inSIRS (Post-Surgical)
- Figures 17A to 17L show Healthy Versus ipSIRS (Sepsis)
- Figures 18A to 18L show inSIRS (Post-Surgical) Versus ipSIRS (Sepsis)
- Figures 19A to 19L show Sepsis Versus Severe Sepsis
- Figures 20A to 20L show Severe Sepsis Versus Septic Shock
- Figures 21A to 21L show Sepsis Versus Septic Shock

Example Algorithm Combining Biomarker Ratios

[0666] Biomarker ratios (derived markers) can be used in combination to increase the diagnostic power for separating various conditions. Determining which markers to use, and how many, for separating various conditions can be achieved by calculating Area Under Curve (AUC).

[0667] Figure 22 shows the effect on AUC (in this instance for separating inSIRS and ipSIRS) of adding biomarkers to the diagnostic signature. Diagnostic power significantly increases (adjusted p-value = 0.0175) between a single mRNA biomarker (in this instance *PLA2G7*, AUC of 0.88, 95% CI 0.79 - 0.97) compared to the power of the two best performing markers in combination (in this instance *PLA2G7* and *PLAC8*, AUC of 0.96, 95% CI 0.91 - 1.0). Combinations of two, three, four and five biomarkers produced equally as

good differentiation of inSIRS and ipSIRS without significant differences. For commercial development of derived markers other factors come into play such as cost-effectiveness, assay complexity and capabilities of the qRT-PCR platform.

[0668] In this example, the addition of markers beyond 3 or 4 does not significantly improve performance and, conversely, a decline in AUC is observed in signatures of ≥ 5 genes probably because when a statistical model is forced to include biomarkers that add little additional information data over-fitting and addition of noise occurs.

[0669] As such, and by example, a 4-gene signature (0.986, 95% CI 0.964-1.00) offers the appropriate balance between simplicity, practicality and commercial risk for separating inSIRS and ipSIRS. Further, an equation using four markers weighs each biomarker equally which also provides additional robustness in cases of analytical or clinical variability.

[0670] One example equation that provides good diagnostic power for separating inSIRS and ipSIRS (amongst others) is:

$$\text{Diagnostic Score} = (PLA2G7 - PLAC8) + (CEACAM4 - LAMP1)$$

[0671] The value for each biomarker is a Ct value from a PCR. When clinical samples from patients with inSIRS and ipSIRS were tested using these four markers in a PCR the Ct values for each of the markers was found to fall between 26 and 34. In this patient population the first biomarker within each bracket pair has a higher value than the second biomarker within each bracket pair. Thus, the “Diagnostic Score” has been found to have values between 0 and 12. However, in theory the “Diagnostic Score” could potentially be highest Ct value +/- highest Ct value.

[0672] In Figure 23 shows results of PCR and the use of the above algorithm have been calculated for two patient populations (N=63 for “Discovery” and N=70 for “Feasibility”). Each patient was clinically and retrospectively (note, not at the time the sample was taken) confirmed as having either inSIRS (black dots) or ipSIRS (red dots). Each patient sample has also had a SeptiCyte score calculated (Y axis on left hand side). On a scale of 0-12 it can be seen that patients with confirmed ipSIRS (red dots) obtain a higher Diagnostic Score compared to those with confirmed inSIRS. Further, it can be seen that an arbitrary cut-off line can be drawn that more or less separates the two conditions depending upon the desired false negative or false positive rate (compared to a retrospective diagnosis of inSIRS or

ipSIRS using clinical data). In this instance the line is drawn at a “SeptiCyte Score” of 4 such that the number of false negative ipSIRS calls in the Discovery Dataset is zero and the number of false negative ipSIRS calls in the Feasibility Dataset is 2. Conversely the number of false positive ipSIRS calls in the Discovery Dataset is four and the number of false positive ipSIRS calls in the Feasibility Dataset is 9. Clearly in this instance whether a patient sample is false positive or false negative depends on the artificial gold standard of a retrospective clinical call of inSIRS or ipSIRS.

[0673] Accordingly, in one example, when used for determining a likelihood of the subject having inSIRS or ipSIRS, the method can include determining a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene, determining a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene and then determining an indicator using the first and second pairs of biomarker values.

[0674] As previously discussed, the indicator could then be compared to indicator references specifically established to distinguish between inSIRS and ipSIRS.

[0675] An example process of a process for establishing indicator references will now be described in more details with reference to Figure 24.

[0676] In this example, at step 2400 the processing system 201 determines reference data in the form of measured biomarker values obtained for a reference population. The reference data may be acquired in any appropriate manner but typically this involves obtaining gene expression product data from a plurality of individuals.

[0677] In order to achieve this, gene expression product data are collected, for example by obtaining a biological sample, such as a peripheral blood sample, and then performing a quantification process, such as a nucleic acid amplification process, including PCR (Polymerase Chain Reaction) or the like, in order to assess the activity, and in particular, level or abundance of a number of reference biomarkers. Quantified values indicative of the relative activity are then stored as part of the reference data.

[0678] In one example, the measurements are received as raw data, which then undergoes preliminary processing. Such raw data corresponds to information that has come from a

source without modification, such as outputs from instruments such as PCR machines, array (*e.g.*, microarray) scanners, sequencing machines, clinical notes or any other biochemical, biological, observational data, or the like. This step can be used to convert the raw data into a format that is better suited to analysis. In one example this is performed in order to normalize the raw data and thereby assist in ensuring the biomarker values demonstrate consistency even when measured using different techniques, different equipment, or the like. Thus, the goal of normalization is to remove the variation within the samples that is not directly attributable to the specific analysis under consideration. For example, to remove variances caused by differences in sample processing at different sites. Classic examples of normalization include z-score transformation for generic data, or popular domain specific normalizations, such as RMA normalization for microarrays.

[0679] However, it will also be appreciated that in some applications, such as a single sample experiment run on a single data acquisition machine, this step may not strictly be necessary, in which case the function can be a Null function producing an output identical to the input.

[0680] In one example, the preferred approach is a paired function approach over log normalized data. Log normalization is a standard data transformation on microarray data, because the data follow a log-normal distribution when coming off the machine. Applying a log transform turns the data into process-friendly normal data.

[0681] The individuals are selected to include individuals diagnosed with one or more conditions of interest, as well as healthy individuals. The conditions are typically medical, veterinary or other health status conditions and may include any illness, disease, stages of disease, disease subtypes, severities of disease, diseases of varying prognoses or the like, and in the current example would include at least some individuals with inSIRS and some individuals with ipSIRS. In this regard, the individuals also typically undergo a clinical assessment allowing the conditions to be clinically identified, and with an indication of any assessment or condition forming part of the reference data.

[0682] The biomarker values measured will depend on the predominant condition that is being assessed so, for example, in the case of determining the likelihood of a subject having inSIRS or ipSIRS, the biomarkers used will be *LAMP1*, *CEACAM4*, *PLAC8* and *PLA2G7*, as discussed above.

[0683] Once collected, the reference data can be stored in the database 211 allowing this to be subsequently retrieved by the processing system 201 for subsequent analysis, or could be provided directly to the processing system 201 for analysis.

[0684] As part of the above process, at step 2410 the measurements are validated using traditional prior art techniques, to ensure that the measurements have been performed successfully, and hence are valid.

[0685] At step 2420, each individual with the reference population is typically allocated to a group. The groups may be defined in any appropriate manner and may be defined based on any one or more of an indication of a presence, absence, degree, stage, severity, prognosis or progression of a condition, other tests or assays, or measured biomarkers associated with the individuals.

[0686] For example, a first selection of groups may be to identify one or more groups of individuals suffering from SIRS, one or more groups of individuals suffering ipSIRS, and one or more groups of individuals suffering inSIRS. Further groups may also be defined for individuals suffering from other conditions. The groups may include overlapping groups, so for example it may be desirable to define groups of healthy individuals and individuals having SIRS, with further being defined to distinguish inSIRS patients from ipSIRS patients, as well as different degree of inSIRS or ipSIRS, with these groups having SIRS in common, but each group of patients differing in whether a clinician has determined the presence of an infection or not. Additionally, further subdivision may be performed based on characteristics of the individuals, phenotypic traits, measurement protocols or the like, so groups could be defined based on these parameters so that a plurality of groups of individuals suffering from a condition are defined, with each group relating to a different phenotypic trait, measurement protocol or the like.

[0687] It will also be appreciated, however, that identification of different groups can be performed in other manners, for example on the basis of particular activities of biomarkers within the biological samples of the reference individuals, and accordingly, reference to conditions is not intended to be limiting and other information may be used as required.

[0688] The manner in which classification into groups is performed may vary depending on the preferred implementation. In one example, this can be performed automatically by the processing system 201, for example, using unsupervised methods such as Principal Components Analysis (PCA), or supervised methods such as k-means or Self Organizing Map (SOM). Alternatively, this may be performed manually by an operator by allowing the operator to review reference data presented on a Graphical User Interface (GUI), and define respective groups using appropriate input commands.

[0689] At step 2430, first and second derived biomarker values are determined representing respective indicator values. The first and second indicator values In_1, In_2 are determined on a basis of ratios of concentrations of first and second, and third and fourth biomarkers respectively:

$$In_1 = (PLA2G7/ PLAC8)$$

$$In_2 = (CEACAM4/ LAMP1)$$

[0690] The indicator values are then used to establish indicator references at step 2440, which are then used in analyzing measured indicator values for a subject to establish a likelihood of the subject having a condition.

[0691] In particular, indicator values for each reference group are statistically analyzed to establish a range or distribution of indicator values that is indicative of each group, and an example distribution is shown in Figure 26, as will be discussed in more detail below.

[0692] A further example will now be described with reference to Figures 25A and 25B.

[0693] In this example, at step 2500 a sample is acquired from the subject. The sample could be any suitable sample such as a peripheral blood sample, or the like, depending on the nature of the biomarker values being determined. At step 2505 the sample undergoes preparation allowing this to be provided to a measuring device and used in a quantification process at step 2510. For this purpose of this example, the quantification process involves PCR amplification, with the measuring device being a PCR machine, although other suitable techniques could be used. In this instance, amplification times $At(PLA2G7)$, $At(PLAC8)$, $At(CEACAM4)$, $At(LAMP1)$ are determined for each of the four biomarkers at step 2515, with the amplification times being transferred from the measuring device to the processing system

201 allowing the processing system 201 to perform analysis of the corresponding biomarker values.

[0694] Accordingly, at step 2520 the processing system 201 calculates ratios using the amplifications times. In this regard, as the amplification times represent a log value, the ratios are determined by subtracting amplifications times as will be appreciated by a person skilled in the art.

[0695] Accordingly, in this example the indicator values would be determined as follows:

$$In_1 = At(PLA2G7) - At(PLAC8)$$

$$In_2 = At(CEACAM4) - At(LAMP1)$$

[0696] At step 2525 the processing system 201 determines an indicator value by combining the ratios for the indicator values, as follows:

$$In = In_1 + In_2$$

[0697] The processing system 201 then compares the indicator value to one or more respective indicator references at step 2530.

[0698] As previously described, the indicator references are derived for a reference population and are used to indicate the likelihood of a subject suffering from inSIRS or ipSIRS. To achieve this, the reference population is grouped based on a clinical assessment into groups having / not having the conditions or a measure of severity, risk or progression stage of the condition, with this then being used to assess threshold indicator values that can distinguish between the groups or provide a measure of severity, risk or progression stage.

[0699] The comparison is performed by comparing the indicator to an indicator distribution determined for each group in the reference population. In the current example, there are two reference groups, with one corresponding to individuals diagnosed with inSIRS and the other for individuals diagnosed with ipSIRS. In this instance, the results of the comparison can be used to determine a likelihood of the individual having ipSIRS as opposed to inSIRS. This can be achieved using a number of different methods, depending on the preferred implementation.

[0700] An example of a reference distribution is shown in Figure 26, which shows the distribution of indicator values for a reference population containing both inSIRS and ipSIRS samples. The density (y axis) describes how common scores are in the reference population. In Figure 26, the most common values for the inSIRS population are in the range 1 to 8, and for the ipSIRS population are mostly in the range 5 to 13. By way of example, let us assume that the calculated indicator value for a new sample is 4. A value of 4 in the inSIRS population has a high density at this value (A), while the ipSIRS population has a low density at this value (B), meaning that this sample is more likely to be inSIRS. Conversely, if a sample has an indicator score of 10, this value in the ipSIRS reference population has a high density (C), while the inSIRS population has a low density (D), meaning this it is more probable that this sample with an indicator value of 10 belongs to the ipSIRS population.

[0701] In practice this process can be performed by determining a basic probability based on score bands. For a given score band (*i.e.* 4-6), the proportion of individuals with SIRS or SEPSIS is calculated. For example, if 40% of the scores between 4 and 6 were SEPSIS, then if an subject has an indicator value between 4 and 6, they have a 40% probability of sepsis. Thus, for a given range within the reference distribution, the probability of belonging to one group or another (SIRS/SEPSIS) can simply be the proportion of that group within the range.

[0702] An alternative technique is a standard Bayes method. In this case, the technique uses a distribution of inSIRS scores, a distribution of ipSIRS scores and an indicator value for the subject. In this example, a standard score or equivalent is used to generate a probability of the indicator value belonging to the inSIRS distribution: $pr(\text{inSIRS})$ and separately to the ipSIRS distribution: $pr(\text{ipSIRS})$. The Bayes method is used to generate the probability of ipSIRS given the individual distributions.

[0703] Thus, given derived biomarker distributions for two or more groups (*i.e.* inSIRS/ipSIRS), the probability of membership for a single unknown sample into each distribution can be calculated (p-value) using for example a standard score (z-score). Then the p-values for each distribution can be combined into an overall probability for each class (*i.e.* inSIRS/ipSIRS) using for example Bayes rule or any other probability calculation method (including frequentist or empirical or machine learned methods).

[0704] Thus, once the indicator value has been derived and compared to the indicator distributions, the results of this comparison are used by the processing system 201 to calculate a likelihood of the subject having ipSIRS at step 2535, with this being used to generate a representation of the results at step 2540, which is provided for display at step 2545, for example to a clinician or medical practitioner. This can be achieved by displaying the representation on a client device, such as part of an email, dashboard indication or the like.

[0705] An example of the representation is shown in Figures 27A and 27B.

[0706] In this example, the representation 2700 includes a pointer 2710 that moves relative to a linear scale 2720. The linear scale is divided into regions 2721, 2722, 2723, 2724 which indicate whether the subject is suffering from level 1, 2, 3 or 4. Corresponding indicator number values are displayed at step 2730 with an indication of whether the corresponding value represents a likelihood of SIRS (inSIRS) or SEPSIS (ipSIRS) being shown at step 2740. An alphanumeric indication of the score is shown at step 2751 together with an associated probability of the biological subject having SEPSIS at step 2752.

[0707] As shown in this example, regions of the linear scale where the pointer is situated are highlighted with the diagnosis that is most unlikely being greyed out to make it absolutely clear where the subject sits on the scale. This results in a representation which when displayed at step 2545 is easy for a clinician to readily understand and to make a rapid diagnosis.

[0708] It will be appreciated from the above that a method can be provided for use in assessing the likelihood of a biological subject having inSIRS or ipSIRS the method including, in one or more processing devices:

- a) determining a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;

- b) determining an indicator indicative of a ratio of the concentrations of the polynucleotide expression products using the pair of biomarker values;
- c) retrieving previously determined first and second indicator references from a database, the first and second indicator references being determined based on indicators determined from first and second groups of a reference population, one of the groups consisting of individuals diagnosed with the medical condition;
- d) comparing the indicator to the first and second indicator references;
- e) using the results of the comparison to determine a probability indicative of the subject having the medical condition; and,
- f) generating a representation of the probability, the representation being displayed to a user to allow the user to assess the likelihood of a biological subject having at least one medical condition.

[0709] Similarly apparatus can be provided for determining the likelihood of a biological subject having inSIRS or ipSIRS, the apparatus including:

- a) a sampling device that obtains a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) a measuring device that quantifies polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
- c) at least one processing device that:
 - i) receives an indication of the pair of biomarker values from the measuring device;
 - ii) determines an indicator using a ratio of the concentration of the first and second polynucleotide expression products using the biomarker values; and,
 - iii) compares the indicator to at least one indicator reference; and,
 - iv) determines a likelihood of the subject having the at least one medical condition using the results of the comparison; and,

v) generates a representation of the indicator and the likelihood for display to a user.

[0710] A further method that can be provided includes differentiating between inSIRS and ipSIRS in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) in a measuring device:
 - i) amplifying at least some polynucleotide expression products in the sample;
 - ii) determining an amplification amount representing a degree of amplification required to obtain a defined level of polynucleotide expression products including:
 - (1) amplification amounts for a first pair of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - (2) amplification amounts for a second pair of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
- c) in a processing system:
 - i) retrieving the amplification amounts;
 - ii) determining an indicator by:
 - (1) determining a first derived biomarker value indicative of a ratio of concentrations of the first pair of polynucleotide expression products by determining a difference between the amplification amounts for the first pair;
 - (2) determining a second derived biomarker value indicative of a ratio of concentrations of the second pair of polynucleotide expression products by determining a difference between the amplification amounts for the second pair;
 - (3) determining the indicator by adding the first and second derived biomarker values;
 - iii) retrieving previously determined first and second indicator references from a database, wherein the first and second indicator references are distributions of indicators determined for first and second groups of a reference population,

the first and second group consisting of individuals diagnosed with inSIRS and ipSIRS respectively;

- iv) comparing the indicator to the first and second indicator references;
- v) using the results of the comparison to determine a probability of the subject being classified within the first or second group;
- vi) generating a representation at least partially indicative of the indicator and the probability; and,
- vii) providing the representation to a user to allow the user to assess the likelihood of a biological subject having at least one medical condition.

[0711] Additionally, a method can be provided for determining an indicator used in assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition, the method including:

- a) determining a plurality of biomarker values, each biomarker value being indicative of a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject;
- b) determining the indicator using a combination of the plurality of biomarker values, wherein:
 - i) at least two biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
 - ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

[0712] Throughout this specification and claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers or steps but not the exclusion of any other integer or group of integers.

[0713] Persons skilled in the art will appreciate that numerous variations and modifications will become apparent. All such variations and modifications which become apparent to persons skilled in the art, should be considered to fall within the spirit and scope that the invention broadly appearing before described.

MRPS15	87
RRAGC	88
COL9A2	89
TESK2	90
NRD1	91
KT112	92
CC2D1B	93
YIPF1	94
JAK1	95
SLC35D1	96
DIRAS3	97
ZZZ3	98
GNG5	99
ZNHIT6	100
ODF2L	101
SEF15	102
BARRH2	103
GCLM	104
CLCCC1//GPSM2//C 10orf62	105
SORT1	106
SLC16A4	107
PHTF1	108
RSBN1	109
DENNND2C//BCAS2	110
CD58	111
SPAG17//WDR3	112
REG4//NBPF7	113
RP11- 94I2.2//NBPF16//N BPF11//NBPF15//N	114

TIPRL	58
SFT2D2	59
CACNA1E	60
SMG7	61
OCLM	62
RGS2	63
ZC3H11A//RP11-74E24.2	64
MFSD4	65
IL20	66
RPS6KC1	67
C1orf95	68
ARF1	69
GALNT2	70
TNFRSF4	71
NADK	72
FLJ14100//C1orf86	73
GPR153	74
RERE	75
SLC2A7	76
SDHB	77
RNF186	78
DDOST	79
GPN2	80
RPA2	81
PEF1	82
PTP4A2	83
TRIM62	84
PHC2	85
LSM10	86

LRRC42	29
C10orf175//TTC4	30
TMEM61	31
FPGT//TNNI3K	32
ACADM	33
SPATA1	34
EPHX4	35
RPPA2	36
RPL5//SNORA66//SNORD21//FAM69A	37
RTCD1	38
SLC30A7	39
RNPC3//AMY2B	40
CELSR2	41
AHCYL1	42
CEPT1//DRAM2	43
CHIA	44
LIX1L	45
UPF0627	46
MRPS21	47
TNFaIP8L2	48
SMCP	49
DCST1	50
RAG1AP1	51
C10orf182	52
HAPLN2	53
NTRK1	54
CD11E	55
TOMM40L//NR113	56
POU2F1	57

TABLE 1

- 200 -

BPFF8//NBPF20//NB	140	TARBP1	168	GNLY	198
PF10//NBPF14//NB	141	CHML	169	KCNIP3	199
PF1//LOC10028814	142	AKT3	170	CNNM4	200
2//NBPF12//KIAA1		SMYD3	171	CNNM3	201
245//LOC1002901		AHCTF1	172	ZAP70	202
37		OR1C1	173	LIPT1//MRPL30	203
APH1A	115	STX6//KIAA1614	144	MAP4K4	204
POGZ	116	EDEM3	145	IL1R2	205
TDRKH	117	UCHL5	146	HADHB	175
THEM4	118	DENNND1B	147	ABHD1//PREB	176
S100A11	119	DDX59	148	SPAST	177
CRNN	120	KTF21B	149	SLC30A6//DDX50	178
SPRR2C	121	ARL8A	150	CHCHD5	209
S100A12	122	CYB5R1	151	MSH2	180
S100A8	123	MYBPH	152	FOXN2	181
GATAD2B//PLIN2	124	CHI3L1	153	PSD4	211
DENNND4B	125	P1K3C2B//LOC1001	154	DDX18	212
PBXIP1	126	30573		INSIG2	213
PYGO2	127	NUAK2	155	TMEM177//LOC100	214
SHC1	128	NUCKS1	156	125918	
DCST2	129	FAIM3	157	OTX1	185
GBA//GBAP	130	PLXNA2	158	AFTPH	186
ASH1L	131	SLC30A1	159	CEP68	187
RIT1	132	LPGAT1	160	PLEK	188
MEF2D	133	ANGEL2	161	ANXA4	189
AIM2	134	RAB3GAP2//AURKA	162	MDX1	190
COPA	135	PS1//AURKA//SNO		NAGK	191
DEDD	136	RA36B		SMYD5//INOT	192
TADA1L	137	TP53BP2	163	MTHFD2	193
GPA33	138	NVL	164	TTC31	194
CD247	139	TMEM63A	165	SEMA4F	195
		PARP1	166	TMFSB10	196
		ITPKB	167	SH2D6	197

PF5	140	TARBP1	168	GNLY	198
PIGC	141	CHML	169	KCNIP3	199
KIAA0040	142	AKT3	170	CNNM4	200
TOR1AIP2//TOR1AI	143	SMYD3	171	CNNM3	201
P1//IFRG15		AHCTF1	172	ZAP70	202
STX6//KIAA1614	144	OR1C1	173	LIPT1//MRPL30	203
EDEM3	145	NCOA1	174	MAP4K4	204
UCHL5	146	HADHB	175	IL1R2	205
DENNND1B	147	ABHD1//PREB	176	IL1R1	206
DDX59	148	SPAST	177	IL18R1	207
KTF21B	149	SLC30A6//DDX50	178	POLR1B	208
ARL8A	150	CRIP	179	CHCHD5	209
CYB5R1	151	MSH2	180	IL1RN	210
MYBPH	152	FOXN2	181	PSD4	211
CHI3L1	153	CCDC104	182	DDX18	212
P1K3C2B//LOC1001	154	VRK2	183	INSIG2	213
30573		AHSA2//USP34	184	TMEM177//LOC100	214
NUAK2	155	OTX1	185	125918	
NUCKS1	156	AFTPH	186	RALB	215
FAIM3	157	CEP68	187	PROC	216
PLXNA2	158	PLEK	188	GPR17//LOC10029	217
SLC30A1	159	ANXA4	189	1428//LIMS2	
LPGAT1	160	FAM123C		IMP4	218
ANGEL2	161	ACVR2A			
RAB3GAP2//AURKA	162	MBD5			
PS1//AURKA//SNO		LYPD6B			
RA36B		SLC4A10			
TP53BP2	163	UVR3			
NVL	164	HAT1			
TTC31		ITGA6			

PF5	140	TARBP1	168	GNLY	198
PIGC	141	CHML	169	KCNIP3	199
KIAA0040	142	AKT3	170	CNNM4	200
TOR1AIP2//TOR1AI	143	SMYD3	171	CNNM3	201
P1//IFRG15		AHCTF1	172	ZAP70	202
STX6//KIAA1614	144	OR1C1	173	LIPT1//MRPL30	203
EDEM3	145	NCOA1	174	MAP4K4	204
UCHL5	146	HADHB	175	IL1R2	205
DENNND1B	147	ABHD1//PREB	176	IL1R1	206
DDX59	148	SPAST	177	IL18R1	207
KTF21B	149	SLC30A6//DDX50	178	POLR1B	208
ARL8A	150	CRIP	179	CHCHD5	209
CYB5R1	151	MSH2	180	IL1RN	210
MYBPH	152	FOXN2	181	PSD4	211
CHI3L1	153	CCDC104	182	DDX18	212
P1K3C2B//LOC1001	154	VRK2	183	INSIG2	213
30573		AHSA2//USP34	184	TMEM177//LOC100	214
NUAK2	155	OTX1	185	125918	
NUCKS1	156	AFTPH	186	RALB	215
FAIM3	157	CEP68	187	PROC	216
PLXNA2	158	PLEK	188	GPR17//LOC10029	217
SLC30A1	159	ANXA4	189	1428//LIMS2	
LPGAT1	160	FAM123C		IMP4	218
ANGEL2	161	ACVR2A			
RAB3GAP2//AURKA	162	MBD5			
PS1//AURKA//SNO		LYPD6B			
RA36B		SLC4A10			
TP53BP2	163	UVR3			
NVL	164	ITGA6			
TTC31		HAT1			
ANXA4	165	ITGA6			
FAM123C		ITGA6			
ACVR2A		ITGA6			
MBD5		ITGA6			
LYPD6B		ITGA6			
SLC4A10		ITGA6			
UVR3		ITGA6			
ITGA6		ITGA6			

PF5	140	TARBP1	168	GNLY	198
PIGC	141	CHML	169	KCNIP3	199
KIAA0040	142	AKT3	170	CNNM4	200
TOR1AIP2//TOR1AI	143	SMYD3	171	CNNM3	201
P1//IFRG15		AHCTF1	172	ZAP70	202
STX6//KIAA1614	144	OR1C1	173	LIPT1//MRPL30	203
EDEM3	145	NCOA1	174	MAP4K4	204
UCHL5	146	HADHB	175	IL1R2	205
DENNND1B	147	ABHD1//PREB	176	IL1R1	206
DDX59	148	SPAST	177	IL18R1	207
KTF21B	149	SLC30A6//DDX50	178	POLR1B	208
ARL8A	150	CRIP	179	CHCHD5	209
CYB5R1	151	MSH2	180	IL1RN	210
MYBPH	152	FOXN2	181	PSD4	211
CHI3L1	153	CCDC104	182	DDX18	212
P1K3C2B//LOC1001	154	VRK2	183	INSIG2	213
30573		AHSA2//USP34	184	TMEM177//LOC100	214
NUAK2	155	OTX1	185	125918	
NUCKS1	156	AFTPH	186	RALB	215
FAIM3	157	CEP68	187	PROC	216
PLXNA2	158	PLEK	188	GPR17//LOC10029	217
SLC30A1	159	ANXA4	189	1428//LIMS2	
LPGAT1	160	FAM123C		IMP4	218
ANGEL2	161	ACVR2A			
RAB3GAP2//AURKA	162	MBD5			
PS1//AURKA//SNO		LYPD6B			
RA36B		SLC4A10			
TP53BP2	163	UVR3			
NVL	164	ITGA6			
TTC31		HAT1			
ANXA4	165	ITGA6			
FAM123C		ITGA6			
ACVR2A		ITGA6			
MBD5		ITGA6			
LYPD6B		ITGA6			
SLC4A10		ITGA6			
UVR3		ITGA6			
ITGA6		ITGA6			

- 201 -

ZAK	227	PPM1G	257	MPP4	287	GYG1	317
OSBPL6	228	NLRC4	258	INO80D	288	SELT	318
PLEKHA3	229	CDC42EP3	259	KLF7	289	MED12L	319
ZC3H15	230	NRNPLL	260	FAM119A	290	RAP2B	320
COL3A1	231	COX7A2L	261	NGEF	291	MYNN	321
GLS	232	KCNG3	262	ARL4C	292	ABCF3	322
OBFC2A	233	CALM2//C2orf61	263	RAB17	293	VPS8	323
COQ10B	234	BCL11A	264	HDLBP	294	HRG	324
MARS2	235	XPO1	265	LRNN1	295	EIF4A2//SNORA44	325
CFLAR	236	NAT8B	266	SETD5	296	LPP	326
NOP58	237	DUSP11	267	IRAK2	297	CCDC50	327
FAM117B	238	MOGS	268	C3orf42	298	LOC152217	328
CYP20A1	239	SNRNP200	269	TSEN2	299	TADA3L	329
FASTKD2	240	SEMA4C	270	NR2C2//MRPS25	300	SEC13	330
PIKfyve	241	MITD1	271	UBE2E1	301	TIMP4	331
C2orf62	242	IL1A	272	C3orf35	302	METTL6	332
SLC11A1	243	SLC35F5	273	SNRK	303	DAZL//DAZ4//DAZ3//DAZ2	333
AGFG1	244	CCDC93	274	ZNF197	304	SATB1//TBC1D5	334
CHRNG	245	CLASP1	275	GNAI2	305	SCN10A	335
EIF4E2	246	SAP130	276	ALAS1	306	SEC22C	336
TRPM8	247	YSK4	277	PRKCD	307	ZDHHC3a	337
LRRKIP1	248	GTDC1	278	CACNA1D	308	ZDHHC3b	338
GAL3ST2	249	ORC4L	279	PXK	309	SLC6A20	339
TMEM18	250	NR4A2//FLJ46875	280	PTPRG	310	UQCRC1	340
LAPTM4A	251	DPP4	281	ATXN7	311	PRKAR2A	341
SF3B14	252	GALNT3	282	SLC35A5	312	IMPDH2	342
TP53I3	253	SCN7A	283	SLC15A2	313	CCDC71	343
UNQ2999	254	FRZB	284	CCDC48	314	UBA7	344
GPR113//SELI	255	STK17B	285	DNAJC13	315	CAMKV	345
MPV17	256	CLK1//PPIL3	286	CLDN18	316		

PPM1G	227	INOS	257	INOS80D	288	SELT	318
NLRC4	228	CD42EP3	259	KLF7	289	MED12L	319
NRNPLL	230	COX7A2L	261	FAM119A	290	RAP2B	320
COL3A1	231	KCNG3	262	NGEF	291	MYNN	321
GLS	232	CALM2//C2orf61	263	ARL4C	292	ABCF3	322
OBFC2A	233	BCL11A	264	RAB17	293	VPS8	323
COQ10B	234	XPO1	265	HDLBP	294	HRG	324
MARS2	235	NAT8B	266	SETD5	296	EIF4A2//SNORA44	325
CFLAR	236	DUSP11	267	IRAK2	297	LPP	326
NOP58	237	MOGS	268	C3orf42	298	CCDC50	327
FAM117B	238	SNRNP200	269	TSEN2	299	LOC152217	328
CYP20A1	239	SEMA4C	270	NR2C2//MRPS25	300	TADA3L	329
FASTKD2	240	MITD1	271	UBE2E1	301	SEC13	330
PIKfyve	241	IL1A	272	C3orf35	302	TIMP4	331
C2orf62	242	SLC35F5	273	SNRK	303	METTL6	332
SLC11A1	243	CCDC93	274	ZNF197	304	DAZL//DAZ4//DAZ3//DAZ2	333
AGFG1	244	CLASP1	275	GNAI2	305	SATB1//TBC1D5	334
CHRNG	245	SAP130	276	ALAS1	306	SCN10A	335
EIF4E2	246	YSK4	277	PRKCD	307	SEC22C	336
TRPM8	247	GTDC1	278	CACNA1D	308	ZDHHC3a	337
LRRKIP1	248	ORC4L	279	ATXN7	311	ZDHHC3b	338
GAL3ST2	249	NR4A2//FLJ46875	280	PXK	309	SLC6A20	339
TMEM18	250	PTPRG	281	PTPRG	310	UQCRC1	340
LAPTM4A	251	FRZB	282	ATXN7	311	PRKAR2A	341
SF3B14	252	STK17B	283	SLC35A5	312	IMPDH2	342
TP53I3	253	CLK1//PPIL3	284	SLC15A2	313	CCDC71	343
UNQ2999	254	DNAJC13	285	CCDC48	314	UBA7	344
GPR113//SELI	255	CAMKV	286	DNAJC13	315	CAMKV	345
MPV17	256	CLDN18	287	CLDN18	316		

ZAK	227	PPM1G	257	INOS	288	SELT	318
OSBPL6	228	NLRC4	258	CD42EP3	289	KLF7	319
PLEKHA3	229	NRNPLL	260	COX7A2L	290	FAM119A	320
ZC3H15	230	COL3A1	261	KCNG3	291	NGEF	321
COL3A1	231	GLS	262	CALM2//C2orf61	292	ARL4C	322
GLS	232	OBFC2A	233	BCL11A	293	RAB17	323
OBFC2A	233	COQ10B	234	XPO1	294	HDLBP	324
COQ10B	234	MARS2	235	NAT8B	295	LRNN1	325
MARS2	235	CFLAR	236	DUSP11	296	SETD5	326
CFLAR	236	NOP58	237	MOGS	297	IRAK2	327
NOP58	237	FAM117B	238	SNRNP200	298	IRAK2	328
FAM117B	238	CYP20A1	239	SEMA4C	299	TSEN2	329
CYP20A1	239	FASTKD2	240	MITD1	300	NR2C2//MRPS25	330
FASTKD2	240	PIKfyve	241	C2orf62	301	UBE2E1	331
PIKfyve	241	SLC11A1	242	SLC35F5	302	C3orf35	332
SLC11A1	242	AGFG1	243	CCDC93	303	SNRK	333
AGFG1	243	CHRNG	244	CLASP1	304	ZNF197	334
CHRNG	244	EIF4E2	245	SAP130	305	GNAI2	335
EIF4E2	245	TRPM8	246	YSK4	306	ALAS1	335
TRPM8	246	LRRKIP1	247	GTDC1	307	PRKCD	336
LRRKIP1	247	GAL3ST2	248	GTDC1	308	CACNA1D	337
GAL3ST2	248	TMEM18	249	ORC4L	309	ZDHHC3a	337
TMEM18	249	LAPTM4A	250	NR4A2//FLJ46875	310	ZDHHC3b	338
LAPTM4A	250	SF3B14	251	PTPRG	311	ATXN7	338
SF3B14	251	TP53I3	252	FRZB	312	SLC35A5	339
TP53I3	252	UNQ2999	253	STK17B	313	SLC15A2	340
UNQ2999	253	GPR113//SELI	254	CLK1//PPIL3	314	CCDC48	341
GPR113//SELI	254	MPV17	255	MPV17	315	DNAJC13	342
MPV17	255		256		316	CLDN18	343

- 202 -

GRPEL2	432
MFAP3	433
GABRA6	434
GABRA1	435
DOCK2	436
RANBP17//USP12	437
ERGIC1	438
ATP6V0E1//SNORA74B	439
ZNF346	440
NSD1	441
CLPTM1L	442
UGT3A1	443
GDNF	444
TTC33	445
hCG_2039148	446
MOCS2	447
SLC38A9	448
CCDC125	449
ANKRA2	450
HAPLN1	451
CCNH	452
TMEM161B	453
MBLAC2	454
MCTP1	455
TICAM2//TMED7//TMED7-TICAM2	456
KIF3A	457
C5orf15	458
SKP1	459
CXCL14	460

GPRIN3	403
PPA2	404
COL25A1	405
C4orf3	406
QRFPR	407
MFSD8	408
MAP9	409
PDGFC	410
TKTL2	411
ACSL1	412
SUB1/TMEM183A	413
CARD6	414
MCCCC2	415
TNPO1	416
PDE8B	417
PARD4	418
THBS4	419
FAM151B	420
RASGRF2	421
SNX2	422
LMNB1//PCIF1	423
MEGF10	424
LEAP2	425
TCF7	426
KDM3B	427
CXXC5	428
SLC4A9	429
ANKHD1- EIF4EBP3//ANKHD 1//EIF4EBP3	430
KIAA0141	431

TMEM33//DCAF4L1	374
KIT	375
ENAM	376
FAM47E//STBD1	377
ENOPH1	378
PDLIM5	379
CCDC109B//HIGD1A//CCDC13	380
EGF	381
PCDH10	382
RAB33B	383
TMEM184C	384
RBM46	385
GRIA2	386
C4orf39	387
KLHL2	388
TLL1	389
F11	390
SLBP	391
HAUS3//POLN	392
PPARGC1A	393
TLR10	394
C4orf34	395
TXK	396
RPL21P44	397
KDR	398
RCHY1	399
CNOT6L	400
PLAC8	401
HPS6	402

WDR82	346
LMOD3	347
FOXP1	348
MORC1	349
ATG3	350
GSK3B//LOC100129275	351
HCLS1	352
KPNA1	353
PTPLB	354
C3orf22	355
RPN1	356
KIAA1257//ACAD9//LOC100132731	357
FOXL2	358
MECOM	359
PLD1	360
GNB4	361
MRPL47	362
KLHL6	363
THRO	364
ETV5	365
BCL6//LOC100131635	366
ATP13A5	367
TMEM44	368
KIAA1530	369
TACCC3	370
CNO	371
BST1	372
KLF3	373

- 203 -

KLHL3	461	MAPK13	490	RXRB	520	C441208
CD14	462	PNPLA1	491	VPS52	521	GPR141
YIPF5	463	SFRS3	492	TCP11	522	STAR3NL
LARS	464	CDKN1A	493	CLPS	523	POU6F2
DCTN4	465	FOXP4	494	PGC	524	CDC2L5
CCDC69	466	CUL9	495	ZNF318	525	ZMIZ2
ATOX1	467	RUNX2	496	YIPF3	526	UPP1
TIMD4	468	ZNF451	497	MRPL14	527	ZNF273
ADAM19	469	SOBP	498	PLA2G7	528	KCTD7//RABGEF1
SLC3	470	C6orf182	499	PKHD1	529	RABGEF1//tcag7.9
RNF44	471	KIAA1919	500	IL17F	530	67//tcag7.951//KC
DOK3	472	RWD11	501	HTR1B	531	TD7//LOC1002933
MGAT4B//SQSTM1	473	KPNA5	502	GABRR2	532	33
C5orf45//SQSTM1	474	TPD52L1	503	UBE2J1	533	CCDC132
RASGEF1C	475	ARG1	504	BACH2	534	PVRIG//PILRB//ST
MGAT1	476	RAB32	505	MCM9	535	AG3
IRF4	477	ARID1B	506	VNN1	536	C7orf51
HIVEP1	478	SLC22A3	507	IL20RA	537	AG3
E2F3	479	SERPINB1	508	FLJ27255	538	GNB2
HIST1H4I	480	C6orf146	509	T	539	LRRC17
HIST1H2BM	481	GCM2	510	RPS6KA2	540	564
MOG	482	ATXN1	511	HGC6.3	541	LRRN3
ZNRD1//NCRNA00	483	DCDC2//KAAG1	512	UNC84A//C7orf20	542	565
171		HIST1H3I	513	SDK1	543	LUC7L2
TRIM15	484	HIST1H4L	514	ZDHHC4	544	MGAM//LOC10012
HCG27	485	GABBR1	515	C7orf26	545	4692
BAT2//SNORA38	486	RNA243	516	GLCCI1//tcag7.903	546	GINAP7
CYP21A2	487	DDAH2	517	GPNNMB	547	570
ITPR3	488	CLIC1	518	CCDC126	548	INSIG1
MAPK14	489	NEU1	519	WIPF3//ZNRF2//LO	549	RBM33
						571
						ICA1
						572
						573
						FAM126A
						574
						HIBADH
						575

SLC3	470	C6orf182	499	PKHD1	529	RABGEF1//tcag7.9
RNF44	471	KIAA1919	500	IL17F	530	67//tcag7.951//KC
DOK3	472	RWD11	501	HTR1B	531	TD7//LOC1002933
MGAT4B//SQSTM1	473	KPNA5	502	GABRR2	532	33
C5orf45//SQSTM1	474	TPD52L1	503	UBE2J1	533	CCDC132
RASGEF1C	475	ARG1	504	BACH2	534	PVRIG//PILRB//ST
MGAT1	476	RAB32	505	MCM9	535	AG3
IRF4	477	ARID1B	506	VNN1	536	C7orf51
HIVEP1	478	SLC22A3	507	IL20RA	537	563
E2F3	479	SERPINB1	508	FLJ27255	538	LRRC17
HIST1H4I	480	C6orf146	509	T	539	564
HIST1H2BM	481	GCM2	510	RPS6KA2	540	LRRN3
MOG	482	ATXN1	511	HGC6.3	541	565
ZNRD1//NCRNA00	483	DCDC2//KAAG1	512	UNC84A//C7orf20	542	566
171		HIST1H3I	513	SDK1	543	CFTR
TRIM15	484	HIST1H4L	514	ZDHHC4	544	LSM8
HCG27	485	GABBR1	515	C7orf26	545	567
BAT2//SNORA38	486	RNA243	516	GLCCI1//tcag7.903	546	LUC7L2
CYP21A2	487	DDAH2	517	GPNNMB	547	MGAM//LOC10012
ITPR3	488	CLIC1	518	CCDC126	548	4692
MAPK14	489	NEU1	519	WIPF3//ZNRF2//LO	549	GINAP7

KLHL3	461	MAPK13	490	RXRB	520	C441208
CD14	462	PNPLA1	491	VPS52	521	GPR141
YIPF5	463	SFRS3	492	TCP11	522	STAR3NL
LARS	464	CDKN1A	493	CLPS	523	551
DCTN4	465	FOXP4	494	PGC	524	552
CCDC69	466	CUL9	495	ZNF318	525	553
ATOX1	467	RUNX2	496	YIPF3	526	UPP1
TIMD4	468	ZNF451	497	MRPL14	527	ZNF273
ADAM19	469	SOBP	498	PLA2G7	528	556
SLC3	470	C6orf182	499	PKHD1	529	KCTD7//RABGEF1
RNF44	471	KIAA1919	500	IL17F	530	557
DOK3	472	RWD11	501	HTR1B	531	RABGEF1//tcag7.9
MGAT4B//SQSTM1	473	KPNA5	502	GABRR2	532	67//tcag7.951//KC
C5orf45//SQSTM1	474	TPD52L1	503	UBE2J1	533	TD7//LOC1002933
RASGEF1C	475	ARG1	504	BACH2	534	33
MGAT1	476	RAB32	505	MCM9	535	CCDC132
IRF4	477	ARID1B	506	VNN1	536	PVRIG//PILRB//ST
HIVEP1	478	SLC22A3	507	IL20RA	537	AG3
E2F3	479	SERPINB1	508	FLJ27255	538	C7orf51
HIST1H4I	480	C6orf146	509	T	539	562
HIST1H2BM	481	GCM2	510	RPS6KA2	540	GNB2
MOG	482	ATXN1	511	HGC6.3	541	LRRC17
ZNRD1//NCRNA00	483	DCDC2//KAAG1	512	UNC84A//C7orf20	542	563
171		HIST1H3I	513	SDK1	543	564
TRIM15	484	HIST1H4L	514	ZDHHC4	544	LRRN3
HCG27	485	GABBR1	515	C7orf26	545	565
BAT2//SNORA38	486	RNA243	516	GLCCI1//tcag7.903	546	CFTR
CYP21A2	487	DDAH2	517	GPNNMB	547	LSM8
ITPR3	488	CLIC1	518	CCDC126	548	566
MAPK14	489	NEU1	519	WIPF3//ZNRF2//LO	549	567

- 204 -

TRIL	576	SGK196	604	RGP1//GBA2	633	FBXW5	663
SCRN1	577	UBE2V2	605	TGFBR1	634	C10orf18	664
ELMO1	578	FLJ46365	606	C9orf6//IKBKA ^P	635	FBXO18	665
INHBA	579	SNTG1	607	IMAGE5303689	636	GATA3	666
CAMK2B	580	TRIM55	608	ATP6V1G1	637	CUGBP2	667
NPC1L1	581	C8orf45	609	TLR4	638	VIM	668
DDC//LOC1001294	582	PREX2	610	SET	639	STAM	669
27		PLEKHF2	611	MRPL41	640	WAC	670
NSUN5//NSUN5B//	583	BAALC//FLJ10489	612	C9orf68	641	BAMBI	671
NSUN5C		CLDN3	584	HAUS6//SCARNA8	642	ZNF487//LOC4399	672
C7orf23//DMTF1	585	TTC35	613	KLHL9	643	11	
SRI	586	MTBP	614	C9orf82	644	ALOX5	673
BET1	587	ZHX2	615	NDUFB6//DFFB	645	WDFY4	674
MCM7	588	RNF139	616	SIT1	646	SRGN	675
GATS	589	TG	617	FAM108B1	647	CCDC109A	676
ATXN7L1//RINT1//	590	DENND3//C8orf60	618	TRPM6	648	FAM149B1//FAM14	677
EFCAB10		TNFRSF10D	619	FRMD3	649	9B2	
KIAA1549	591	TRIM35	620	SLC28A3	650	MINPP1	678
SLC37A3	592	GSR	621	BICD2	651	PTEN//PTENP1	679
SMARCD3	593	WHSC1L1	622	C9orf84	652	ENTPD1//C10orf13	680
MLL3//BAGE2	594	PCMTD1//PXDNL	623	AKNA	653	1	
CLN8	595	NCOA2	624	MEGF9	654	ABCC2	681
MSRA	596	TRAM1//LOC28619	625	C5	655	SFXN2	682
PIWIL2	597	O		GOLGA1//SCAI	656	SHOC2	683
NEFM//LOC100129	598	RUNX1T1	626			ACSL5	684
717		EXT1	627			BCCIP//DHX32	685
EPHX2	599			SH2D3C	657	FAM188A	686
LEPRRTL1	600			FAM102A	658	CUBN	687
MAK16//C8orf41	601			FLJ10232	659	SVIL//hCG_178349	688
AP3M2	602			ASB6	660	4	
FNTA	603			BAT2L	661	FAM13C//PHYH1PL	689
				GALT	662	ATAD1	690

SGK196	604	RGP1//GBA2	633	FBXW5	663
UBE2V2	605	TGFBR1	634	C10orf18	664
FLJ46365	606	C9orf6//IKBKA ^P	635	FBXO18	665
SNTG1	607	IMAGE5303689	636	GATA3	666
TRIM55	608	ATP6V1G1	637	CUGBP2	667
C8orf45	609	TLR4	638	VIM	668
PREX2	610	SET	639	STAM	669
PLEKHF2	611	MRPL41	640	WAC	670
BAALC//FLJ10489	612	C9orf68	641	BAMBI	671
CLDN3	584	TTC35	613	HAUS6//SCARNA8	642
C7orf23//DMTF1	585	MTBP	614	KLHL9	643
SRI	586	ZHX2	615	C9orf82	644
BET1	587	RNF139	616	NDUFB6//DFFB	645
MCM7	588	TG	617	SIT1	646
GATS	589	DENND3//C8orf60	618	FAM108B1	647
ATXN7L1//RINT1//	590	TNFRSF10D	619	TRPM6	648
EFCAB10		TRIM35	620	FRMD3	649
KIAA1549	591	GSR	621	SLC28A3	650
SLC37A3	592	WHSC1L1	622	BICD2	651
SMARCD3	593	PCMTD1//PXDNL	623	C9orf84	652
MLL3//BAGE2	594	NCOA2	624	AKNA	653
CLN8	595	TRAM1//LOC28619	625	MEGF9	654
MSRA	596	O		C5	655
PIWIL2	597	RUNX1T1	626	GOLGA1//SCAI	656
NEFM//LOC100129	598	EXT1	627	SH2D3C	657
717		DDEF1IT1	628	FAM102A	658
EPHX2	599	CDC37L1	629	FLJ10232	659
LEPRRTL1	600	UBE2R2	630	ASB6	660
MAK16//C8orf41	601	UBAP1//KIF24	631	BAT2L	661
AP3M2	602	GALT	632	EDF1	662
FNTA	603				

SGK196	604	RGP1//GBA2	633	FBXW5	663
UBE2V2	605	TGFBR1	634	C10orf18	664
FLJ46365	606	C9orf6//IKBKA ^P	635	FBXO18	665
SNTG1	607	IMAGE5303689	636	GATA3	666
TRIM55	608	ATP6V1G1	637	CUGBP2	667
C8orf45	609	TLR4	638	VIM	668
PREX2	610	SET	639	STAM	669
PLEKHF2	611	MRPL41	640	WAC	670
BAALC//FLJ10489	612	C9orf68	641	BAMBI	671
CLDN3	584	TTC35	613	HAUS6//SCARNA8	642
C7orf23//DMTF1	585	MTBP	614	KLHL9	643
SRI	586	ZHX2	615	C9orf82	644
BET1	587	RNF139	616	NDUFB6//DFFB	645
MCM7	588	TG	617	SIT1	646
GATS	589	DENND3//C8orf60	618	FAM108B1	647
ATXN7L1//RINT1//	590	TNFRSF10D	619	TRPM6	648
EFCAB10		TRIM35	620	FRMD3	649
KIAA1549	591	GSR	621	SLC28A3	650
SLC37A3	592	WHSC1L1	622	BICD2	651
SMARCD3	593	PCMTD1//PXDNL	623	C9orf84	652
MLL3//BAGE2	594	NCOA2	624	AKNA	653
CLN8	595	TRAM1//LOC28619	625	MEGF9	654
MSRA	596	O		C5	655
PIWIL2	597	RUNX1T1	626	GOLGA1//SCAI	656
NEFM//LOC100129	598	EXT1	627	SH2D3C	657
717		DDEF1IT1	628	FAM102A	658
EPHX2	599	CDC37L1	629	FLJ10232	659
LEPRRTL1	600	UBE2R2	630	ASB6	660
MAK16//C8orf41	601	UBAP1//KIF24	631	BAT2L	661
AP3M2	602	GALT	632	EDF1	662
FNTA	603				

SGK196	604	RGP1//GBA2	633	FBXW5	663
UBE2V2	605	TGFBR1	634	C10orf18	664
FLJ46365	606	C9orf6//IKBKA ^P	635	FBXO18	665
SNTG1	607	IMAGE5303689	636	GATA3	666
TRIM55	608	ATP6V1G1	637	CUGBP2	667
C8orf45	609	TLR4	638	VIM	668
PREX2	610	SET	639	STAM	669
PLEKHF2	611	MRPL41	640	WAC	670
BAALC//FLJ10489	612	C9orf68	641	BAMBI	671
CLDN3	584	TTC35	613	HAUS6//SCARNA8	642
C7orf23//DMTF1	585	MTBP	614	KLHL9	643
SRI	586	ZHX2	615	C9orf82	644
BET1	587	RNF139	616	NDUFB6//DFFB	645
MCM7	588	TG	617	SIT1	646
GATS	589	DENND3//C8orf60	618	FAM108B1	647
ATXN7L1//RINT1//	590	TNFRSF10D	619	TRPM6	648
EFCAB10		TRIM35	620	FRMD3	649
KIAA1549	591	GSR	621	SLC28A3	650
SLC37A3	592	WHSC1L1	622	BICD2	651
SMARCD3	593	PCMTD1//PXDNL	623	C9orf84	652
MLL3//BAGE2	594	NCOA2	624	AKNA	653
CLN8	595	TRAM1//LOC28619	625	MEGF9	654
MSRA	596	O		C5	655
PIWIL2	597	RUNX1T1	626	GOLGA1//SCAI	656
NEFM//LOC100129	598	EXT1	627	SH2D3C	657
717		DDEF1IT1	628	FAM102A	658
EPHX2	599	CDC37L1	629	FLJ10232	659
LEPRRTL1	600	UBE2R2	630	ASB6	660
MAK16//C8orf41	601	UBAP1//KIF24	631	BAT2L	661
AP3M2	602	GALT	632	EDF1	662
FNTA	603				

- 205 -

ANKRD22	691	C11orf30	721	CCDC82	751	PXMP2//PGAM5	780
FLJ34077	692	C11orf82	722	KIAA1826	752	DCP1B	781
COX15	693	TMEM126B	723	MPZL3	753	SLC2A3//SLC2A14	782
ERLIN1	694	C11orf73	724	MPZL2	754	C3AR1	783
ACTR1A	695	PIWIL4	725	H2AFX	755	PLBD1	784
ABLM1	696	LOC100132686	726	SIAE	756	TW7SF3	785
RAB11FIP2	697	PAFAH1B2	727	ZBTB44	757	ASB8//PHB	786
C10orf84	698	UBE4A	728	HSN2	758	LMBR1L	787
PRDX3	699	TRAPPC4	729	ADIPOR2	759	FMNL3//PRPF40B	788
C10orf119	700	SC5DL	730	NCAPD2//SCARNA1	760	AAAS	789
NSMCE4A	701	VWA5A//OR10D1P	731	0//FADS1	760	NFE2	790
TALDO1//INT8	702	STT3A	732	PTPN6	761	GPR84	791
TNNT3	703	VPS26B	733	CLEC4D	762	CD63	792
FXC1	704	TRIM21	734	CDKN1B	763	SARNP//DNAJC14	793
PDE3B	705	ZBED5	735	GOLT1B	764	NACA	794
DNAJC24	706	SAAL1	736	FAR2	765	CDK4//TSPAN31	795
PTPRJ//OR4B1	707	FANCF	737	FGD4	766	TMBIM4//LOC1001	796
C11orf31	708	LIN7C	738	TMEM106C	767	33322	
TMEM109	709	PHF21A	739	TMBIM6	768	TL22	797
CD6	710	CUGBP1	740	C12orf62	769	LIN7A	798
CD5	711	OSBP	741	CUGBP2	770	HAL	799
TMEM138	712	CYBASC3	742	DGKA	771	APPL2	800
POLR2G	713	TUT1	743	COQ10A	772	GLTP	801
TMEM179B	714	SLC25A45	744	PRR13//FCBP2	773	GIT2	802
NAT11	715	LTBP3	745	TSPAN31	773	VPS29	803
OTUB1	716	EIF1AD	746	CDK4//MARCH9/C3	774	PPTC7	804
RBM14//RBM4	717	GAB2	747	HC4		DDX54//CCDC42B	805
AIP	718	CREBZF	748	LEM3	775	SLC24A6	806
PPFIA1	719	PICALM	749	IRAK3	776	SDS	807
IL18BP//NUMA1	720	SLC36A4	750	TMTC3	777	RBM19	808
				TCTN1	779		

C11orf30	721	CCDC82	751	PXMP2//PGAM5	780
C11orf82	722	KIAA1826	752	DCP1B	781
TMEM126B	723	MPZL3	753	SLC2A3//SLC2A14	782
C11orf73	724	MPZL2	754	C3AR1	783
PIWIL4	725	H2AFX	755	PLBD1	784
LOC100132686	726	SIAE	756	TW7SF3	785
PAFAH1B2	727	ZBTB44	757	ASB8//PHB	786
UBE4A	728	HSN2	758	LMBR1L	787
TRAPPC4	729	ADIPOR2	759	FMNL3//PRPF40B	788
SC5DL	730	NCAPD2//SCARNA1	760	AAAS	789
VWA5A//OR10D1P	731	0//FADS1	760	NFE2	790
STT3A	732	PTPN6	761	GPR84	791
VPS26B	733	CLEC4D	762	CD63	792
TRIM21	734	CDKN1B	763	SARNP//DNAJC14	793
ZBED5	735	GOLT1B	764	NACA	794
SAAL1	736	FAR2	765	CDK4//TSPAN31	795
FXC1	704	FGD4	766	TMBIM4//LOC1001	796
PDE3B	705	TMEM106C	767	33322	
TNNT3	703	TMBIM6	768	TL22	797
TMEM109	709	C12orf62	769	LIN7A	798
CD6	710	CUGBP1	740	HAL	799
CD5	711	OSBP	741	APPL2	800
TMEM138	712	CYBASC3	742	GLTP	801
POLR2G	713	TUT1	743	GIT2	802
TMEM179B	714	SLC25A45	744	VPS29	803
NAT11	715	LTBP3	745	PPTC7	804
OTUB1	716	EIF1AD	746	DDX54//CCDC42B	805
RBM14//RBM4	717	GAB2	747	SLC24A6	806
AIP	718	CREBZF	748	SDS	807
PPFIA1	719	PICALM	749	RBM19	808
IL18BP//NUMA1	720	SLC36A4	750		

C11orf30	721	CCDC82	751	PXMP2//PGAM5	780
C11orf82	722	KIAA1826	752	DCP1B	781
TMEM126B	723	MPZL3	753	SLC2A3//SLC2A14	782
C11orf73	724	MPZL2	754	C3AR1	783
PIWIL4	725	H2AFX	755	PLBD1	784
LOC100132686	726	SIAE	756	TW7SF3	785
PAFAH1B2	727	ZBTB44	757	ASB8//PHB	786
UBE4A	728	HSN2	758	LMBR1L	787
TRAPPC4	729	ADIPOR2	759	FMNL3//PRPF40B	788
SC5DL	730	NCAPD2//SCARNA1	760	AAAS	789
VWA5A//OR10D1P	731	0//FADS1	760	NFE2	790
STT3A	732	PTPN6	761	GPR84	791
VPS26B	733	CLEC4D	762	CD63	792
TRIM21	734	CDKN1B	763	SARNP//DNAJC14	793
ZBED5	735	GOLT1B	764	NACA	794
SAAL1	736	FAR2	765	CDK4//TSPAN31	795
FXC1	704	FGD4	766	TMBIM4//LOC1001	796
PDE3B	705	TMEM106C	767	33322	
TNNT3	703	TMBIM6	768	TL22	797
TMEM109	709	C12orf62	769	LIN7A	798
CD6	710	CUGBP1	740	HAL	799
CD5	711	OSBP	741	APPL2	800
TMEM138	712	CYBASC3	742	GLTP	801
POLR2G	713	TUT1	743	GIT2	802
TMEM179B	714	SLC25A45	744	VPS29	803
NAT11	715	LTBP3	745	PPTC7	804
OTUB1	716	EIF1AD	746	DDX54//CCDC42B	805
RBM14//RBM4	717	GAB2	747	SLC24A6	806
AIP	718	CREBZF	748	SDS	807
PPFIA1	719	PICALM	749	RBM19	808
IL18BP//NUMA1	720	SLC36A4	750		

C11orf30	721	CCDC82	751	PXMP2//PGAM5	780
C11orf82	722	KIAA1826	752	DCP1B	781
TMEM126B	723	MPZL3	753	SLC2A3//SLC2A14	782
C11orf73	724	MPZL2	754	C3AR1	783
PIWIL4	725	H2AFX	755	PLBD1	784
LOC100132686	726	SIAE	756	TW7SF3	785
PAFAH1B2	727	ZBTB44	757	ASB8//PHB	786
UBE4A	728	HSN2	758	LMBR1L	787
TRAPPC4	729	ADIPOR2	759	FMNL3//PRPF40B	788
SC5DL	730	NCAPD2//SCARNA1	760	AAAS	789
VWA5A//OR10D1P	731	0//FADS1	760	NFE2	790
STT3A	732	PTPN6	761	GPR84	791
VPS26B	733	CLEC4D	762	CD63	792
TRIM21	734	CDKN1B	763	SARNP//DNAJC14	793
ZBED5	735	GOLT1B	764	NACA	794
SAAL1	736	FAR2	765	CDK4//TSPAN31	795
FXC1	704	FGD4	766	TMBIM4//LOC1001	796
PDE3B	705	TMEM106C	767	33322	
TNNT3	703	TMBIM6	768	TL22	797
TMEM109	709	C12orf62	769	LIN7A	798
CD6	710	CUGBP1	740	HAL	799
CD5	711	OSBP	741	APPL2	800
TMEM138	712	CYBASC3	742	GLTP	801
POLR2G	713	TUT1	743	GIT2	802
TMEM179B	714	SLC25A45	744	VPS29	803
NAT11	715	LTBP3	745	PPTC7	804
OTUB1	716	EIF1AD	746	DDX54//CCDC42B	805
RBM14//RBM4	717	GAB2	747	SLC24A6	806
AIP	718	CREBZF	748	SDS	807
PPFIA1	719	PICALM	749	RBM19	808
IL18BP//NUMA1	720	SLC36A4	750		

- 206 -

MED13L	809	ZMYM2	839	ELF1	867	HIF1A	896
C12orf49	810	SPATA13//C1QTNF9	840	LCP1	868	SYNE2	897
FBXO21	811	NUP1	841	KPNA3	869	EXD2	898
WSB2	812	PAN3//EEF1A1//CHCHD2	842	C13orf1	870	SLC39A9	899
TAOK3	813	ALOX5AP	843	DLEU2//DLEU2L	871	SFRS5	900
CIT	814	EEF1DP3	844	GUCY1B2	872	PCNX	901
RAB35	815	KL	845	INTS6	873	SIPA1L1//SNORD56B//LOC145474//LOC283567	902
RPLP0	816	UFM1	846	DACH1	874	YLPM1	903
PXN	817	NARG1L	847	TBC1D4	875	BATF	904
TRIAP1	818	ITM2B	848	EDNRB	876	FLVCR2//RPS24	905
SFRS9	819	FNDC3A	849	UGGT2	877	GPR65	906
POP5	820	CDADC1	850	GPR183	878	TDP1	907
UNQ1887	821	ARL11	851	LIG4	879	EVL	908
C12orf43	822	ANAPC5	823	ANKRD10	880	ZNF839	909
KDM2B	824	LMO7	852	RASA3	881	TDRD9	910
MORN3	825	DNAJC3	853	RNASE2//LOC643332	882	TINF2	911
TMEM120B//RHOF	826	TN9SF2	854	RPGRIP1	883	PLD4	912
LOC338799	827	CLYBL	855	IRF9	884	MTA1//LOC647310//LOC100128343	913
DIABLO//B3GNT4	828	PCCA	856	TSSK4	885	NDRG2	914
VPS33A	829	ABHD13	857	C14orf21	886	DAD1//OR6J1	915
CLIP1	830	LAMP1	858	SCFD1	887	SLC7A8	916
PITPNM2	831	TMCO3	859	TSSK4	885	IPO4	917
EIF2B1	832	UPF3A	860	FANCM	888	TM9SF1	918
CCDC92	833	ZMYM5//ZMYM2	861	ABHD12B	889	ADCY4	919
NCOR2	834	CLIP1	830	PTGDR	890	RIPK3	920
DHX37	835	PITPNM2	831	FBXO34//KIAA0831	891	EAPP	921
DDX51	836	PARP4	863	C14orf101	892	BAZ1A	922
POLLE	837	ZDHHC20//LOC728099	862	ACTR10	893	NFKBIA	923
GOLGA3	838	MTMR6//LOC646482	864	ARID4A	894		
				JKAMP	895		

ZMYM2	839	ELF1	867	HIF1A	896
SPATA13//C1QTNF9	840	LCP1	868	SYNE2	897
NUP1	841	KPNA3	869	EXD2	898
PAN3//EEF1A1//CHCHD2	842	C13orf1	870	SLC39A9	899
ALOX5AP	843	DLEU2//DLEU2L	871	SFRS5	900
EEF1DP3	844	GUCY1B2	872	PCNX	901
KL	845	INTS6	873	SIPA1L1//SNORD56B//LOC145474//LOC283567	902
UFM1	846	DACH1	874	YLPM1	903
NARG1L	847	TBC1D4	875	BATF	904
ITM2B	848	EDNRB	876	FLVCR2//RPS24	905
FNDC3A	849	UGGT2	877	GPR65	906
CDADC1	850	GPR183	878	TDP1	907
ARL11	851	LIG4	879	EVL	908
ANAPC5	823	ANKRD10	880	ZNF839	909
LMO7	852	RASA3	881	TDRD9	910
DNAJC3	853	RNASE2//LOC643332	882	TINF2	911
TN9SF2	854	RPGRIP1	883	PLD4	912
CLYBL	855	IRF9	884	MTA1//LOC647310//LOC100128343	913
PCCA	856	TSSK4	885	NDRG2	914
ABHD13	857	C14orf21	886	DAD1//OR6J1	915
LAMP1	858	SCFD1	887	SLC7A8	916
TMCO3	859	TSSK4	885	IPO4	917
UPF3A	860	FANCM	888	TM9SF1	918
ZMYM5//ZMYM2	861	ABHD12B	889	ADCY4	919
CLIP1	830	PTGDR	890	RIPK3	920
PITPNM2	831	FBXO34//KIAA0831	891	EAPP	921
EIF2B1	832	C14orf101	892	BAZ1A	922
ZDHHC20//LOC728099	862	ACTR10	893	NFKBIA	923
MTMR6//LOC646482	864	ARID4A	894		
JKAMP	895	JKAMP	895		

ZMYM2	839	ELF1	867	HIF1A	896
SPATA13//C1QTNF9	840	LCP1	868	SYNE2	897
NUP1	841	KPNA3	869	EXD2	898
PAN3//EEF1A1//CHCHD2	842	C13orf1	870	SLC39A9	899
ALOX5AP	843	DLEU2//DLEU2L	871	SFRS5	900
EEF1DP3	844	GUCY1B2	872	PCNX	901
KL	845	INTS6	873	SIPA1L1//SNORD56B//LOC145474//LOC283567	902
UFM1	846	DACH1	874	YLPM1	903
NARG1L	847	TBC1D4	875	BATF	904
ITM2B	848	EDNRB	876	FLVCR2//RPS24	905
FNDC3A	849	UGGT2	877	GPR65	906
CDADC1	850	GPR183	878	TDP1	907
ARL11	851	LIG4	879	EVL	908
ANAPC5	823	ANKRD10	880	ZNF839	909
LMO7	852	RASA3	881	TDRD9	910
DNAJC3	853	RNASE2//LOC643332	882	TINF2	911
TN9SF2	854	RPGRIP1	883	PLD4	912
CLYBL	855	IRF9	884	MTA1//LOC647310//LOC100128343	913
PCCA	856	TSSK4	885	NDRG2	914
ABHD13	857	C14orf21	886	DAD1//OR6J1	915
LAMP1	858	SCFD1	887	SLC7A8	916
TMCO3	859	TSSK4	885	IPO4	917
UPF3A	860	FANCM	888	TM9SF1	918
ZMYM5//ZMYM2	861	ABHD12B	889	ADCY4	919
CLIP1	830	PTGDR	890	RIPK3	920
PITPNM2	831	FBXO34//KIAA0831	891	EAPP	921
EIF2B1	832	C14orf101	892	BAZ1A	922
ZDHHC20//LOC728099	862	ACTR10	893	NFKBIA	923
MTMR6//LOC646482	864	ARID4A	894		
JKAMP	895	JKAMP	895		

ZMYM2	839	ELF1	867	HIF1A	896
SPATA13//C1QTNF9	840	LCP1	868	SYNE2	897
NUP1	841	KPNA3	869	EXD2	898
PAN3//EEF1A1//CHCHD2	842	C13orf1	870	SLC39A9	899
ALOX5AP	843	DLEU2//DLEU2L	871	SFRS5	900
EEF1DP3	844	GUCY1B2	872	PCNX	901
KL	845	INTS6	873	SIPA1L1//SNORD56B//LOC145474//LOC283567	902
UFM1	846	DACH1	874	YLPM1	903
NARG1L	847	TBC1D4	875	BATF	904
ITM2B	848	EDNRB	876	FLVCR2//RPS24	905
FNDC3A	849	UGGT2	877	GPR65	906
CDADC1	850	GPR183	878	TDP1	907
ARL11	851	LIG4	879	EVL	908
ANAPC5	823	ANKRD10	880	ZNF839	909
LMO7	852	RASA3	881	TDRD9	910
DNAJC3	853	RNASE2//LOC643332	882	TINF2	911
TN9SF2	854	RPGRIP1	883	PLD4	912
CLYBL	855	IRF9	884	MTA1//LOC647310//LOC100128343	913
PCCA	856	TSSK4	885	NDRG2	914
ABHD13	857	C14orf21	886	DAD1//OR6J1	915
LAMP1	858	SCFD1	887	SLC7A8	916
TMCO3	859	TSSK4	885	IPO4	917
UPF3A	860	FANCM	888	TM9SF1	918
ZMYM5//ZMYM2	861	ABHD12B	889	ADCY4	919
CLIP1	830	PTGDR	890	RIPK3	920
PITPNM2	831	FBXO34//KIAA0831	891	EAPP	921
EIF2B1	832	C14orf101	892	BAZ1A	922
ZDHHC20//LOC728099	862	ACTR10	893	NFKBIA	923
MTMR6//LOC646482	864	ARID4A	894		
JKAMP	895	JKAMP	895		

- 207 -

MTHFS	1008
ST20//C15orf37	1009
TMC3	1010
AP3B2	1011
C15orf40	1012
WDR73	1013
NTRK3	1014
DET1	1015
TM2D3	1016
WDR90	1017
RHOT2//FBXL16	1018
TMEM204	1019
CRAMP1L//HN1L	1020
MARP8IP3	1021
TBL3	1022
TSC2	1023
KCTD5//PRO0461//PDRK1	1024
CLUAP1	1025
DNASE1	1026
DNAJA3	1027
CP110	1028
C16orf62	1029
LYRM1	1030
METTL9	1031
EEF2K	1032
POLR3E	1033
PLK1	1034
PRKCB	1035
IL21R//LOC283888	1036

MEF2A//LYSMD4	981
NIPA2//CYFIP1	982
HERC2//HERC2P2// HERC2P3//LOC440	983
248	
MTMR10//MTMR15	984
C15orf24	985
SLC12A6	986
LPCAT4	987
INQ80	988
OIP5	989
ZFP106	990
CDAN1	991
SPG11//ISLR	992
SPPL2A	993
GNB5//LOC100129	994
973	
MYO5A	995
ARPP19	996
RAB27A	997
CCPG1//PIGB//Dyx	998
1C1	
BNIP2	999
CA12	1000
FAM96A	1001
KIAA0101//CSNK1	1002
G1	
TLR3	1003
PARP6	1004
NPTN	1005
MAN2C1	1006
IMP3	1007

CHP	954
JMJD7- PLA2G4B//JMJD7// PLA2G4B	955
HAUS2	956
C15orf63//SERF2	957
B2M	958
TRIM69	959
PLDN	960
SQRDL	961
GALK2	962
USP8	963
GLDN	964
MAPK6	965
LACTB	966
RAB8B	967
APH1B	968
USP3//LOC100130 855	969
SNX1	970
LBXCOR1//PIAS1// CALML4	971
NEO1	972
MPI	973
FBXO22//FBXO220 S	974
RCN2	975
FAH	976
IL16	977
ABHD2	978
SLCO3A1	979
MCTP2	980

SEC23A	924
C14orf104	925
C14orf138	926
SOS2	927
NIN	928
PYGL	929
CNIH	930
DHRS7	931
WDR89	932
ACTN1	933
NUMB	934
C14orf43	935
ABCD4	936
KIAA0317	937
NEK9	938
ANGEL1	939
SPTLC2	940
SERPINA6	941
DICER1	942
BCL11B	943
ANKRD9	944
PPP1R13B	945
AKT1	946
BRF1	947
TUBGCP5	948
SNRPN *	949
APBA2	950
MTTMR15//MTTMR10	951
RYR3	952
BAHD1	953

- 208 -

KLHL36	1065	COG7	1092
KIAA0182	1066	GGA2	1093
BANP//RUNDCC2C	1067	NSMCE1	1094
TRAPPC2L	1068	GTF3C1	1095
SPG7	1069	CCDC101//LOC388	1096
CDK10	1070	242	TAF1C//ADAD2
KIF25	1071	C16orf54	1097
ITGAL	1072	KCTD13	1098
SRCAP//SNORA30	1073	SEPT1	1099
ZNF646//ZNF668	1074	ZNF764//ZNF747	1100
C16orf67	1075	C16orf58//LOC100	1101
TMEM188	1076	128371	TIMM22
LPCAT2	1077	ITFG1	1102
CETP	1078	ABCC11//LONP2	1103
CKLF	1079	NUDT21	1104
CMTM1//CKLF	1080	BBS2//OGFOD1	1105
TMEM208	1081	CSNK2A2	1106
CTCF	1082	GOT2	1107
THAP11	1083	FAM96B	1108
NUTF2	1084	FHOD1//SLC9A5	1109
EDC4	1085	ATP6V0D1//LOC10	1110
SLC7A6//SLC7A60	1086	0132855	MPRIP
S	1087	GFOD2	1111
PRMT7	1088	SLC12A4	1112
SNTB2	1089	RPRN3//LOC653390	SMCR7
VPS4A	1090	//LOC730092//LOC	1141
DDX19B//DDX19A	1091	100131998	WSB1
CHST4	1092	XYL1T1//LYRM2//ZC	1142
HP//HPR	1093	3H11A	TAOK1
PLCG2	1094	DCUN1D3//LYRM1	1143
	1095	IGSF6//METTL9	CPD
	1096	100131998//LOC	1144
	1097	53390	SUZ12P
	1098	ZNF830	1145
	1099	AARS	1146
	1100	ST3GAL2	1147
	1101	TAF15	1148

COG7	1092	VAC14//LOC10013	1120
0894		0894	
AP1G1		AP1G1	
WDR59		WDR59	
CTR2//CTR2B1		CTR2//CTR2B1	
1123		1123	
TAF1C//ADAD2		TAF1C//ADAD2	
1124		1124	
FBXO31		FBXO31	
1125		1125	
ZCCHC14		ZCCHC14	
1126		1126	
FAM38A		FAM38A	
1127		1127	
CENPBD1		CENPBD1	
1128		1128	
TIIMM22		TIIMM22	
1129		1129	
RPA1		RPA1	
1130		1130	
DPH1//OVCA2		DPH1//OVCA2	
1131		1131	
SGSM2		SGSM2	
1132		1132	
ARRB2		ARRB2	
1133		1133	
LOC100130950		LOC100130950	
1134		1134	
DNAH2		DNAH2	
1135		1135	
PIGL		PIGL	
1136		1136	
TRPV2		TRPV2	
1137		1137	
MPRIP		MPRIP	
1138		1138	
DRG2		DRG2	
1139		1139	
ALKB5//FLJ13773		ALKB5//FLJ13773	
1140		1140	
SMCR7		SMCR7	
1141		1141	
WSB1		WSB1	
1142		1142	
TAOK1		TAOK1	
1143		1143	
CPD		CPD	
1144		1144	
SUZ12P		SUZ12P	
1145		1145	
RNF135		RNF135	
1146		1146	
ZNF830		ZNF830	
1147		1147	
AARS		AARS	
1118		1118	
ST3GAL2		ST3GAL2	
1119		1119	
TAF15		TAF15	

SULT1A2//SULT1A	1037	KLHL36	1065
1		KIAA0182	1066
ATXN2L	1038	BANP//RUNDCC2C	1067
LAT	1039	TRAPPC2L	1068
KIF22	1040	SPG7	1069
MAZ	1041	CDK10	1070
CORO1A//LOC6067	1042	TCF25	1071
24		AFG3L1	1072
ITGAL	1043	Luc7L	1073
SRCAP//SNORA30	1044	AXIN1	1074
ZNF646//ZNF668	1045	JMJD8	1075
C16orf67	1046	LMF1	1076
TMEM188	1047	UNKL	1077
LPCAT2	1048	UNKL	1078
CETP	1049	CLCN7	1079
CKLF	1050	MRPS34	1080
CMTM1//CKLF	1051	RNPS1	1081
TMEM208	1052	NLRC3	1082
CTCF	1053	TRAP1//DNASE1	1083
THAP11	1054	ADCY9	1084
NUTF2	1055	CORO7	1085
EDC4	1056	C16orf72	1086
SLC7A6//SLC7A60	1057	RPRN3//LOC653390	1087
S		//LOC730092//LOC	
PRMT7	1058	100131998	
SNTB2	1059	XYL1T1//LYRM2//ZC	
VPS4A	1060	3H11A	
DDX19B//DDX19A	1061	DCUN1D3//LYRM1	
CHST4	1062	IGSF6//METTL9	
HP//HPR	1063	CDR2//RRN3//LOC	
PLCG2	1064	100131998//LOC	
		53390	

KLHL36	1065	COG7	1092
KIAA0182	1066	GGA2	1093
BANP//RUNDCC2C	1067	NSMCE1	1094
TRAPPC2L	1068	GTF3C1	1095
SPG7	1069	CCDC101//LOC388	1096
CDK10	1070	242	TAF1C//ADAD2
KIF25	1071	C16orf54	1097
AFG3L1	1072	KCTD13	1098
Luc7L	1073	SEPT1	1099
AXIN1	1074	ZNF764//ZNF747	1100
JMJD8	1075	C16orf58//LOC100	1101
LMF1	1076	128371	TIMM22
UNKL	1077	ITFG1	1102
UNKL	1078	ABCC11//LONP2	1103
CLCN7	1079	NUDT21	1104
MRPS34	1080	BBS2//OGFOD1	1105
RNPS1	1081	CSNK2A2	1106
NLRC3	1082	GOT2	1107
TRAP1//DNASE1	1083	FAM96B	1108
ADCY9	1084	FHOD1//SLC9A5	1109
CORO7	1085	ATP6V0D1//LOC10	1110
C16orf72	1086	0132855	MPRIP
RPRN3//LOC653390	1087	0132855	1111
//LOC730092//LOC		GFOD2	
100131998		SLC12A4	
XYL1T1//LYRM2//ZC		ATP6V0D1//LOC10	
3H11A		0132855	
DCUN1D3//LYRM1		GFOD2	
IGSF6//METTL9		SLC12A4	
CDR2//RRN3//LOC		ATP6V0D1//LOC10	
100131998//LOC		0132855	
53390		GFOD2	

- 209 -

GGNBP2	1149	TMEM104	1177	DERL2	1206	NR1D1//THR1A	1232
LASP1	1150	MRPS7	1178	NLRP1//LOC72839 ₂	1207	CCR7	1233
PSMD3	1151	KIAA0195	1179	ASGR2	1208	STAT5B//STAT5A	1234
CDC6	1152	TSEN54	1180	NEURL4//GPS2//D _{4S234E}	1209	FAM134C	1235
NBR2	1153	LLGL2	1181	ZBTB4	1210	VAT1	1236
TMUB2	1154	LOC100134934//C _{DK3}	1182	TP53	1211	C17orf65//ASB16	1238
MGC57346//C17orf ₆₉	1155	MFSD11	1183	VAMP2	1212	UBTF	1239
NSF//LOC728806	1156	SEPT9	1184	PIK3R5	1213	GPATCH8	1240
GOSR2	1157	TNRC6C	1185	ELAC2	1214	MAP3K14//LOC100 ₁₃₃₉₉₁	1241
NPEPPS//TBCC1D3F//LOC440434	1158	TMC8	1186	NCOR1//C20orf191 _{//LOC100131704}	1215	OSBPL7	1242
KPNB1	1159	ENGASE	1187	ZNF287	1216	SLC35B1	1243
CDK5RAP3	1160	RPTOR	1188	TOM1L2//LOC2463 ₁₅	1217	TOB1	1244
ATP5G1	1161	GPS1	1189	GRAP//SNORD3B- _{1//SNORD3B-2//LOC400581}	1218	COX11//TOM1L1	1245
UBE2Z	1162	FN3KRP	1190	ALDOC	1219	VEZF1	1246
XYLT2//LOC100130	1163	TBCD	1191	SFRS1//FLJ44342	1247	SEPT4	1248
580		GEMIN4	1192	SDF2	1220	MED13//LOC10012 ₉₁₁₂	1249
NOG	1164	GLOD4	1193	RAB34	1221	LIMD2//MAP3K3	1250
DGKE	1165	SLC43A2	1194	PHF12	1222	STRADA	1251
AKAP1	1166	PRPF8	1195	NUFIP2	1223	FTSJ3	1252
TMEM49//CLTC//MI _{R21}	1167	SMG6//C17orf6	1196	OMG	1224	CD79B	1253
CLTC	1168	METT10D//LOC284 ₀₀₉	1197	EV12B	1225	ICAM2	1254
CA4	1169	SHPK	1198	C17orf66//RSL24D ₁	1226	ERN1	1255
C17orf64	1170	TAX1BP3	1199	SYNRG//LOC10013 ₁₈₂₂	1227	TEX2	1256
DCAF7	1171	P2RX5	1200	PLXDC1	1228	LRRC37A3//LRRC3 _{7A2//LRRC37A//AR}	1257
PITPNC1	1172	MYBBP1A//SPNS2	1201	CACNB1	1229	L17P1//LRRC37A4// _{LOC1002943355//LOC644397}	
NOL11//SNORA38B	1173	PELP1	1202	PGAP3	1230		
MAP2K6	1174	PFN1	1203	MED24	1231		
COG1	1175	ZNF232	1204				
CD300A	1176	DHX33	1205				

TMEM104	1177	DERL2	1206	NR1D1//THR1A	1232
MRPS7	1178	NLRP1//LOC72839 ₂	1207	CCR7	1233
KIAA0195	1179	ASGR2	1208	STAT5B//STAT5A	1234
TSEN54	1180	NEURL4//GPS2//D _{4S234E}	1209	FAM134C	1235
LLGL2	1181	ZBTB4	1210	VAT1	1236
LOC100134934//C _{DK3}	1182	TP53	1211	C17orf65//ASB16	1238
MFSD11	1183	VAMP2	1212	UBTF	1239
SEPT9	1184	PIK3R5	1213	GPATCH8	1240
TNRC6C	1185	ELAC2	1214	MAP3K14//LOC100 ₁₃₃₉₉₁	1241
TMC8	1186	NCOR1//C20orf191 _{//LOC100131704}	1215	OSBPL7	1242
ENGASE	1187	ZNF287	1216	SLC35B1	1243
RPTOR	1188	TOM1L2//LOC2463 ₁₅	1217	TOB1	1244
GPS1	1189	GRAP//SNORD3B- _{1//SNORD3B-2//LOC400581}	1218	COX11//TOM1L1	1245
FN3KRP	1190	ALDOC	1219	VEZF1	1246
TBCD	1191	SDF2	1220	SFRS1//FLJ44342	1247
GEMIN4	1192	RAB34	1221	SEPT4	1248
GLOD4	1193	PHF12	1222	MED13//LOC10012 ₉₁₁₂	1249
SLC43A2	1194	NUFIP2	1223	LIMD2//MAP3K3	1250
PRPF8	1195	OMG	1224	STRADA	1251
SMG6//C17orf6	1196	EV12B	1225	FTSJ3	1252
METT10D//LOC284 ₀₀₉	1197	C17orf66//RSL24D ₁	1226	CD79B	1253
SHPK	1198	SYNRG//LOC10013 ₁₈₂₂	1227	ICAM2	1254
TAX1BP3	1199	PLXDC1	1228	ERN1	1255
P2RX5	1200	CACNB1	1229	TEX2	1256
MYBBP1A//SPNS2	1201	PGAP3	1230	LRRC37A3//LRRC3 _{7A2//LRRC37A//AR}	1257
PELP1	1202	MED24	1231	L17P1//LRRC37A4// _{LOC1002943355//LOC644397}	
PFN1	1203				
ZNF232	1204				
DHX33	1205				

CA4	1164	GLOD4	1193	SDF2	1220	MED13//LOC10012 ₉₁₁₂	1249
DGKE	1165	SLC43A2	1194	RAB34	1221	LIMD2//MAP3K3	1250
AKAP1	1166	PRPF8	1195	PHF12	1222	STRADA	1251
TMEM49//CLTC//MI _{R21}	1167	SMG6//C17orf6	1196	NUFIP2	1223	FTSJ3	1252
CLTC	1168	METT10D//LOC284 ₀₀₉	1197	OMG	1224	CD79B	1253
CA4	1169	SHPK	1198	EV12B	1225	ICAM2	1254
C17orf64	1170	TAX1BP3	1199	C17orf66//RSL24D ₁	1226	ERN1	1255
DCAF7	1171	P2RX5	1200	SYNRG//LOC10013 ₁₈₂₂	1227	TEX2	1256
PITPNC1	1172	MYBBP1A//SPNS2	1201	PLXDC1	1228	LRRC37A3//LRRC3 _{7A2//LRRC37A//AR}	1257
NOL11//SNORA38B	1173	PELP1	1202	CACNB1	1229	L17P1//LRRC37A4// _{LOC1002943355//LOC644397}	
MAP2K6	1174	PFN1	1203	PGAP3	1230		
COG1	1175	ZNF232	1204	MED24	1231		
CD300A	1176	DHX33	1205				

- 210 -

GNA13	1258	AFG3L2	1286	IL27RA	1314	CD177	1342
WIP1//ARSG	1259	ABHD3	1287	KLF2	1315	ZNF230//ZNF222	1343
FAM20A	1260	OSBPL1A	1288	SIN3B	1316	VASP	1344
NAT9	1261	CDH2	1289	DDA1	1317	GRWD1	1345
GGA3	1262	DSC1	1290	GTPBP3	1318	FLT3LG	1346
H3F3B//H3F3C	1263	PSTPIP2	1291	FAM129C	1319	ZNF175	1347
EXOC7	1264	C18orf32	1292	FCHO1	1320	NCRNA00085	1348
SFRS2	1265	MBD2//SNORA37	1293	ARRDC2	1321	PPP2R1A	1349
TMC6//LOC100131096	1266	PIGN	1294	IFI30	1322	ZNF808//ZNF578//	1350
USP36	1267	TMX3	1295	C19orf60	1323	ZNF611	1351
CD7	1268	PQLC1	1296	CRTC1//MAML2	1324	FCAR	1352
RAB31	1269	GZMM	1297	RFXANK//MEF2B//OC729991	1325	RPL28	1353
VAPA	1270	ARID3A	1298	ZNF101	1326	U2AF2	1354
SEH1L	1271	CIRBP	1299	ZNF738	1327	LOC100288114//MGC9913	1355
HQ0644//PRO0644	1272	DAZAP1	1300	ZNF257//ZNF492//ZNF99//ZNF98//LO	1328	ZFP28	1356
RNMT	1273	SPPL2B	1301	C646864	1329	ZNF460	1357
RNF138	1274	NFIC	1302	C19orf2	1329	ZNF549	1358
GALNT1	1275	VAV1	1303	KIAA0355//FLJ21369	1330	ZNF211	1359
ELP2	1276	ARHGEF18//LOC100128573	1304	USF2	1331	ZNF587//ZNF417	1360
PTK3C3	1277	STXBP2//LOC554363//LOC100131801	1305	TMEM147	1332	ZNF274	1361
SLC14A2	1278			LIN37//PSENEN	1333	ZNF544	1362
ME2	1279	C19orf59	1306	C19orf55	1334	ZNF8	1363
SERPINB2//SERPINB10	1280	ZNF317	1307	TBCB//POLR2I	1335	TRIM28	1364
ZNF407	1281	ILF3	1308	ZNF382	1336	C19orf6	1365
ZNF236	1282	SMARCA4	1309	ZNF568	1337	C19orf34	1366
NFATC1//LOC100127994	1283	PRKCSH	1310	ZNF420	1338	GNG7	1367
ENOSF1//TYMS	1284	IER2	1311	ZNF383	1339	AES	1368
MYOM1	1285	CCDC130	1312	CCDC97	1340	EEF2//SNORD37	1369
		DCAF15	1313	ZNF574	1341	PLIN5//LRG1	1370

AFG3L2	1286	IL27RA	1314	CD177	1342
ABHD3	1287	KLF2	1315	ZNF230//ZNF222	1343
OSBPL1A	1288	SIN3B	1316	VASP	1344
CDH2	1289	DDA1	1317	GRWD1	1345
DSC1	1290	GTPBP3	1318	FLT3LG	1346
PSTPIP2	1291	FAM129C	1319	ZNF175	1347
C18orf32	1292	FCHO1	1320	NCRNA00085	1348
MBD2//SNORA37	1293	ARRDC2	1321	PPP2R1A	1349
PIGN	1294	IFI30	1322	ZNF808//ZNF578//	1350
TMX3	1295	C19orf60	1323	ZNF611	1351
PQLC1	1296	CRTC1//MAML2	1324	FCAR	1352
GZMM	1297	RFXANK//MEF2B//OC729991	1325	RPL28	1353
ARID3A	1298	ZNF101	1326	U2AF2	1354
CIRBP	1299	ZNF738	1327	LOC100288114//MGC9913	1355
DAZAP1	1300	ZNF257//ZNF492//ZNF99//ZNF98//LO	1328	ZFP28	1356
SPPL2B	1301	C646864	1329	ZNF460	1357
NFIC	1302	C19orf2	1329	ZNF549	1358
VAV1	1303	KIAA0355//FLJ21369	1330	ZNF211	1359
ARHGEF18//LOC100128573	1304	USF2	1331	ZNF587//ZNF417	1360
		TMEM147	1332	ZNF274	1361
		LIN37//PSENEN	1333	ZNF544	1362
		C19orf55	1334	ZNF8	1363
		TBCB//POLR2I	1335	TRIM28	1364
		ZNF382	1336	C19orf6	1365
		ZNF568	1337	C19orf34	1366
		ZNF420	1338	GNG7	1367
		ZNF383	1339	AES	1368
		CCDC97	1340	EEF2//SNORD37	1369
		ZNF574	1341	PLIN5//LRG1	1370

AFG3L2	1286	IL27RA	1314	CD177	1342
ABHD3	1287	KLF2	1315	ZNF230//ZNF222	1343
OSBPL1A	1288	SIN3B	1316	VASP	1344
CDH2	1289	DDA1	1317	GRWD1	1345
DSC1	1290	GTPBP3	1318	FLT3LG	1346
PSTPIP2	1291	FAM129C	1319	ZNF175	1347
C18orf32	1292	FCHO1	1320	NCRNA00085	1348
MBD2//SNORA37	1293	ARRDC2	1321	PPP2R1A	1349
PIGN	1294	IFI30	1322	ZNF808//ZNF578//	1350
TMX3	1295	C19orf60	1323	ZNF611	1351
PQLC1	1296	CRTC1//MAML2	1324	FCAR	1352
GZMM	1297	RFXANK//MEF2B//OC729991	1325	RPL28	1353
ARID3A	1298	ZNF101	1326	U2AF2	1354
CIRBP	1299	ZNF738	1327	LOC100288114//MGC9913	1355
DAZAP1	1300	ZNF257//ZNF492//ZNF99//ZNF98//LO	1328	ZFP28	1356
SPPL2B	1301	C646864	1329	ZNF460	1357
NFIC	1302	C19orf2	1329	ZNF549	1358
VAV1	1303	KIAA0355//FLJ21369	1330	ZNF211	1359
ARHGEF18//LOC100128573	1304	USF2	1331	ZNF587//ZNF417	1360
		TMEM147	1332	ZNF274	1361
		LIN37//PSENEN	1333	ZNF544	1362
		C19orf55	1334	ZNF8	1363
		TBCB//POLR2I	1335	TRIM28	1364
		ZNF382	1336	C19orf6	1365
		ZNF568	1337	C19orf34	1366
		ZNF420	1338	GNG7	1367
		ZNF383	1339	AES	1368
		CCDC97	1340	EEF2//SNORD37	1369
		ZNF574	1341	PLIN5//LRG1	1370

GNA13	1258	AFG3L2	1286	IL27RA	1314	CD177	1342
WIP1//ARSG	1259	ABHD3	1287	KLF2	1315	ZNF230//ZNF222	1343
FAM20A	1260	OSBPL1A	1288	SIN3B	1316	VASP	1344
NAT9	1261	CDH2	1289	DDA1	1317	GRWD1	1345
GGA3	1262	DSC1	1290	GTPBP3	1318	FLT3LG	1346
H3F3B//H3F3C	1263	PSTPIP2	1291	FAM129C	1319	ZNF175	1347
EXOC7	1264	C18orf32	1292	FCHO1	1320	NCRNA00085	1348
SFRS2	1265	MBD2//SNORA37	1293	ARRDC2	1321	PPP2R1A	1349
TMC6//LOC100131096	1266	PIGN	1294	IFI30	1322	ZNF808//ZNF578//	1350
USP36	1267	TMX3	1295	C19orf60	1323	ZNF611	1351
CD7	1268	PQLC1	1296	CRTC1//MAML2	1324	FCAR	1352
RAB31	1269	GZMM	1297	RFXANK//MEF2B//OC729991	1325	RPL28	1353
VAPA	1270	ARID3A	1298	ZNF101	1326	U2AF2	1354
SEH1L	1271	CIRBP	1299	ZNF738	1327	LOC100288114//MGC9913	1355
HQ0644//PRO0644	1272	DAZAP1	1300	ZNF257//ZNF492//ZNF99//ZNF98//LO	1328	ZFP28	1356
RNMT	1273	SPPL2B	1301	C646864	1329	ZNF460	1357
RNF138	1274	NFIC	1302	C19orf2	1329	ZNF549	1358
GALNT1	1275	VAV1	1303	KIAA0355//FLJ21369	1330	ZNF211	1359
ELP2	1276	ARHGEF18//LOC100128573	1304	USF2	1331	ZNF587//ZNF417	1360
PTK3C3	1277	STXBP2//LOC554363//LOC100131801	1305	TMEM147	1332	ZNF274	1361
SLC14A2	1278			LIN37//PSENEN	1333	ZNF544	1362
ME2	1279	C19orf59	1306	C19orf55	1334	ZNF8	1363
SERPINB2//SERPINB10	1280	ZNF317	1307	TBCB//POLR2I	1335	TRIM28	1364
B10	1281	ILF3	1308	ZNF382	1336	C19orf6	1365
ZNF407	1282	SMARCA4	1309	ZNF568	1337	C19orf34	1366
ZNF236	1283	PRKCSH	1310	ZNF420	1338	GNG7	1367
NFATC1//LOC100127994	1284	IER2	1311	ZNF383	1339	AES	1368
ENOSF1//TYMS	1285	CCDC130	1312	CCDC97	1340	EEF2//SNORD37	1369
MYOM1	1285	DCAF15	1313	ZNF574	1341	PLIN5//LRG1	1370

- 211 -

PLIN3	1371	ZNF529	1399	CSRP2BP	1429	C20orf177	1458
PTPRS	1372	ZNF461	1400	SEC23B	1430	CDH26	1459
SAFB2//SAFB	1373	ZNF607	1401	SLC24A3	1431	C20orf197	1460
RANBP3	1374	YIF1B	1402	HCK	1432	LOC284757	1461
GTF2F1//LOC1001	1375	PRR13	1403	ASXL1	1433	ARFGAP1	1462
30856		CEACAM4	1404	ACSS2	1434	PRPF6	1463
XAB2	1376	PLAUR	1405	C20orf4	1435	NSFL1C	1464
ELAVL1	1377	TRAPPC6A	1406	TGIF2	1436	SIRPD	1465
ADAMTS10	1378	ERCC1//CD3EAP	1407	C20orf24//SLA2	1437	SIRPG//SIRPA	1466
FBXL12	1379	RTN2	1408	RPN2//EEF1A2	1438	RNF24	1467
DNMT1	1380	SYMPK	1409	CTNNB1L	1439	RASSF2	1468
TYK2	1381	PGLYRP1	1410	ACTR5	1440	TMX4	1469
KEAP1	1382	NOSIP	1411	PPP1R16B	1441	JAG1	1470
KRI1	1383	PNKP	1412	DHX35	1442	C20orf74	1471
TMEM205//hCG_29	1384	NKG7	1413	PLCG1	1443	C20orf3	1472
ZNF563	1385	FPR1	1414	MYBL2	1444	C20orf112	1473
MAN2B1//MORG1	1386	ZNF28	1415	SYS1//SYS1-DBNDD2//DBNDD2	1445	CDK5RAP1	1474
C19orf56	1387	OSCAR	1416	DNTTIP1	1446	AHCY	1475
DHPS	1388	MBOAT7	1417	CTSA	1447	GGT7	1476
TNPO2//SNORD41	1389	LILRA5	1418	MMMP9//LOC100128	1448	EDEM2	1477
LPHN1	1390	LILRA4	1419	028		RBM39//LOC64316	1478
NDUFB7	1391	ZNF550//ZNF549	1420	DDX27	1449	7	
AKAP8	1392	ZNF416	1421	SLC9A8	1450	BLCAP	1479
AKAP8L	1393	ZNF256	1422	RNF114	1451	SERINC3//TTPAL	1480
CHERP//C19orf44//	1394	ZNF329	1423	PTPN1	1452	ZNF335	1481
CALR3		FAM110A	1424	TSHZ2	1453	ELMO2	1482
INSL3//JAK3	1395	ITPA	1425	PFDN4	1454	B4GALT5	1483
IL12RB1	1396	CDC25B	1426	CSTF1	1455	DPM1	1484
UPK1A	1397	CDS2	1427	CASS4	1456	ZFP64	1485
TYROBP	1398	CRLS1	1428	GNAS	1457	ZNF217	1486

PLIN3	1371	ZNF529	1399	CSRP2BP	1429	C20orf177	1458
PTPRS	1372	ZNF461	1400	SEC23B	1430	CDH26	1459
SAFB2//SAFB	1373	ZNF607	1401	SLC24A3	1431	C20orf197	1460
RANBP3	1374	YIF1B	1402	HCK	1432	LOC284757	1461
GTF2F1//LOC1001	1375	PRR13	1403	ASXL1	1433	ARFGAP1	1462
30856		CEACAM4	1404	ACSS2	1434	PRPF6	1463
XAB2	1376	PLAUR	1405	C20orf4	1435	NSFL1C	1464
ELAVL1	1377	TRAPPC6A	1406	TGIF2	1436	SIRPD	1465
ADAMTS10	1378	ERCC1//CD3EAP	1407	C20orf24//SLA2	1437	SIRPG//SIRPA	1466
FBXL12	1379	RTN2	1408	RPN2//EEF1A2	1438	RNF24	1467
DNMT1	1380	SYMPK	1409	CTNNB1L	1439	RASSF2	1468
TYK2	1381	PGLYRP1	1410	ACTR5	1440	TMX4	1469
KEAP1	1382	NOSIP	1411	PPP1R16B	1441	JAG1	1470
KRI1	1383	PNKP	1412	DHX35	1442	C20orf74	1471
TMEM205//hCG_29	1384	NKG7	1413	PLCG1	1443	C20orf3	1472
ZNF563	1385	FPR1	1414	MYBL2	1444	C20orf112	1473
MAN2B1//MORG1	1386	ZNF28	1415	SYS1//SYS1-DBNDD2//DBNDD2	1445	CDK5RAP1	1474
C19orf56	1387	OSCAR	1416	DNTTIP1	1446	AHCY	1475
DHPS	1388	MBOAT7	1417	CTSA	1447	GGT7	1476
TNPO2//SNORD41	1389	LILRA5	1418	MMMP9//LOC100128	1448	EDEM2	1477
LPHN1	1390	LILRA4	1419	028		RBM39//LOC64316	1478
NDUFB7	1391	ZNF550//ZNF549	1420	DDX27	1449	7	
AKAP8	1392	ZNF416	1421	SLC9A8	1450	BLCAP	1479
AKAP8L	1393	ZNF256	1422	RNF114	1451	SERINC3//TTPAL	1480
CHERP//C19orf44//	1394	ZNF329	1423	PTPN1	1452	ZNF335	1481
CALR3		FAM110A	1424	TSHZ2	1453	ELMO2	1482
INSL3//JAK3	1395	ITPA	1425	PFDN4	1454	B4GALT5	1483
IL12RB1	1396	CDC25B	1426	CSTF1	1455	DPM1	1484
UPK1A	1397	CDS2	1427	CASS4	1456	ZFP64	1485
TYROBP	1398	CRLS1	1428	GNAS	1457	ZNF217	1486

PLIN3	1371	ZNF529	1399	CSRP2BP	1429	C20orf177	1458
PTPRS	1372	ZNF461	1400	SEC23B	1430	CDH26	1459
SAFB2//SAFB	1373	ZNF607	1401	SLC24A3	1431	C20orf197	1460
RANBP3	1374	YIF1B	1402	HCK	1432	LOC284757	1461
GTF2F1//LOC1001	1375	PRR13	1403	ASXL1	1433	ARFGAP1	1462
30856		CEACAM4	1404	ACSS2	1434	PRPF6	1463
XAB2	1376	PLAUR	1405	C20orf4	1435	NSFL1C	1464
ELAVL1	1377	TRAPPC6A	1406	TGIF2	1436	SIRPD	1465
ADAMTS10	1378	ERCC1//CD3EAP	1407	C20orf24//SLA2	1437	SIRPG//SIRPA	1466
FBXL12	1379	RTN2	1408	RPN2//EEF1A2	1438	RNF24	1467
DNMT1	1380	SYMPK	1409	CTNNB1L	1439	RASSF2	1468
TYK2	1381	PGLYRP1	1410	ACTR5	1440	TMX4	1469
KEAP1	1382	NOSIP	1411	PPP1R16B	1441	JAG1	1470
KRI1	1383	PNKP	1412	DHX35	1442	C20orf74	1471
TMEM205//hCG_29	1384	NKG7	1413	PLCG1	1443	C20orf3	1472
ZNF563	1385	FPR1	1414	MYBL2	1444	C20orf112	1473
MAN2B1//MORG1	1386	ZNF28	1415	SYS1//SYS1-DBNDD2//DBNDD2	1445	CDK5RAP1	1474
C19orf56	1387	OSCAR	1416	DNTTIP1	1446	AHCY	1475
DHPS	1388	MBOAT7	1417	CTSA	1447	GGT7	1476
TNPO2//SNORD41	1389	LILRA5	1418	MMMP9//LOC100128	1448	EDEM2	1477
LPHN1	1390	LILRA4	1419	028		RBM39//LOC64316	1478
NDUFB7	1391	ZNF550//ZNF549	1420	DDX27	1449	7	
AKAP8	1392	ZNF416	1421	SLC9A8	1450	BLCAP	1479
AKAP8L	1393	ZNF256	1422	RNF114	1451	SERINC3//TTPAL	1480
CHERP//C19orf44//	1394	ZNF329	1423	PTPN1	1452	ZNF335	1481
CALR3		FAM110A	1424	TSHZ2	1453	ELMO2	1482
INSL3//JAK3	1395	ITPA	1425	PFDN4	1454	B4GALT5	1483
IL12RB1	1396	CDC25B	1426	CSTF1	1455	DPM1	1484
UPK1A	1397	CDS2	1427	CASS4	1456	ZFP64	1485
TYROBP	1398	CRLS1	1428	GNAS	1457	ZNF217	1486

- 212 -

CTSZ	1487	CSTB	1516	RP3-402G11.5	1544	MOSPD2	1572	
SYCP2	1488	UBE2G2//SUMO3	1517	SAPS2	1545	BMX//HNRPD1	1573	
PSMA7	1489	PTTG1IP	1518	NCAPH2	1546	PDHA1	1574	
DIDO1	1490	POFUT2	1519	BID	1547	YY2	1575	
YTHDF1	1491	MCM3AP	1520	SLC25A1	1548	PDK3	1576	
CHODL	1492	IL17RA//CECR7	1521	KLHL22//KRT18	1549	GK//GK3P//FTL//L	1577	
BACH1	1493	C22orf37	1522	PI4KA//PI4KAP1//P	1550	OC652904		
C21orf41//BACH1	1494	LZTR1	1523	I4KAP2//LOC10029	3141	CXorf59	1578	
IL10RB	1495	PPI2//YPEL1	1524	MAPK1	1551	ATP6AP2	1579	
IFNAR1	1496	CYTSA	1525	ZNF70	1552	USP9X//USP9Y	1580	
IFNGR2	1497	SNRPD3//C22orf13	1526	TPST2	1553	RP2	1581	
SON	1498	NF2	1527	SF3A1//CCDC157	1554	USP11	1582	
MORC3//DOPEY2	1499	LIMK2	1528	PES1	1555	RBM3	1583	
DYRK1A	1500	SLC5A1	1529	PIK3IP1	1556	FTSJ1	1584	
KCNJ15	1501	MCM5	1530	PATZ1	1557	TSPYL2//GPR173	1585	
ETS2	1502	NCF4	1531	C22orf30	1558	PLP2	1586	
RRP1B	1503	GGA1	1532	IL2RB	1559	FTSJ1	1587	
PFKL	1504	SH3BP1//PDXP	1533	CSNK1E//LOC4009	1560	MAGED2	1588	
TRPM2	1505	POLR2F//LOC1001	1534	27	UBQLN2	1589	PLP2	1586
ADARB1	1506	31.530		UNC84B	1561	NLGN3	1590	
SAMSN1//LOC3888	1507	APOBEC3A//APOBEC3B	1535	CBX7//LOC100128	1562	ACRC	1591	
1.3		APOBEC3D	1536	400		UPRT	1592	
N6A1T1	1508	ATF4	1537	RPS19BP1	1563	CXorf26	1593	
SYNJ1	1509	CACNA1I	1538	MKL1//KIAA1659	1564	ATP7A	1594	
TMEM50B	1510	ZC3H7B	1539	RANGAP1	1565	DIAPH2	1595	
KCNE1	1511	CCDC134	1540	TCF20	1566	CSTF2//RAD21	1596	
PRDM15	1512	TSPO	1541	LDOL1	1567	ARMCX3	1597	
C2CD2	1513	NUP50	1542	UNQ6126	1568	ARMCX5	1598	
WDR4	1514	TBC1D22A//LOC100289878	1543	TUBGCP6	1569	GPRASP1	1599	
U2AF1	1515			SBF1//SBF1P1	1570	TMEM31	1600	
				MSL3	1571			

CTSZ	1487	CSTB	1516	RP3-402G11.5	1544	MOSPD2	1572
SYCP2	1488	UBE2G2//SUMO3	1517	SAPS2	1545	BMX//HNRPD1	1573
PSMA7	1489	PTTG1IP	1518	NCAPH2	1546	PDHA1	1574
DIDO1	1490	POFUT2	1519	BID	1547	YY2	1575
YTHDF1	1491	MCM3AP	1520	SLC25A1	1548	PDK3	1576
CHODL	1492	IL17RA//CECR7	1521	KLHL22//KRT18	1549	GK//GK3P//FTL//L	1577
BACH1	1493	C22orf37	1522	PI4KA//PI4KAP1//P	1550	OC652904	
C21orf41//BACH1	1494	LZTR1	1523	I4KAP2//LOC10029	3141	CXorf59	1578
IL10RB	1495	PPI2//YPEL1	1524	MAPK1	1551	ATP6AP2	1579
IFNAR1	1496	CYTSA	1525	ZNF70	1552	USP9X//USP9Y	1580
IFNGR2	1497	SNRPD3//C22orf13	1526	TPST2	1553	RP2	1581
SON	1498	NF2	1527	SF3A1//CCDC157	1554	USP11	1582
MORC3//DOPEY2	1499	LIMK2	1528	PES1	1555	RBM3	1583
DYRK1A	1500	SLC5A1	1529	PIK3IP1	1556	FTSJ1	1584
KCNJ15	1501	MCM5	1530	PATZ1	1557	WAS	1585
ETS2	1502	NCF4	1531	C22orf30	1558	MAGED2	1586
RRP1B	1503	GGA1	1532	IL2RB	1559	PLP2	1586
PFKL	1504	SH3BP1//PDXP	1533	CSNK1E//LOC4009	1560	UBQLN2	1589
TRPM2	1505	POLR2F//LOC1001	1534	27		NLGN3	1590
ADARB1	1506	31.530		UNC84B	1561	ACRC	1591
SAMSN1//LOC3888	1507	APOBEC3A//APOBEC3B	1535	CBX7//LOC100128	1562	UPRT	1592
1.3		APOBEC3D	1536	400		CXorf26	1593
N6A1T1	1508	ATF4	1537	RPS19BP1	1563	ATP7A	1594
SYNJ1	1509	CACNA1I	1538	MKL1//KIAA1659	1564	DIAPH2	1595
TMEM50B	1510	ZC3H7B	1539	RANGAP1	1565	CSTF2//RAD21	1596
KCNE1	1511	CCDC134	1540	TCF20	1566	ARMCX3	1597
PRDM15	1512	TSPO	1541	LDOL1	1567	ARMCX5	1598
C2CD2	1513	NUP50	1542	UNQ6126	1568	GPRASP1	1599
WDR4	1514	TBC1D22A//LOC100289878	1543	TUBGCP6	1569	TMEM31	1600
U2AF1	1515			MSL3	1571		

CTSZ	1487	CSTB	1516	RP3-402G11.5	1544	MOSPD2	1572
SYCP2	1488	UBE2G2//SUMO3	1517	SAPS2	1545	BMX//HNRPD1	1573
PSMA7	1489	PTTG1IP	1518	NCAPH2	1546	PDHA1	1574
DIDO1	1490	POFUT2	1519	BID	1547	YY2	1575
YTHDF1	1491	MCM3AP	1520	SLC25A1	1548	PDK3	1576
CHODL	1492	IL17RA//CECR7	1521	KLHL22//KRT18	1549	GK//GK3P//FTL//L	1577
BACH1	1493	C22orf37	1522	PI4KA//PI4KAP1//P	1550	OC652904	
C21orf41//BACH1	1494	LZTR1	1523	I4KAP2//LOC10029	3141	CXorf59	1578
IL10RB	1495	PPI2//YPEL1	1524	MAPK1	1551	ATP6AP2	1579
IFNAR1	1496	CYTSA	1525	ZNF70	1552	USP9X//USP9Y	1580
IFNGR2	1497	SNRPD3//C22orf13	1526	TPST2	1553	RP2	1581
SON	1498	NF2	1527	SF3A1//CCDC157	1554	USP11	1582
MORC3//DOPEY2	1499	LIMK2	1528	PES1	1555	RBM3	1583
DYRK1A	1500	SLC5A1	1529	PIK3IP1	1556	FTSJ1	1584
KCNJ15	1501	MCM5	1530	PATZ1	1557	WAS	1585
ETS2	1502	NCF4	1531	C22orf30	1558	MAGED2	1586
RRP1B	1503	GGA1	1532	IL2RB	1559	PLP2	1586
PFKL	1504	SH3BP1//PDXP	1533	CSNK1E//LOC4009	1560	UBQLN2	1589
TRPM2	1505	POLR2F//LOC1001	1534	27		NLGN3	1590
ADARB1	1506	31.530		UNC84B	1561	ACRC	1591
SAMSN1//LOC3888	1507	APOBEC3A//APOBEC3B	1535	CBX7//LOC100128	1562	UPRT	1592
1.3		APOBEC3D	1536	400		CXorf26	1593
N6A1T1	1508	ATF4	1537	RPS19BP1	1563	ATP7A	1594
SYNJ1	1509	CACNA1I	1538	MKL1//KIAA1659	1564	DIAPH2	1595
TMEM50B	1510	ZC3H7B	1539	RANGAP1	1565	CSTF2//RAD21	1596
KCNE1	1511	CCDC134	1540	TCF20	1566	ARMCX3	1597
PRDM15	1512	TSPO	1541	LDOL1	1567	ARMCX5	1598
C2CD2	1513	NUP50	1542	UNQ6126	1568	GPRASP1	1599
WDR4	1514	TBC1D22A//LOC100289878	1543	TUBGCP6	1569	TMEM31	1600
U2AF1	1515			MSL3	1571		

- 213 -

DNASE1L1//RPL10	1641
SH3KBP1	1642
Mitochondrial1	1643
Mitochondrial2	1644
CCNL2	1645
INPP5B	1646
TLR5	1647
ADRB3//GOT1L1	1648
NOC2L//SAMD11// LOC401010	1649
SHFM1	1650

GLA	1628
MORF4L2	1629
PSMD10	1630
ACSL4	1631
LAMP2	1632
CUL4B	1633
ODZ1	1634
ELF4	1635
RAR2C	1636
FAM127B//FAM127A	1637
C//FAM127A	
TMEM185A	1638
ARD1A	1639
IRAK1	1640

/SNORA56	1615
ARSDD	1616
KALL1	1617
CTPS2	1618
RPS6KA3	1619
BCOR	1620
MAOB//NAT13	1621
ZNF41	1622
OTUD5	1623
KCND1	1624
ZMYM3	1625
MAGT1	1626
BRWD3	1627
TRMT2B	

[§] HUGO Gene Nomenclature Committee

¶ Synonymous with
SPNS1//NP1PL2//LOC728741//LOC73
0153//NP1PL3//SPN1//LOC728888//
LOC100289169//LOC728734//LOC72
9602//LOC100288442//LOC1002883
32

* synonymous with
SNURF//PW//SNORD16-
16//SNORD16-18//SNORD16-
21//SNORD16-22//SNORD16-
17//SNORD16-19//PAR5//PAR-
SNORD16-2//SNORD16-
25//SNORD16-
26//SNORD107//SNORD115-
12//SNORD15-5//SNORD115-
42//SNORD115-11//SNORD115-
29//SNORD115-34//SNORD115-
36//SNORD115-4//SNORD115-
43//HBII-52-24//SNORD116-
5//SNORD116-7//SNORD115-
26//SNORD115-30//SNORD116-
15//SNORD116-8//SNORD115-
2//SNORD115-39//SNORD116-
14//SNORD116-20//SNORD115-

			PEF1	1732
			PTP4A2	1733
		CD1E	1705	
		TRIM62		1734
		PHC2		1735
		LSM10		1736
		MRPS15		1737
		RRAGC		1738
		COL9A2		1739
		TESK2		1740
		NRD1		1741
		KT112		1742
		CC2D1B		1743
		YIPF1		1744
		JAK1		1745
		SLC35D1		1746
		DIRAS3		1747
		ZZZ3		1748
		GNG5		1749
		ZNHIT6		1750
		ODF2L		1751
		SEP15		1752
		BARHL2		1753
		GCLM		1754
		CLCC1//GPSM2//C		1755
		10rf62		
		SORT1		1756
		SLC16A4		1757
		PHTF1		1758
		RSBN1		1759

CYP4B1	1677	NTRK1	1704	
BTF3L4	1678	CD1E	1705	
LRRC42	1679	TOMM40L//NR1I3	1706	
C10orf175//TTC4	1680	POU2F1	1707	
TMEM61	1681	TIPRL	1708	
FPGT//TNNT3K	1682	SFT2D2	1709	
ACADM	1683	CACNA1E	1710	
SPATA1	1684	SMG7	1711	
EPHX4	1685	OCLM	1712	
RPPA2	1686	RGS2	1713	
NBL1//C10orf151	1687	ZC3H11A//RP11-74E24.2	1714	
MDS2	1660	MFSD4	1715	
RCAN3	1661	IL20	1716	
LDLRAP1	1662	RPS6KC1	1717	
MAN1C1	1663	C10orf95	1718	
SH3BGRL3	1664	ARF1	1719	
DHDDS	1665	GALNT2	1720	
HCRTR1	1666	TNFRSF4	1721	
CCDC28B	1667	NADK	1722	
LCK	1668	FLJ14100//C10orf8 ₆	1723	
ZNF362	1669	UPF0627	1696	
THRAP3	1670	MRPS21	1697	
PPIE//CCDC25	1671	TNFAIP8L2	1698	
CAP1	1672	SMCP	1699	
CTPS	1673	DCST1	1700	
C10orf84	1674	RAG1AP1	1701	
FAAH	1675	C10orf182	1702	
DMBX1	1676	HAPLN2	1703	
		RPA2	1731	

TABLE 2

HGNC § Gene Name	SEQ ID NO	1677	1696	1723
PRKCZ	1651	1678	CD1E	1705
SKI	1652	1679	TOMM40L//NR1I3	1706
RER1	1653	1680	POU2F1	1707
TAS1R1	1654	1681	TIPRL	1708
VAMP3	1655	1682	SFT2D2	1709
AGTRAP	1656	1683	CACNA1E	1710
VPS13D	1657	1684	SMG7	1711
KLHDC7A	1658	1685	OCLM	1712
		1686	RGS2	1713
		RPL5//SNORA66//SNORD21//FAM69A	ZC3H11A//RP11-74E24.2	1714
		1687	MFSD4	1715
		1688	IL20	1716
		1689	RPS6KC1	1717
		1690	C10orf95	1718
		1691	ARF1	1719
		1692	GALNT2	1720
		1693	TNFRSF4	1721
		1694	NADK	1722
		1695	FLJ14100//C10orf8 ₆	1723
		1696	UPF0627	1696
		1697	MRPS21	1697
		1698	TNFAIP8L2	1698
		1699	SMCP	1699
		1700	DCST1	1700
		1701	RAG1AP1	1701
		1702	C10orf182	1702
		1703	HAPLN2	1703
		1731	RPA2	1731

- 215 -

PLEK	1837
RAB3GAP2//AURK	1811
APS1//AURKA//SN	
ORA36B	
TP53BP2	1812
NVL	1813
TMEM63A	1814
PARP1	1815
ITPKB	1816
TARBP1	1817
CHML	1818
TOR1AIP2//TOR1A	
IP1//IFRG15	
STX6//KIAA1614	1793
AKT3	1819
SMYD3	1820
AHCTF1	1821
OR1C1	1822
NCOA1	1823
ZAP70	1851
LIPT1//MRPL30	1852
MAP4K4	1853
ABHD1//PREB	1825
KIF21B	1798
SPAST	1826
SLC30A6//DDX50	1827
CRIP	1828
MSH2	1829
FOXN2	1830
CCDC104	1831
CH3L1	1802
PIK3C2B//LOC100	1803
130573	
NUAK2	1804
NUCKS1	1805
AHSA2//USP34	1833
FAIM3	1806
OTX1	1834
PLXNA2	1807
AFTP8	1835
SLC30A1	1808
CEP68	1836
RALB	1864

ANGEL2	1810
RAB3GAP2//AURK	1811
APS1//AURKA//SN	
ORA36B	
TP53BP2	1812
NVL	1813
TMEM63A	1814
PARP1	1815
ITPKB	1816
TMSB10	1845
SH2D6	1846
GNLY	1847
KCNIP3	1848
CNNM4	1849
CNNM3	1850
ZAP70	1851
LIPT1//MRPL30	1852
MAP4K4	1853
IL1R2	1854
IL1R1	1855
IL18R1	1856
POLR1B	1857
CHCHD5	1858
IL1RN	1859
PSD4	1860
DDX18	1861
INSIG2	1862
TMEM177//LOC10	1863
0125918	
RALB	1864

MEF2D	1782
ATM2	1783
COPA	1784
DEDD	1785
TADA1L	1786
GPA33	1787
CD247	1788
F5	1789
PIGC	1790
KIAA0040	1791
TOR1AIP2//TOR1A	
IP1//IFRG15	
STX6//KIAA1614	1793
EDEM3	1794
UCHL5	1795
DENND1B	1796
DDX59	1797
CRNN	1770
SPRR2C	
KIF21B	1798
ARL8A	1799
CYB5R1	1800
MYBPH	1801
S100A12	1771
S100A8	1772
GATAD2B//PLIN2	1773
DENND4B	1774
PBX1P1	1775
PYGO2	1776
SHC1	1777
DCST2	1778
GBA//GBAP	1779
ASH1L	1780
RIT1	1781
PGAT1	1809

1760	
CD58	1761
SPAG17//WDR3	1762
REG4//NBPF7	1763
RP11-94I2.2//NBPF16//NBPF11//NBPF15//NBPF8//NBPF20//NBPF10//NBPF14//NBPF1//LOC100288142//NBPF12//K1AA1245//LOC100290137	1764
APHA	1765
POGZ	1766
TDRKH	1767
THEM4	1768
S100A11	1769
CRNN	1770
SPRR2C	
S100A12	1771
S100A8	1772
GATAD2B//PLIN2	1773
DENND4B	1774
PBX1P1	1775
PYGO2	1776
SHC1	1777
DCST2	1778
GBA//GBAP	1779
ASH1L	1780
RIT1	1781

- 216 -

C3orf35	1951
SNRK	1952
ZNF197	1953
GNAI2	1954
ALAS1	1955
PRKCD	1956
CACNA1D	1957
PXK	1958
PTPRG	1959
ATXN7	1960
SLC35A5	1961
SLC15A2	1962
CCDC48	1963
DNAJC13	1964
CLDN18	1965
GYG1	1966
SELT	1967
MED12L	1968
RAP2B	1969
MYNN	1970
ABCF3	1971
VPS8	1972
HRG	1973
EIF4A2//SNORA4	1974
LPP	1975
CCDC50	1976
LOC152217	1977
TADA3L	1978
SEC13	1979

AGFG1	1893
CHRNG	1894
EIF4E2	1895
TRPM8	1896
LRRFIP1	1897
GAL3ST2	1898
TMEM18	1899
LAPTM4A	1900
SF3B14	1901
TP53I3	1902
UNQ2999	1903
GPR113//SELI	1904
ZAK	1905
OSBPL6	1906
PPM1G	1907
NRK4	1908
ZC3H15	1909
COL3A1	1910
GLS	1911
OBFC2A	1912
COQ10B	1913
MARS2	1914
CFLAR	1915
NOP58	1916
FAM117B	1917
CYP20A1	1918
FASTKD2	1919
PIKFYVE	1920
C2orf62	1921
SLC11A1	1922
UBE2E1	1923
CCDC93	1924
CLASP1	1925
SAP130	1926
YSK4	1927
GTDC1	1928
ORC4L	1929
NR4A2//FLJ46875	1930
DPP4	1931
GALNT3	1932
SCN7A	1933
FRZB	1934
STK17B	1935
CLK1//PPIL3	1936
MPP4	1937
INO80D	1938
KLF7	1939
FAM119A	1940
NGEF	1941
ARL4C	1942
BCL11A	1943
XPO1	1944
NAT8B	1945
DUSP11	1946
MOGS	1947
SETD5	1948
IRAK2	1949
C3orf42	1950
SNRNP200	1951
SEMA4C	1952
MITD1	1953
IL1A	1954

1865	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367	2368	2369	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399	2400	2401	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456	2457	2458	2459	2460	2461	2462	2463	2464	2465	2466	2467	2468	2469	2470	2471	2472	2473	2474	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494	2495	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527	2528	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567	2568	2569	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584	2585	2586	2587	2588	2589	2590	2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622	2623	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697	2698	2699	2700	2701	2702	2703	2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715	2716	2717	2718	2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770	2771	2772	2773	2774	2775	2776	2777	2778	2779	2780	2781	2782	2783	2784	2785	2786	2787	2788	2789	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808	2809	2810	2811	2812	2813	2814	2815	2816

- 217 -

CARD6	2062
MCCCC2	2063
TNPO1	2064
PDE8B	2065
PAPD4	2066
THBS4	2067
FAM151B	2068
RASGRF2	2069
SNX2	2070
LMNB1//PCIF1	2071
MEGF10	2072
LEAP2	2073
TCF7	2074
KDM3B	2075
CXXC5	2076
SLC4A9	2077
ANKH1-1- EIF4EBP3//ANKHD 1//EIF4EBP3	2078
KIAA0141	2079
GRPEL2	2080
MFAP3	2081
GABRA6	2082
GABRA1	2083
DOCK2	2084
RANBP17//USP12	2085
ERGIC1	2086
ATP6V0E1//SNORA	
74B	
ZNF346	2087

FOXL2	2007
MECOM	2008
PLD1	2009
GNB4	2010
MRPL47	2011
KLHL6	2012
THPO	2013
ETV5	2014
BCL6//LOC100131	2015
635	
ATP13A5	2016
TMEM44	2017
KIAA1530	2018
TACC3	2019
CNO	2020
BST1	2021
KLF3	2022
TMEM33//DCAF4L	2023
1	
WDR82	2022
LMOD3	1996
FOXP1	1997
MORC1	1998
ENAM	2025
ATG3	1999
GSK3B//LOC10012	2000
9275	
HCL51	2001
KPNAA1	2002
PTPLB	2003
C3orf22	2004
RPN1	2005
KIAA1257//ACAD9	2006
//LOC100132731	
SUB1//TMEM183A	2061

FOXM1	2006
GRIN2B	2007
GRIN2A	2008
GRIN1	2009
GRIN3	2010
GRIN2C	2011
GRIN2D	2012
GRIN2E	2013
GRIN2F	2014
GRIN2G	2015
GRIN2H	2016
GRIN2I	2017
GRIN2J	2018
GRIN2K	2019
GRIN2L	2020
GRIN2M	2021
GRIN2N	2022
GRIN2O	2023
GRIN2P	2024
GRIN2Q	2025
GRIN2R	2026
GRIN2S	2027
GRIN2T	2028
GRIN2U	2029
GRIN2V	2030
GRIN2W	2031
GRIN2X	2032
GRIN2Y	2033
GRIN2Z	2034
GRIN2AA	2035
GRIN2BB	2036
GRIN2CC	2037
GRIN2DD	2038
GRIN2EE	2039
GRIN2FF	2040
GRIN2GG	2041
GRIN2HH	2042
GRIN2II	2043
GRIN2JJ	2044
GRIN2KK	2045
GRIN2LL	2046
GRIN2MM	2047
GRIN2NN	2048
GRIN2OO	2049
GRIN2PP	2050
GRIN2QQ	2051
GRIN2RR	2052
GRIN2SS	2053
GRIN2TT	2054
GRIN2UU	2055
GRIN2VV	2056
GRIN2WW	2057
GRIN2XX	2058
GRIN2YY	2059
GRIN2ZZ	2060
GRIN2AA	2061
GRIN2BB	2062
GRIN2CC	2063
GRIN2DD	2064
GRIN2EE	2065
GRIN2FF	2066
GRIN2GG	2067
GRIN2HH	2068
GRIN2II	2069
GRIN2JJ	2070
GRIN2KK	2071
GRIN2LL	2072
GRIN2MM	2073
GRIN2NN	2074
GRIN2OO	2075
GRIN2PP	2076
GRIN2QQ	2077
GRIN2RR	2078
GRIN2SS	2079
GRIN2TT	2080
GRIN2UU	2081
GRIN2VV	2082
GRIN2WW	2083
GRIN2XX	2084
GRIN2YY	2085
GRIN2ZZ	2086
GRIN2AA	2087
GRIN2BB	2088
GRIN2CC	2089
GRIN2DD	2090
GRIN2EE	2091
GRIN2FF	2092
GRIN2GG	2093
GRIN2HH	2094
GRIN2II	2095
GRIN2JJ	2096
GRIN2KK	2097
GRIN2LL	2098
GRIN2MM	2099
GRIN2NN	2100
GRIN2OO	2101
GRIN2PP	2102
GRIN2QQ	2103
GRIN2RR	2104
GRIN2SS	2105
GRIN2TT	2106
GRIN2UU	2107
GRIN2VV	2108
GRIN2WW	2109
GRIN2XX	2110
GRIN2YY	2111
GRIN2ZZ	2112
GRIN2AA	2113
GRIN2BB	2114
GRIN2CC	2115
GRIN2DD	2116
GRIN2EE	2117
GRIN2FF	2118
GRIN2GG	2119
GRIN2HH	2120
GRIN2II	2121
GRIN2JJ	2122
GRIN2KK	2123
GRIN2LL	2124
GRIN2MM	2125
GRIN2NN	2126
GRIN2OO	2127
GRIN2PP	2128
GRIN2QQ	2129
GRIN2RR	2130
GRIN2SS	2131
GRIN2TT	2132
GRIN2UU	2133
GRIN2VV	2134
GRIN2WW	2135
GRIN2XX	2136
GRIN2YY	2137
GRIN2ZZ	2138
GRIN2AA	2139
GRIN2BB	2140
GRIN2CC	2141
GRIN2DD	2142
GRIN2EE	2143
GRIN2FF	2144
GRIN2GG	2145
GRIN2HH	2146
GRIN2II	2147
GRIN2JJ	2148
GRIN2KK	2149
GRIN2LL	2150
GRIN2MM	2151
GRIN2NN	2152
GRIN2OO	2153
GRIN2PP	2154
GRIN2QQ	2155
GRIN2RR	2156
GRIN2SS	2157
GRIN2TT	2158
GRIN2UU	2159
GRIN2VV	2160
GRIN2WW	2161
GRIN2XX	2162
GRIN2YY	2163
GRIN2ZZ	2164
GRIN2AA	2165
GRIN2BB	2166
GRIN2CC	2167
GRIN2DD	2168
GRIN2EE	2169
GRIN2FF	2170
GRIN2GG	2171
GRIN2HH	2172
GRIN2II	2173
GRIN2JJ	2174
GRIN2KK	2175
GRIN2LL	2176
GRIN2MM	2177
GRIN2NN	2178
GRIN2OO	2179
GRIN2PP	2180
GRIN2QQ	2181
GRIN2RR	2182
GRIN2SS	2183
GRIN2TT	2184
GRIN2UU	2185
GRIN2VV	2186
GRIN2WW	2187
GRIN2XX	2188
GRIN2YY	2189
GRIN2ZZ	2190
GRIN2AA	2191
GRIN2BB	2192
GRIN2CC	2193
GRIN2DD	2194
GRIN2EE	2195
GRIN2FF	2196
GRIN2GG	2197
GRIN2HH	2198
GRIN2II	2199
GRIN2JJ	2200
GRIN2KK	2201
GRIN2LL	2202
GRIN2MM	2203
GRIN2NN	2204
GRIN2OO	2205
GRIN2PP	2206
GRIN2QQ	2207
GRIN2RR	2208
GRIN2SS	2209
GRIN2TT	2210
GRIN2UU	2211
GRIN2VV	2212
GRIN2WW	2213
GRIN2XX	2214
GRIN2YY	2215
GRIN2ZZ	2216
GRIN2AA	2217
GRIN2BB	2218
GRIN2CC	2219
GRIN2DD	2220
GRIN2EE	2221
GRIN2FF	2222
GRIN2GG	2223
GRIN2HH	2224
GRIN2II	2225
GRIN2JJ	2226
GRIN2KK	2227
GRIN2LL	2228
GRIN2MM	2229
GRIN2NN	2230
GRIN2OO	2231
GRIN2PP	2232
GRIN2QQ	2233
GRIN2RR	2234
GRIN2SS	2235
GRIN2TT	2236
GRIN2UU	2237
GRIN2VV	2238
GRIN2WW	2239
GRIN2XX	2240
GRIN2YY	2241
GRIN2ZZ	2242
GRIN2AA	2243
GRIN2BB	2244
GRIN2CC	2245
GRIN2DD	2246
GRIN2EE	2247
GRIN2FF	2248
GRIN2GG	2249
GRIN2HH	2250
GRIN2II	2251
GRIN2JJ	2252
GRIN2KK	2253
GRIN2LL	2254
GRIN2MM	2255
GRIN2NN	2256
GRIN2OO	2257
GRIN2PP	2258
GRIN2QQ	2259
GRIN2RR	2260
GRIN2SS	2261
GRIN2TT	2262
GRIN2UU	2263
GRIN2VV	2264
GRIN2WW	2265
GRIN2XX	2266
GRIN2YY	2267
GRIN2ZZ	2268
GRIN2AA	2269
GRIN2BB	2270
GRIN2CC	2271
GRIN2DD	2272
GRIN2EE	2273
GRIN2FF	2274
GRIN2GG	2275
GRIN2HH	2276
GRIN2II	2277
GRIN2JJ	2278
GRIN2KK	2279
GRIN2LL	2280
GRIN2MM	2281
GRIN2NN	2282
GRIN2OO	2283
GRIN2PP	2284
GRIN2QQ	2285
GRIN2RR	2286
GRIN2SS	2287
GRIN2TT	2288
GRIN2UU	2289
GRIN2VV	2290
GRIN2WW	2291
GRIN2XX	2292
GRIN2YY	2293
GRIN2ZZ	2294
GRIN2AA	2295
GRIN2BB	2296
GRIN2CC	2297
GRIN2DD	2298
GRIN2EE	2299
GRIN2FF	2300
GRIN2GG	2301
GRIN2HH	2302
GRIN2II	2303
GRIN2JJ	2304
GRIN2KK	2305
GRIN2LL	2306
GRIN2MM	2307
GRIN2NN	2308
GRIN2OO	2309
GRIN2PP	2310
GRIN2QQ	2311
GRIN2RR	2312
GRIN2SS	2313
GRIN2TT	2314
GRIN2UU	2315
GRIN2VV	2316
GRIN2WW	2317
GRIN2XX	2318
GRIN2YY	2319
GRIN2ZZ	2320
GRIN2AA	2321
GRIN2BB	2322
GRIN2CC	2323
GRIN2DD	2324
GRIN2EE	2325
GRIN2FF	2326
GRIN2GG	2327
GRIN2HH	2328
GRIN2II	2329
GRIN2JJ	2330
GRIN2KK	2331
GRIN2LL	2332
GRIN2MM	2333
GRIN2NN	2334
GRIN2OO	2335
GRIN2PP	2336
GRIN2QQ	2337
GRIN2RR	2338
GRIN2SS	2339
GRIN2TT	2340
GRIN2UU	2341
GRIN2VV	2342
GRIN2WW	2343
GRIN2XX	2344
GRIN2YY	2345
GRIN2ZZ	2346
GRIN2AA	2347
GRIN2BB	2348
GRIN2CC	2349
GRIN2DD	2350
GRIN2EE	2351
GRIN2FF	2352
GRIN2GG	2353
GRIN2HH	2354
GRIN2II	2355
GRIN2JJ	2356
GRIN2KK	2357
GRIN2LL	2358
GRIN2MM	2359
GRIN2NN	2360
GRIN2OO	2361
GRIN2PP	2362
GRIN2QQ	2363
GRIN2RR	2364
GRIN2SS	2365
GRIN2TT	2366
GRIN2UU	2367
GRIN2VV	2368
GRIN2WW	2369
GRIN2XX	2370
GRIN2YY	2371
GRIN2ZZ	2372
GRIN2AA	2373
GRIN2BB	2374
GRIN2CC	2375
GRIN2DD	2376
GRIN2EE	2377
GRIN2FF	2378
GRIN2GG	2379
GRIN2HH	2380
GRIN2II	2381
GRIN2JJ	2382
GRIN2KK	2383
GRIN2LL	2384
GRIN2MM	2385
GRIN2NN	2386
GRIN2OO	2387
GRIN2PP	2388
GRIN2QQ	2389
GRIN2RR	2390
GRIN2SS	2391
GRIN2TT	2392
GRIN2UU	2393
GRIN2VV	2394
GRIN2WW	2395
GRIN2XX	2396
GRIN2YY	2397
GRIN2ZZ	2398
GRIN2AA	2399
GRIN2BB	2400
GRIN2CC	2401
GRIN2DD	2402
GRIN2EE	2403
GRIN2FF	2404
GRIN2GG	2405
GRIN2HH	2406
GRIN2II	2407
GRIN2JJ	2408
GRIN2KK	2409
GRIN2LL	2410
GRIN2MM	2411
GRIN2NN	2412
GRIN2OO	2413</td

- 218 -

		YIPF3	2171
		MRPL14	2172
	SLC38A9	SOBP	2144
	RNF44	C6orf182	2145
	DOK3	KIAA1919	2146
	TTC33	RWDD1	2147
	hCG_2039148	KPNA5	2148
	MOCs2	TPD52L1	2149
	SLC38A9	ARG1	2150
	CCDC125	RAB32	2151
	ANKRA2	ARID1B	2152
	2094	SLC22A3	2153
	2095	SERPINB1	2154
	2096	C6orf146	2155
	2097	GCM2	2156
	2098	ATXN1	2157
	TMEM161B	DCDC2//KAAG1	2158
	2099	HIST1H2BM	2159
	MBLAC2	HIST1H3I	2159
	2100	HIST1H4L	2160
	MCTP1	GABBR1	2161
	2101	RNA243	
	TICAM2//TMED7// TMED7-TICAM2	ITPR3	2134
	KIF3A	DDAH2	2162
	2103	MAPK14	2135
	HCG27	CLIC1	2163
	2104	MAPK13	2136
	BAT2//SNORA38	NEU1	2164
	SKP1	PNPLA1	2137
	2105	SFRS3	2138
	CYP21A2	VPS52	2166
	CXCL14	CDDC126	2192
	2106	CDKN1A	2139
	KLHL3	RXRB	2165
	2107	TCP11	2167
	CD14	CLPS	2168
	2108	ATOX1	2141
	YIPF5	POU6F2	2197
	2109	TIMD4	2198
	LARS	ZNF318	2170

		ADAM19	2115
	SLC38A9	2116	
	RNF44	2117	
	DOK3	2118	
	TTC33	MGAT4B//SQSTM1	2119
	hCG_2039148	C5orf45//SQSTM1	2120
	MOCs2	RASGEF1C	2121
	SLC38A9	MGAT1	2122
	CCDC125	IRF4	2123
	ANKRA2	HIVEP1	2124
	2094	E2F3	2125
	2095	HIST1H4I	2126
	2096	HIST1H2BM	2127
	2097	MOG	2128
	2098	ZNRD1//NCRNA00	2129
	TMEM161B	171	
	2099	TRIM15	2130
	MBLAC2	HCG27	2131
	2100	BAT2//SNORA38	2132
	MCTP1	CYP21A2	2133
	2101	CXCL14	2134
	TICAM2//TMED7// TMED7-TICAM2	KLHL3	2107
	KIF3A	CD14	2108
	2103	YIPF5	2109
	HCG27	LARS	2110
	2104	DCTN4	2111
	BAT2//SNORA38	CCDC126	2193
	CYP21A2	WIPF3//ZNRF2//L	2194
	CXCL14	OC441208	
	KLHL3	GPR141	2195
	2107	STARD3NL	2196
	CD14	POU6F2	2197
	2108	CDC2L5	2198

		ADAM19	2115
	SLC38A9	2116	
	RNF44	2117	
	DOK3	2118	
	TTC33	MGAT4B//SQSTM1	2119
	hCG_2039148	C5orf45//SQSTM1	2120
	MOCs2	RASGEF1C	2121
	SLC38A9	MGAT1	2122
	CCDC125	IRF4	2123
	ANKRA2	HIVEP1	2124
	2094	E2F3	2125
	2095	HIST1H4I	2126
	2096	HIST1H2BM	2127
	2097	MOG	2128
	2098	ZNRD1//NCRNA00	2129
	TMEM161B	171	
	2099	TRIM15	2130
	MBLAC2	HCG27	2131
	2100	BAT2//SNORA38	2132
	MCTP1	CYP21A2	2133
	2101	CXCL14	2134
	TICAM2//TMED7// TMED7-TICAM2	KLHL3	2107
	KIF3A	CD14	2108
	2103	YIPF5	2109
	HCG27	LARS	2110
	2104	DCTN4	2111
	BAT2//SNORA38	CCDC126	2193
	CYP21A2	WIPF3//ZNRF2//L	2194
	CXCL14	OC441208	
	KLHL3	GPR141	2195
	2107	STARD3NL	2196
	CD14	POU6F2	2197
	2108	CDC2L5	2198

		ADAM19	2115
	CLPTM1L	2089	
	UGT3A1	2090	
	GDNF	2091	
	TTC33	2092	
	hCG_2039148	2093	
	MOCs2	2094	
	SLC38A9	2095	
	RNF44	2096	
	DOK3	2097	
	TTC33	2098	
	hCG_2039148	2099	
	MOCs2	2100	
	SLC38A9	2101	
	RNF44	2102	
	DOK3	2103	
	TTC33	2104	
	hCG_2039148	2105	
	MOCs2	2106	
	SLC38A9	2107	
	RNF44	2108	
	DOK3	2109	
	TTC33	2110	
	hCG_2039148	2111	
	MOCs2	2112	
	SLC38A9	2113	
	RNF44	2114	
	DOK3	2115	
	TTC33	2116	
	hCG_2039148	2117	
	MOCs2	2118	
	SLC38A9	2119	
	RNF44	2120	
	DOK3	2121	
	TTC33	2122	
	hCG_2039148	2123	
	MOCs2	2124	
	SLC38A9	2125	
	RNF44	2126	
	DOK3	2127	
	TTC33	2128	
	hCG_2039148	2129	
	MOCs2	2130	
	SLC38A9	2131	
	RNF44	2132	
	DOK3	2133	
	TTC33	2134	
	hCG_2039148	2135	
	MOCs2	2136	
	SLC38A9	2137	
	RNF44	2138	
	DOK3	2139	
	TTC33	2140	
	hCG_2039148	2141	
	MOCs2	2142	
	SLC38A9	2143	
	RNF44	2144	
	DOK3	2145	
	TTC33	2146	
	hCG_2039148	2147	
	MOCs2	2148	
	SLC38A9	2149	
	RNF44	2150	
	DOK3	2151	
	TTC33	2152	
	hCG_2039148	2153	
	MOCs2	2154	
	SLC38A9	2155	
	RNF44	2156	
	DOK3	2157	
	TTC33	2158	
	hCG_2039148	2159	
	MOCs2	2160	
	SLC38A9	2161	
	RNF44	2162	
	DOK3	2163	
	TTC33	2164	
	hCG_2039148	2165	
	MOCs2	2166	
	SLC38A9	2167	
	RNF44	2168	
	DOK3	2169	
	TTC33	2170	
	hCG_2039148	2171	
	MOCs2	2172	
	SLC38A9	2173	
	RNF44	2174	
	DOK3	2175	
	TTC33	2176	
	hCG_2039148	2177	
	MOCs2	2178	
	SLC38A9	2179	
	RNF44	2180	
	DOK3	2181	
	TTC33	2182	
	hCG_2039148	2183	
	MOCs2	2184	
	SLC38A9	2185	
	RNF44	2186	
	DOK3	2187	
	TTC33	2188	
	hCG_2039148	2189	
	MOCs2	2190	
	SLC38A9	2191	
	RNF44	2192	
	DOK3	2193	
	TTC33	2194	
	hCG_2039148	2195	
	MOCs2	2196	
	SLC38A9	2197	
	RNF44	2198	
	DOK3	2199	
	TTC33	2200	
	hCG_2039148	2201	
	MOCs2	2202	
	SLC38A9	2203	
	RNF44	2204	
	DOK3	2205	
	TTC33	2206	
	hCG_2039148	2207	
	MOCs2	2208	
	SLC38A9	2209	
	RNF44	2210	
	DOK3	2211	
	TTC33	2212	
	hCG_2039148	2213	
	MOCs2	2214	
	SLC38A9	2215	
	RNF44	2216	
	DOK3	2217	
	TTC33	2218	
	hCG_2039148	2219	
	MOCs2	2220	
	SLC38A9	2221	
	RNF44	2222	
	DOK3	2223	
	TTC33	2224	
	hCG_2039148	2225	
	MOCs2	2226	
	SLC38A9	2227	
	RNF44	2228	
	DOK3	2229	
	TTC33	2230	
	hCG_2039148	2231	
	MOCs2	2232	
	SLC38A9	2233	
	RNF44	2234	
	DOK3	2235	
	TTC33	2236	
	hCG_2039148	2237	
	MOCs2	2238	
	SLC38A9	2239	
	RNF44	2240	
	DOK3	2241	
	TTC33	2242	
	hCG_2039148	2243	
	MOCs2	2244	
	SLC38A9	2245	
	RNF44	2246	
	DOK3	2247	
	TTC33	2248	
	hCG_2039148	2249	
	MOCs2	2250	
	SLC38A9	2251	
	RNF44	2252	
	DOK3	2253	
	TTC33	2254	
	hCG_2039148	2255	
	MOCs2	2256	
	SLC38A9	2257	
	RNF44	2258	
	DOK3	2259	
	TTC33	2260	
	hCG_2039148	2261	
	MOCs2	2262	
	SLC38A9	2263	
	RNF44	2264	
	DOK3	2265	
	TTC33	2266	
	hCG_2039148	2267	
	MOCs2	2268	
	SLC38A9	2269	
	RNF44	2270	
	DOK3	2271	
	TTC33	2272	
	hCG_2039148	2273	
	MOCs2	2274	
	SLC38A9	2275	
	RNF44	2276	
	DOK3	2277	
	TTC33	2278	
	hCG_2039148	2279	
	MOCs2	2280	
	SLC38A9	2281	
	RNF44	2282	
	DOK3	2283	
	TTC33	2284	
	hCG_2039148	2285	
	MOCs2	2286	
	SLC38A9	2287	
	RNF44	2288	
	DOK3	2289	
	TTC33	2290	
	hCG_2039148	2291	
	MOCs2	2292	
	SLC38A9	2293	
	RNF44	2294	
	DOK3	2295	
	TTC33	2	

- 219 -

INHBA	2199	FLJ46365	N/A	2278
CAMK2B	2200	SNTG1	2251	C9orf6//IKBKA ^P
NPC1L1	2201	TRIM55	2252	IMAGE5303689
DDC//LOC100129427	2202	C8orf45	2253	N/A
NSUN5//NSUN5B//NSUN5C	2203	PREX2	2254	ATP6V1G1
CLDN3	2204	PLEKHF2	2255	TLR4
C7orf23//DMTF1	2205	BAALC//FLJ110489	2256	SET
SRI	2206	TTC35	2257	MRPL41
BET1	2207	MTBP	2258	C9orf68
MCM7	2208	ZHX2	2259	HAUS6//SCARNA8
GATS	2209	RNF139	2260	KLHL9
TG	2210	TG	2261	C9orf82
GNB2	2211	DENND3//C8orf60	2262	NDUFB6//DFFB
LRRC17	2212	TNFRSF10D	2263	SIT1
LRRN3	2213	TRIM35	2264	FAM103B1
SLC37A3	2214	GSR	2265	TRPM6
SMARCD3	2215	WHSC1L1	2266	FRMD3
MLL3//BAGE2	2216	PCMTD1//PXDNL	2267	SLC28A3
CLN8	2217	NCOA2	2268	BICD2
MSRA	2218	TRAM1//LOC28619	2269	C9orf84
PIWIL2	2219	0	2270	AKNA
INSIG1	2220	RUNX1T1	2270	2295
RBM33	2221	EXT1	2271	MEGF9
ICA1	2222	DDEF1I1	2272	C5
FAM126A	2223	LEPROTL1	2273	2298
HIBADH	2224	MAK16//C8orf41	2273	GOLGA1//SCAI
TRIL	2225	AP3M2	2274	2299
SCRN1	2226	FNTA	2275	SH2D3C
ELMO1	2227	SGK196	2276	FAM102A
UBE2V2	2228	RGP1//GBA2	2277	FLJ10232
		UBE2V2	2250	ASB6
				2302
				BAT2L
				2303
				EDF1
				2304

INHBA	2224	FLJ46365	N/A	2278
CAMK2B	2225	SNTG1	2251	C9orf6//IKBKA ^P
NPC1L1	2226	TRIM55	2252	IMAGE5303689
DDC//LOC100129427	2227	C8orf45	2253	N/A
NSUN5//NSUN5B//NSUN5C	2228	PREX2	2254	ATP6V1G1
CLDN3	2229	PLEKHF2	2255	TLR4
C7orf23//DMTF1	2230	BAALC//FLJ110489	2256	SET
SRI	2231	TTC35	2257	MRPL41
BET1	2232	MTBP	2258	C9orf68
MCM7	2233	ZHX2	2259	2285
GATS	2234	RNF139	2260	HAUS6//SCARNA8
TG	2235	TG	2261	2286
ATXN7L1//RINT1//EFCAB10	2236	DENND3//C8orf60	2262	KLHL9
KIAA1549	2237	TNFRSF10D	2263	C9orf82
SLC37A3	2238	TRIM35	2264	NDUFB6//DFFB
SMARCD3	2239	GSR	2265	SIT1
MLL3//BAGE2	2240	WHSC1L1	2266	2290
CLN8	2241	PCMTD1//PXDNL	2267	FAM103B1
MSRA	2242	NCOA2	2268	2291
PIWIL2	2243	TRAM1//LOC28619	2269	TRPM6
INSIG1	2244	0	2270	2292
RBM33	2245	RUNX1T1	2270	2293
ICA1	2246	EXT1	2271	2294
FAM126A	2247	DDEF1I1	2272	2295
HIBADH	2248	LEPROTL1	2273	2296
TRIL	2249	MAK16//C8orf41	2273	2297
SCRN1	2250	AP3M2	2274	2298
ELMO1	2251	FNTA	2275	2299
		SGK196	2276	2300
		RGP1//GBA2	2277	2301
		UBE2V2	2250	2302

INHBA	2224	FLJ46365	N/A	2278
CAMK2B	2225	SNTG1	2251	C9orf6//IKBKA ^P
NPC1L1	2226	TRIM55	2252	IMAGE5303689
DDC//LOC100129427	2227	C8orf45	2253	N/A
NSUN5//NSUN5B//NSUN5C	2228	PREX2	2254	ATP6V1G1
CLDN3	2229	PLEKHF2	2255	TLR4
C7orf23//DMTF1	2230	BAALC//FLJ110489	2256	SET
SRI	2231	TTC35	2257	MRPL41
BET1	2232	MTBP	2258	C9orf68
MCM7	2233	ZHX2	2259	2285
GATS	2234	RNF139	2260	HAUS6//SCARNA8
TG	2235	TG	2261	2286
ATXN7L1//RINT1//EFCAB10	2236	DENND3//C8orf60	2262	KLHL9
KIAA1549	2237	TNFRSF10D	2263	C9orf82
SLC37A3	2238	TRIM35	2264	NDUFB6//DFFB
SMARCD3	2239	GSR	2265	SIT1
MLL3//BAGE2	2240	WHSC1L1	2266	2290
CLN8	2241	PCMTD1//PXDNL	2267	FAM103B1
MSRA	2242	NCOA2	2268	2291
PIWIL2	2243	TRAM1//LOC28619	2269	TRPM6
INSIG1	2244	0	2270	2292
RBM33	2245	RUNX1T1	2270	2293
ICA1	2246	EXT1	2271	2294
FAM126A	2247	DDEF1I1	2272	2295
HIBADH	2248	LEPROTL1	2273	2296
TRIL	2249	MAK16//C8orf41	2273	2297
SCRN1	2250	AP3M2	2274	2298
ELMO1	2251	FNTA	2275	2299
		SGK196	2276	2300
		RGP1//GBA2	2277	2301
		UBE2V2	2250	2302

ZMIZ2	2199	FLJ46365	N/A	2278
UPP1	2200	SNTG1	2251	C9orf6//IKBKA ^P
ZNF273	2201	TRIM55	2252	IMAGE5303689
KCTD7//RABGEF1	2202	C8orf45	2253	N/A
RABGEF1//tcag7.9	2203	PREX2	2254	ATP6V1G1
67//tcag7.951//KC	2204	PLEKHF2	2255	TLR4
TD7//LOC10029333	2205	BAALC//FLJ110489	2256	SET
CCDC132	2206	TTC35	2257	MRPL41
PVRIG//PILRB//ST	2207	MTBP	2258	C9orf68
AG3	2208	ZHX2	2259	2284
PILRB//PVRIG//ST	2209	RNF139	2260	HAUS6//SCARNA8
AG3	2210	TG	2261	2285
C7orf51	2211	DENND3//C8orf60	2262	KLHL9
GNB2	2212	TNFRSF10D	2263	C9orf82
LRRC17	2213	TRIM35	2264	NDUFB6//DFFB
LRRN3	2214	GSR	2265	SIT1
CFTR	2215	WHSC1L1	2266	2289
LSM8	2216	PCMTD1//PXDNL	2267	FAM103B1
LUC7L2	2217	NCOA2	2268	2290
MGAM//LOC100124692	2218	TRAM1//LOC28619	2269	TRPM6
GMAP7	2219	0	2270	2291
INSIG1	2220	MEGF9	2271	2292
RBM33	2221	C5	2272	2293
ICA1	2222	GOLGA1//SCAI	2273	2294
FAM126A	2223	SH2D3C	2274	2295
HIBADH	2224	FAM102A	2275	2296
TRIL	2225	FLJ10232	2276	2297
SCRN1	2226	ASB6	2277	2298
ELMO1	2227	BAT2L	2278	2299
		EDF1	2279	2300

- 220 -

CREBZF	2389
PICALM	2390
SLC36A4	2391
CCDC82	2392
KIAA1826	2393
MPZL3	2394
MPZL2	2395
H2AFX	2396
SIAE	2397
ZBTB44	2398
HSN2	2399
ADIPOR2	2400
NCAPD2//SCARNA10//FADS1	2401
PTPN6	2402
VWA5A//OR10D1P	2372
STT3A	2373
FXC1	2371
VPS26B	2374
TRIM21	2375
ZBED5	2376
SAAL1	2377
FANCF	2378
LIN7C	2379
TMEM106C	2403
TMBIM6	2409
C12orf62	2410
PRR13//PCBP2	2411
DGKA	2412
COQ10A	2413
TSPAN31	2414
CDK4//MARCH9/C3	2415
HC4	
LEMD3	2416

ATAD1	2332
ANKRD22	2333
FLJ34077	N/A
COX15	2334
ERLIN1	2335
ACTR1A	2336
ABLM1	2337
RAB11FTP2	2338
C10orf84	2339
PRDX3	2340
C10orf119	2341
NSMCE4A	2342
TALDO1//INTS8	2343
TNNT3	2344
FXC1	2345
PDE3B	2346
DNAJC24	2347
PTPRJ//OR4B1	2348
C11orf31	2349
TMEM109	2350
ABCC2	2323
CD6	2351
CD5	2352
TMEM138	2353
POLR2G	2354
TMEM179B	2355
TUT1	2384
NAT11	2356
SLC25A45	2385
OTUB1	2357
RBM14//RBM4	2358
ATP	2359

FBXW5	2305
C10orf18	2306
FBXO18	2307
GATA3	2308
CUGBP2	2309
VIM	2310
STAM	2311
WAC	2312
BAMBI	2313
ZNF487//LOC439911	2314
ALOX5	2315
WDFY4	2316
SRGN	2317
CCDC109A	2318
FAM149B1//FAM149B2	2319
MINPP1	2320
PTEN//PTENP1	2321
ENTPD1//C10orf131	2322
ACSL5	2323
SFXN2	2324
SHOC2	2325
BCCIP//DHX32	2327
FAM188A	2328
CUBN	2329
SVIL//hCG_1783494	2330
FAM13C//PHYHIPL	2331

PPFIA1	2360
IL18BP//NUMA1	2361
C11orf30	2362
C11orf82	2363
TMEM126B	2364
C11orf73	2365
PIWI14	2366
UBE4A	2369
TRAPPC4	2370
SC5DL	2371
VWA5A//OR10D1P	2372
STT3A	2373
PTPN6	2402
CLEC4D	2403
CDKN1B	2404
GOLT1B	2405
FAR2	2406
FGD4	2407
TMEM106C	2408
TMBIM6	2409
C12orf62	2410
PRR13//PCBP2	2411
DGKA	2412
COQ10A	2413
TSPAN31	2414
CDK4//MARCH9/C3	2415
HC4	
LEMD3	2416

- 221 -

ZMYM5//ZMYM2	2501
ZDHHC20//LOC72	2502
8099	2503
PARP4	2504
MTTMR6//LOC6464	2504
82	2505
HSPH1	2505
N4BP2L2//CG030	2506
ELF1	2507
LCP1	2508
KPNA3	2509
C13orf1	2510
DLEU2//DLEU2L	2511
GUCY1B2	2512
INTS6	2513
DACH1	2514
TBC1D4	2515
EDNRB	2516
UGGT2	2517
GPR183	2518
LIG4	2519
ANKRD10	2520
RASA3	2521
RNASE2//LOC6433	2522
32	2523
RPCRIP1	2523
IRF9	2524
TSSK4	2525
C14orf21	2526
SCFD1	2527

CCDC92	2473
NCOR2	2474
DHX37	2475
DDX51	2476
POLE	2477
GOLGA3	2478
ZMYM2	2479
SPATA13//C1QTNF9	2480
NUP11	2481
PAN3//EEF1A1//C	2482
HCHD2	
ALOX5AP	2483
EEF1DP3	2484
KL	2485
UFM1	2486
NARG1L	2487
ITM2B	2488
FNDC3A	2489
CDADC1	2490
ARL11	2491
LM07	2492
DNAJC3	2493
TM9SF2	2494
CLYBL	2495
PCCA	2496
ABHD13	2497
LAMP1	2498
TMCO3	2499
UPP3A	2500

PPTC7	2445
DDX54//CCDC42B	2446
SLC24A6	2447
SDS	2448
RBM19	2449
MED13L	2450
C12orf49	2451
FBXO21	2452
WSB2	2453
TAOK3	2454
CIT	2455
RAB35	2456
RPLP0	2457
PXN	2458
TRIAP1	2459
SFRS9	2460
POP5	2461
UNQ1887	2462
C12orf43	2463
ANAPC5	2464
KDM2B	2465
MORN3	2466
TMEM120B//RHOF	2467
LOC338799	
DIABLO//B3GNT4	2468
VPS33A	2469
CLIP1	2470
PITPNM2	2471
EIF2B1	2472

IRAK3	2417
TMTC3	2418
ACTR6	2419
TCTN1	2420
PXMP2//PGAM5	2421
DCP1B	2422
SLC2A3//SLC2A14	2423
C3AR1	2424
PLBD1	2425
TM7SF3	2426
ASB8//PHB	2427
LMBR1L	2428
FMNL3//PRPF40B	2429
AAAS	2430
NFE2	2431
GPR84	2432
CD63	2433
SARNP//DNAJC14	2434
NACA	2435
CDK4//TSPAN31	2436
TMBIM4//LOC100133322	2437
TL22	2438
LIN7A	2439
HAL	2440
APPL2	2441
GLTP	2442
GIT2	2443
VPS29	2444

- 222 -

SNX1	2610
LBXCOR1//PIAS1//	2611
CALML4	
ANKRD9	2584
NEO1	2612
PPP1R13B	2585
AKT1	2586
BRF1	2587
TUBGCP5	2588
SNRPN *	2589
RCN2	2615
APBA2	2590
MTMR15//MTMR10	2591
IL16	2617
ABHD2	2618
FAH	2616
SLCO3A1	2619
MCTP2	2620
RYR3	2592
BAHD1	2593
CHP	2594
JMJD7-	2595
PLA2G4B//JMJD7//	
PLA2G4B	
HAUS2	2596
C15orf63//SERF2	2597
B2M	2598
JMJD7-	2595
PLA2G4B//JMJD7//	
PLA2G4B	
C15orf63//SERF2	2597
MTMR10//MTMR15	2624
HERC2//HERC2P2//	2623
HERC2P3//LOC44	
0248	
C15orf24	2625
SLC12A6	2626
LPCAT4	2627
INO80	2628
OIP5	2629
ZFP106	2630
CDAN1	2631
SPG11//ISLR	2632
SPPL2A	2633
GNB5//LOC100129	2634
973	
MYO5A	2635
USP3//LOC100130	2609
855	
DICER1	2582

NDRG2	2554
DAD1//OR651	2555
SLC7A8	2556
IPO4	2557
TM9SF1	2558
ADCY4	2559
RPK3	2560
EAPP	2561
BAZ1A	2562
NFKBIA	2563
SYNE2	2537
SEC23A	2564
C14orf104	2565
C14orf138	2566
SOS2	2567
NIN	2568
PYGL	2569
CNIH	2570
SIPAI1//SNORD5	2542
6B//LOC145474//L	
OC283567	
YLPM1	2543
BATF	2544
FLVCR2//RPS24	2545
ACTN1	2573
GPR65	2546
TDP1	2547
EVL	2548
ZNF839	2549
TDRD9	2550
INF2	2551
PLD4	2552
MTA1//LOC647310	2553
//LOC100128343	

FANCM	2528
ABHD12B	2529
PTGDR	2530
FBXO34//KIAA083	2531
1	
C14orf101	2532
ACTR10	2533
ARID4A	2534
JKAMP	2535
HIF1A	2536
SYNE2	2537
EXD2	2538
SLC39A9	2539
SFRS5	2540
PCNX	2541
SIPAI1//SNORD5	2542
6B//LOC145474//L	
OC283567	
DHRS7	2571
WDR89	2572
ACTN1	2573
YLPM1	2543
BATF	2544
FLVCR2//RPS24	2545
ACTN1	
GPR65	2546
TDP1	2547
EVL	2548
ZNF839	2549
TDRD9	2550
INF2	2551
PLD4	2552
MTA1//LOC647310	2553
//LOC100128343	

- 223 -

CLCN7	2719
MRPS34	2720
RNPS1	2721
NLRC3	2722
TRAP1//DNASE1	2723
ADCY9	2724
CORO7	2725
C16orf72	2726
RRN3//LOC653390	2727
//LOC730092//LOC	
C100131998	
XYLT1//LYRM2//Z	2728
C3H11A	
DCUN1D3//LYRM1	2729
IGSF6//METTL9	2730
CDR2//RRN3//LOC	2731
100131998//LOC6	
53390	
COG7	2732
GGA2	2733
NSMCE1	2734
GTF3C1	2735
CCDC101//LOC388	2736
242	
C16orf54	2737
KCTD13	2738
SEPT1	2739
ZNF764//ZNF747	2740
C16orf58//LOC100	2741
128371	
ITFG1	2742
ABCC11//LONP2	2743

CMTM1//CKLF	2691
TMEM208	2692
CTCF	2693
THAP11	2694
NUTF2	2695
EDC4	2696
SLC7A6//SLC7A6O	2697
S	
PRMT7	2698
SNTB2	2699
VPS4A	2700
DDX19B//DDX19A	2701
CHST4	2702
HP//HPR	2703
PLCG2	2704
KLHL36	2705
KIAA0182	2706
BANP//RUNDC2C	2707
COG7	
ATXN2L	
ATXN2L	2678
AT	2679
KIF22	2680
MAZ	2681
CORO1A//LOC606	2682
724	
ITGAL	
SRCAP//SNORA30	2683
AFG3L1	2712
TCF25	2711
LUC7L	2713
AXIN1	2714
JMJD8	2715
SEPT1	2739
ZNF764//ZNF747	2740
C16orf58//LOC100	2741
128371	
ITFG1	2742
CETP	2689
UNKL	2717
UNKL	2718
CKLF	2690

KCTD5//PRO0461//PDK1	2636
CLUAP1	2637
CCPG1//PIGB//DY	2638
X1C1	2639
BNIP2	2640
CA12	2641
FAM96A	2642
KIAA0101//CSNK1G1	2642
TLE3	2643
PARP6	2644
NPTN	2645
MAN2C1	2646
IMP3	2647
MTHFS	2648
ST20//C15orf37	2649
TMC3	2650
AP3B2	2651
C15orf40	2652
WDR73	2653
NTRK3	2654
DET1	2655
TM2D3	2656
WDR90	2657
RHOT2//FBXL16	2658
TMEM204	2659
CRAAMP11//HN1L	2660
MAPK8IP3	2661
TBL3	2662
TSC2	2663

- 224 -

TM�8	2826
ENGASE	2827
RPTOR	2828
GPS1	2829
FN3KRP	2830
TBCD	2831
GEMIN4	2832
GLOD4	2833
SLC43A2	2834
PRPF8	2835
SMG6//C17orf6	2836
METT10D//LOC284009	2837
SHPK	2838
TAX1BP3	2839
P2RX5	2840
MYBBP1A//SPNS2	2841
PELP1	2842
PFN1	2843
ZNF232	2844
DHX33	2845
DERL2	2846
NLRP1//LOC728392	2847
ASGR2	2848
NEURL4//GPS2//D4S234E	2849
ZBTB4	2850
TP53	2851
VAMP2	2852

KPNB1	2799
CDK5RAP3	2800
ATP5G1	2801
UBE2Z	2802
XYLT2//LOC100130580	2803
NOG	2804
DGKE	2805
AKAP1	2806
TMEM49//CLTC//MIR21	2807
CLTC	2808
CA4	2809
C17orf64	2810
DCAF7	2811
PITPNC1	2812
NOL11//SNORA38B	2813
MAP2K6	2814
COG1	2815
CD300A	2816
TMEM104	2817
MRPS7	2818
KIAA0195	2819
TSEN54	2820
LLGL2	2821
LOC100134934//CDK3	2822
MFSD11	2823
SEPT9	2824
TNRC6C	2825

SGSM2	27772
ARRB2	27773
LOC100130950	27774
DNAH2	27775
PIGL	27776
TRPV2	27777
MPRIP	27778
DRG2	27779
ALKBH5//FLJ13773	27800
SMCR7	27811
WSB1	27822
TAOK1	27833
CPD	27844
SUZ12P	27855
RNF135	27866
ZNF830	27877
TAF15	27888
GGNBP2	27899
LASP1	27900
PSMD3	27911
CDC6	27922
NBR2	27933
TMUB2	27944
MGC57346//C17orf69	27955
NSF//LOC728806	27966
GOSR2	27977
NPEPPS//TBBC1D3F//LOC440434	27988

NUDT21	2744
BBS2//OGFOD1	2745
CSNK2A2	2746
GOT2	2747
FAM96B	2748
FHOD1//SLC9A5	2749
ATP6V0D1//LOC100132855	2750
GFDOD2	2751
SLC12A4	2752
DPEP3	2753
DPEP2	2754
CHTF8//HAS3	2755
COG8//PDF	2756
TERF2	2757
AARS	2758
ST3GAL2	2759
VAC14//LOC100130894	2760
AP1G1	2761
WDR59	2762
CTRBR2//CTRBR1	2763
TAF1C//ADAD2	2764
FBXO31	2765
ZCCHC14	2766
FAM38A	2767
CENPBD1	2768
TIMM22	2769
RPA1	2770
DPH1//OVCA2	2771

- 225 -

	PSTPIP2	2904	
	C18orf32	2932	
	SFRS2	2905	
	TMC6//LOC100131096	2906	MBD2//SNORA37
	PIGN	2933	
	TMX3	2934	
	USP36	2907	
	CD7	2908	PQLC1
	RAB31	2909	2935
	GZMM	2936	
	VAPA	2910	ARID3A
	SEH1L	2911	CIRBP
	HQ0644//PRO0644	2912	2937
	DAZAP1	2940	
	RNMT	2913	SPPL2B
	RNF138	2914	2941
	GALNT1	2915	NFIC
	VAV1	2942	2943
	ARHGEF18//LOC100128573	2944	
	STXB2//LOC554363//LOC100131801	2945	
	ELP2	2916	
	PIK3C3	2917	
	SLC14A2	2918	
	ME2	2919	
	SERPINB2//SERP1	2920	
	NB10	2921	
	ZNF317	2946	
	ZNF407	2922	
	TLF3	2947	
	ZNF236	2948	
	NFATC1//LOC100127994	2949	
	ENOSF1//TYMS	2924	SMARCA4
	MYOM1	2925	PRKCSH
	IER2	2950	
	CACNB1	2951	
	ERN1	2952	
	31822	2953	
	TEX2	2954	
	PLXDC1	2955	
	PGAP3	2956	
	MED24	2957	
	NR1D1//THRA	2958	
	CCR7	2959	
	STAT5B//STAT5A	2960	
	FAM134C	2961	
	VAT1	2962	
	DUSP3	2963	
	C17orf65//ASB16	2964	

	UBTF	2879	
	GPATCH8	2880	
	MAP3K14//LOC100133991	2881	TMC6//LOC100131096
	OSBPL7	2882	USP36
	SLC35B1	2883	CD7
	TOB1	2884	RAB31
	COX11//TOM1L1	2885	VAPA
	VEZF1	2886	SEH1L
	SFRS1//FLJ44342	2887	HQ0644//PRO0644
	SEPT4	2888	2907
	MED13//LOC100129112	2889	DAZAP1
	PHF12	2890	RNMT
	LIMD2//MAP3K3	2890	RNF138
	STRADA	2891	GALNT1
	FTSJ3	2892	2912
	CD79B	2893	ELP2
	ICAM2	2894	2913
	NUFIP2	2895	PIK3C3
	OMG	2896	2914
	EVI2B	2897	2915
	C17orf66//RSL24D	2898	2916
1	PLXDC1	2899	2917
	SYNRG//LOC100131822	2900	2918
	TEX2	2901	2919
	CACNB1	2902	2920
	PGAP3	2903	2921
	MED24	2904	2922
	NR1D1//THRA	2905	2923
	CCR7	2906	2924
	STAT5B//STAT5A	2907	2925
	FAM134C	2908	2926
	VAT1	2909	2927
	DUSP3	2910	2928
	C17orf65//ASB16	2911	2929

	GPATCH8	2880	
	MAP3K14//LOC100133991	2881	TMC6//LOC100131096
	OSBPL7	2882	USP36
	SLC35B1	2883	CD7
	TOB1	2884	RAB31
	COX11//TOM1L1	2885	VAPA
	VEZF1	2886	SEH1L
	SFRS1//FLJ44342	2887	HQ0644//PRO0644
	SEPT4	2888	2907
	MED13//LOC100129112	2889	DAZAP1
	PHF12	2890	RNMT
	LIMD2//MAP3K3	2890	RNF138
	STRADA	2891	GALNT1
	FTSJ3	2892	2912
	CD79B	2893	ELP2
	ICAM2	2894	2913
	NUFIP2	2895	PIK3C3
	OMG	2896	2914
	EVI2B	2897	2915
	C17orf66//RSL24D	2898	2916
1	PLXDC1	2899	2917
	SYNRG//LOC100131822	2900	2918
	TEX2	2901	2919
	CACNB1	2902	2920
	PGAP3	2903	2921
	MED24	2904	2922
	NR1D1//THRA	2905	2923
	CCR7	2906	2924
	STAT5B//STAT5A	2907	2925
	FAM134C	2908	2926
	VAT1	2909	2927
	DUSP3	2910	2928
	C17orf65//ASB16	2911	2929

	GPATCH8	2880	
	MAP3K14//LOC100133991	2881	TMC6//LOC100131096
	OSBPL7	2882	USP36
	SLC35B1	2883	CD7
	TOB1	2884	RAB31
	COX11//TOM1L1	2885	VAPA
	VEZF1	2886	SEH1L
	SFRS1//FLJ44342	2887	HQ0644//PRO0644
	SEPT4	2888	2907
	MED13//LOC100129112	2889	DAZAP1
	PHF12	2890	RNMT
	LIMD2//MAP3K3	2890	RNF138
	STRADA	2891	GALNT1
	FTSJ3	2892	2912
	CD79B	2893	ELP2
	ICAM2	2894	2913
	NUFIP2	2895	PIK3C3
	OMG	2896	2914
	EVI2B	2897	2915
	C17orf66//RSL24D	2898	2916
1	PLXDC1	2899	2917
	SYNRG//LOC100131822	2900	2918
	TEX2	2901	2919
	CACNB1	2902	2920
	PGAP3	2903	2921
	MED24	2904	2922
	NR1D1//THRA	2905	2923
	CCR7	2906	2924
	STAT5B//STAT5A	2907	2925
	FAM134C	2908	2926
	VAT1	2909	2927
	DUSP3	2910	2928
	C17orf65//ASB16	2911	2929

- 226 -

GTPBP3	2958	VASP	2984	PTPRS	3009	ZNF529	3036
FAM129C	2959	GRWD1	2985	SAFB2//SAFB	3010	ZNF461	3037
FCHO1	2960	FLT3LG	2986	RANBP3	3011	ZNF607	3038
ARRDC2	2961	ZNF175	2987	GTF2F1//LOC1001	3012	YTF1B	3039
IFI30	2962	NCRNA00085		30856		PRR13	3040
C19orf60	2963	PPP2R1A		XAB2	3013	CEACAM4	3041
CRTC1//MAM12	2964	ZNF808//ZNF578//	2988	ELAVL1	3014	PLAUR	3042
RFXANK//MEF2B//	2965	/ZNF611		ADAMTS10	3015	TRAPP6A	3043
LOC729991		LENG8	2989	FBXL12	3016	ERCC1//CD3EAP	3044
ZNF101	2966	FCAR	2990	DNMT1	3017	RTN2	3045
ZNF738	2967	RPL28	2991	TYK2	3018	SYMPK	3046
ZNF257//ZNF492//	2968	U2AF2	2992	KEAP1	3019	PGLYRP1	3047
/ZNF99//ZNF98//L		LOC100288114//M		KRI1	3020	NOSIP	3048
OC646864		GC9913		TMEM205//hCG_2	3021	PNKP	3049
C19orf2	2969	ZFP28	2993	9977		NKG7	3050
KIAA0355//FLJ213	2970	ZNF460	2994	ZNF563	3022	FPR1	3051
69		ZNF549	2995	MAN2B1//MORG1	3023	ZNF28	3052
USF2	2971	ZNF211	2996	C19orf56	3024	OSCAR	3053
TMEM147	2972	ZNF587//ZNF417	2997	DHPS	3025	MBOAT7	3054
LIN37//PSENEN	2973	ZNF274	2998	TNPO2//SNORD41	3026	LILRA5	3055
C19orf55	2974	ZNF544	2999	LPHN1	3027	LILRA4	3056
TBCB//POLR2I	2975	ZNF8	3000	NDUFB7		ZNF550//ZNF549	3057
ZNF382	2976	TRIM28	3001	AKAP8	3029	ZNF416	3058
ZNF568	2977	C19orf6	3002	AKAP8L	3030	ZNF256	3059
ZNF420	2978	C19orf34	3003	CHERP//C19orf44//	3031	ZNF329	3060
ZNF383	2979	GNG7	3004	/CALR3		FAM110A	3061
CDC97	2980	AES	3005	INSL3//JAK3	3032	ITPA	3062
ZNF574	2981	EEF2//SNORD37	3006	IL12RB1		CDC25B	3063
CD177	2982	UPK1A	3007	TYROBP	3035	CDS2	3064
ZNF230//ZNF222	2983	PLIN5//LRG1		PLIN3	3008		

VASP	2984	PTPRS	3009	ZNF529	3036
GRWD1	2985	SAFB2//SAFB	3010	ZNF461	3037
FLT3LG	2986	RANBP3	3011	ZNF607	3038
ZNF175	2987	GTF2F1//LOC1001	3012	YTF1B	3039
NCRNA00085		30856		PRR13	3040
PPP2R1A		XAB2	3013	CEACAM4	3041
ZNF808//ZNF578//	2988	ELAVL1	3014	PLAUR	3042
/ZNF611		ADAMTS10	3015	TRAPP6A	3043
LENG8	2989	FBXL12	3016	ERCC1//CD3EAP	3044
FCAR	2990	DNMT1	3017	RTN2	3045
RPL28	2991	TYK2	3018	SYMPK	3046
U2AF2	2992	KEAP1	3019	PGLYRP1	3047
LOC100288114//M		KRI1	3020	NOSIP	3048
GC9913		TMEM205//hCG_2	3021	PNKP	3049
ZFP28	2993	9977		NKG7	3050
ZNF460	2994	ZNF563	3022	FPR1	3051
ZNF549	2995	MAN2B1//MORG1	3023	ZNF28	3052
ZNF211	2996	C19orf56	3024	OSCAR	3053
ZNF587//ZNF417	2997	DHPS	3025	MBOAT7	3054
ZNF274	2998	TNPO2//SNORD41	3026	LILRA5	3055
ZNF544	2999	LPHN1	3027	LILRA4	3056
ZNF8	3000	NDUFB7		ZNF550//ZNF549	3057
TRIM28	3001	AKAP8	3029	ZNF416	3058
C19orf6	3002	AKAP8L	3030	ZNF256	3059
C19orf34	3003	CHERP//C19orf44//	3031	ZNF329	3060
GNG7	3004	/CALR3		FAM110A	3061
AES	3005	INSL3//JAK3	3032	ITPA	3062
EEF2//SNORD37	3006	IL12RB1		CDC25B	3063
UPK1A	3007	TYROBP	3035	CDS2	3064
PLIN5//LRG1		PLIN3	3008		

GTPBP3	2958	VASP	2984	PTPRS	3009	ZNF529	3036
FAM129C	2959	GRWD1	2985	SAFB2//SAFB	3010	ZNF461	3037
FCHO1	2960	FLT3LG	2986	RANBP3	3011	ZNF607	3038
ARRDC2	2961	ZNF175	2987	GTF2F1//LOC1001	3012	YTF1B	3039
IFI30	2962	NCRNA00085		30856		PRR13	3040
C19orf60	2963	PPP2R1A		XAB2	3013	CEACAM4	3041
CRTC1//MAM12	2964	ZNF808//ZNF578//	2988	ELAVL1	3014	PLAUR	3042
RFXANK//MEF2B//	2965	/ZNF611		ADAMTS10	3015	TRAPP6A	3043
LOC729991		LENG8	2989	FBXL12	3016	ERCC1//CD3EAP	3044
ZNF101	2966	FCAR	2990	DNMT1	3017	RTN2	3045
ZNF738	2967	RPL28	2991	TYK2	3018	SYMPK	3046
ZNF257//ZNF492//	2968	U2AF2	2992	KEAP1	3019	PGLYRP1	3047
/ZNF99//ZNF98//L		LOC100288114//M		KRI1	3020	NOSIP	3048
OC646864		GC9913		TMEM205//hCG_2	3021	PNKP	3049
C19orf2	2969	ZFP28	2993	9977		NKG7	3050
KIAA0355//FLJ213	2970	ZNF460	2994	ZNF563	3022	FPR1	3051
69		ZNF549	2995	MAN2B1//MORG1	3023	ZNF28	3052
USF2	2971	ZNF211	2996	C19orf56	3024	OSCAR	3053
TMEM147	2972	ZNF587//ZNF417	2997	DHPS	3025	MBOAT7	3054
LIN37//PSENEN	2973	ZNF274	2998	TNPO2//SNORD41	3026	LILRA5	3055
C19orf55	2974	ZNF544	2999	LPHN1	3027	LILRA4	3056
TBCB//POLR2I	2975	ZNF8	3000	NDUFB7		ZNF550//ZNF549	3057
ZNF382	2976	TRIM28	3001	AKAP8	3029	ZNF416	3058
ZNF568	2977	C19orf6	3002	AKAP8L	3030	ZNF256	3059
ZNF420	2978	C19orf34	3003	CHERP//C19orf44//	3031	ZNF329	3060
ZNF383	2979	GNG7	3004	/CALR3		FAM110A	3061
CDC97	2980	AES	3005	INSL3//JAK3	3032	ITPA	3062
ZNF574	2981	EEF2//SNORD37	3006	IL12RB1		CDC25B	3063
CD177	2982	UPK1A	3007	UPK1A	3034	CDS2	3064
ZNF230//ZNF222	2983	PLIN5//LRG1		TYROBP	3035		
		PLIN3	3008				

- 227 -

CRLS1	3065	CSTF1	3092	B4GALT5	3119	KCNE1	3147
CSRBP2BP	3066	CASS4	3093	DPM1	3120	PRDM15	3148
SEC23B	3067	GNAS	3094	ZFP64	3121	C2CD2	3149
SLC24A3	3068	C20orf177	3095	ZNF217	3122	WDR4	3150
HCK	3069	CDH26	3096	CTS2	3123	U2AF1	3151
ASXL1	3070	C20orf197	3097	SYCP2	3124	CSTB	3152
ACSS2	3071	LOC284757		PSMA7	3125	UBE2G2//SUMO3	3153
C20orf4	3072	ARFGAP1	3098	DIDO1	3126	PTTG1IP	3154
TGIF2	3073	PRPF6	3099	YTHDF1	3127	POFUT2	3155
C20orf24//SLA2	3074	NSFL1C	3100	CHODL	3128	MCM3AP	3156
RPN2//EEF1A2	3075	SIRPD	3101	BACH1	3129	IL17RA//CECR7	3157
CTNNBL1	3076	SIRPG//SIRPA	3102	C21orf41//BACH1	3130	C22orf37	3158
ACTR5	3077	RNF24	3103	IL10RB	3131	LZTR1	3159
PPP1R16B	3078	RASSF2	3104	IFNAR1	3132	PPIL2//YPEL1	3160
DHX35	3079	TMX4	3105	IFNGR2	3133	CYTSA	3161
PLCG1	3080	JAG1	3106	SON	3134	SNRPD3//C22orf1	3162
MYBL2	3081	C20orf74	3107	MORC3//DOPEY2	3135	3	
SYS1//SYS1-DBNDD2//DBNDD2	3082	C20orf3	3108	DYRK1A	3136	NF2	3163
DNTTIP1	3083	C20orf112	3109	KCNJ15	3137	LIMK2	3164
CTSA	3084	CDK5RAP1	3110	ETS2	3138	SLC5A1	3165
MMP9//LOC10012	3085	AHCY	3111	RRP1B	3139	MCM5	3166
8028		GGT7	3112	PFKL	3140	NCF4	3167
DDX27	3086	EDEM2	3113	TRPM2	3141	GGA1	3168
SLC9A8	3087	RBM39//LOC64316	3114	ADARB1	3142	SH3BP1//PDXP	3169
RNF114	3088	BLCAP	3115	SAMSN1//LOC388	3143	POLR2F//LOC1001	3170
PTPN1	3089	SERINC3//TTTPAL	3116	813	31530	APOBEC3A//APOB	3171
TSHZ2	3090	ZNF335	3117	N6AMT1	3144	EC3B	3172
PFDN4	3091	ELMO2	3118	SYNJ1	3145	APOBEC3D	3173
				TMEM50B	3146	ATF4	3173

CSTF1	3092	CASS4	3093	DPM1	3120	PRDM15	3148
GNAS	3094	C20orf177	3095	ZFP64	3121	C2CD2	3149
CDH26	3096	C20orf197	3097	CTS2	3123	WDR4	3150
LOC284757		LOC284757		SYCP2	3124	U2AF1	3151
ARFGAP1	3098	ARFGAP1	3098	PSMA7	3125	CSTB	3152
PRPF6	3099	PRPF6	3099	YTHDF1	3127	UBE2G2//SUMO3	3153
NSFL1C	3100	NSFL1C	3100	CHODL	3128	PTTG1IP	3154
SIRPD	3101	SIRPD	3101	BACH1	3129	POFUT2	3155
SIRPG//SIRPA	3102	SIRPG//SIRPA	3102	C21orf41//BACH1	3130	MCM3AP	3156
RNF24	3103	RNF24	3103	C22orf37	3130	IL17RA//CECR7	3157
RASSF2	3104	RASSF2	3104	C22orf37	3130	C22orf37	3158
TMX4	3105	TMX4	3105	IL10RB	3131	LZTR1	3159
JAG1	3106	JAG1	3106	IFNAR1	3132	PPIL2//YPEL1	3160
C20orf74	3107	C20orf74	3107	IFNGR2	3133	PPIL2//YPEL1	3160
C20orf3	3108	C20orf3	3108	SON	3134	CYTSA	3161
DYRK1A	3109	DYRK1A	3109	MORC3//DOPEY2	3135	SNRPD3//C22orf1	3162
KCNJ15	3110	KCNJ15	3110	DYRK1A	3136	3	
ETS2	3111	ETS2	3111	SON	3134	NF2	3163
RRP1B	3112	RRP1B	3112	MORC3//DOPEY2	3135	NF2	3163
PFKL	3113	PFKL	3113	DYRK1A	3136	LIMK2	3164
ADARB1	3114	ADARB1	3114	SON	3134	SLC5A1	3165
TRPM2	3115	TRPM2	3115	MORC3//DOPEY2	3135	MCM5	3166
SAMSN1//LOC388	3116	SAMSN1//LOC388	3116	DYRK1A	3136	NCF4	3167
813	3117	813	3117	SON	3134	GGA1	3168
N6AMT1	3118	N6AMT1	3118	MORC3//DOPEY2	3135	SH3BP1//PDXP	3169
SYNJ1	3119	SYNJ1	3119	DYRK1A	3136	POLR2F//LOC1001	3170
TMEM50B	3120	TMEM50B	3120	SON	3134	APOBEC3A//APOB	3171
				31530		EC3B	3172
						APOBEC3D	3173
						ATF4	3173

CRLS1	3065	CSTF1	3092	B4GALT5	3119	KCNE1	3147
CSRBP2BP	3066	CASS4	3093	DPM1	3120	PRDM15	3148
SEC23B	3067	GNAS	3094	ZFP64	3121	C2CD2	3149
SLC24A3	3068	C20orf177	3095	ZNF217	3122	WDR4	3150
HCK	3069	CDH26	3096	CTS2	3123	U2AF1	3151
ASXL1	3070	C20orf197	3097	SYCP2	3124	CSTB	3152
ACSS2	3071	LOC284757		PSMA7	3125	UBE2G2//SUMO3	3153
C20orf4	3072	ARFGAP1	3098	DIDO1	3126	PTTG1IP	3154
TGIF2	3073	PRPF6	3099	YTHDF1	3127	POFUT2	3155
C20orf24//SLA2	3074	NSFL1C	3100	CHODL	3128	MCM3AP	3156
RPN2//EEF1A2	3075	SIRPD	3101	BACH1	3129	IL17RA//CECR7	3157
CTNNBL1	3076	SIRPG//SIRPA	3102	C21orf41//BACH1	3130	C22orf37	3158
ACTR5	3077	RNF24	3103	IL10RB	3131	LZTR1	3159
PPP1R16B	3078	RASSF2	3104	IFNAR1	3132	PPIL2//YPEL1	3160
DHX35	3079	TMX4	3105	IFNGR2	3133	CYTSA	3161
PLCG1	3080	JAG1	3106	SON	3134	SNRPD3//C22orf1	3162
MYBL2	3081	C20orf74	3107	MORC3//DOPEY2	3135	3	
SYS1//SYS1-DBNDD2//DBNDD2	3082	C20orf3	3108	DYRK1A	3136	NF2	3163
DNTTIP1	3083	C20orf112	3109	KCNJ15	3137	LIMK2	3164
CTSA	3084	CDK5RAP1	3110	ETS2	3138	SLC5A1	3165
MMP9//LOC10012	3085	AHCY	3111	RRP1B	3139	MCM5	3166
8028		GGT7	3112	PFKL	3140	NCF4	3167
DDX27	3086	EDEM2	3113	TRPM2	3141	GGA1	3168
SLC9A8	3087	RBM39//LOC64316	3114	ADARB1	3142	SH3BP1//PDXP	3169
RNF114	3088	7		SAMSN1//LOC388	3143	POLR2F//LOC1001	3170
PTPN1	3089	BLCAP	3115	813		31530	
TSHZ2	3090	SERINC3//TTTPAL	3116	N6AMT1	3144	APOBEC3A//APOB	3171
PFDN4	3091	ZNF335	3117	SYNJ1	3145	EC3B	3172
		ELMO2	3118	TMEM50B	3146	APOBEC3D	3173
						ATF4	3173

- 228 -

			MAOB//NAT13	3256
		CXorf26	3229	ZNF41
	ZC3H7B	3201		3257
	CCDC134	3202	OTUD5	3258
	TSPO	3203	KCND1	3259
	NUP50	3204	ZMYM3	3260
	TBC1D22A//LOC100289878	3205	MAGT1	3261
	RP3-402G11.5	3206	ARMCX5	3262
	MSL3	3207	GPRASP1	3235
	SAPS2	3208	TMEM31	3236
	NCAPH2	3209	TBC1D8B	3237
	BID	3210	MID2	3238
	SLC25A1	3211	DOCK11	3239
	K1HL22//KRT18	3212	LONRF3	3240
	PT14KA//PI4KAP1//PI4KAP2//LOC100293141	3213	UBE2A	3241
	MAPK1	3214	SH2D1A	3242
	ZNF70	3215	OCRL	3243
	TPST2	3216	SLC25A14	3244
	SF3A1//CCDC157	3217	HPRT1	3245
	PES1	3218	CD40LG	3246
	PIK3IP1	3219	AFF2	3247
	IL2RB	3220	SSR4//IDH3G	3248
	CSNK1E//LOC400927	3221	FAM50A	3249
	UNC84B	3222	DKC1//SNORA36A	3250
	PATZ1	3223	//SNORA56	
	C22orf30	3224	ARSD	3251
	TSPYL2//GPR173	3225	KAL1	3252
	UBQLN2	3226		Mitochondrial
	ILGN3	3227		N/A
	ACRC	3228		Mitochondrial
	RPS19BP1	3229		N/A
			CCNL2	3279
	CBX7//LOC100128400	3230	INPP5B	3280
			TLR5	3281

			MORF4L2	3265
		PSMD10	3266	
		ACSL4	3267	
		LAMP2	3268	
		CUL4B	3269	
		ODZ1	3270	
		ELF4	3271	
		RAP2C	3272	
		FAM127B//FAM127C//FAM127A	3273	
		TMEM185A	3274	
		ARD1A	3275	
		IRAK1	3276	
		DNASE1L1//RPL10	3277	
		SH3KBP1	3278	
		Mitochondrial	N/A	
		CCNL2	3279	
		INPP5B	3280	
		TLR5	3281	

	3174	3200	UPRT	3228
	RANGAP1	3201	CXorf26	3229
	TCF20	3202	ATP7A	3230
	LDOC1L	3203	DIAPH2	3231
	UNQ6126	3204	CSTF2//RAD21	3232
	TUBGCP6	3205	ARMCX3	3233
	SBF1//SBF1P1	3206	ARMCX5	3234
	BMX//HNRPDL	3209	TBC1D8B	3237
	PDHAA1	3210	MID2	3238
	YY2	3211	DOCK11	3239
	PDK3	3212	LONRF3	3240
	GIK//GK3P//FTL//LOC652904	3213	UBE2A	3241
	CXorf59	3214	SH2D1A	3242
	ATP6AP2	3215	OCRL	3243
	USP9X//USP9Y	3216	SLC25A14	3244
	RP2	3217	HPRT1	3245
	USP11	3218	CD40LG	3246
	RBM3	3219	AFF2	3247
	FTSJ1	3220	SSR4//IDH3G	3248
	WAS	3221	FAM50A	3249
	PLP2	3222	DKC1//SNORA36A	3250
	TSPYL2//GPR173	3223	//SNORA56	
	MAGED2	3224	ARSD	3251
			KAL1	3252
				Mitochondrial
				N/A
				Mitochondrial
				N/A

	3196	3223	ARSD	3251
	27	3224		
	UNC84B	3225		
	CBX7//LOC100128400	3226		
	400	3227		
	RPS19BP1	3228		

ADRB3//GOT1L1	3282	[[NOC2L//SAMD11// 3283	[[LOC401010	[[SHFM1
		2//SNORD115-39//SNORD116-14//SNORD116-20//SNORD115-8//SNORD115-3//SNORD115-38//SNORD115-41//SNORD116-22//SNORD115-44//SNORD116-SPNS1//NP1PL2//LOC728741//LOC730153 1//SNORD115-17//SNORD115-SPN13//SPIN1//LOC728888 /LOC100289 18//SNORD115-19//SNORD115-169//LOC728734//LOC729602//LOC10028 20//SNORD116@8442//LOC100288332		
§ HUGO Gene Nomenclature Committee				
¶ Synonymous with				
SNURF//IPW//SNORD116-18//SNORD116-21//SNORD116-22//SNORD116-17//SNORD116-19//PAR5//PAR-SN//SNORD116-2//SNORD116-25//SNORD116-26//SNORD107//SNORD115-12//SNORD115-5//SNORD115-6//SNORD115-9//SNORD116-11//SNORD116-12//SNORD116-13//SNORD116-28//SNORD116-4//SNORD64//PAR1//SNORD109A//SNORD109B//SNORD116-6//SNORD116-3//SNORD116-9//SNORD115-13//SNORD115-1//SNORD115-14//SNORD115-15//SNORD115-21//SNORD115-10//SNORD115-7//SNORD115-16//SNORD115-40//SNORD115-42//SNORD115-11//SNORD115-29//SNORD115-34//SNORD115-36//SNORD115-4//SNORD115-43//HBII-52-24//SNORD115-5//SNORD116-7//SNORD116-26//SNORD115-30//SNORD116-15//SNORD116-8//SNORD115-				

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for determining an indicator used in assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition, the method including:
 - a) determining a pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject;
 - b) determining a derived biomarker value using the pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the pair of immune system biomarkers; and,
 - c) determining the indicator using the derived biomarker value.
2. A method according to claim 1, wherein the method includes:
 - a) determining a first derived biomarker value using a first pair of biomarker values, the first derived biomarker value being indicative of a ratio of concentrations of first and second immune system biomarkers;
 - b) determining a second derived biomarker value using a second pair of biomarker values, the second derived biomarker value being indicative of a ratio of concentrations of third and fourth immune system biomarkers; and,
 - c) determining the indicator by combining the first and second derived biomarker values.
3. A method according to claim 2, wherein the method includes combining the derived biomarker values using a combining function, the combining function being at least one of:
 - a) an additive model;
 - b) a linear model;
 - c) a support vector machine;
 - d) a neural network model;
 - e) a random forest model;
 - f) a regression model;
 - g) a genetic algorithm;

- h) an annealing algorithm;
- i) a weighted sum;
- j) a nearest neighbor model; and,
- k) a probabilistic model.

4. A method according to any one of the claims 1 to 3, wherein the method is performed at least in part using an electronic processing device.
5. A method according to any one of the claims 1 to 4, wherein the method includes, in at least one electronic processing device:
 - a) obtaining the pairs of biomarker values;
 - b) determining the first derived biomarker value;
 - c) determining the second derived biomarker value; and,
 - d) determining the indicator by adding the first and second derived biomarker values.
6. A method according to any one of the claims 1 to 5, wherein the method includes, in at least one processing device, generating a representation of the indicator.
7. A method according to claim 6, wherein the representation includes:
 - a) an alphanumeric indication of the indicator;
 - b) a graphical indication of a comparison of the indicator to one or more indicator references;
 - c) an alphanumeric indication of a likelihood of the subject having at least one medical condition.
8. A method according to any one of the claims 1 to 7, wherein the method includes:
 - a) comparing the indicator to an indicator reference; and,
 - b) determining a likelihood in accordance with results of the comparison.
9. A method according to claim 8, wherein the indicator reference is based on at least one of:
 - a) an indicator threshold range;
 - b) an indicator threshold; and,
 - c) an indicator distribution.
10. A method according to claim 8 or claim 9, wherein the indicator reference is derived from indicators determined for a number of individuals in a reference population.
11. A method according to claim 10, wherein the indicator reference is based on a distribution of indicators determined for a group of a reference population, the group consisting of individuals diagnosed as having the medical condition or lacking the medical condition.

12. A method according to claim 10 or claim 11, wherein the reference population includes:
 - a) a plurality of individuals of different sexes;
 - b) a plurality of individuals of different ethnicities;
 - c) a plurality of healthy individuals;
 - d) a plurality of individuals suffering from at least one diagnosed medical condition;
 - e) a plurality of individuals lacking the at least one diagnosed medical condition;
 - f) a plurality of individuals showing clinical signs of at least one medical condition;
 - g) first and second groups of individuals, each group of individuals suffering from a respective diagnosed medical condition; and,
 - h) first and second groups of individuals, the first group of individuals suffering from a diagnosed medical condition, and the second group lacking the diagnosed medical condition.
13. A method according to any one of the claims 10 to 12, wherein the indicator is for use in determining the likelihood that a biological subject has at least one medical condition, and wherein the reference population includes:
 - a) individuals presenting with clinical signs of the at least one medical condition;
 - b) individuals diagnosed as having the at least one medical condition;
 - c) individuals diagnosed as lacking the at least one medical condition; and,
 - d) healthy individuals.
14. A method according to any one of the claims 8 to 13, wherein the indicator reference is retrieved from a database.
15. A method according to any one of the claims 8 to 14, wherein the likelihood is based on a probability generated using the results of the comparison.
16. A method according any one of the claims 8 to 15, wherein the indicator is for determining a likelihood of the subject having a first or second condition, and wherein the method includes:
 - a) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of first and second conditions; and,
 - b) determining the likelihood in accordance with the results of the comparison.
17. A method according to claim 16, wherein the method includes:
 - a) determining first and second indicator probabilities using the results of the comparisons; and,

- b) combining the first and second indicator probabilities to determine a condition probability indicative of the likelihood.

18. A method according to claim 16 or claim 17, wherein the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, the first and second group consisting of individuals diagnosed with the first or second condition respectively.

19. A method according to any one of the claims 1 to 18, wherein the method includes:

- a) obtaining a sample taken from the biological subject, the sample including polynucleotide expression products; and,
- b) quantifying at least some of the polynucleotide expression products within the sample to determine the pair of biomarker values.

20. A method according to claim 19, wherein the method includes, determining the indicator at least in part using a ratio of concentrations of the polynucleotide expression products.

21. A method according to claim 19 or claim 20, wherein the method includes:

- a) quantifying polynucleotide expression products by:
 - i) amplifying at least some polynucleotide expression products in the sample; and,
 - ii) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products; and,
- b) determining the indicator by determining a difference between the amplification amounts.

22. A method according to claim 21, wherein the amplification amount is at least one of:

- a) a cycle time;
- b) a number of cycles;
- c) a cycle threshold;
- d) an amplification time; and,
- e) relative to an amplification amount of another amplified product.

23. A method according to claim 21 or claim 22, wherein the method includes determining:

- a) a first derived biomarker value by determining a difference between the amplification amounts of a first pair of polynucleotide expression products;
- b) a second derived biomarker value by determining a difference between the amplification amounts of a second pair of polynucleotide expression products;
- c) determining the indicator by adding the first and second derived biomarker values.

24. A method according to any one of the claims 1 to 23, wherein the immune system biomarker is a biomarker of an immune system of the biological subject that is altered, or whose level of expression is altered, as part of an inflammatory response to damage or pathogenic insult.

25. A method according to any one of the claims 1 to 24, wherein:

- the at least two immune system biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
- the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

26. A method according to claim 25, wherein the mutual correlation range is at least one of:

- ± 0.8 ;
- ± 0.7 ;
- ± 0.6 ;
- ± 0.5 ;
- ± 0.4 ;
- ± 0.3 ;
- ± 0.2 ; and,
- ± 0.1 .

27. A method according to claim 25 or claim 26, wherein each immune system biomarker has a condition correlation with the presence, absence, degree or prognosis of the at least one condition that lies outside a condition correlation range, the condition correlation range being between ± 0.3 .

28. A method according to claim 27, wherein the condition correlation range is at least one of:

- ± 0.9 ;
- ± 0.8 ;
- ± 0.7 ;
- ± 0.6 ;
- ± 0.5 ; and,
- ± 0.4 .

29. A method according to any one of the claims 25 to 28, wherein the performance threshold is indicative of an explained variance of at least one of:

- 0.4;
- 0.5;
- 0.6;
- 0.7;
- 0.8; and,
- 0.9.

30. A method according to any one of the claims 1 to 29, wherein the immune system biomarker value is indicative of a level or abundance of a molecule selected from one or more of a nucleic acid molecule and a proteinaceous molecule.

31. A method according to any one of the claims 1 to 30, wherein the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein the method includes:

- determining a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
- determining a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene; and,
- determining the indicator using the first and second pairs of biomarker values.

32. A method according to any one of the claims 1 to 30, wherein the indicator is for determining a likelihood of the subject having inSIRS or a healthy condition, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group A IRS immune system biomarker genes as herein defined; and
- the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group B IRS immune system biomarker genes as herein defined.

33. A method according to any one of the claims 1 to 30, wherein the indicator is for determining a likelihood of the subject having ipSIRS or a healthy condition, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group C IRS immune system biomarker genes as herein defined; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group D IRS immune system biomarker genes as herein defined.

34. A method according to any one of the claims 1 to 30, wherein the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group E IRS immune system biomarker genes as herein defined; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group F IRS immune system biomarker genes as herein defined.

35. A method according to any one of the claims 1 to 30, wherein the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein biomarker values are determined from at least one immune system biomarker in each of first, second, third and fourth IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group G IRS immune system biomarker genes as herein defined;
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group H IRS immune system biomarker genes as herein defined;
- c) the third IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group I IRS immune system biomarker genes as herein defined; and,
- d) the fourth IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group J IRS immune system biomarker genes as herein defined.

36. A method according to claim 35, wherein the first IRS immune system biomarker is a *PLA2G7* expression product, wherein the second IRS immune system biomarker is a *PLAC8* expression product, wherein the third IRS immune system biomarker is a *CEACAM4* expression product and wherein the fourth IRS immune system biomarker is a *LAMP1* expression product.

37. A method according to any one of the claims 1 to 30, wherein the indicator is for determining a likelihood of the subject having mild sepsis or severe sepsis, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group K IRS immune system biomarker genes as herein defined; and,
- the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group L IRS immune system biomarker genes as herein defined.

38. A method according to any one of the claims 1 to 30, wherein the indicator is for determining a likelihood of the subject having mild sepsis or septic shock, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group M IRS immune system biomarker genes as herein defined; and,
- the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group N IRS immune system biomarker genes as herein defined.

39. A method according to any one of the claims 1 to 30, wherein the indicator is for determining a likelihood of the subject having severe sepsis or septic shock, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group O IRS immune system biomarker genes as herein defined; and,

- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group P IRS immune system biomarker genes as herein defined.

40. Apparatus for determining an indicator used in assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition, the apparatus including at least one electronic processing device that:

- a) determines a pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject;
- b) determines a derived biomarker value using the pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the pair of immune system biomarkers; and,
- c) determines the indicator using the derived biomarker value.

41. A composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a first pair and a second pair of reverse transcribed mRNAs, wherein the first pair comprises a *PLAC8* reverse transcribed mRNA and a *PLA2G7* reverse transcribed mRNA and wherein the second pair comprises a *CEACAM4* reverse transcribed mRNA and a *LAMP1* reverse transcribed mRNA.

42. A composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group A IRS immune system biomarker genes as herein defined; and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group B IRS immune system biomarker genes as herein defined.

43. A composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group C IRS immune system biomarker genes as herein defined; and a reverse transcribed

mRNA from a second IRS immune system biomarker gene selected from group D IRS immune system biomarker genes as herein defined.

44. A composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group E IRS immune system biomarker genes as herein defined; and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group F IRS immune system biomarker genes as herein defined.

45. A composition comprising at least two pairs of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least two pairs of reverse transcribed mRNAs comprising a first pair and a second pair of reverse transcribed mRNAs, wherein the first pair comprises a reverse transcribed mRNA from a first IRS immune system biomarker gene and a reverse transcribed mRNA from a second IRS immune system biomarker gene, and wherein the second pair comprises a reverse transcribed mRNA from a third IRS immune system biomarker gene and a reverse transcribed mRNA from a fourth IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes as herein defined, wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes as herein defined, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker genes as herein defined, and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes as herein defined.

46. A composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group K IRS immune system biomarker genes as herein defined; and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group L IRS immune system biomarker genes as herein defined.

47. A composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse

transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group M IRS immune system biomarker genes as herein defined; and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group N IRS immune system biomarker genes as herein defined.

48. A composition comprising at least one pair of reverse transcribed mRNAs and at least one oligonucleotide primer or probe that hybridizes to an individual one of the reverse transcribed mRNAs, the at least one pair of reverse transcribed mRNAs comprising a reverse transcribed mRNA from a first IRS immune system biomarker gene selected from group O IRS immune system biomarker genes as herein defined; and a reverse transcribed mRNA from a second IRS immune system biomarker gene selected from group P IRS immune system biomarker genes as herein defined.
49. A composition according to any one of the claims 41 to 48, wherein the at least one oligonucleotide primer or probe is hybridized to an individual one of the reverse transcribed mRNAs.
50. A composition according to any one of the claims 41 to 48, wherein the reverse transcribed mRNAs are derived from components of the immune system.
51. A composition according to any one of the claims 41 to 48, wherein the reverse transcribed mRNAs are derived from leukocytes.
52. A composition according to any one of the claims 41 to 48, wherein the reverse transcribed mRNAs are derived from blood cells.
53. A composition according to any one of the claims 41 to 48, wherein the reverse transcribed mRNAs are derived from peripheral blood cells.
54. A composition according to any one of the claims 41 to 48, further comprising a labeled reagent for detecting the reverse transcribed mRNAs.
55. A composition according to claim 54, wherein the labeled reagent is a labeled said at least one oligonucleotide primer or probe.
56. A composition according to claim 54, wherein the labeled reagent is a labeled said reverse transcribed mRNA.
57. A kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of inSIRS and ipSIRS, the kit comprising at least one pair of reagents comprising a first pair of reagents and a second pair of reagents, wherein the first pair of reagents comprises (i) a reagent that allows

quantification of a polynucleotide expression product of the *PLA2G7* gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of the *PLAC8* gene, wherein the second pair of reagents comprises: (iii) a reagent that allows quantification of a polynucleotide expression product of the *CEACAM4* gene; and (iv) a reagent that allows quantification of a polynucleotide expression product of the *LAMP1* gene.

58. A kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of inSIRS and a healthy condition, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group A IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group B IRS immune system biomarker genes as herein defined.
59. A kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of ipSIRS and a healthy condition, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group C IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group D IRS immune system biomarker genes as herein defined.
60. A kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of inSIRS and ipSIRS, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group E IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group F IRS immune system biomarker genes as herein defined.

61. A kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of inSIRS and ipSIRS, the kit comprising at least two pairs of reagents comprising a first pair of reagents and a second pair of reagents, wherein the first pair of reagents comprises (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, and wherein the second pair of reagents comprises (i) a reagent that allows quantification of a polynucleotide expression product of a third IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a fourth IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes as herein defined, wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes as herein defined, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker genes as herein defined, and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes as herein defined.
62. A kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of mild sepsis and severe sepsis, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group K IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group L IRS immune system biomarker genes as herein defined.
63. A kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of mild sepsis and septic shock, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group M IRS immune system biomarker

genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group N IRS immune system biomarker genes as herein defined.

64. A kit for determining an indicator indicative of the likelihood of the presence or absence of at least one condition selected from the group consisting of severe sepsis and septic shock, the kit comprising at least one pair of reagents comprising (i) a reagent that allows quantification of a polynucleotide expression product of a first IRS immune system biomarker gene; and (ii) a reagent that allows quantification of a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group O IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group P IRS immune system biomarker genes as herein defined.
65. A method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of inSIRS and ipSIRS, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the pair of biomarker values comprises at least one of:
 - a) a first pair of biomarker values comprising first and second biomarker values corresponding to first and second biomarkers, wherein the first immune system biomarker represents a polynucleotide expression product of the *PLA2G7* gene and wherein the second immune system biomarker representing a polynucleotide expression product of the *PLAC8* gene, and
 - b) a second pair of biomarker values comprises third and fourth biomarker values corresponding to third and fourth immune system biomarkers, respectively, wherein the third immune system biomarker represents a polynucleotide expression product of

the *CEACAM4* gene and wherein the fourth immune system biomarker represents a polynucleotide expression product of the *LAMP1* gene.

66. A method according to claim 65, wherein the indicator-determining method comprises: determining the first pair and second pair of biomarker values and determining a first derived biomarker value calculated using the first pair of biomarker values and a second derived biomarker value calculated using the second pair of biomarker values; and determining the indicator based on a combination of the first and second derived biomarker values.
67. A method for inhibiting the development or progression of inSIRS in a subject, the method comprising: exposing the subject to a treatment regimen for treating inSIRS based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of inSIRS in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group A IRS immune system biomarker genes as herein defined; and wherein the second IRS immune system biomarker is selected from group B IRS immune system biomarker genes as herein defined.
68. A method for inhibiting the development or progression of ipSIRS in a subject, the method comprising: exposing the subject to a treatment regimen for treating ipSIRS based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of ipSIRS in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value

being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group C IRS immune system biomarker genes as herein defined; and wherein the second IRS immune system biomarker is selected from group D IRS immune system biomarker genes as herein defined.

69. A method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of inSIRS and ipSIRS, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene,

wherein the first IRS immune system biomarker gene is selected from group E IRS immune system biomarker genes as herein defined; and wherein the second IRS immune system biomarker is selected from group F IRS immune system biomarker genes as herein defined.

70. A method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of inSIRS and ipSIRS, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least two pairs of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least two derived biomarker values using the at least two pairs of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of each pair of immune system biomarkers; and (c) determining the indicator based on the at least two derived biomarker values, wherein the at least one pair of biomarker values comprises a first pair of biomarker values comprising first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, and a second pair of biomarker values comprising third and fourth biomarker values corresponding to third and fourth immune system biomarkers, respectively, wherein the third immune system biomarker represents a polynucleotide expression product of a third IRS immune system biomarker gene and wherein the fourth immune system biomarker represents a polynucleotide expression product of a fourth IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes as herein defined, wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes as herein defined, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker

genes as herein defined, and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes as herein defined.

71. A method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of mild sepsis and severe sepsis, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group K IRS immune system biomarker genes as herein defined; and wherein the second IRS immune system biomarker is selected from group L IRS immune system biomarker genes as herein defined.
72. A method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of mild sepsis and septic shock, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken

from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group M IRS immune system biomarker genes as herein defined; and wherein the second IRS immune system biomarker is selected from group N IRS immune system biomarker genes as herein defined.

73. A method for inhibiting the development or progression in a subject of at least one condition selected from the group consisting of severe sepsis and septic shock, the method comprising: exposing the subject to a treatment regimen for treating the at least one condition based on an indicator obtained from an indicator-determining method, wherein the indicator is indicative of the presence of the at least one condition in the subject, the indicator-determining method comprising: (a) determining at least one pair of biomarker values, each biomarker value being a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject, (b) determining at least one derived biomarker value using the at least one pair of biomarker values, the derived biomarker value being indicative of a ratio of concentrations of the at least one pair of immune system biomarkers; and (c) determining the indicator based on the at least one derived biomarker value, wherein the at least one pair of biomarker values comprises first and second biomarker values corresponding to first and second immune system biomarkers, respectively, wherein the first immune system biomarker represents a polynucleotide expression product of a first IRS immune system biomarker gene, and wherein the second immune system biomarker represents a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group O IRS immune system biomarker genes as herein defined; and wherein the second IRS immune

system biomarker is selected from group P IRS immune system biomarker genes as herein defined.

74. A method according to any one of claims 65 to 73, comprising: taking the sample from the subject and obtaining the indicator according to the indicator-determining method.
75. A method according to any one of claims 65 to 73, comprising: sending the sample taken from the subject to a laboratory at which the indicator is determined.
76. A method for differentiating between inSIRS and ipSIRS in a biological subject, the method including:
 - a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
 - b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
 - c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
 - d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of inSIRS and ipSIRS, respectively; and,
 - e) determining a likelihood of the subject having inSIRS or ipSIRS in accordance with the results of the comparison.
77. A method for differentiating between inSIRS and a healthy condition in a biological subject, the method including:
 - a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
 - b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group A IRS immune system biomarker

genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group B IRS immune system biomarker genes as herein defined;

- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of inSIRS and healthy condition, respectively; and,
- e) determining a likelihood of the subject having inSIRS or the healthy condition in accordance with the results of the comparison.

78. A method for differentiating between ipSIRS and a healthy condition in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group C IRS immune system biomarker genes as herein defined and wherein the second IRS immune system biomarker gene is selected from group D IRS immune system biomarker genes as herein defined;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of ipSIRS and healthy condition, respectively; and,
- e) determining a likelihood of the subject having ipSIRS or the healthy condition in accordance with the results of the comparison.

79. A method for differentiating between inSIRS and ipSIRS in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration

of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group E IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group F IRS immune system biomarker genes as herein defined;

- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of inSIRS and ipSIRS, respectively; and,
- e) determining a likelihood of the subject having inSIRS or ipSIRS in accordance with the results of the comparison.

80. A method for differentiating between inSIRS and ipSIRS in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes as herein defined;
 - ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of a third IRS immune system biomarker gene and a fourth IRS immune system biomarker gene, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker genes as herein defined, and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes as herein defined;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,

- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of inSIRS and ipSIRS, respectively; and,
- e) determining a likelihood of the subject having inSIRS or ipSIRS in accordance with the results of the comparison.

81. A method for differentiating between mild sepsis and severe sepsis in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group K IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group L IRS immune system biomarker genes as herein defined;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of mild sepsis and severe sepsis, respectively; and,
- e) determining a likelihood of the subject having mild sepsis or severe sepsis in accordance with the results of the comparison.

82. A method for differentiating between mild sepsis and septic shock in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group M IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group N IRS immune system biomarker genes as herein defined;

- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of mild sepsis and septic shock, respectively; and,
- e) determining a likelihood of the subject having mild sepsis or septic shock in accordance with the results of the comparison.

83. A method for differentiating between severe sepsis and septic shock in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) quantifying polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being indicative of a concentration of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group O IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group P IRS immune system biomarker genes as herein defined;
- c) determining an indicator indicative of a ratio of concentrations of the polynucleotide expression products using the pair of biomarker values; and,
- d) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of severe sepsis and septic shock, respectively; and,
- e) determining a likelihood of the subject having severe sepsis or septic shock in accordance with the results of the comparison.

84. A method according to claim 76 or claim 80, wherein the method includes:

- a) determining a first derived biomarker using the first pair of biomarker values;
- b) determining a second derived biomarker value using the second pair of biomarker values; and,
- c) determining the indicator by combining the first and second derived biomarker values.

85. A method according to any one of claims 76 to 84, wherein the first and second indicator references are distributions of indicators determined for first and second groups of a

reference population, the first and second group consisting of individuals diagnosed with inSIRS and ipSIRS respectively.

86. A method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of:
 - i) a first pair of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

87. A method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group A IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group B IRS immune system biomarker genes as herein defined;
- d) determining the indicator by determining a difference between the amplification amounts; and,

- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

88. A method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group C IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group D IRS immune system biomarker genes as herein defined;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

89. A method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group E IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group F IRS immune system biomarker genes as herein defined;

- 256 -

- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

90. A method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of:
 - i) a first pair of polynucleotide expression products of a first IRS immune system biomarker gene and a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group G IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group H IRS immune system biomarker genes as herein defined;
 - ii) a second pair of polynucleotide expression products of a third IRS immune system biomarker gene and a fourth IRS immune system biomarker gene, wherein the third IRS immune system biomarker gene is selected from group I IRS immune system biomarker genes as herein defined, and wherein the fourth IRS immune system biomarker gene is selected from group J IRS immune system biomarker genes as herein defined;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

91. A method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;

- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group K IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group L IRS immune system biomarker genes as herein defined;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

92. A method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;
- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, , wherein the first IRS immune system biomarker gene is selected from group M IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group N IRS immune system biomarker genes as herein defined;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

93. A method for determining an indicator used in assessing the likelihood of a biological subject having at least one medical condition, the method including:

- a) obtaining a sample taken from a biological subject, the sample including polynucleotide expression products;

- b) amplifying at least some polynucleotide expression products in the sample;
- c) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products selected from the group consisting of: a polynucleotide expression product of a first IRS immune system biomarker gene and a polynucleotide expression product of a second IRS immune system biomarker gene, wherein the first IRS immune system biomarker gene is selected from group O IRS immune system biomarker genes as herein defined, and wherein the second IRS immune system biomarker gene is selected from group P IRS immune system biomarker genes as herein defined;
- d) determining the indicator by determining a difference between the amplification amounts; and,
- e) using the indicator to assess the likelihood of a biological subject having a medical condition.

94. A method according to any one of the claims 86 to 93, wherein the method includes determining:

- a) a first derived biomarker value by determining a difference between the amplification amounts of the first pair of polynucleotide expression products;
- b) a second derived biomarker value by determining a difference between the amplification amounts of the second pair of polynucleotide expression products;
- c) determining the indicator by adding the first and second derived biomarker values.

95. A method according to any one of the claims 86 to 94, wherein the method includes determining:

- a) comparing the indicator to first and second indicator references, wherein the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, one of the first and second groups consisting of individuals diagnosed with the medical condition; and,
- b) determining a likelihood of the subject having the medical condition in accordance with the results of the comparison.

96. A method according to any one of claims 76 to 95, wherein the amplification amount is at least one of:

- a) a cycle time;
- b) a number of cycles;
- c) a cycle threshold;

- d) an amplification time; and,
- e) relative to an amplification amount of another amplified product.

97. A method for use in assessing the likelihood of a biological subject having a medical condition, the method including, in one or more processing devices:

- a) determining a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
- b) determining an indicator indicative of a ratio of the concentrations of the polynucleotide expression products using the pair of biomarker values;
- c) retrieving previously determined first and second indicator references from a database, the first and second indicator references being determined based on indicators determined from first and second groups of a reference population, one of the groups consisting of individuals diagnosed with the medical condition;
- d) comparing the indicator to the first and second indicator references;
- e) using the results of the comparison to determine a probability indicative of the subject having the medical condition; and,
- f) generating a representation of the probability, the representation being displayed to a user to allow the user to assess the likelihood of a biological subject having at least one medical condition.

98. A method according to claim 97, wherein the method includes:

- a) determining a first derived biomarker value using the first pair of biomarker values;
- b) determining a second derived biomarker value using the second pair of biomarker values; and,
- c) determining the indicator by combining the first and second derived biomarker values.

99. Apparatus for determining an indicator used in determining the likelihood of a biological subject having at least one medical condition, the apparatus including:

- a) a sampling device that obtains a sample taken from a biological subject, the sample including polynucleotide expression products;

- b) a measuring device that quantifies polynucleotide expression products within the sample to determine a pair of biomarker values, the pair of biomarker values being selected from the group consisting of:
 - i) a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - ii) a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
- c) at least one processing device that:
 - i) receives an indication of the pair of biomarker values from the measuring device;
 - ii) determines an indicator using a ratio of the concentration of the first and second polynucleotide expression products using the biomarker values; and,
 - iii) compares the indicator to at least one indicator reference; and,
 - iv) determines a likelihood of the subject having the at least one medical condition using the results of the comparison; and,
 - v) generates a representation of the indicator and the likelihood for display to a user.

100. A method for differentiating between inSIRS and ipSIRS in a biological subject, the method including:

- a) obtaining a sample taken from a biological subject showing a clinical sign of SIRS, the sample including polynucleotide expression products;
- b) in a measuring device:
 - i) amplifying at least some polynucleotide expression products in the sample;
 - ii) determining an amplification amount representing a degree of amplification required to obtain a defined level of polynucleotide expression products including:
 - (1) amplification amounts for a first pair of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
 - (2) amplification amounts for a second pair of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene;
- c) in a processing system:
 - i) retrieving the amplification amounts;
 - ii) determining an indicator by:
 - (1) determining a first derived biomarker value indicative of a ratio of concentrations of the first pair of polynucleotide expression products by determining a difference between the amplification amounts for the first pair;

(2) determining a second derived biomarker value indicative of a ratio of concentrations of the second pair of polynucleotide expression products by determining a difference between the amplification amounts for the second pair;

(3) determining the indicator by adding the first and second derived biomarker values;

iii) retrieving previously determined first and second indicator references from a database, wherein the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, the first and second group consisting of individuals diagnosed with inSIRS and ipSIRS respectively;

iv) comparing the indicator to the first and second indicator references;

v) using the results of the comparison to determine a probability of the subject being classified within the first or second group;

vi) generating a representation at least partially indicative of the indicator and the probability; and,

vii) providing the representation to a user to allow the user to assess the likelihood of a biological subject having at least one medical condition.

101. A method for determining an indicator used in assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition, the method including:

- determining a plurality of biomarker values, each biomarker value being indicative of a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject;
- determining the indicator using a combination of the plurality of biomarker values, wherein:
 - at least two biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
 - the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence,

absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

102. A method according to claim 101, wherein the method includes:

- a) determining a plurality of measured biomarker values, each measured biomarker value being a measured value of a corresponding biomarker of the biological subject; and,
- b) determining the indicator by applying a function to at least one of the measured biomarker values to determine at least one derived biomarker value, the at least one derived biomarker value being indicative of a value of a corresponding derived biomarker.

103. A method according to claim 102, wherein the function includes at least one of:

- a) multiplying two biomarker values;
- b) dividing two biomarker values;
- c) adding two biomarker values;
- d) subtracting two biomarker values;
- e) a ratio of two biomarker values;
- f) a weighted sum of at least two biomarker values;
- g) a log sum of at least two biomarker values; and,
- h) a sigmoidal function of at least two biomarker values.

104. A method according to claim 102, wherein the method includes determining at least one derived biomarker value corresponding to a ratio of two measured biomarker values.

105. A method according to any one of the claims 101 to 104, wherein the method includes combining at least two biomarker values to determine an indicator value representing the indicator.

106. A method according to claim 105, wherein the method includes combining at least two biomarker values using a combining function, the combining function being at least one of:

- a) an additive model;
- b) a linear model;
- c) a support vector machine;
- d) a neural network model;
- e) a random forest model;
- f) a regression model;

- g) a genetic algorithm;
- h) an annealing algorithm;
- i) a weighted sum;
- j) a nearest neighbor model; and,
- k) a probabilistic model.

107. A method according to claim 105 or claim 106, wherein at least one of the at least two biomarkers is a derived biomarker.

108. A method according to any one of the claims 101 to 107, wherein the method includes:

- a) determining a first derived biomarker value, the first derived biomarker value being indicative of a ratio of concentrations of the first and second immune system biomarkers;
- b) determining a second derived biomarker value, the second derived biomarker value being indicative of a ratio of concentrations of the third and fourth measured immune system biomarkers; and,
- c) adding the first and second derived biomarker values to generate an indicator value.

109. A method according to any one of the claims 101 to 108, wherein the method is performed at least in part using an electronic processing device.

110. A method according to any one of the claims 101 to 109, wherein the method includes, in the electronic processing device:

- a) receiving a plurality of measured biomarker values, each measured biomarker value being a measured value of a corresponding immune system biomarker;
- b) applying a function to at least one of the measured biomarker values to determine at least one derived biomarker value, the at least one derived biomarker value being indicative of a value of a corresponding derived biomarker; and,
- c) combining at least one derived biomarker value and at least one other biomarker value to determine the indicator.

111. A method according to any one of the claims 101 to 110, wherein the mutual correlation range is at least one of:

- a) ± 0.8 ;
- b) ± 0.7 ;
- c) ± 0.6 ;
- d) ± 0.5 ;

- e) ± 0.4 ;
- f) ± 0.3 ;
- g) ± 0.2 ; and,
- h) ± 0.1 .

112. A method according to any one of the claims 101 to 111, wherein each biomarker has a condition correlation with the presence, absence, degree or prognosis of the at least one condition that lies outside a condition correlation range, the condition correlation range being between ± 0.3 .

113. A method according to claim 112, wherein the condition correlation range is at least one of:

- a) ± 0.9 ;
- b) ± 0.8 ;
- c) ± 0.7 ;
- d) ± 0.6 ;
- e) ± 0.5 ; and,
- f) ± 0.4 .

114. A method according to any one of the claims 101 to 113, wherein the performance threshold is indicative of an explained variance of at least one of:

- a) 0.4;
- b) 0.5;
- c) 0.6;
- d) 0.7;
- e) 0.8; and,
- f) 0.9.

115. A method according to any one of the claims 101 to 114, wherein the biomarker value is indicative of a level or abundance of a molecule selected from one or more of a nucleic acid molecule and a proteinaceous molecule.

116. A method according to any one of the claims 101 to 115, wherein the method includes generating a representation of the indicator.

117. A method according to claim 116, wherein the representation includes:

- a) an alphanumeric indication of the indicator;
- b) a graphical indication of a comparison of the indicator to one or more indicator references;

- c) an alphanumeric indication of a likelihood of the subject having at least one medical condition.

118. A method according to any one of the claims 101 to 117, wherein the method includes:

- a) comparing the indicator to an indicator reference; and,
- b) determining a likelihood in accordance with results of the comparison.

119. A method according to claim 118, wherein the indicator reference is based on at least one of:

- a) an indicator threshold range;
- b) an indicator threshold; and,
- c) an indicator distribution.

120. A method according to claim 118 or claim 119, wherein the indicator reference is derived from indicators determined for a number of individuals in a reference population.

121. A method according to claim 120, wherein the indicator reference is based on a distribution of indicators determined for a group of a reference population, the group consisting of individuals diagnosed as having the medical condition or lacking the medical condition.

122. A method according to claim 120 or claim 121, wherein the reference population includes:

- a) a plurality of individuals of different sexes;
- b) a plurality of individuals of different ethnicities;
- c) a plurality of healthy individuals;
- d) a plurality of individuals suffering from at least one diagnosed medical condition;
- e) a plurality of individuals without the at least one diagnosed medical condition;
- f) a plurality of individuals showing clinical signs of at least one medical condition;
- g) first and second groups of individuals, each group of individuals suffering from a respective diagnosed medical condition; and,
- h) first and second groups of individuals, the first group of individuals suffering from a diagnosed medical condition, and the second group not suffering the diagnosed medical condition.

123. A method according to any one of the claims 120 to 122, wherein the indicator is for use in determining the likelihood that a biological subject has at least one medical condition, and wherein the reference population includes:

- a) individuals presenting with clinical signs of the at least one medical condition;
- b) individuals diagnosed with the at least one medical condition;
- c) individuals diagnosed without the at least one medical condition; and,
- d) healthy individuals.

124. A method according to any one of the claims 118 to 123, wherein the indicator reference is retrieved from a database.

125. A method according to any one of the claims 118 to 124, wherein the likelihood is based on a probability generated using the results of the comparison.

126. A method according any one of the claims 118 to 125, wherein the indicator is for determining a likelihood of the subject having a first or second condition, and wherein the method includes:

- a) comparing the indicator to first and second indicator references, the first and second indicator references being indicative of first and second conditions; and,
- b) determining the likelihood in accordance with the results of the comparison.

127. A method according to claim 126, wherein the method includes:

- a) determining first and second indicator probabilities using the results of the comparisons; and,
- b) combining the first and second indicator probabilities to determine a condition probability indicative of the likelihood.

128. A method according to claim 126 or claim 127, wherein the first and second indicator references are distributions of indicators determined for first and second groups of a reference population, the first and second group consisting of individuals diagnosed with the first or second condition respectively.

129. A method according to any one of the claims 101 to 128, wherein the method includes:

- a) obtaining a sample taken from the biological subject, the sample including polynucleotide expression products;
- b) quantifying at least some of the polynucleotide expression products within the sample to determine at least a pair of biomarker values;
- c) determining the indicator at least in part using the pair of biomarker values;

130. A method according to claim 129, wherein the method includes, determining the indicator at least in part using a ratio of concentrations of the polynucleotide expression products.

131. A method according to claim 129 or claim 130, wherein the method includes:

- a) quantifying polynucleotide expression products by:
 - i) amplifying at least some polynucleotide expression products in the sample; and,
 - ii) determining an amplification amount representing a degree of amplification required to obtain a defined level of each of a pair of polynucleotide expression products; and,
- b) determining the indicator by determining a difference between the amplification amounts.

132. A method according to claim 131, wherein the amplification amount is at least one of:

- a) a cycle time;
- b) a number of cycles;
- c) a cycle threshold;
- d) an amplification time; and,
- e) relative to an amplification amount of another amplified product.

133. A method according to claim 131 or claim 132, wherein the method includes determining:

- a) a first derived biomarker value by determining a difference between the amplification amounts of a first pair of polynucleotide expression products;
- b) a second derived biomarker value by determining a difference between the amplification amounts of a second pair of polynucleotide expression products;
- c) determining the indicator by adding the first and second derived biomarker values.

134. A method according to any one of the claims 101 to 133, wherein the immune system biomarker is a biomarker of an immune system of the biological subject that is altered, or whose level of expression is altered, as part of an inflammatory response to damage or pathogenic insult.

135. A method according to any one of the claims 101 to 134, wherein the indicator is for determining a likelihood of the subject having at least one of inSIRS and ipSIRS, and wherein the method includes:

- a) determining a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
- b) determining a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene; and,
- c) determining the indicator using the first and second pairs of biomarker values.

136. A method according to any one of the claims 101 to 134, wherein the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein the method includes:

- a) determining a first pair of biomarker values indicative of a concentration of polynucleotide expression products of the *PLA2G7* gene and *PLAC8* gene;
- b) determining a second pair of biomarker values indicative of a concentration of polynucleotide expression products of the *CEACAM4* gene and *LAMP1* gene; and,
- c) determining the indicator using the first and second pairs of biomarker values.

137. A method according to any one of the claims 101 to 134, wherein the indicator is for determining a likelihood of the subject having inSIRS or a healthy condition, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group A IRS immune system biomarker genes as herein defined; and
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group B IRS immune system biomarker genes as herein defined as herein defined.

138. A method according to any one of the claims 101 to 134, wherein the indicator is for determining a likelihood of the subject having ipSIRS or a healthy condition, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group C IRS immune system biomarker genes as herein defined; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group D IRS immune system biomarker genes as herein defined.

139. A method according to any one of the claims 101 to 134, wherein the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group E IRS immune system biomarker genes as herein defined; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group F IRS immune system biomarker genes as herein defined.

140. A method according to any one of the claims 101 to 134, wherein the indicator is for determining a likelihood of the subject having inSIRS or ipSIRS, and wherein biomarker values are determined from at least one immune system biomarker in each of first, second, third and fourth IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group G IRS immune system biomarker genes as herein defined;
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group H IRS immune system biomarker genes as herein defined;
- c) the third IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group I IRS immune system biomarker genes as herein defined; and,
- d) the fourth IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group J IRS immune system biomarker genes as herein defined.

141. A method according to claim 131, wherein the first IRS immune system biomarker is a *PLA2G7* expression product, wherein the second IRS immune system biomarker is a *PLAC8* expression product, wherein the third IRS immune system biomarker is a *CEACAM4* expression product and wherein the fourth IRS immune system biomarker is a *LAMP1* expression product.

142. A method according to any one of the claims 101 to 134, wherein the indicator is for determining a likelihood of the subject having mild sepsis or severe sepsis, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

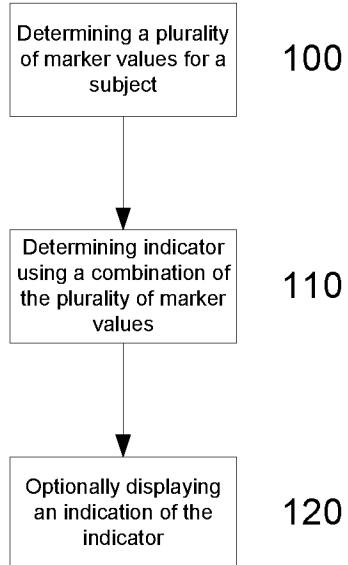
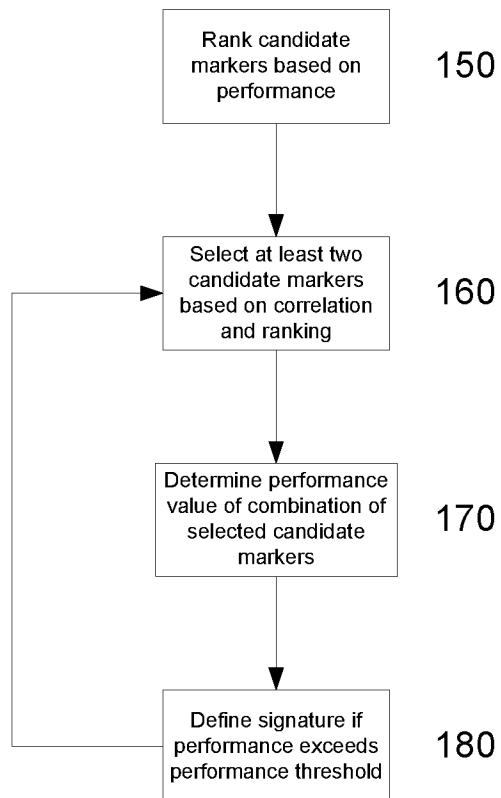
- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group K IRS immune system biomarker genes as herein defined; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group L IRS immune system biomarker genes as herein defined.

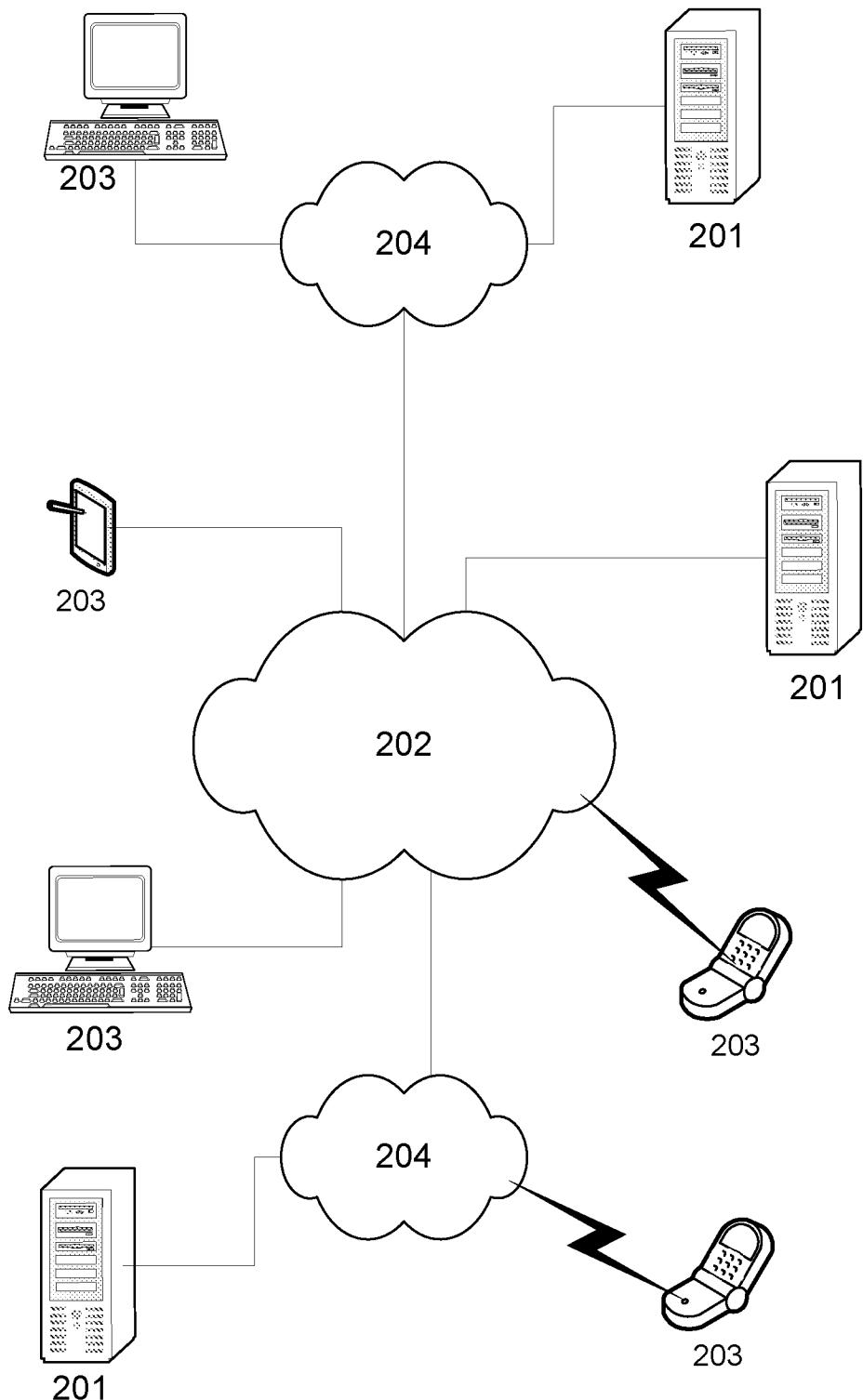
143. A method according to any one of the claims 101 to 134, wherein the indicator is for determining a likelihood of the subject having mild sepsis or septic shock, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group M IRS immune system biomarker genes as herein defined; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group N IRS immune system biomarker genes as herein defined.

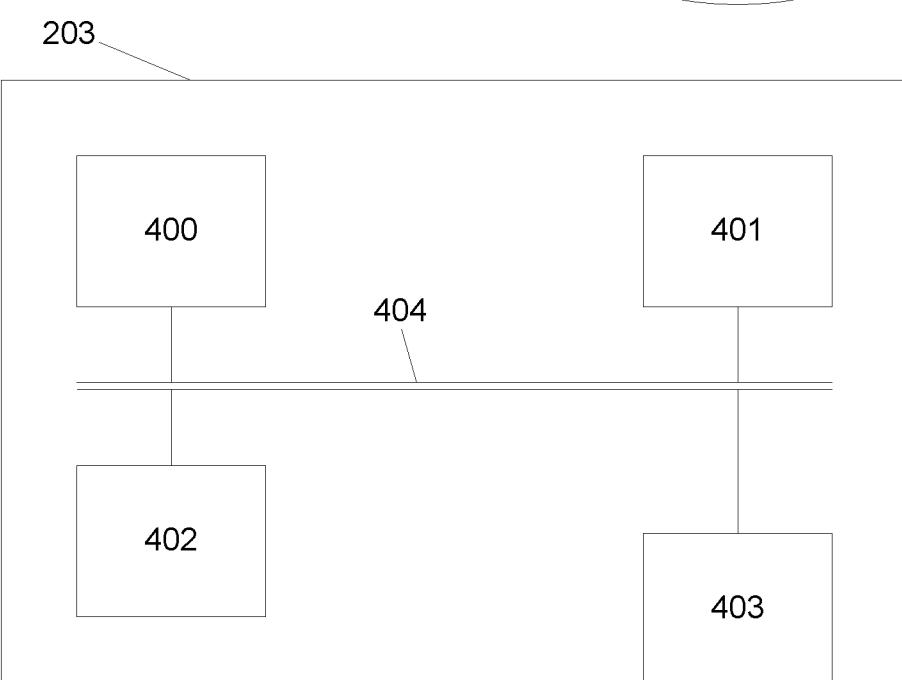
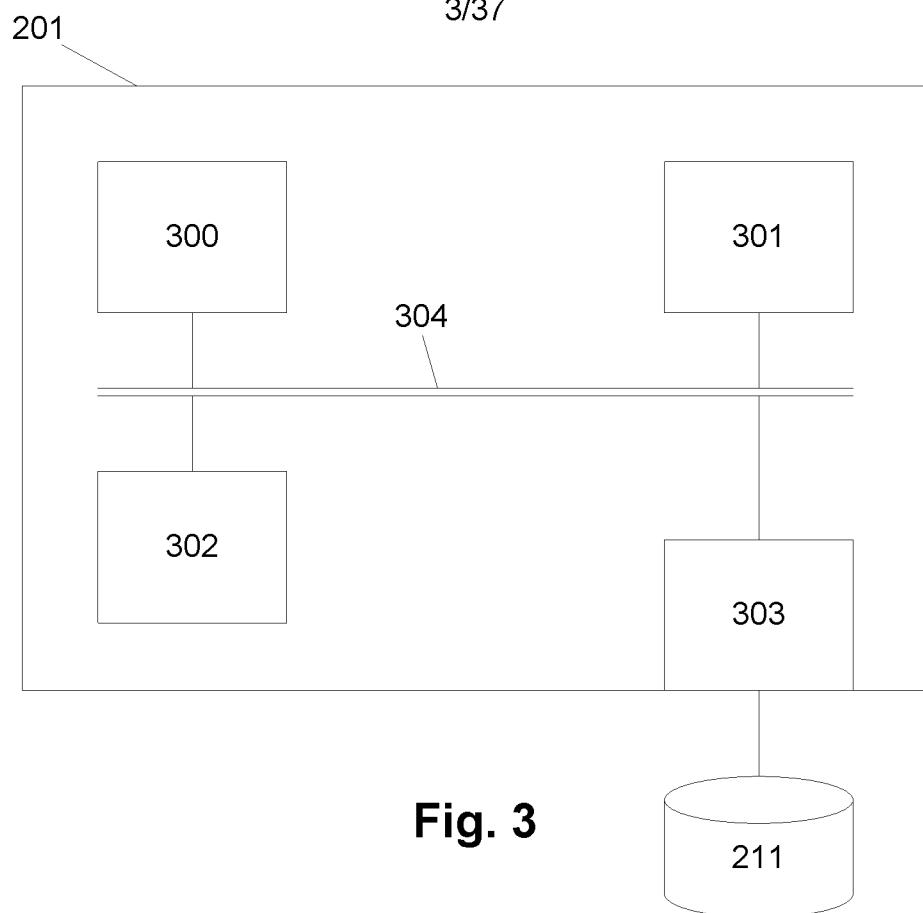
144. A method according to any one of the claims 101 to 134, wherein the indicator is for determining a likelihood of the subject having severe sepsis or septic shock, and wherein biomarker values are determined from at least one immune system biomarker in each of first and second IRS immune system biomarker groups, wherein:

- a) the first IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group O IRS immune system biomarker genes as herein defined; and,
- b) the second IRS immune system biomarker group consists of polynucleotide and/or polypeptide expression products from group P IRS immune system biomarker genes as herein defined.



145. Apparatus for determining an indicator used in assessing a likelihood of a biological subject having a presence, absence, degree or prognosis of at least one medical condition, the apparatus including a processing device that:


- a) determines a plurality of biomarker values, each biomarker value being indicative of a value measured or derived for at least one corresponding immune system biomarker of the biological subject and being at least partially indicative of a concentration of the immune system biomarker in a sample taken from the subject;

- 271 -



- b) determines the indicator using a combination of the plurality of biomarker values, wherein:
 - i) at least two biomarkers have a mutual correlation in respect of the at least one condition that lies within a mutual correlation range, the mutual correlation range being between ± 0.9 ; and,
 - ii) the indicator has a performance value greater than or equal to a performance threshold representing the ability of the indicator to diagnose the presence, absence, degree or prognosis of the at least one condition, the performance threshold being indicative of an explained variance of at least 0.3.

1/37

Fig. 1A**Fig. 1B**

Fig. 2

3/37

Fig. 4

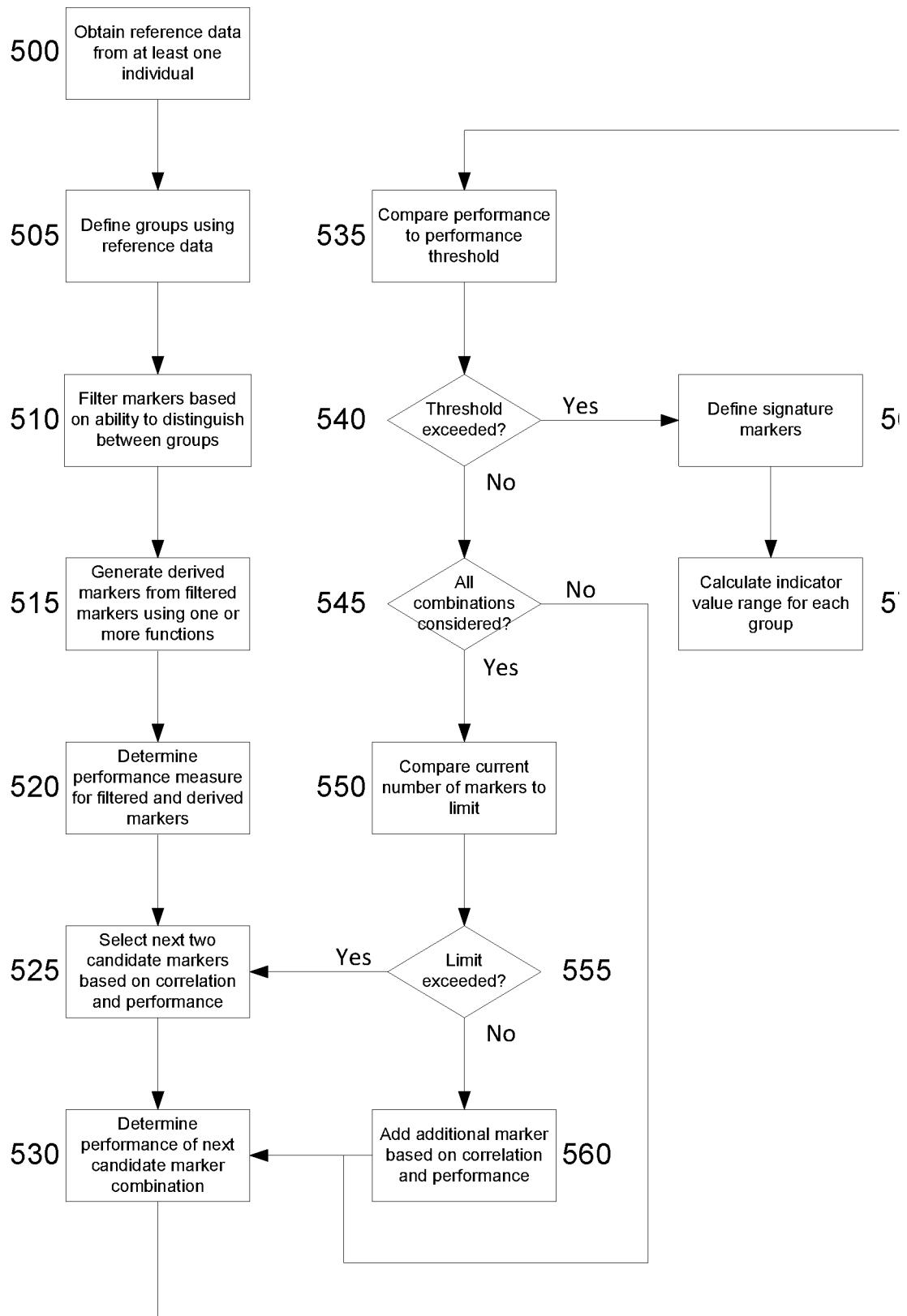
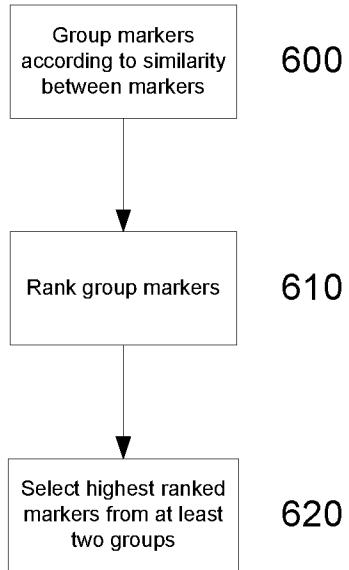
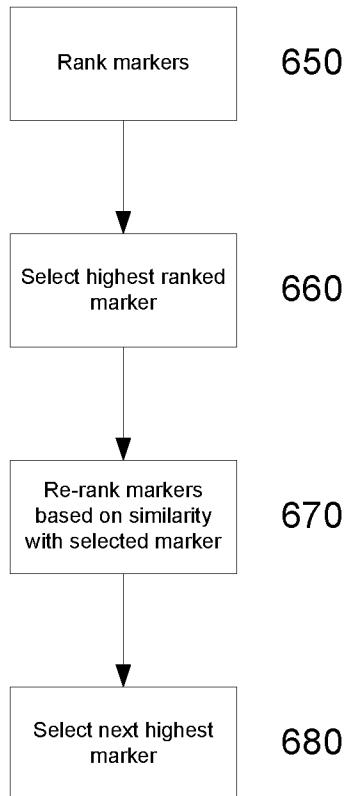
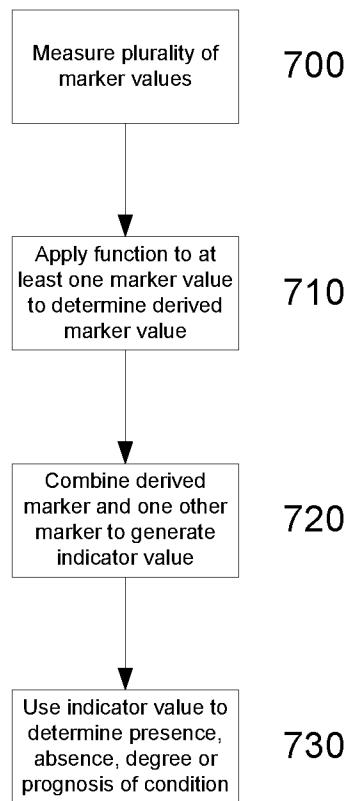





Fig. 5

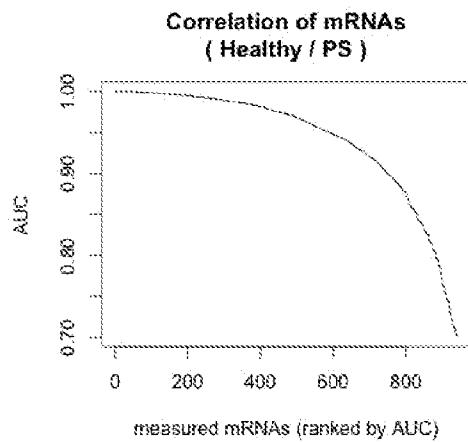
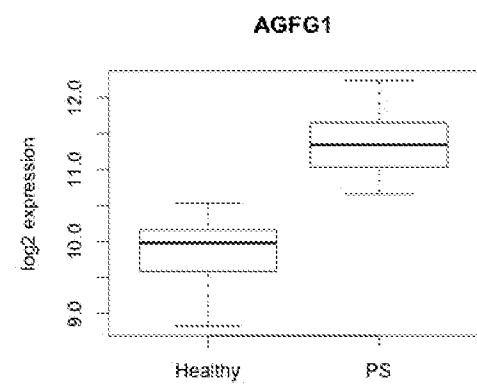
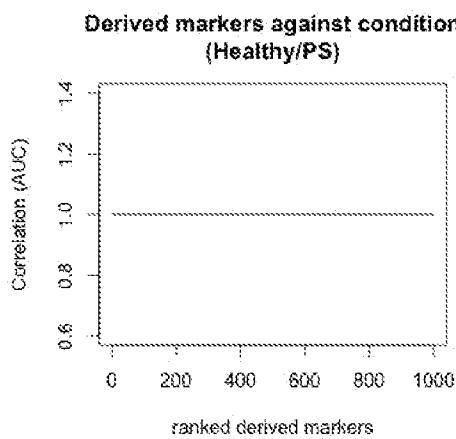
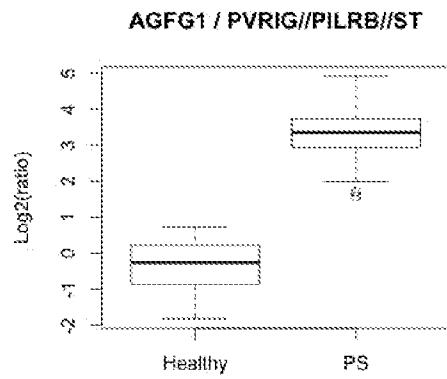
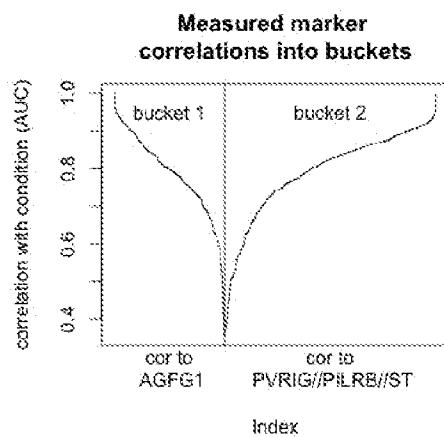
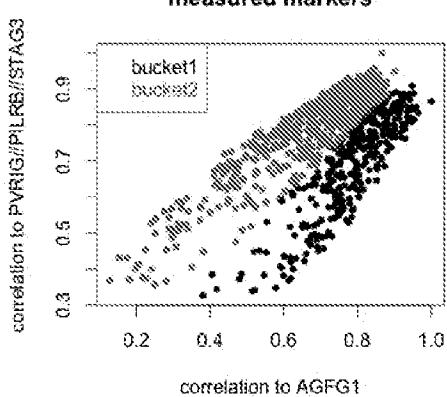






5/37

Fig. 6A**Fig. 6B**

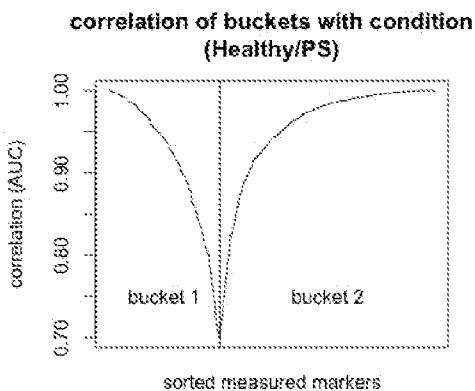
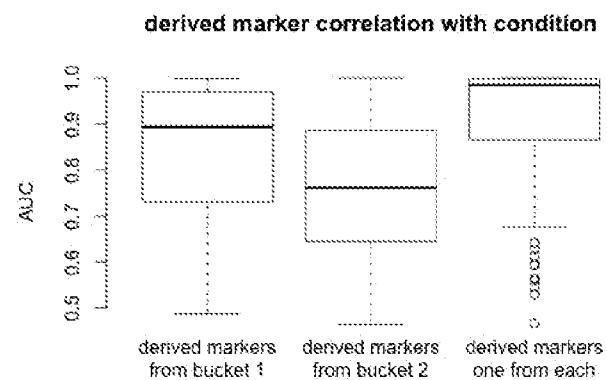


6/37

Fig. 7

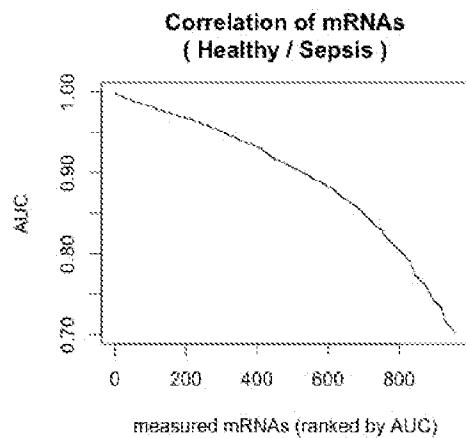
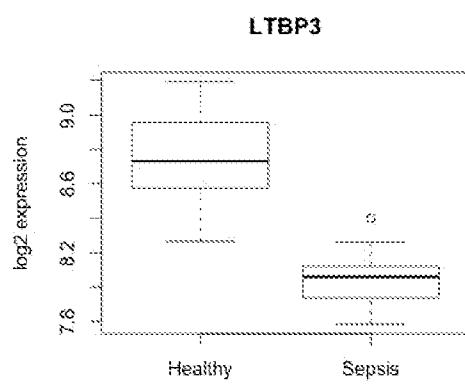
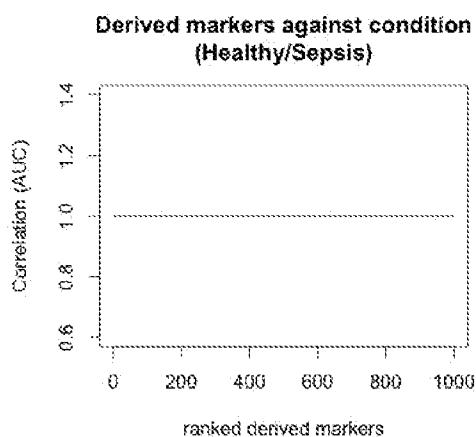
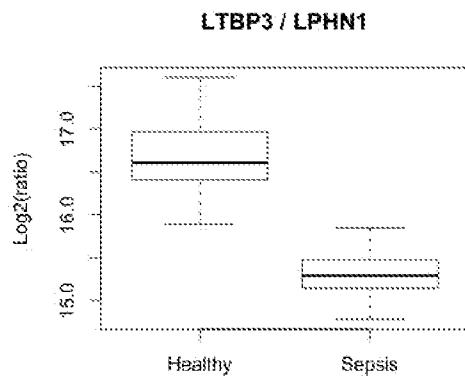
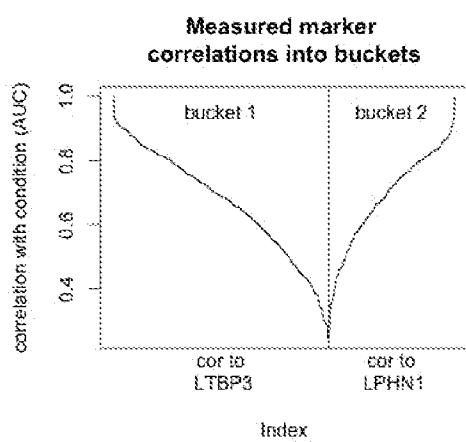
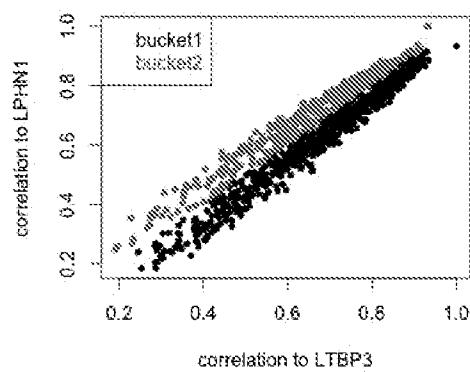






7/37

Fig. 8A**Fig. 8B****Fig. 8C****Fig. 8D****Fig. 8E****Fig. 8F**

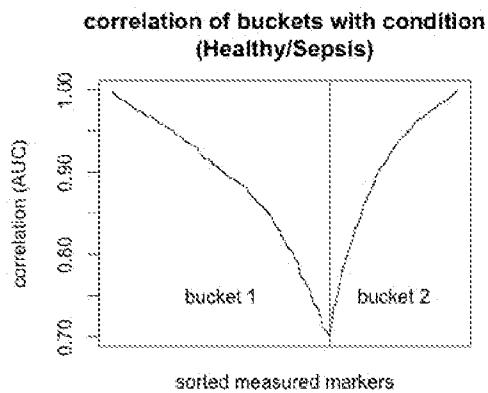
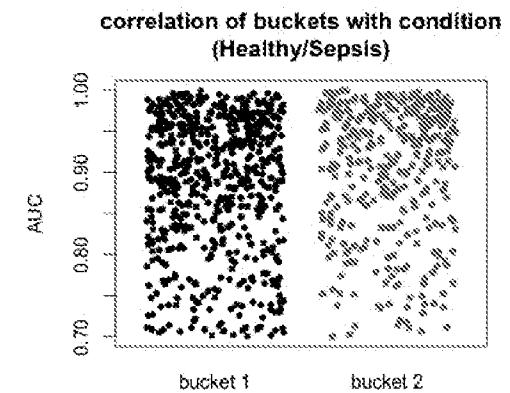
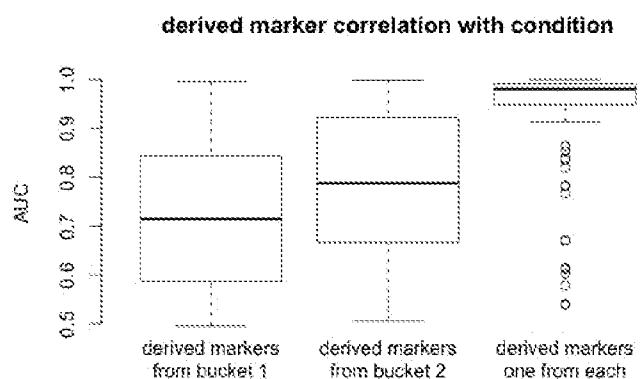



8/37

Fig. 8G**Fig. 8H****Fig. 8I**

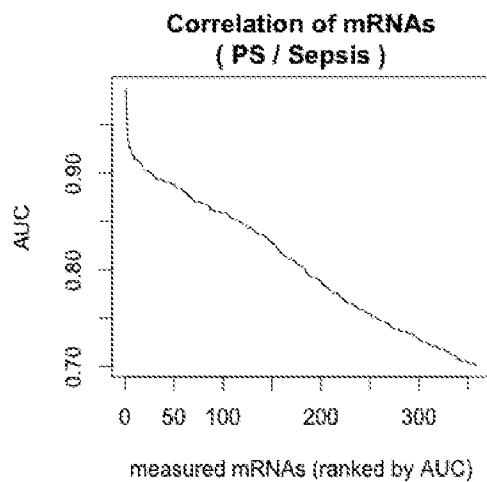
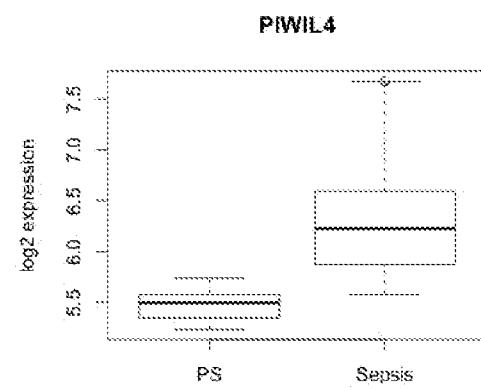
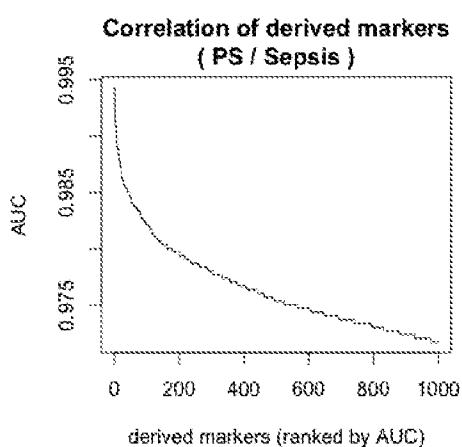
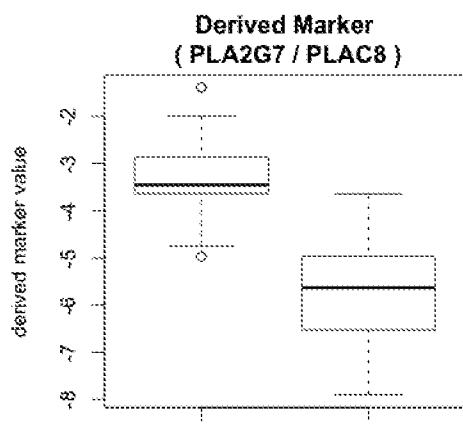
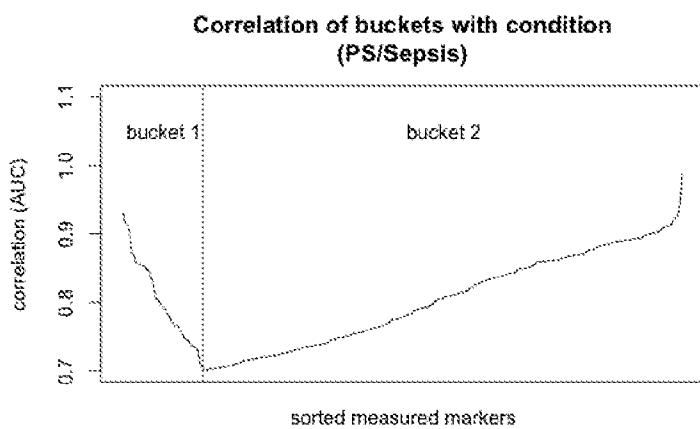





9/37

Fig. 9A**Fig. 9B****Fig. 9C****Fig. 9D****Fig. 9E****Fig. 9F**

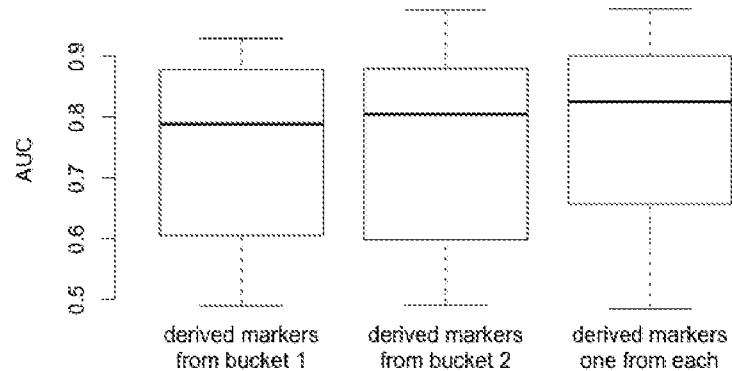
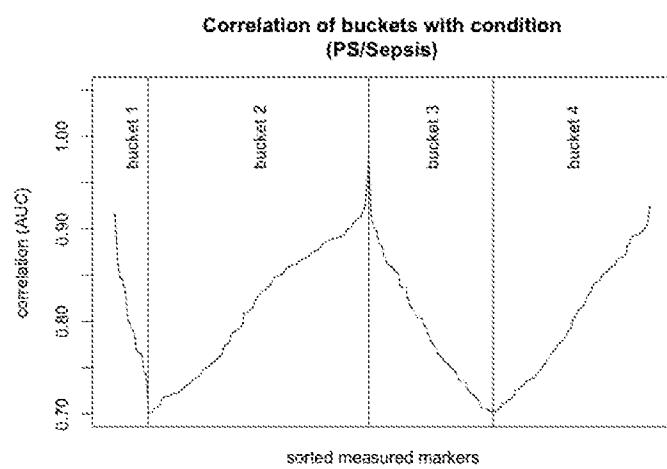
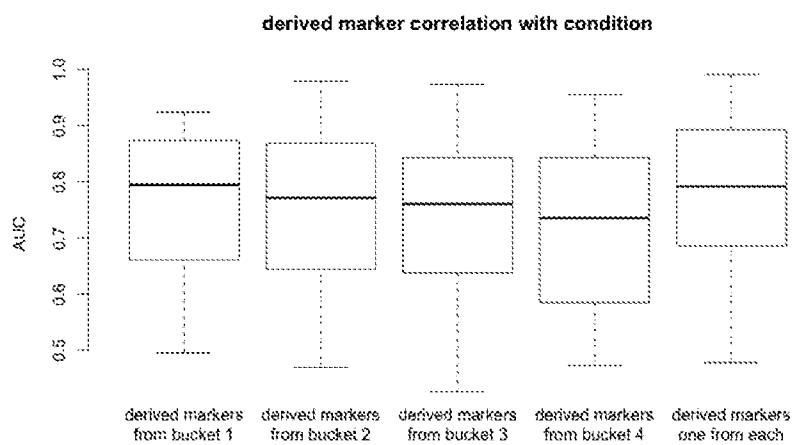



10/37

Fig. 9G**Fig. 9H****Fig. 9I**

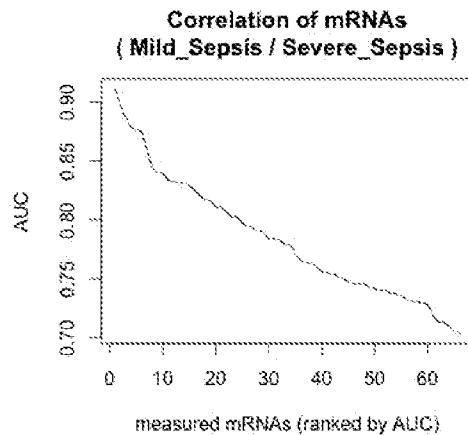
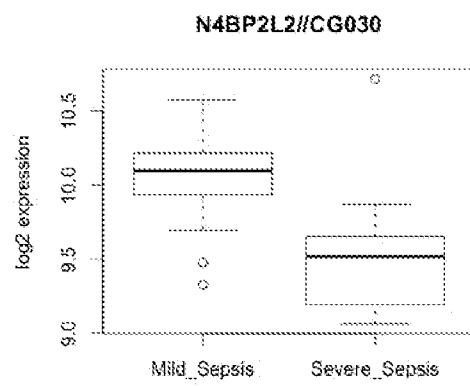
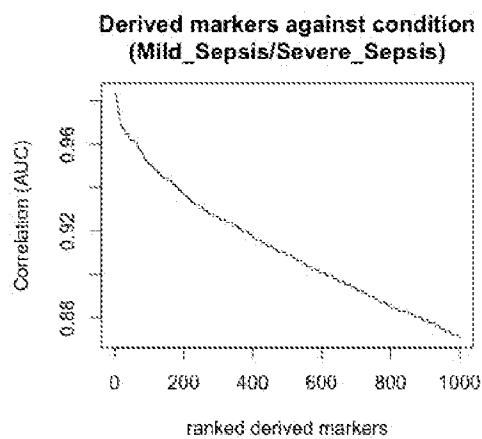
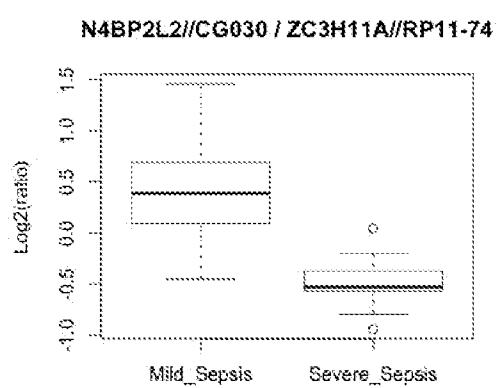
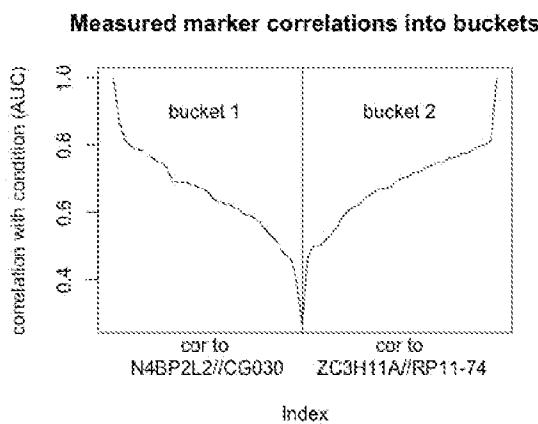
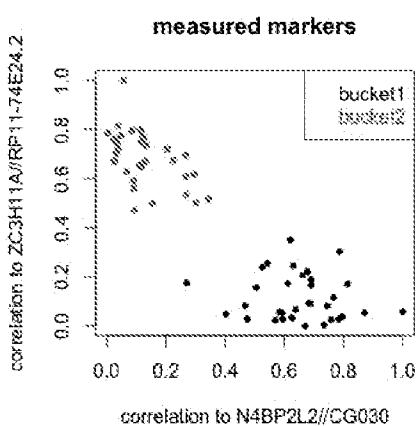
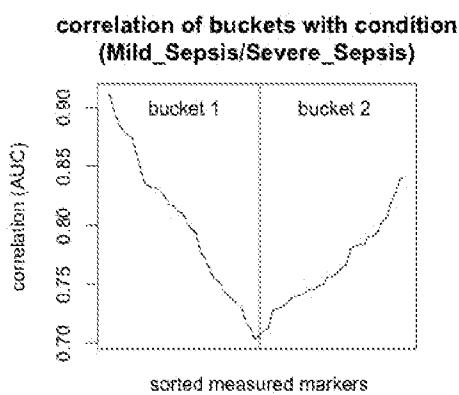
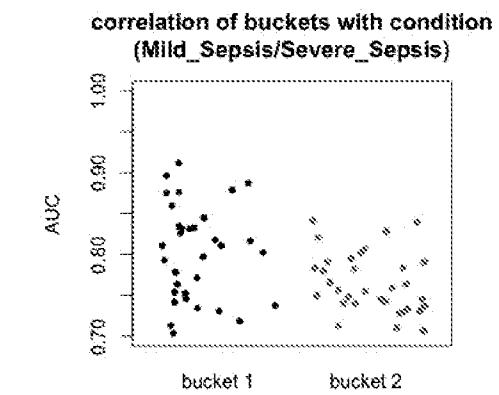
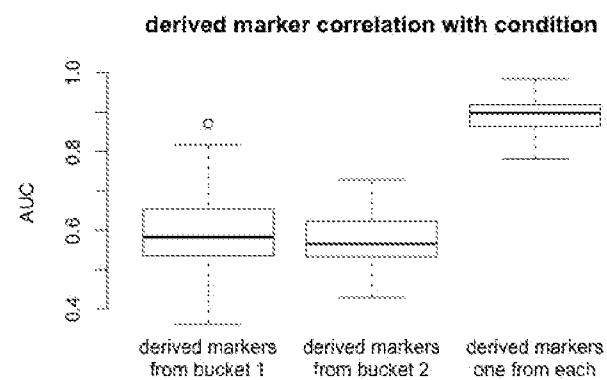
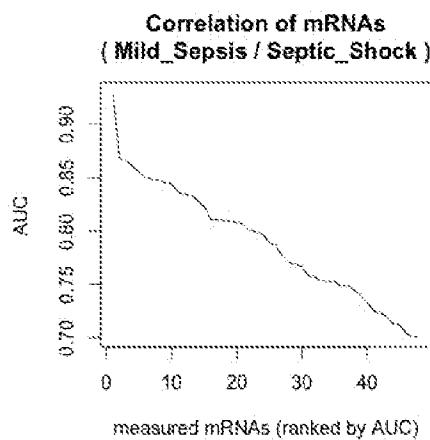






11/37

Fig. 10A**Fig. 10B****Fig. 10C****Fig. 10D****Fig. 10E**




12/37

derived marker correlation with condition**Fig. 10F****Fig. 10G****Fig. 10H**



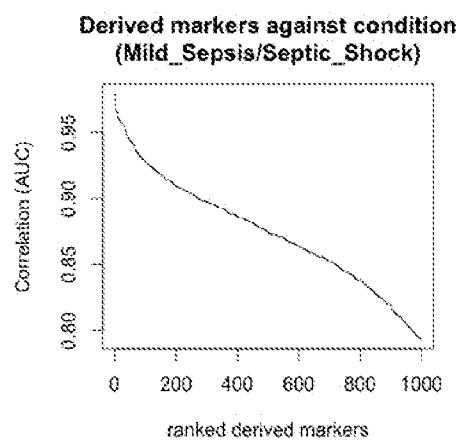
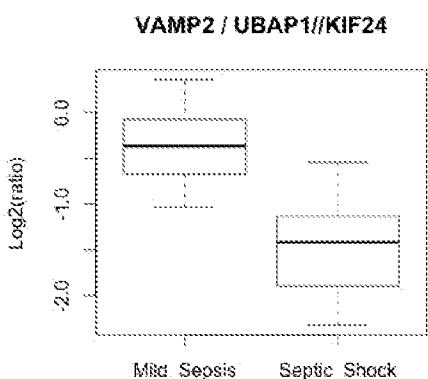
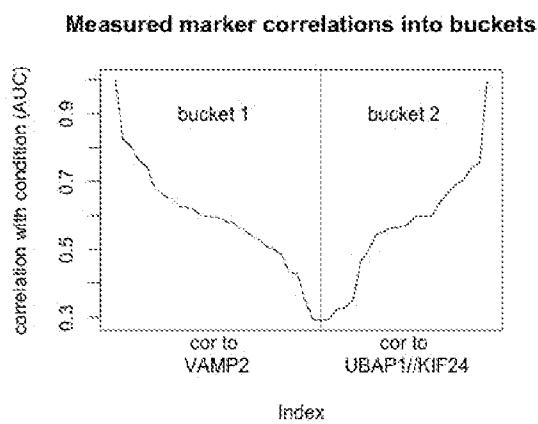
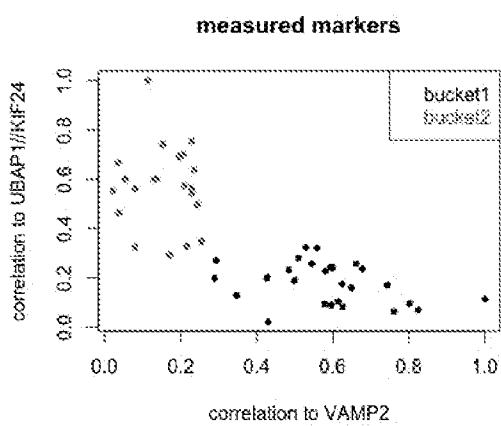




13/37

Fig. 11A**Fig. 11B****Fig. 11C****Fig. 11D****Fig. 11E****Fig. 11F**

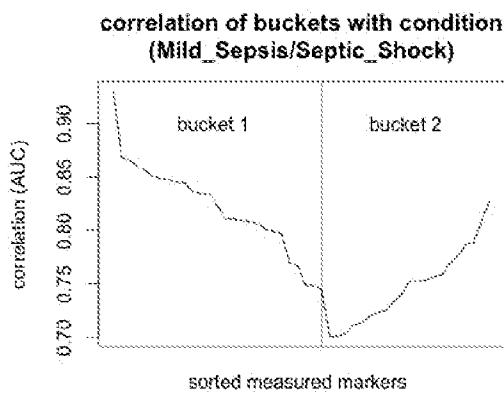
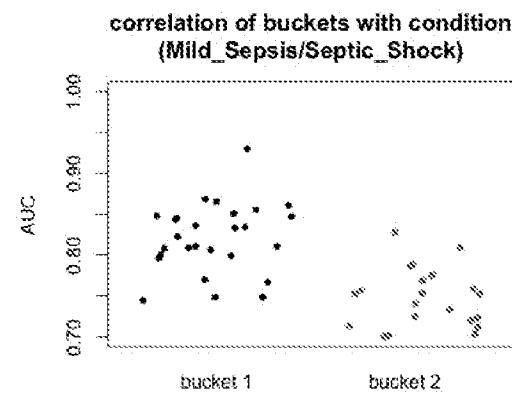
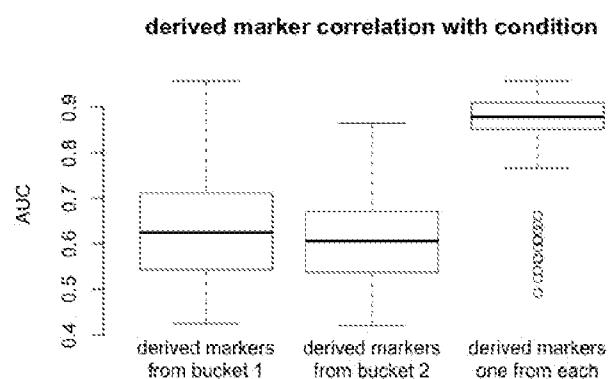



14/37

Fig. 11G**Fig. 11H****Fig. 11I**

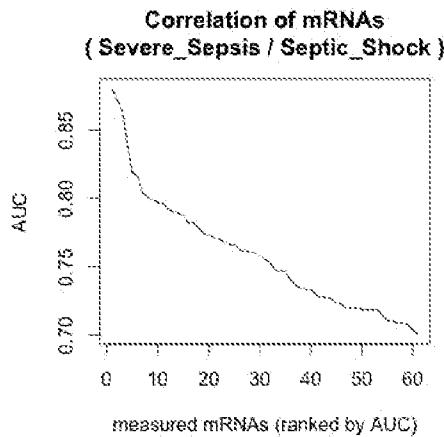
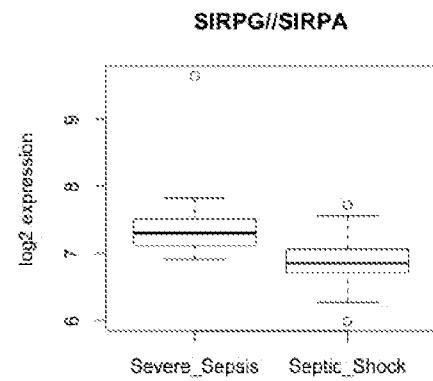
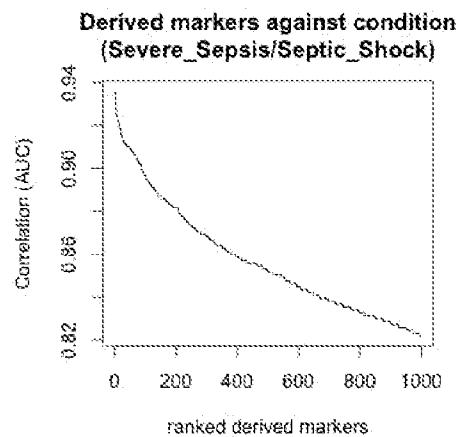
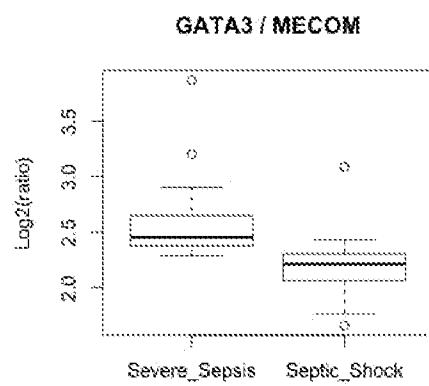
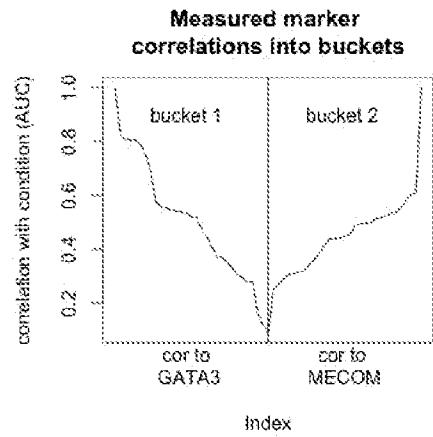
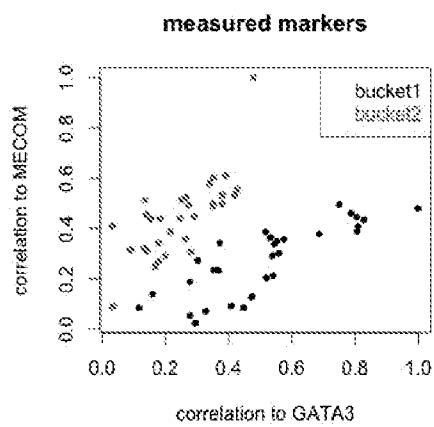






15/37

Fig. 12A**Fig. 12B****Fig. 12C****Fig. 12D****Fig. 12E****Fig. 12F**

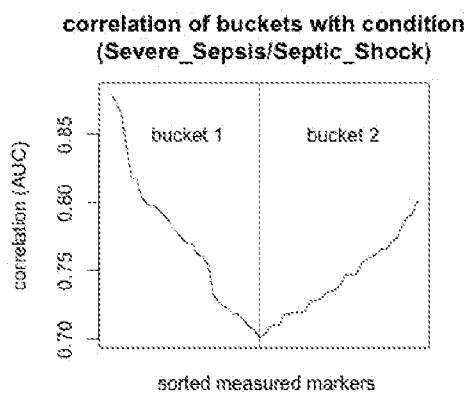
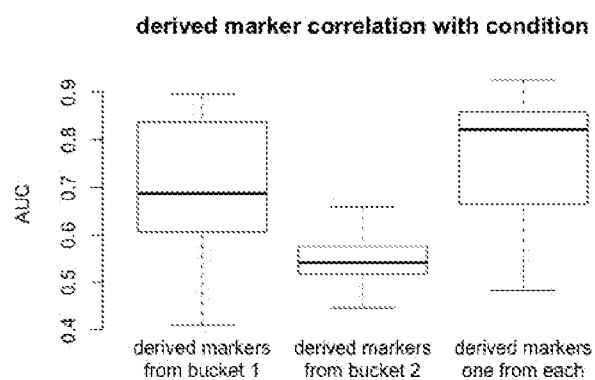


16/37

Fig. 12G**Fig. 12H****Fig. 12I**

17/37

Fig. 13A**Fig. 13B****Fig. 13C****Fig. 13D****Fig. 13E****Fig. 13F**

18/37

Fig. 13G**Fig. 13H****Fig. 13I**

19/37

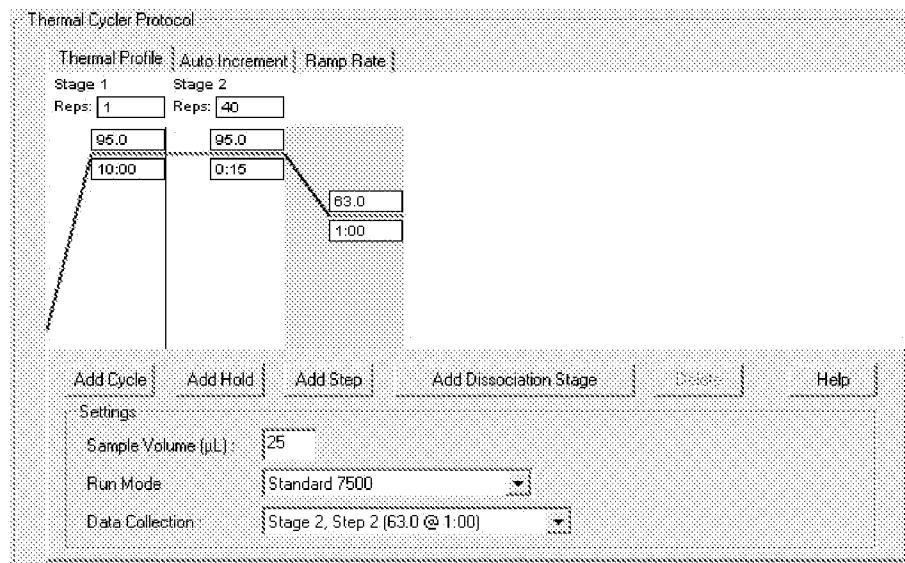
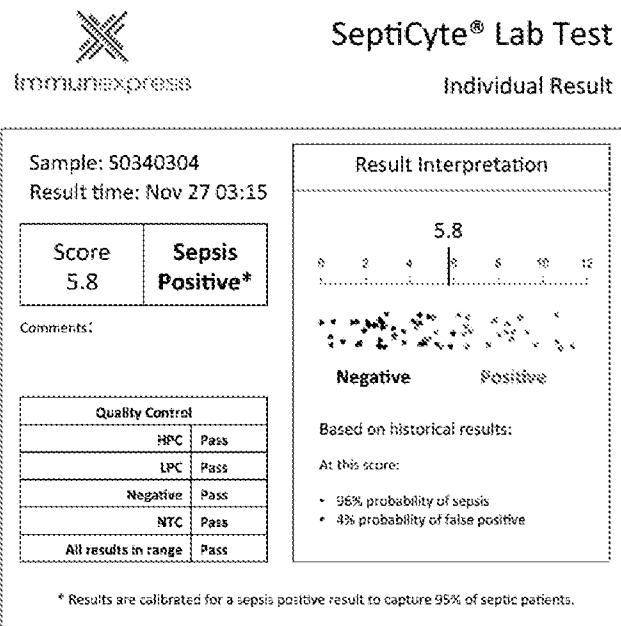
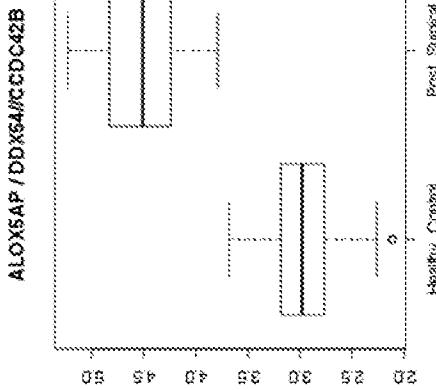
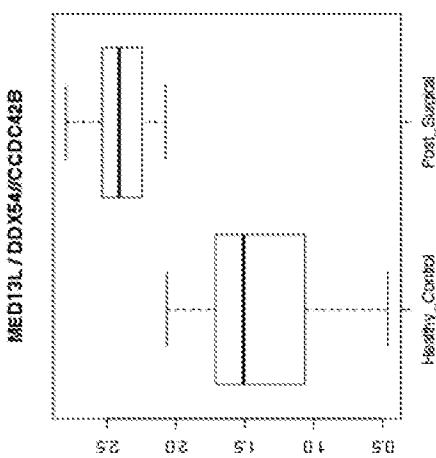
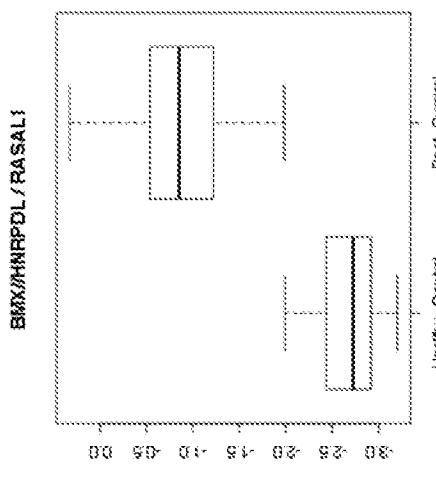
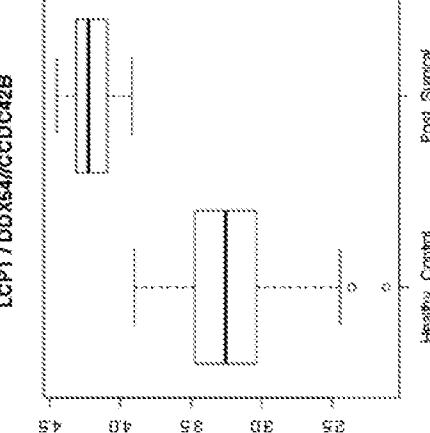
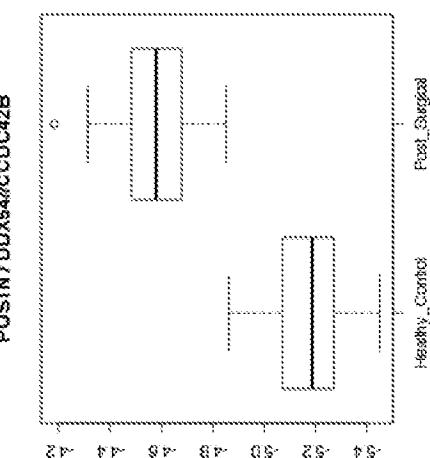
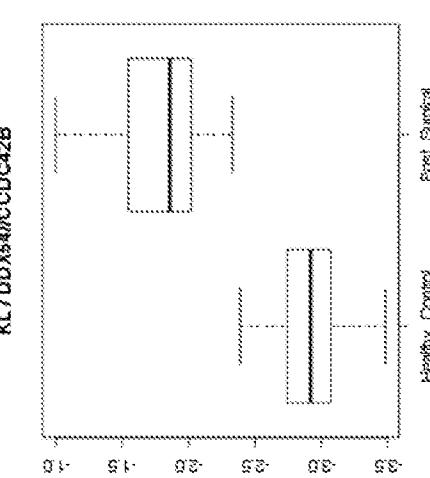
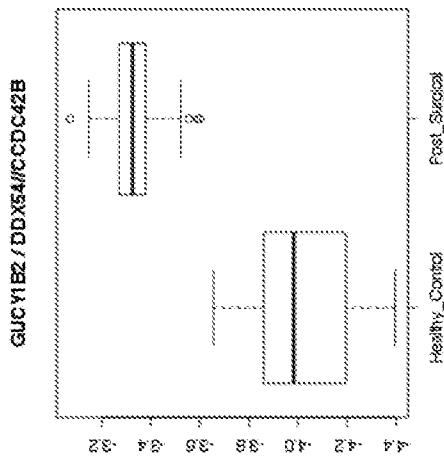
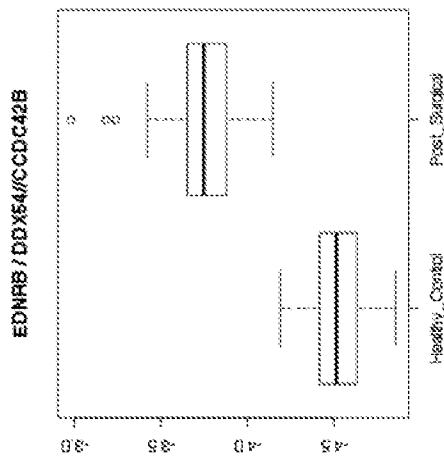
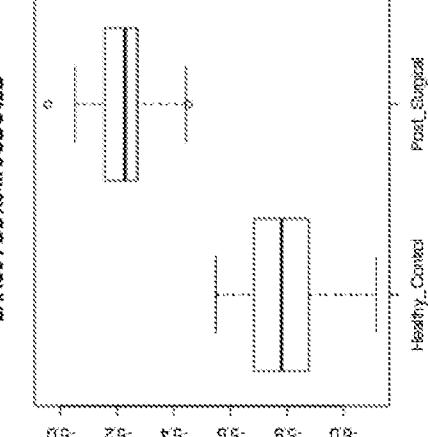
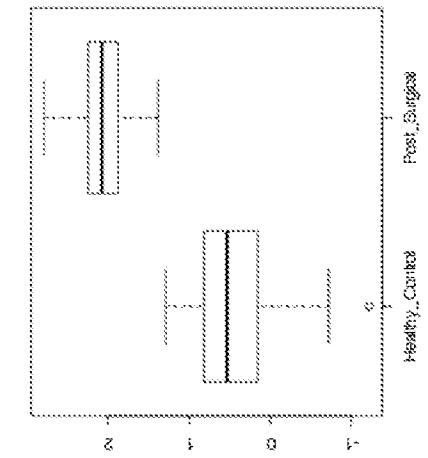









Fig. 14

Batch Results			
Sample	Score	Result	Comment

Fig. 15

Fig. 16C**Fig. 16B****Fig. 16A****Fig. 16C****Fig. 16B****Fig. 16A****Fig. 16F**

21/37

Fig. 16G**Fig. 16H****Fig. 16I****Fig. 16J****Fig. 16K****Fig. 16L**

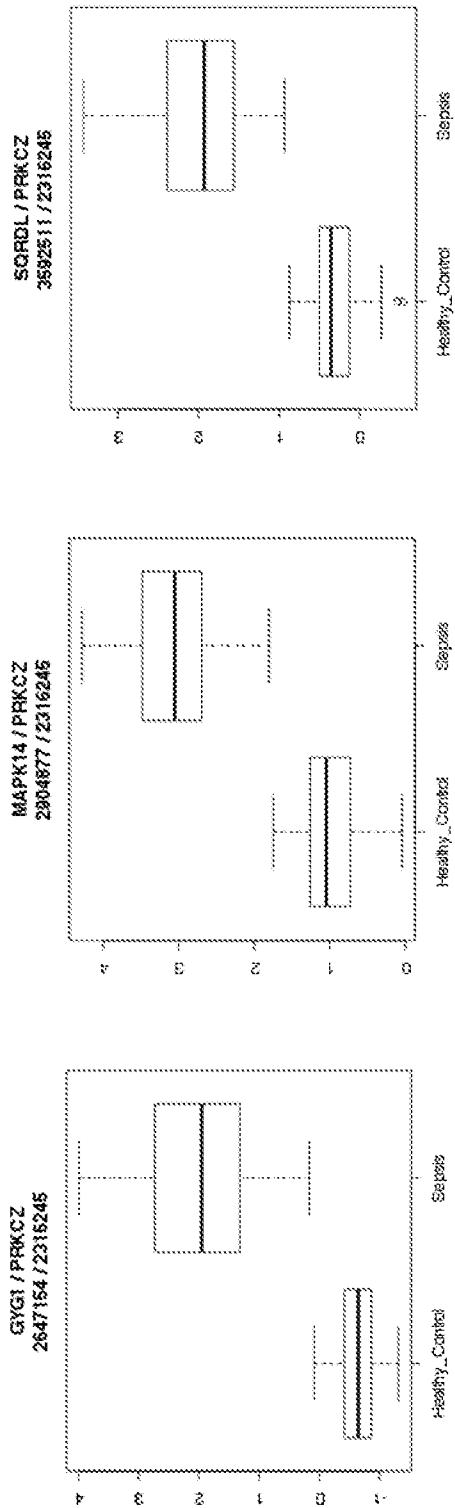


Fig. 17A

Fig. 17B

Fig. 17C

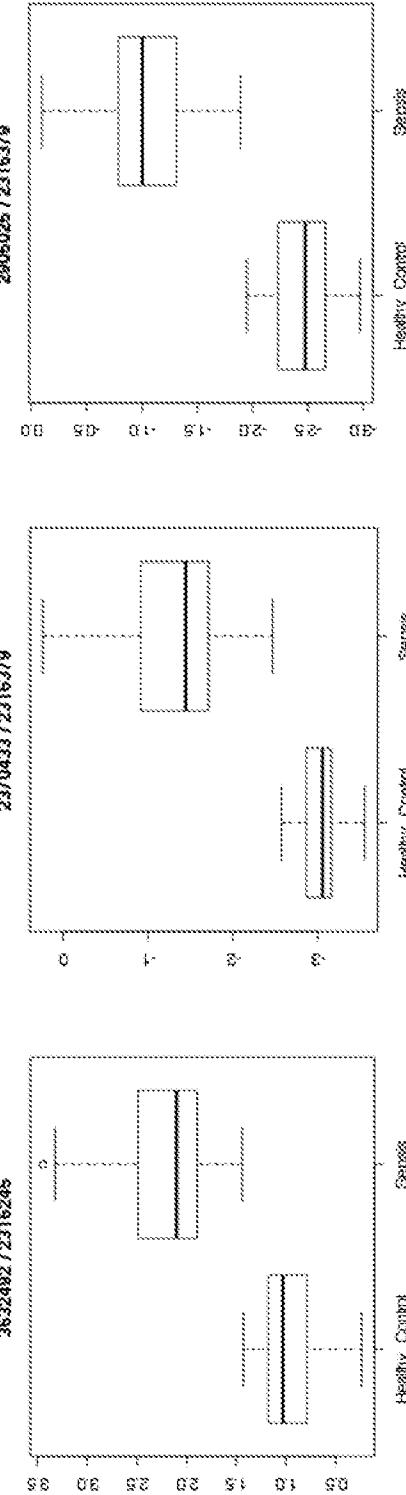


Fig 17n

Fig 17F

Fin 17F

23/37

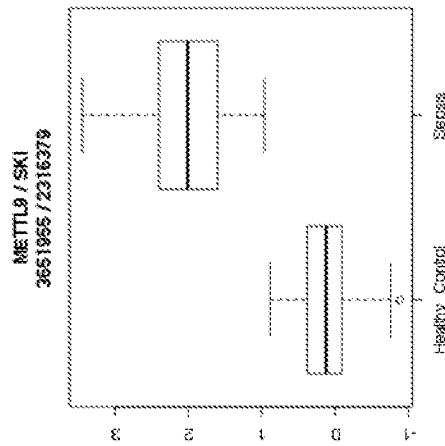


Fig. 17I

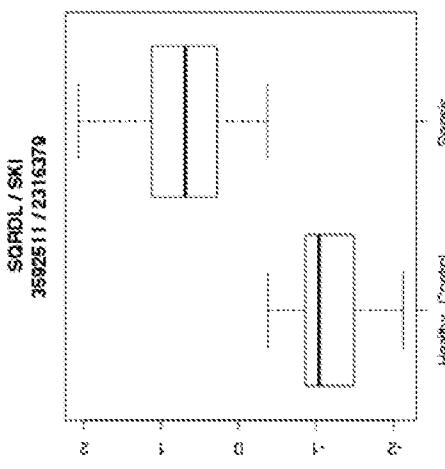


Fig. 17H

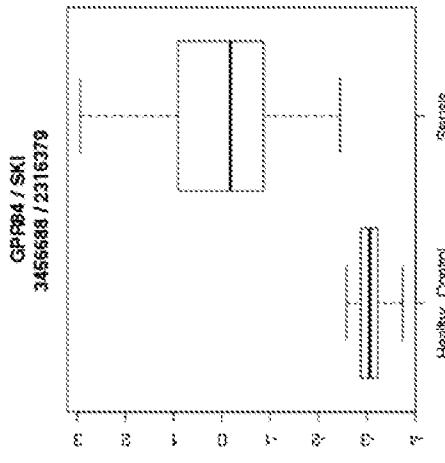


Fig. 17G

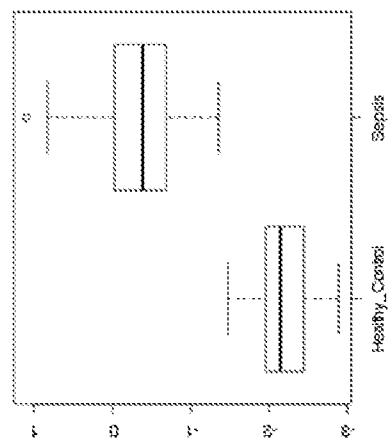


Fig. 17I

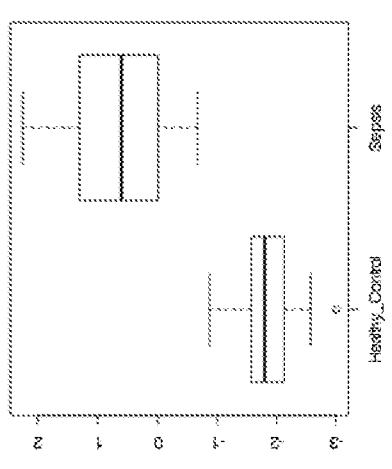


Fig. 17H

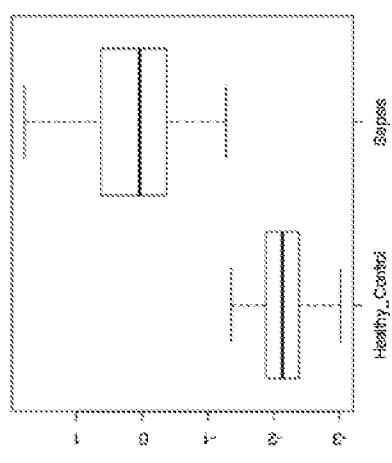


Fig. 17G

Fig. 17I

Fig. 17H

Fig. 17G

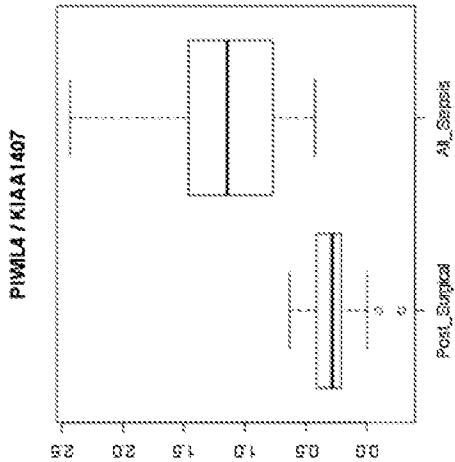


Fig. 18C

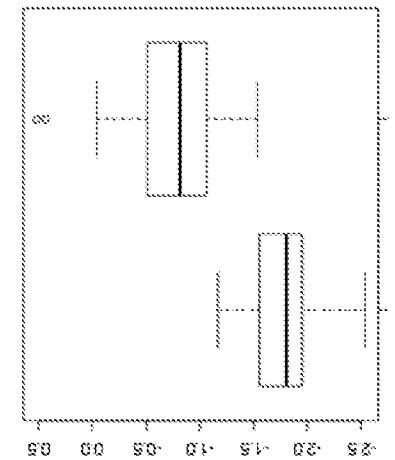


Fig 18F

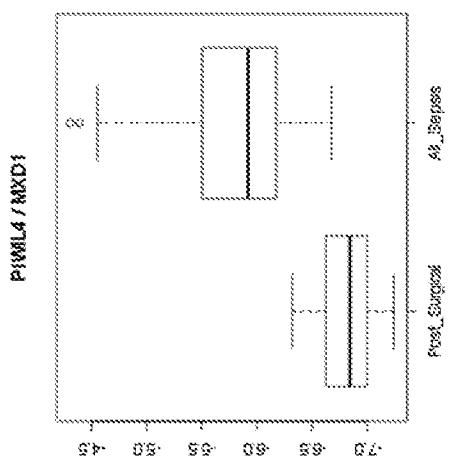


Fig. 18B

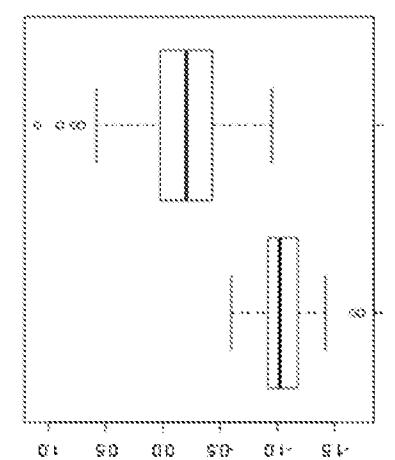


Fig 18E

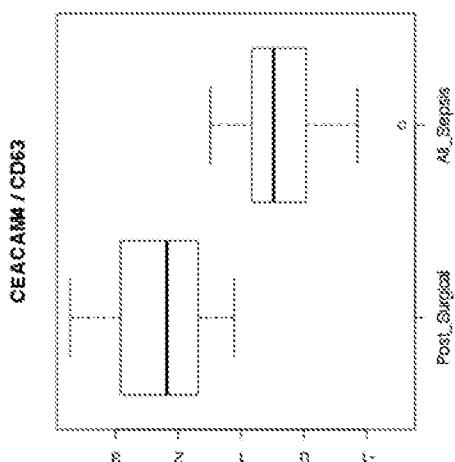


Fig. 18A

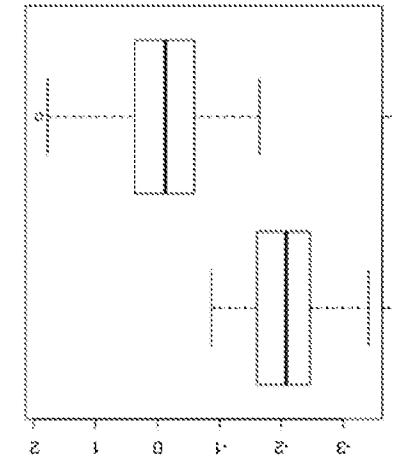


Fig 18D

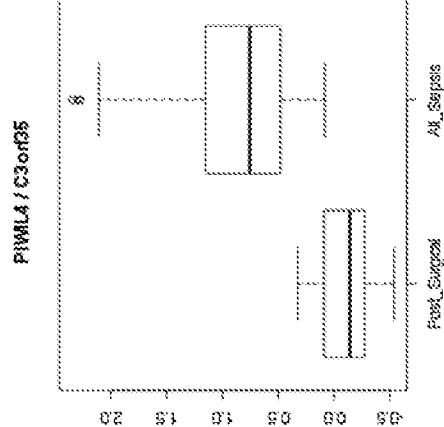


Fig. 18I

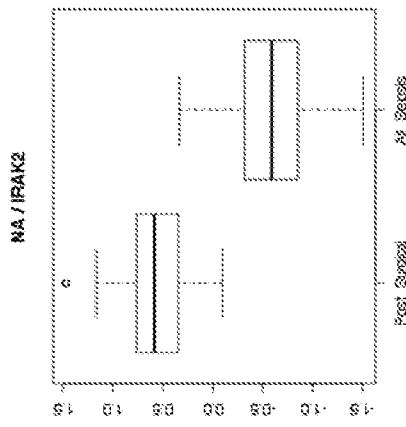


Fig. 18I

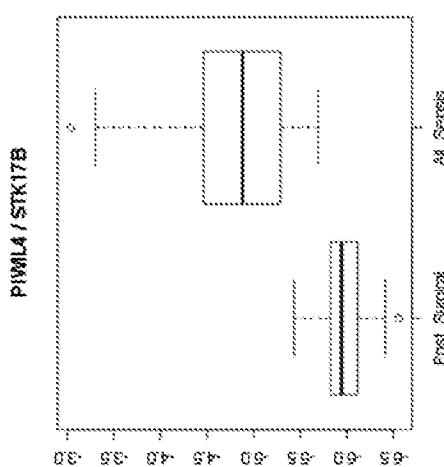


Fig. 18H

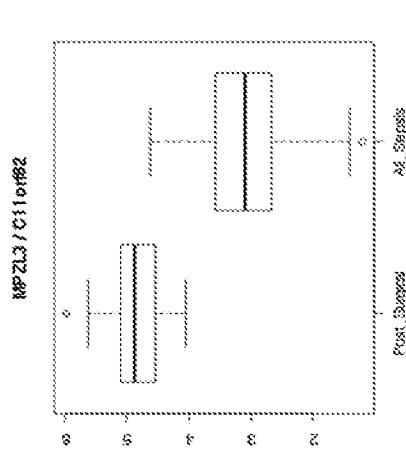


Fig. 18K

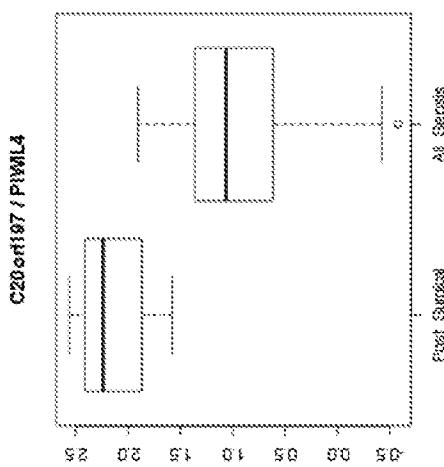


Fig. 18G

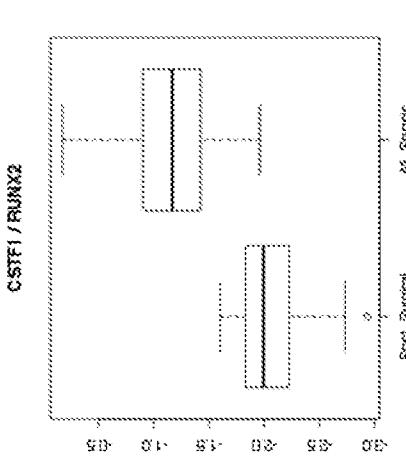
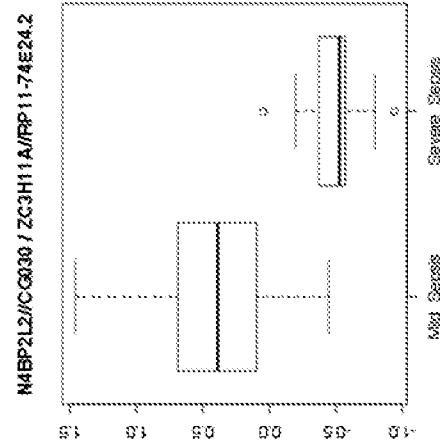
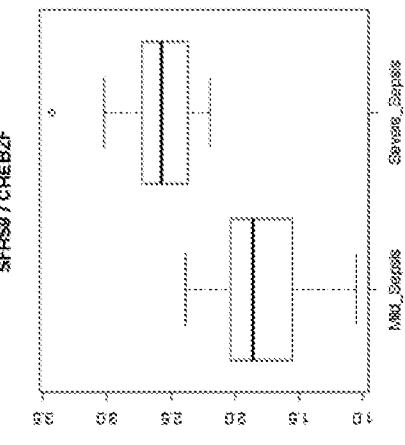
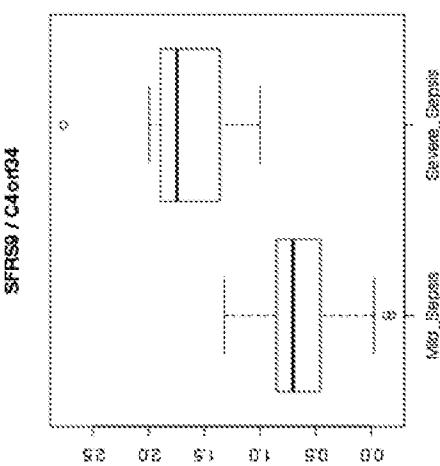
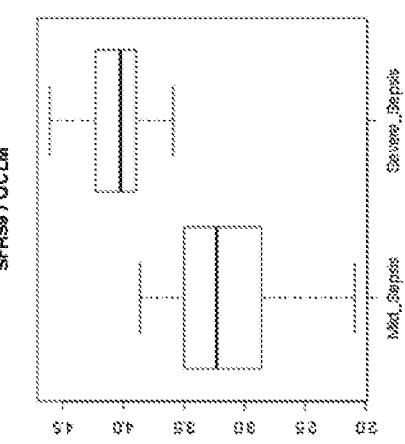
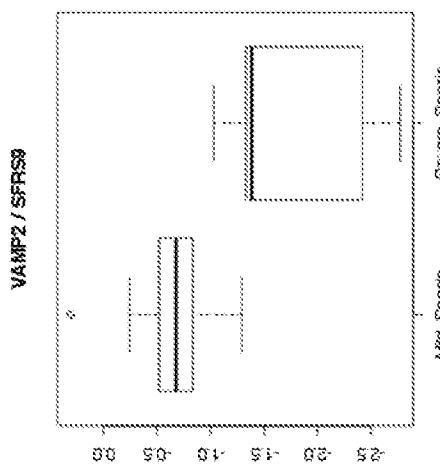
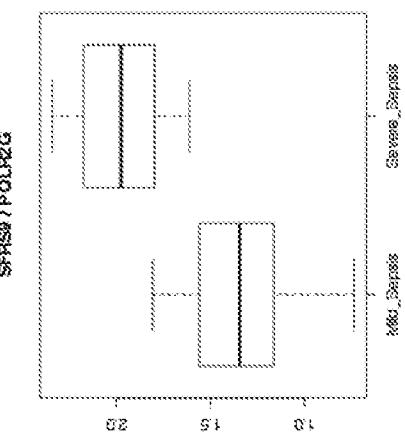








Fig. 18J

26/37

Fig. 19C**Fig. 19E****Fig. 19B****Fig. 19F****Fig. 19A****Fig. 19G**

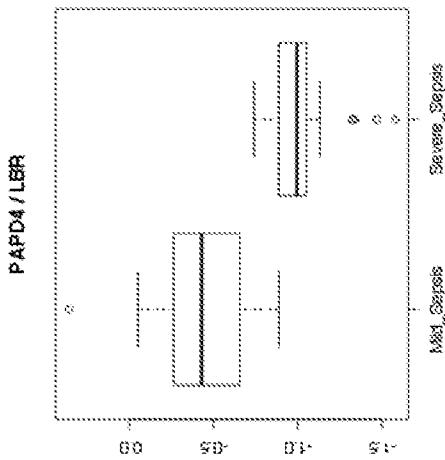


Fig. 19I

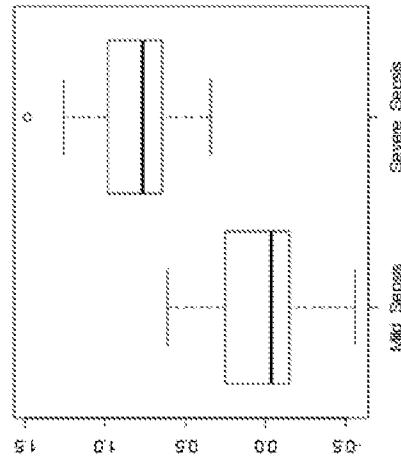


Fig. 19I

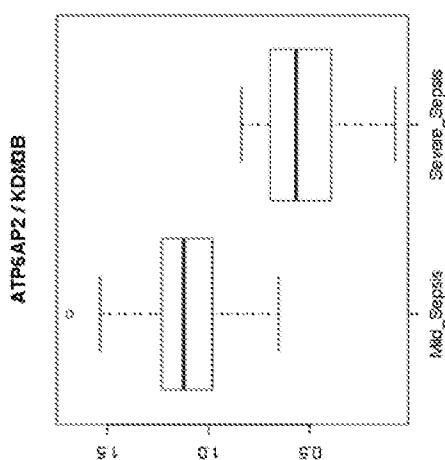


Fig. 19H

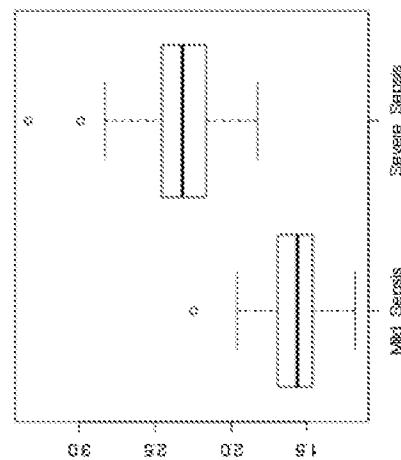


Fig. 19K

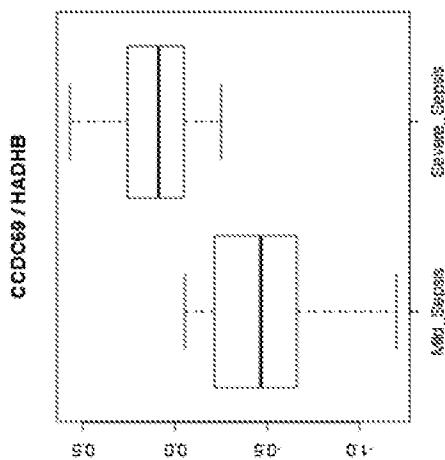


Fig. 19G

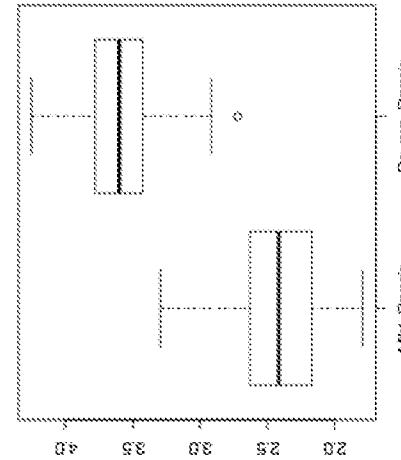


Fig. 19.I

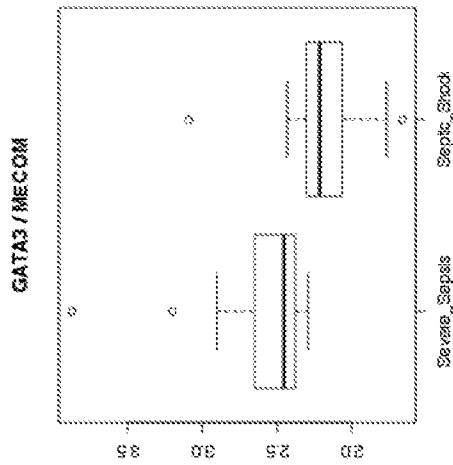


Fig. 20A

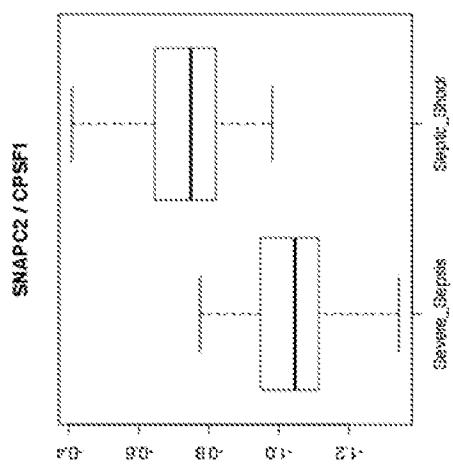


Fig. 20B

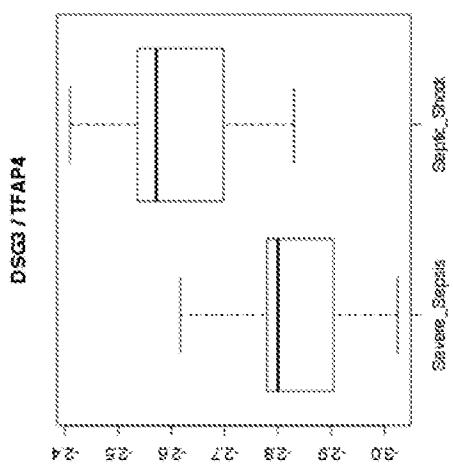


Fig. 20C

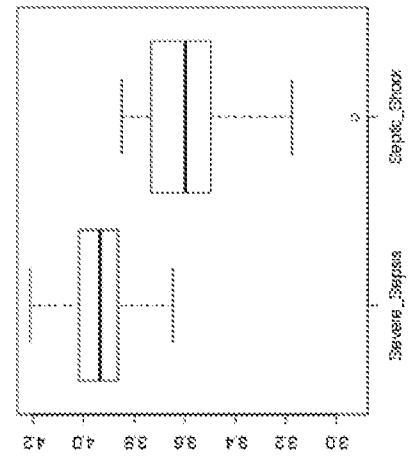


Fig. 20D

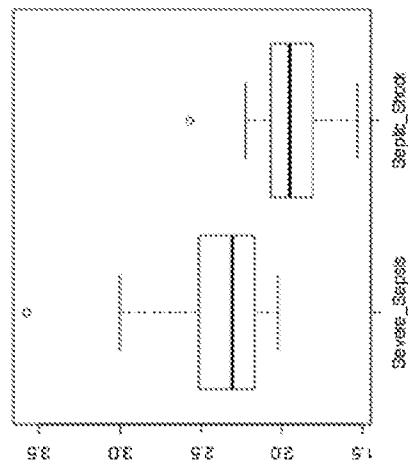


Fig. 20E

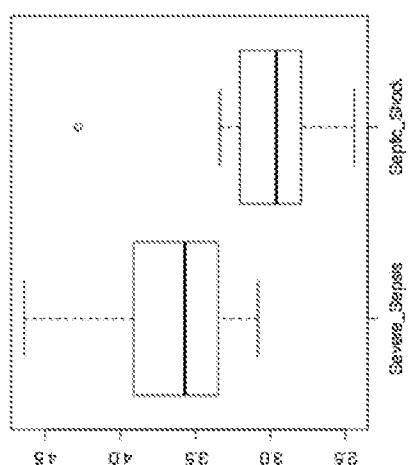


Fig. 20F

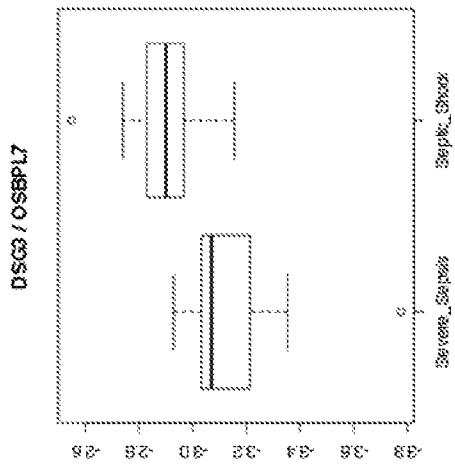


Fig. 20G

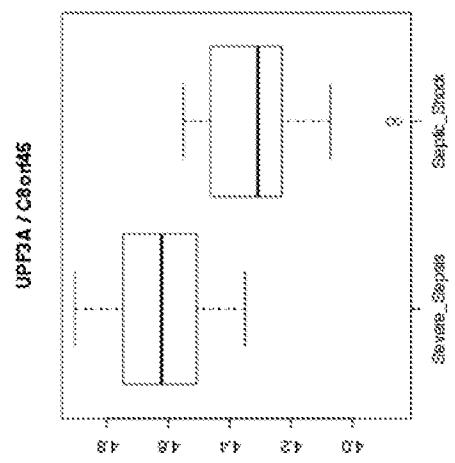


Fig. 20H

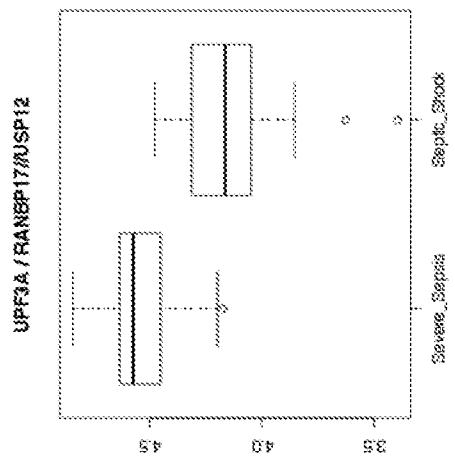


Fig. 20I

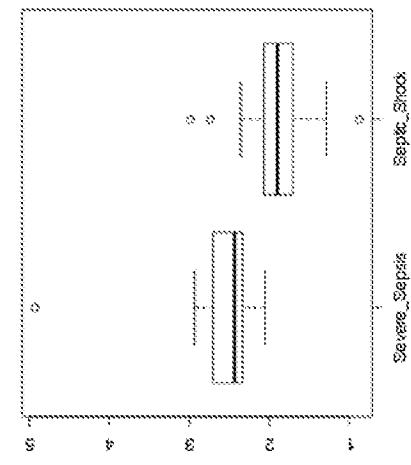


Fig. 20J

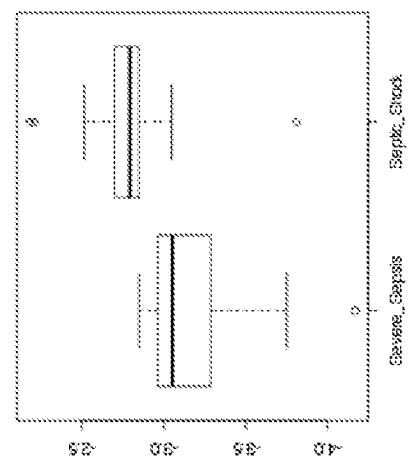


Fig. 20K

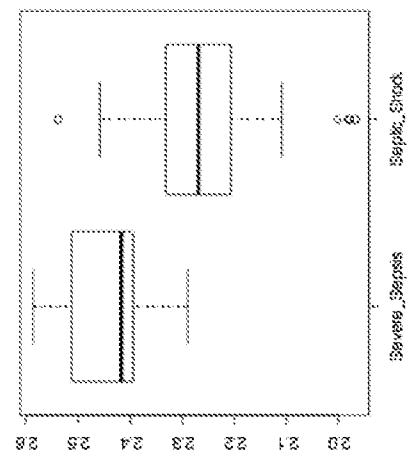
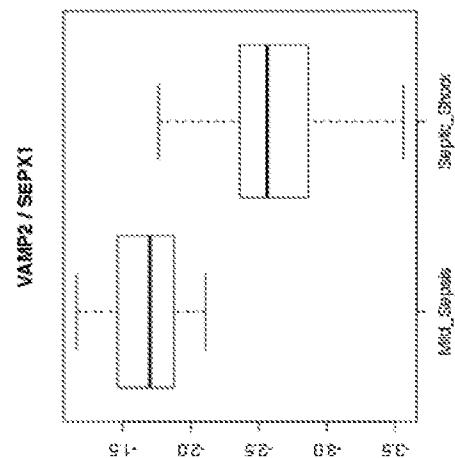
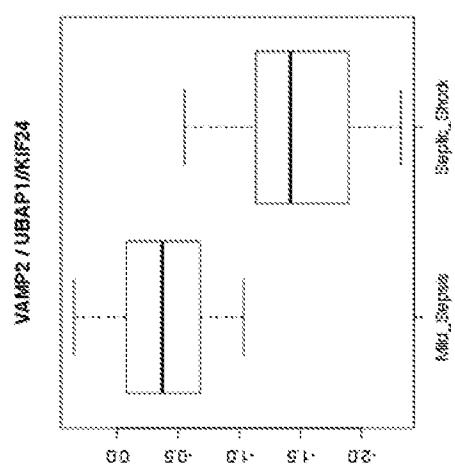
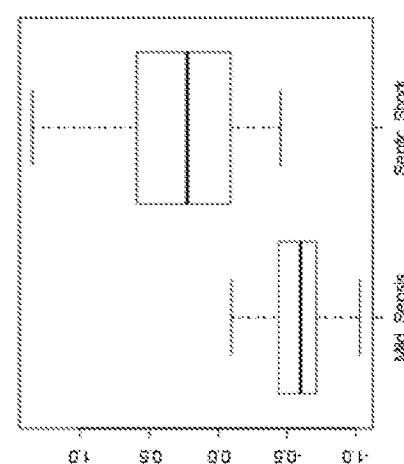
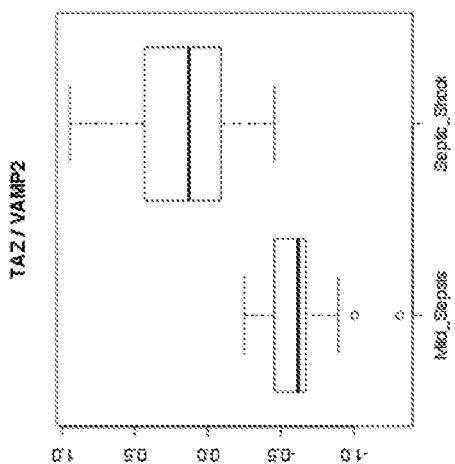
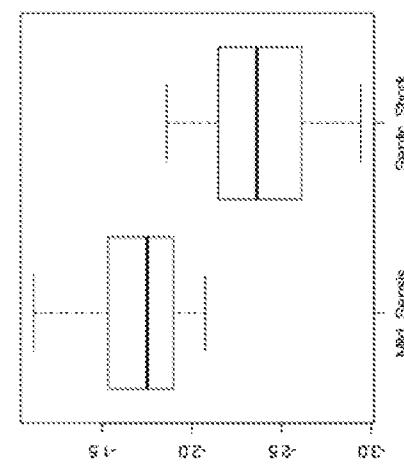







Fig. 20L

Fig. 21C**Fig. 21F****Fig. 21B****Fig. 21F****Fig. 21A****Fig. 21D**

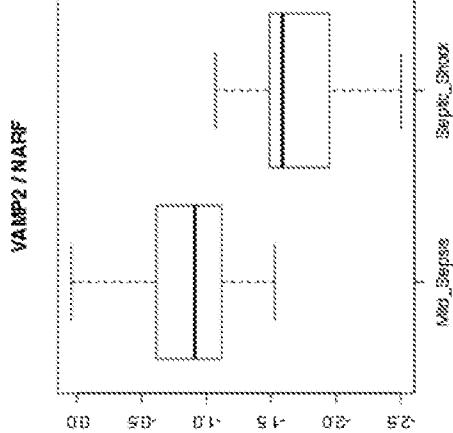


Fig. 21G

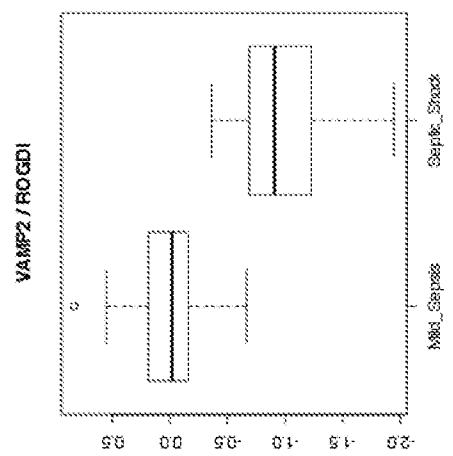


Fig. 21H

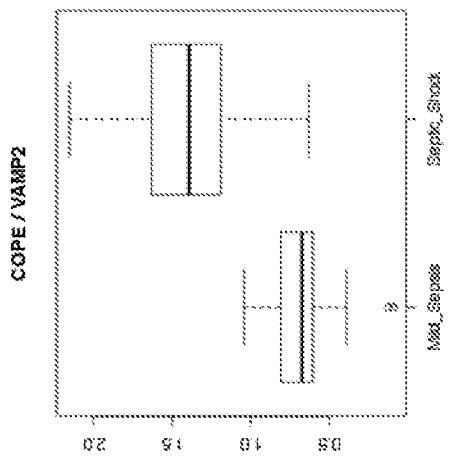


Fig. 21I

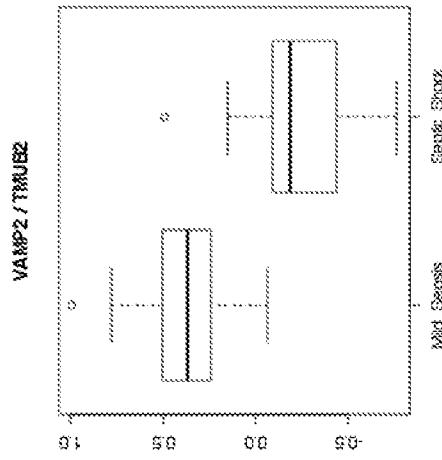


Fig. 21J

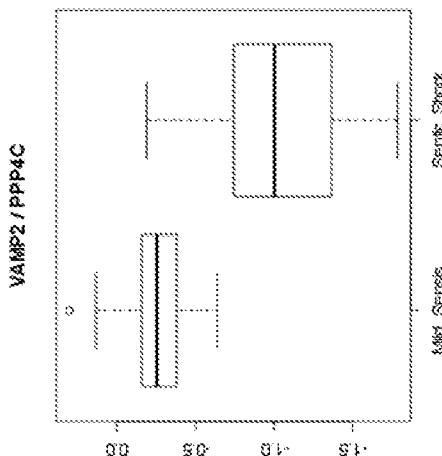
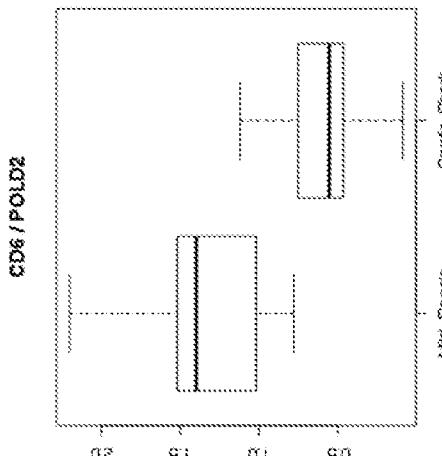
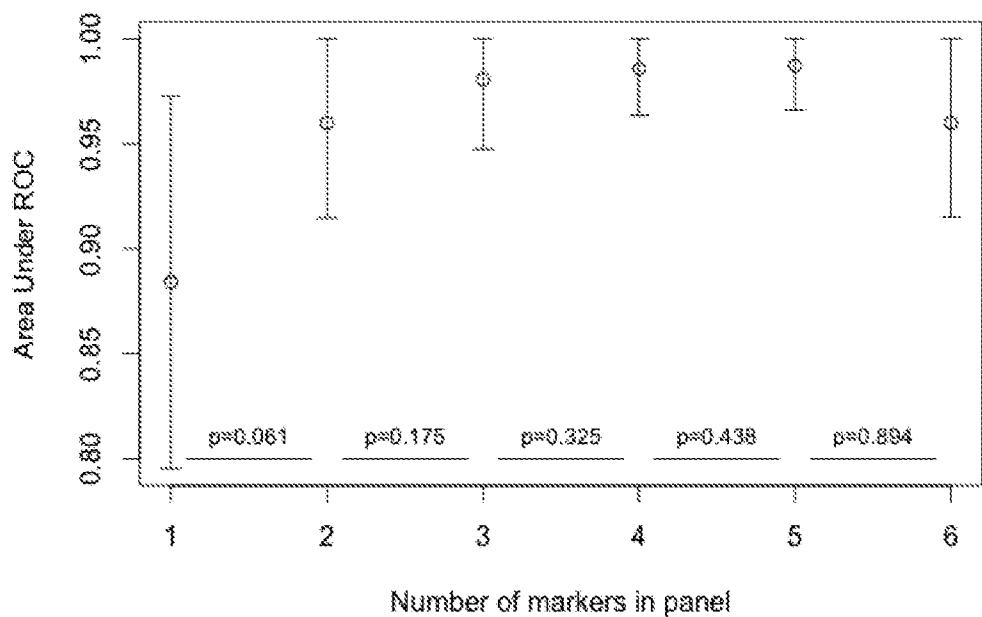
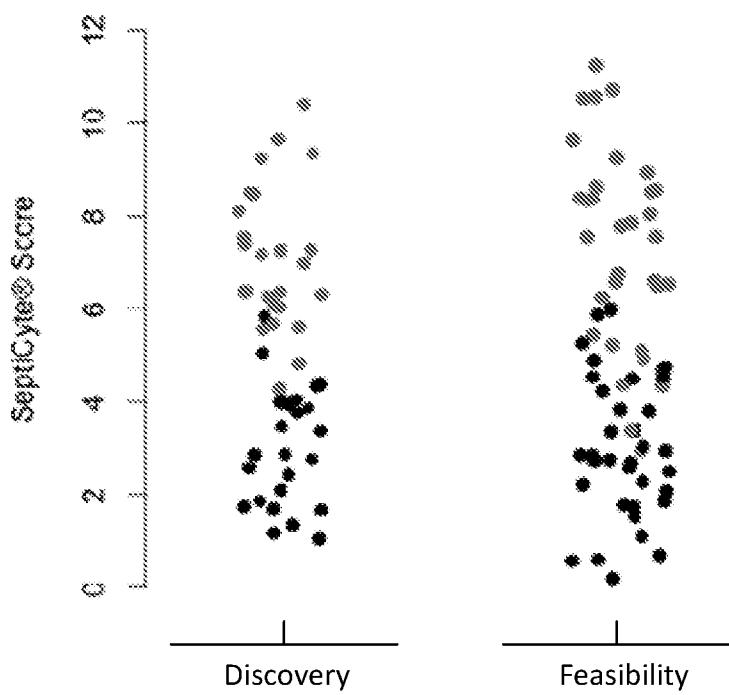
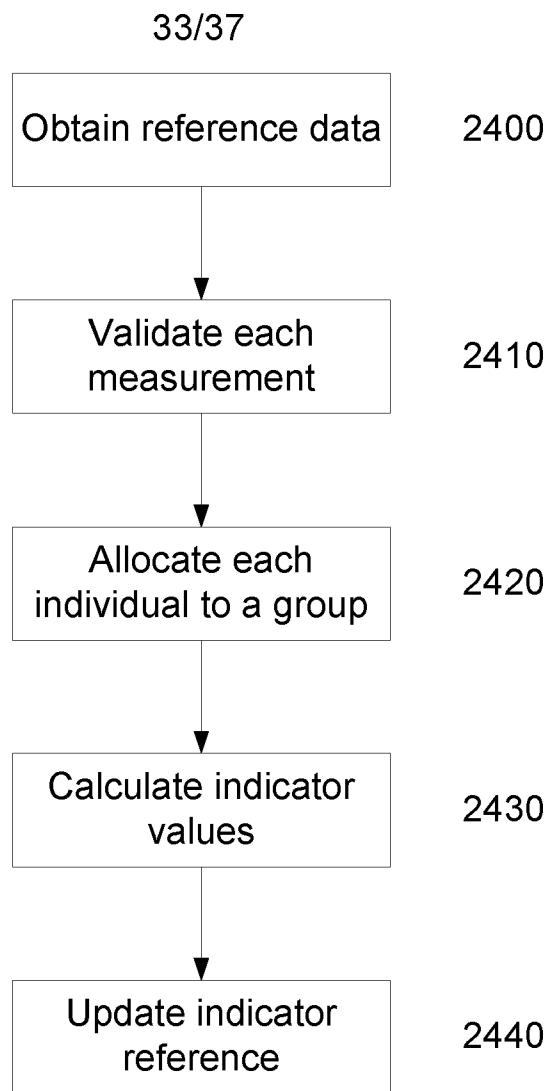
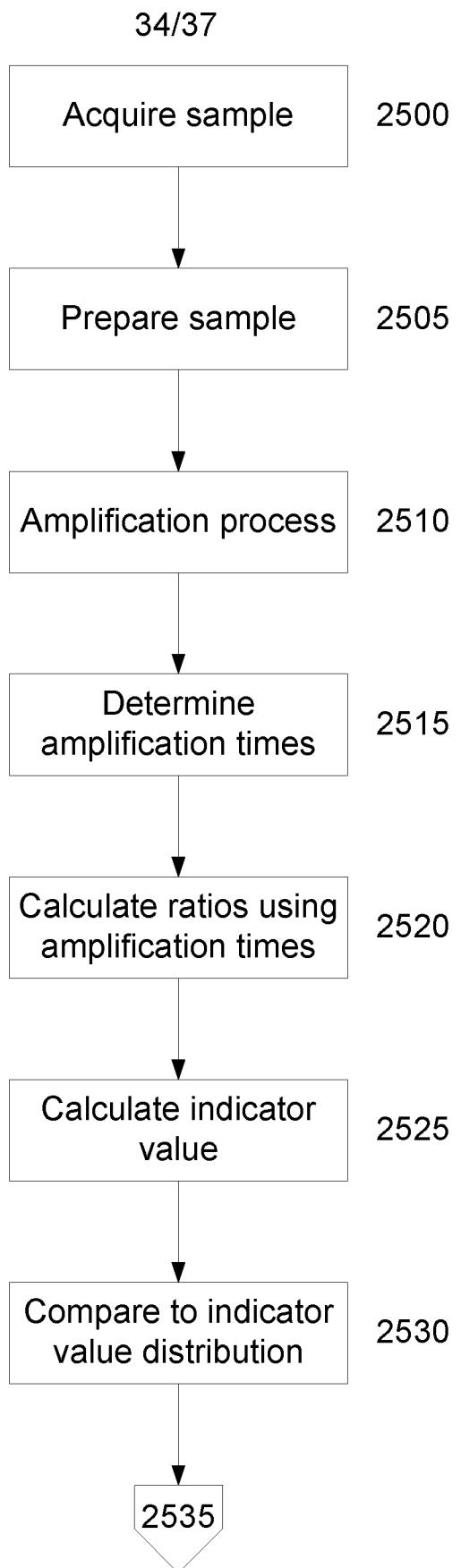


Fig. 21K


Fig. 21L

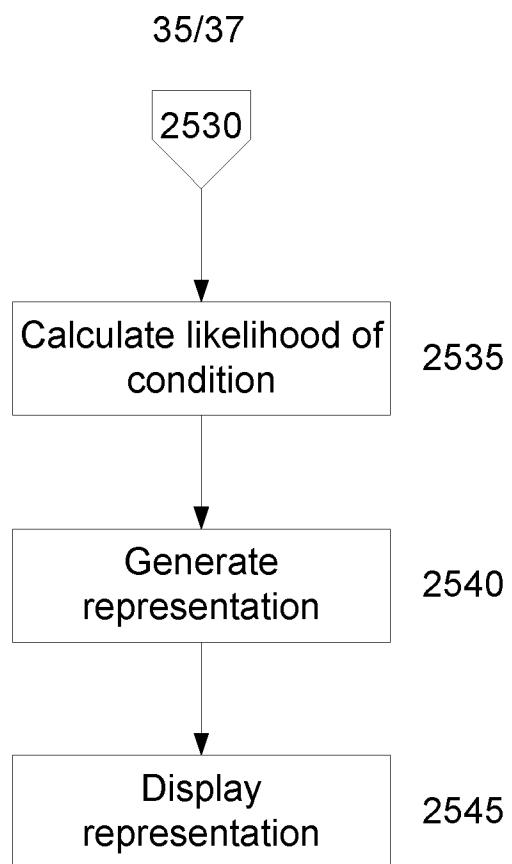
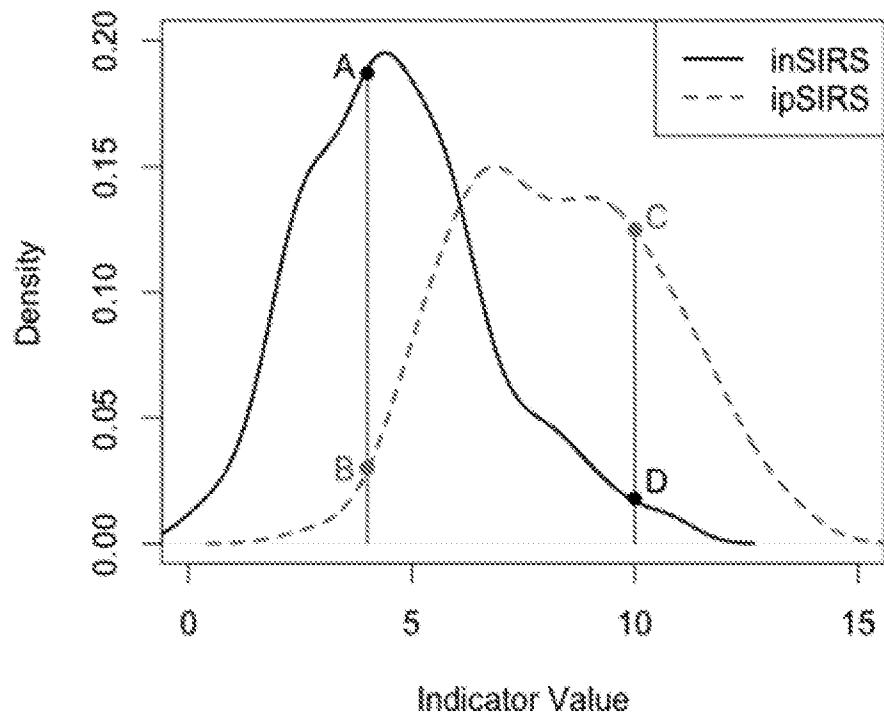

32/37

Fig. 22**Fig. 23**



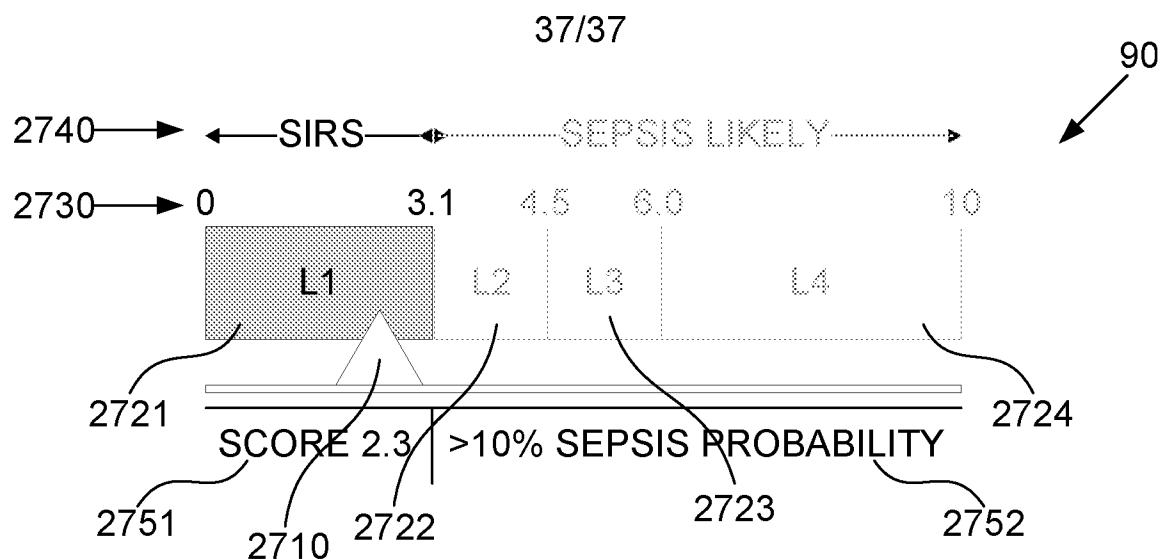
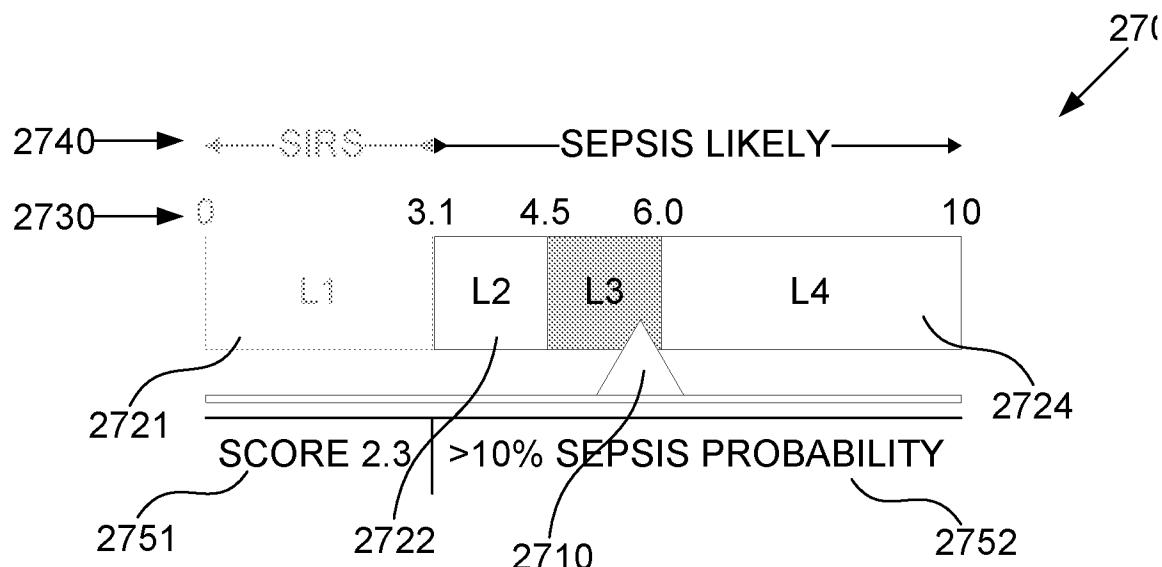


Fig. 24

Fig. 25A

Fig. 25B

36/37

Fig. 26

Fig. 27A**Fig. 27B**

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU2015/050043

A. CLASSIFICATION OF SUBJECT MATTER

G06F 19/18 (2011.01) C12Q 1/68 (2006.01) G01N 33/50 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPIAP, EPODOC, MEDLINE, HCAPLUS, BIOSIS & keywords: ratio, biomarker, mutual correlation, correlation coefficient, second pair, immune system, determine and like terms.

ESPACENET, AUSPAT & keywords: Immunexpress; Brandon, Richard Bruce; McHugh, Leo Charles

PUBMED & keywords: Brandon, Richard Bruce; McHugh, Leo Charles

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Documents are listed in the continuation of Box C	

 Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents:		
"A" document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
23 April 2015Date of mailing of the international search report
23 April 2015

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
Email address: pct@ipaaustralia.gov.au

Authorised officer

Richard Filmer
AUSTRALIAN PATENT OFFICE
(ISO 9001 Quality Certified Service)
Telephone No. +61 2 6283 2735

INTERNATIONAL SEARCH REPORT		International application No.
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		PCT/AU2015/050043
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2007/060647 A2 (THE PROVOST, FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNDIVIDED TRINITY OF QUEEN ELIZABETH, NEAR DUBLIN) 31 May 2007 Abstract; page 2 lines 11-18; page 6 lines 4-26; page 7 lines 25 – 29; page 18 lines 9-15; page 23 lines 20 – page 25 line 13; pages 48-54; claim 28	1-30, 40, 101-134, 145
X	WO 2010/083252 A2 (THE UNITED STATES OF AMERICA, as represented by the secretary, DEPARTMENT OF HEALTH AND HUMAN SERVICES) 22 July 2010 page 74 lines 12-15; pages 78-87	1-18, 24-30, 40, 101-117, 134, 145
X	WO 1999/045398 A1 (ARCTIC PARTNERS OY AB) 10 September 1999 page 5 line 24-page 6 line 10; page 16 lines 10-34; page 18 lines 18-31	1, 4-18, 24-30, 40, 101-107, 109-128, 134, 145
X	US 2003/0219760 A1 (GORDON et al.) 27 November 2003 [0066]-[0069], [0146], [0245], [0249], [0283], [0284], [0294]	1-24, 30, 40

Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item 1.c of the first sheet)

1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing filed or furnished:
 - a. (means)
 on paper
 in electronic form
 - b. (time)
 in the international application as filed
 together with the international application in electronic form
 subsequently to this Authority for the purposes of search
2. In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
3. Additional comments:
An electronic sequence listing was filed with the application, but was not used for the purposes of the search and examination.

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
the subject matter listed in Rule 39 on which, under Article 17(2)(a)(i), an international search is not required to be carried out, including
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See Supplemental Box for Details

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
1-30, 40, 101-134 and 145
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

Supplemental Box**Continuation of: Box III**

This International Application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept.

PCT Rule 13.2, first sentence, states that unity of invention is only fulfilled when there is a technical relationship among the claimed inventions involving one or more of the same or corresponding special technical features. PCT Rule 13.2, second sentence, defines a special technical feature as a feature which makes a contribution over the prior art.

This Authority has found that there are different inventions based on the following features that separate the claims into distinct groups.

Group 1 is defined by claims 1-30, 40, 101-134 and 145 and is directed to a method for determining an indicator of a medical condition comprising determining the ratio of concentrations a pair of immune system biomarkers, wherein the identities of the biomarkers are not specifically defined.

However this group does not comprise a special technical feature, as discussed below. Within this group the Authority has identified two individual features that, although not common to all claims of the group, may be special technical features that separate the claims into distinct inventions.

Invention 1 is defined by claims 2, 3 and 23 (completely) and claims 1, 4-22, 24, 30 and 40 (in part). The feature of a method for determining an indicator comprising combining the values of two ratios of biomarker concentrations, each value determined from a different pair of biomarkers, is specific to this group of claims.

Invention 2 is defined by claims 25-29, 101-134 and 145 (completely) and claims 1, 4-22, 24, 30 and 40 (in part). The feature of a method for determining an indicator wherein a pair of biomarkers has a mutual correlation range of between ± 0.9 is specific to this group of claims.

It is not apparent that any other feature of these claims could serve as special technical feature.

Group 2 is defined by claims 31-39, 41-100 and 135-144 and is directed to kits, compositions and methods relating to specifically defined pairs of biomarkers.

Invention 3 is defined by claims 31, 36, 41, 57, 65, 66, 76, 86, 97-100, 135, 136 and 141 (completely) and claims 49-56, 74, 75, 84, 85 and 94-96 (in part). The feature of kits, compositions and methods relating to PLA2G7, PLAC8, CEACAM4 and LAMP1 is specific to this group of claims.

Further inventions are defined by claims 32-35, 37-39, 42-56, 58-64, 67-75, 77-85, 87-96, 137-140 and 142-144 (in part). The claims as they relate to each defined pair of biomarkers from Groups A to P each relates to a different invention. The number of inventions defined in this group of claims has not been determined.

When there is no special technical feature common to all the claimed inventions there is no unity of invention.

In the above groups of claims, the identified features may have the potential to make a contribution over the prior art but are not common to all the claimed inventions and therefore cannot provide the required technical relationship. The only feature common to all of the claimed inventions and which provides a technical relationship among them is a method of determining and indicator for diagnosing or prognosing a medical condition in a subject comprising determining the ratio of expression of two immune system biomarkers.

However this feature does not make a contribution over the prior art because it is disclosed in:

D1: WO 2007/060647 A2 (THE PROVOST, FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNDIVIDED TRINITY OF QUEEN ELIZABETH, NEAR DUBLIN) 31 May 2007

D2: WO 2010/083252 A2 (THE UNITED STATES OF AMERICA, as represented by the secretary, DEPARTMENT OF HEALTH AND HUMAN SERVICES) 22 July 2010

D3: WO 1999/045398 A1 (ARCTIC PARTNERS OY AB) 10 September 1999

Supplemental Box

D4: US 2003/0219760 A1 (GORDON et al.) 27 November 2003

Therefore in the light of these documents this common feature cannot be a special technical feature. Therefore there is no special technical feature common to all the claimed inventions and the requirements for unity of invention are consequently not satisfied *a posteriori*.

For the additional fee paid, the International Search Authority has searched and examined the claims to the extent that they pertain to Inventions 1 and 2.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/AU2015/050043

This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document/s Cited in Search Report		Patent Family Member/s	
Publication Number	Publication Date	Publication Number	Publication Date
WO 2007/060647 A2	31 May 2007	EP 1951899 A2	06 Aug 2008
		EP 1951899 B1	30 Jun 2010
		IE 20060853 A1	25 Jul 2007
		US 2009297474 A1	03 Dec 2009
		US 2013040299 A1	14 Feb 2013
WO 2010/083252 A2	22 July 2010	AU 2010204741 A1	07 Jul 2011
		CA 2749601 A1	22 Jul 2010
		EP 2380025 A2	26 Oct 2011
		EP 2380025 B1	11 Sep 2013
		EP 2667194 A2	27 Nov 2013
		EP 2667195 A2	27 Nov 2013
		JP 2012515334 A	05 Jul 2012
		JP 2014041162 A	06 Mar 2014
		NZ 593514 A	28 Mar 2013
		NZ 606687 A	29 Aug 2014
		US 2011306514 A1	15 Dec 2011
		US 2013210648 A1	15 Aug 2013
WO 1999/045398 A1	10 September 1999	WO 2014151079 A2	25 Sep 2014
		EP 1068534 A1	17 Jan 2001
		FI 980488 A	05 Sep 1999
		JP 2002506210 A	26 Feb 2002
US 2003/0219760 A1	27 November 2003	US 7622260 B2	24 Nov 2009
		AU 2002324881 A1	18 Mar 2003
		US 2011059854 A1	10 Mar 2011
		US 8551700 B2	08 Oct 2013
		US 2009104617 A1	23 Apr 2009
		WO 03021229 A2	13 Mar 2003

End of Annex