Abstract: An integrated circuit (IC) module that includes an integrated circuit (IC) package, a plurality of first solder interconnects coupled to the IC package, an interposer coupled to the IC package through the plurality of first solder interconnects, a plurality of second solder interconnects coupled to the interposer; and a printed circuit board (PCB) coupled to the interposer through the plurality of second solder interconnects. The interposer includes an encapsulation layer, a first passive component at least partially embedded in the encapsulation layer, and a plurality of interconnects coupled to the first passive component. The encapsulation layer includes a mold and/or an epoxy fill. The first passive component is configured to operate as an electronic voltage regulator (EVR) for the IC module. In some implementations, the interposer is a fan out interposer.
INTEGRATED CIRCUIT (IC) MODULE COMPRISING AN INTEGRATED CIRCUIT (IC) PACKAGE AND AN INTERPOSER WITH EMBEDDED PASSIVE COMPONENTS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to and the benefit of Non-Provisional Application No. 14/842,403 filed in the U.S. Patent and Trademark Office on September 1, 2015, the entire content of which is incorporated herein by reference.

BACKGROUND

Field of the Disclosure

[0002] Various features relate generally to an integrated circuit (IC) module, and more specifically to an IC module that includes an IC package coupled to an interposer that includes a passive component.

Background

[0003] FIG. 1 illustrates an integrated circuit (IC) module 100 that includes an integrated circuit (IC) package 101 and a printed circuit board (PCB) 104. The integrated circuit (IC) package 101 is coupled to the printed circuit board (PCB) 104. The IC package 101 includes a die 110, a package substrate 112, an encapsulation layer 114, and a first plurality of solder balls 116. The die 110 is coupled to the package substrate 112 through the first plurality of solder balls 116. The encapsulation layer 114 encapsulates the die 110. The IC package 101 is coupled to the PCB 104 through a second plurality of solder balls 118.

[0004] FIG. 1 further illustrates a plurality of passive components mounted on the PCB 104. More specifically, a first component 120 and a second component 122 are mounted on the PCB 104. The first component 120 may be a first passive component (e.g., capacitor). The second component may be a second passive component (e.g., inductor).
FIG. 1 illustrates that the first component 120 and the second component 122 take up a lot of real estate on the PCB 104, which is not ideal, as there is an ongoing need to reduce the overall size of devices, modules and packages. It may be possible to position the first component 120 and the second component 122 underneath the IC package 101. However, such an approach has at least two drawbacks. First, it may increase the overall height of the device and module that includes the IC package 101, which is not desirable. Second, it may require the de-population of one or more solder balls from the first plurality of solder balls. The first plurality of solder balls provides a plurality of electrical paths between the IC package 101 and the PCB 104, and also provides structural support for the IC package 101. When one or more of the solder balls is removed, one or more of the electrical paths is removed, which may require a complete redesign of the circuit of the IC package 101, which is very expensive. Moreover, removing one or more solder balls also compromises the structural stability of the IC package 101.

There is an ongoing industry trend to reduce the size of modules and that include passive components, as these modules and packages are placed in smaller and smaller devices. Ideally, such a module and package will have a better form factor, be cheaper to fabricate, while at the same time meeting the needs and/or requirements of mobile and/or wearable devices.

SUMMARY

Various features relate generally to an integrated circuit (IC) module, and more specifically to an IC module that includes an IC package coupled to an interposer that includes a passive component.

One example provides an interposer that includes an encapsulation layer, a passive component at least partially embedded in the encapsulation layer, and a plurality of interconnects coupled to the passive component.

Another example provides an integrated circuit (IC) module that includes an integrated circuit (IC) package, a plurality of first solder interconnects coupled to the IC package, an interposer coupled to the IC package through the plurality of first solder interconnects, a plurality of second solder interconnects coupled to the interposer, and a printed circuit board (PCB) coupled to the interposer through the plurality of second solder interconnects. The interposer includes an encapsulation layer, a passive
component at least partially embedded in the encapsulation layer, and a plurality of interconnects coupled to the passive component.

[0010] Another example provides a method for fabricating an integrated circuit (IC) module. The method provides an interposer, where providing the interposer includes providing at least one passive component, forming an encapsulation layer over the at least one passive component, and forming a plurality of interconnects in the encapsulation layer. The method provides an integrated circuit (IC) package. The method couples the IC package to the interposer by using a plurality of first solder interconnects. The method provides a printed circuit board (PCB). The method couples the PCB to the interposer by using a plurality of second solder interconnects.

DRAWINGS

[0011] Various features, nature and advantages may become apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout.

[0012] FIG. 1 illustrates a cross-sectional profile view of an integrated circuit (IC) package and passive components mounted on a printed circuit board (PCB).

[0013] FIG. 2 illustrates a cross-sectional profile view of an integrated circuit (IC) package and an interposer comprising passive components mounted on a printed circuit board (PCB).

[0014] FIG. 3 illustrates a cross-sectional profile view of an interposer comprising passive components.

[0015] FIG. 4 illustrates a cross-sectional profile view of an integrated circuit (IC) package and another interposer comprising passive components mounted on a printed circuit board (PCB).

[0016] FIG. 5 illustrates a cross-sectional profile view of an interposer comprising passive components.

[0017] FIG. 6 illustrates a cross-sectional profile view of an integrated circuit (IC) package and another interposer comprising passive components mounted on a printed circuit board (PCB).

[0018] FIG. 7 illustrates a cross-sectional profile view of another interposer comprising passive components.
FIG. 8 illustrates a cross-sectional profile view of an integrated circuit (IC) package and an interposer comprising passive components mounted on a printed circuit board (PCB).

FIG. 9 illustrates a cross-sectional profile view of another interposer comprising passive components.

FIG. 10 illustrates a plan view of an interposer comprising passive components.

FIG. 11 (which comprises FIGS. 11A-11B) illustrates an example of a sequence for fabricating an interposer comprising passive components.

FIG. 12 (which comprises FIGS. 12A-12B) illustrates an example of a sequence for fabricating an interposer comprising passive components.

FIG. 13 illustrates a flow diagram of an exemplary method for fabricating an interposer comprising passive components.

FIG. 14 illustrates an example of a sequence for fabricating a module that includes an integrated circuit (IC) package, an interposer comprising passive components, and a printed circuit board (PCB).

FIG. 15 illustrates an example of a sequence for fabricating a module that includes an integrated circuit (IC) package, an interposer comprising passive components, and a printed circuit board (PCB).

FIG. 16 illustrates an example of a sequence for fabricating a module that includes an integrated circuit (IC) package, an interposer comprising passive components, and a printed circuit board (PCB).

FIG. 17 illustrates a cross-sectional profile view of an interposer comprising a built-in inductor.

FIG. 18 illustrates a plan view of an interposer comprising a built-in inductor.

FIG. 19 illustrates various electronic devices that may include the various integrated circuit (IC) modules, interposer, integrated devices, integrated device packages, semiconductor devices, dies, integrated circuits, and/or packages described herein.

DETAILED DESCRIPTION

In the following description, specific details are given to provide a thorough understanding of the various aspects of the disclosure. However, it will be understood
by one of ordinary skill in the art that the aspects may be practiced without these specific details. For example, circuits may be shown in block diagrams in order to avoid obscuring the aspects in unnecessary detail. In other instances, well-known circuits, structures and techniques may not be shown in detail in order not to obscure the aspects of the disclosure.

[0032] Some features pertain to an integrated circuit (IC) module that includes an integrated circuit (IC) package, a plurality of first solder interconnects coupled to the IC package, an interposer coupled to the IC package through the plurality of first solder interconnects, a plurality of second solder interconnects coupled to the interposer, and a printed circuit board (PCB) coupled to the interposer through the plurality of second solder interconnects. The interposer includes an encapsulation layer, a first passive component at least partially embedded in the encapsulation layer, and a plurality of interconnects coupled to the first passive component. The encapsulation layer includes a mold and/or an epoxy fill. The first passive component is configured to operate as part of an electronic voltage regulator (EVR) for the IC module. In some implementations, the interposer is a fan out interposer.

Exemplary Integrated Circuit (IC) Module Comprising an Integrated Circuit (IC) Package and an Interposer Comprising a Plurality of Passive Components

[0033] FIG. 2 illustrates an integrated circuit (IC) module 200 that includes an integrated circuit (IC) package 201, an interposer 202 and a printed circuit board (PCB) 204. The IC package 201 includes a die 210 (e.g., a bare die), a package substrate 212, an encapsulation layer 214, and a plurality of solder interconnects 215 (e.g., solder balls). The die 210 is coupled to the package substrate 212 through the plurality of solder interconnects 215. The encapsulation layer 214 at least partially encapsulates the die 210. The package substrate 212 includes a plurality of interconnects (not shown).

[0034] The IC package 201 is coupled to the interposer 202 through a plurality of first solder interconnects 217 (e.g., solder balls). The interposer 202 is coupled (e.g., mounted over) the PCB 204 through a plurality of second solder interconnects 219 (e.g., solder balls). As shown in FIG. 2, the interposer 202 is located between the IC package 201 and the PCB 204.

[0035] The interposer 202 includes a plurality of passive components. More specifically, the interposer 202 includes a first passive component 220, a second passive component 222, and a third passive component 224. Examples of passive components
include an inductor and a capacitor. In some implementations, the first passive component 220, the second passive component 222 and/or the third passive component 224 are configured to operate as part of an electronic voltage regulator (EVR) in the IC module 200. The interposer 202 also includes a plurality of interconnects 230 (e.g., vias, traces, pads). Some interconnects from the plurality of interconnects 230 may be coupled to one or more of the passive components (e.g., first passive component 220, second passive component 222). A passive component may be a discrete or an off the shelf passive component that uses a separate or different fabrication process than the fabrication process used to fabricate an interposer (e.g., interposer 202).

[0036] In some implementations, an interconnect is an element or component of a device, a module, a package, and/or an interposer that allows or facilitates an electrical connection between two points, elements and/or components. In some implementations, an interconnect may include a trace, a via, a pad, a pillar, a redistribution metal layer, and/or an under bump metallization (UBM) layer. In some implementations, an interconnect is an electrically conductive material that may configured to provide an electrical path for a signal (e.g., data signal, ground signal, power signal). An interconnect may be part of a circuit. An interconnect may include more than one element or component. For example, an interconnect may comprise one or more interconnects.

[0037] There are several advantages of embedding or placing passive components in the interposer 202. First, it reduces the overall real estate or foot print of the IC module 200. A comparison of the IC module 200 to the IC module 100 of FIG. 1 shows that the IC module 200 takes up less space (in the lateral X-Y plane) than the IC module 100. Second, the overall structural stability and/or strength of the IC package 201 is preserved by using the interposer 202 that include the passive components. This is because, the plurality of first solder interconnects 217 does not need to be depopulated to accommodate the interposer 202. However, it should be noted that some solder interconnects may be de-populated for other reasons. Third, the IC package 201 does not need to be redesigned to accommodate the interposer 202 with the passive components. As mentioned above in FIG. 1, in order to place a passive component between the IC package 101 and the PCB 104, the de-population of some of the solder interconnects from the plurality of solder interconnects 118 may be required. The de-population of the solder interconnects causes a loss of at least one electrical path. Thus, the circuit of the IC package 101 may need to be redesigned to take into account the loss
of an electrical path. However, in the case of the IC module 200, the IC package 201 does not need to be completely redesigned because there is no need to de-populate the plurality of first solder interconnects 217. Instead, the interposer 202 can be designed around the IC package 201. Fourth, the use of the interposer 202 may provide better pitch, spacing and density interconnects between the IC package 201 and the PCB 204 without increasing the overall height and/or size of the IC module 200. Fifth, keeping and/or preserving the number of solder interconnects between the IC package 201 and the interposer 202 helps maintain the number of thermal paths out of the IC package 201, thus providing better heat dissipation for the IC package 201. When one or more solder interconnects are removed between the IC package 201 and the interposer 202, there is less heat dissipation capability for the IC package 201. Thus, it may be thermally advantageous to keep as many thermal paths between the IC package 201 and the interposer 202.

[0038] Having described the several advantages of an interposer comprising embedded passive components, the interposer 202 will now be further described below in detail in FIG. 3.

[0039] FIG. 3 illustrates a cross-sectional profile view of the interposer 202 that includes a plurality of passive components. The interposer 202 includes an encapsulation layer 300, the first passive component 220, the second passive component 222, the third passive component 224, and the plurality of interconnects 230 (e.g., interconnects 230a-230f). The plurality of interconnects 230 may include vias, traces, and/or pads. The encapsulation layer 300 may comprise E-glass, low coefficient of thermal expansion (CTE) glass, a mold and/or epoxy fill. The encapsulation layer 300 includes a material that is structurally more rigid and/or stronger than a dielectric layer (e.g., dielectric layer in the die 210, dielectric layer in the package substrate 212). In some implementations, the encapsulation layer 300 includes a higher concentration of a fill material (e.g., epoxy fill) than a dielectric layer (e.g., core material, prepeg material). The encapsulation layer 300 is configured to provide mechanical and structural support for the interposer 202. In addition to providing mechanical and structural support, the encapsulation layer 300 may also be configured to electrically isolate signals that traverse interconnects in / on the encapsulation layer 300.

[0040] FIG. 3 illustrates that a first surface of the first passive component 220 (e.g., a majority or substantial portion of the first surface of the first passive component 220) is substantially co-planar with a first surface (e.g., bottom surface) of the encapsulation
layer 300. Similarly, a first surface of the second passive component 222 (e.g., a majority or substantial portion of the first surface of the second passive component 222) is substantially co-planar with the first surface (e.g., bottom surface) of the encapsulation layer 300, and a first surface of the third passive component 224 (e.g., a majority or substantial portion of the first surface of the third passive component 224) is substantially co-planar with the first surface (e.g., bottom surface) of the encapsulation layer 300. In some implementations, a second surface of the first passive component 220, a second surface of the second passive component 222, and/or a second surface of the third passive component 224 may be substantially co-planar with a second surface of the encapsulation layer 300. In some implementations, substantially co-planar surfaces are defined as surfaces that are within a height of about 5 microns (µm) or less, of each other. One advantage of having a surface of a passive component (e.g., first passive component 220) that is substantially co-planar with a surface of an encapsulation layer (e.g., encapsulation layer 300), is that it helps minimizes the height and thickness of the interposer (e.g., interposer 202), thereby providing an IC module that has a lower height.

[0041] The encapsulation layer 300 at least partially encapsulates the first passive component 220, the second passive component 222, and the third passive component 224. In some implementations, portions of the first passive component 220, the second passive component 222, and/or the third passive component 224 may not be encapsulated by the encapsulation layer 300. In some implementations, the first passive component 220, the second passive component 222, and the third passive component 224 are embedded or positioned in the encapsulation layer 300 such that the first passive component 220, the second passive component 222, and/or the third passive component 224 is offset from a center plane that lateral traverses the encapsulation layer 300 (e.g., center plane that traverses along the X-direction). In FIG. 3, the first passive component 220, the second passive component 222, the third passive component 224 are closer to the bottom surface (e.g., first surface) than the top surface (e.g., second surface) of the encapsulation layer 300. It is noted that the offset of the passive components is optional. In some implementations, the passive components may be centered in the encapsulation layer 300, or offset in a different direction in the encapsulation layer 300.

[0042] FIG. 3 illustrates that a portion of the first passive component 220, a portion of the second passive component 222, and a portion of the third passive component 224 are free from encapsulation from the encapsulation layer 300.
In some implementations, the encapsulation layer 300 may be a litho-patternable layer. A litho-patternable layer / material that is a material that is photo etchable. That is, the litho-patternable layer / material is made of a material that can be etched and/or removed (e.g., through a lithography process) through the exposure of the material to a light source (e.g., ultraviolet (UV) light) through a mask (e.g., photomask). One advantage of litho-patternable layer / material is that interconnects with lower pitch and/or spacing may be formed in the litho-patternable layer / material. The use of a photo lithography process to form cavities in the encapsulation layer forms cavities with pitch and/or spacing that can be smaller than the pitch and/or spacing of the cavities formed by a laser process (e.g., laser ablation). Thus, a process that includes a photo lithography process may form interconnects with pitch and/or spacing in the encapsulation layer that may be smaller than the pitch and/or spacing of interconnects formed by a process that includes a laser process (e.g., laser ablation).

The interposer 202 includes a plurality of interconnects 230 (e.g., interconnects 230a-230f). The interconnect 230a is coupled to the first passive component 220 (e.g., a first terminal of the first passive component 220). The interconnect 230b is coupled to the first passive component 220 (e.g., a second terminal of the first passive component 220). The interconnect 230b includes the interconnect 330b (e.g., pad) and the interconnect 332b (e.g., via). The interconnect 230c traverses the interposer 202, and more specifically the encapsulation layer 300. The interconnect 230d traverses the interposer 202, and more specifically the encapsulation layer 300. The interconnect 230d includes the interconnect 330d (e.g., pad) and the interconnect 332d (e.g., via). The interconnect 230e is coupled to the second passive component 222. The interconnect 230f is coupled to the third passive component 224. As mentioned above, an interconnect may include a via, a trace, a pad or a combination thereof.

FIG. 3 illustrates that the interposer 202 optionally includes the plurality of first solder interconnects 217 (e.g., solder interconnects 217a-217f) and the plurality of second solder interconnects 219 (e.g., solder interconnects 219a-219f). The plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 may be printed solder that is formed on interconnects of the interposer 202, and/or the passive components.

The solder interconnect 217a is coupled to the interconnect 230a. The solder interconnect 217b is coupled to the interconnect 230b. More specifically, the solder interconnect 217b is coupled to the interconnect 330b. The solder interconnect 217c is
coupled to the interconnect 230c. The solder interconnect 217d is coupled to the interconnect 230d. More specifically, the solder interconnect 217d is coupled to the interconnect 330d. The solder interconnect 217e is coupled to the interconnect 230e. The solder interconnect 217f is coupled to the interconnect 230f.

The solder interconnect 219a is coupled to the first passive component 220 (e.g., third terminal of the first passive component 220). The solder interconnect 219b is coupled to the first passive component 220 (e.g., fourth terminal of the first passive component 220). The solder interconnect 219c is coupled to the interconnect 230c. The solder interconnect 219d is coupled to the interconnect 230d. More specifically, the solder interconnect 219b is coupled to the interconnect 332d. The solder interconnect 219e is coupled to the second passive component 222. The solder interconnect 219f is coupled to the third passive component 224.

Different implementations may provide the interposer 202 with different sizes, shapes and interconnect densities. Table 1 below illustrates examples of possible physical properties and dimensions of the interposer 202 or any of the interposers described in the present disclosure. In some implementations, the ball pitch, the ball diameter, and the ball height of Table 1 may refer to the plurality of first solder interconnects 217 and/or the plurality of second solder interconnects 219.

<table>
<thead>
<tr>
<th>CASE</th>
<th>Ball Pitch (µm)</th>
<th>Ball Diam (µm)</th>
<th>Ball Height after Reflow (µm)</th>
<th>Interposer Thickness (µm)</th>
<th>Solder Paste Thickness (µm)</th>
<th>Max. Thickness of Embedded Passive Components (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350</td>
<td>230 ± 30</td>
<td>180 ± 20</td>
<td>150 ± 20</td>
<td>10 ± 5</td>
<td>< 100</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>250 ± 30</td>
<td>200 ± 20</td>
<td>160 ± 20</td>
<td>20 ± 5</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>300 ± 30</td>
<td>250 ± 20</td>
<td>200 ± 20</td>
<td>20 ± 5</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>650</td>
<td>350 ± 30</td>
<td>300 ± 20</td>
<td>250 ± 20</td>
<td>20 ± 5</td>
<td>150</td>
</tr>
</tbody>
</table>

Table 1 – Dimensions of Interposer

Exemplary Integrated Circuit (IC) Module Comprising an Integrated Circuit (IC) Package and an Interposer Comprising a Plurality of Passive Components

FIG. 4 illustrates another integrated circuit (IC) module 400 that includes the integrated circuit (IC) package 201, an interposer 402 and the printed circuit board (PCB) 204. The IC module 400 of FIG. 4 is similar to the IC module 200 of FIG. 2,
except that the IC module 400 includes an interposer 402 with a different design than
the interposer 202 of FIG. 2.

[0050] The IC package 201 is coupled to the interposer 402 through the plurality of
first solder interconnects 217 (e.g., solder balls). The interposer 402 is coupled (e.g.,
mounted over) the PCB 204 through the plurality of second solder interconnects 219
(e.g., solder balls). As shown in FIG. 4, the interposer 402 is located between the IC
package 201 and the PCB 204. The differences between the interposer 402 and the
interposer 202 is further illustrated and described in FIG. 5.

[0051] FIG. 5 illustrates a cross-sectional profile view of the interposer 402 that
includes a plurality of passive components. The interposer 402 includes an
encapsulation layer 300, the first passive component 220, the second passive component
222, the third passive component 224, and the plurality of interconnects 230 (e.g.,
interconnects 230a-230f). The plurality of interconnects 230 may include vias, traces,
and/or pads.

[0052] The interposer 402 also include the plurality of interconnects 430
(interconnects 430a-430f). The plurality of interconnects 430 may include vias, traces
and/or pads. The interconnect 430a (e.g., pad) is coupled to the first passive component
220 (e.g., third terminal of the first passive component 220). The interconnect 430b
(e.g., pad) is coupled to the first passive component 220 (e.g., fourth terminal of the first
passive component 220). The interconnect 430b is also coupled to the solder
interconnect 219b. The interconnect 430a is coupled to the interconnect 230a. More
specifically, the interconnect 430d is coupled to the interconnect 332d. The interconnect
430d is also coupled to the solder interconnect 219d. The interconnect 430e is coupled to
the second passive component 222. The interconnect 430e is also coupled to the solder
interconnect 219e. The interconnect 430f is coupled to the third passive component 224.
The interconnect 430e is also coupled to the solder interconnect 219e. As mentioned
above, an interconnect may include a via, a trace, a pad or a combination thereof.

Exemplary Integrated Circuit (IC) Module Comprising an Integrated Circuit (IC)
Package and an Interposer Comprising a Plurality of Passive Components

[0053] FIG. 6 illustrates another integrated circuit (IC) module 600 that includes the
integrated circuit (IC) package 201, an interposer 602 and the printed circuit board
(PCB) 204. The IC module 600 of FIG. 6 is similar to the IC module 200 of FIG. 2,
extcept that the IC module 600 includes an interposer 602 with a different design than
the interposer 202 of FIG. 2. In some implementations, the interposer 602 is a fan out interposer.

[0054] The IC package 201 is coupled to the interposer 602 through the plurality of first solder interconnects 217 (e.g., solder balls). The interposer 602 is coupled (e.g., mounted over) the PCB 204 through the plurality of second solder interconnects 219 (e.g., solder balls). As shown in FIG. 6, the interposer 602 is located between the IC package 201 and the PCB 204. The interposer 602 is slightly larger (e.g., larger foot print or surface area) than the interposer 202. The larger surface area of the interposer 602 may allow for better interconnect connections. For example, the larger surface area may allow for a redistribution portion (e.g., a fan out portion) for fanning or routing of signaling to and from devices with different I/O pitches. A redistribution portion may redistribute signaling from I/O pads of a die or package to other locations of the module.

[0055] One portion of the interposer 602 may include interconnects with a first density property (e.g., pitch, spacing), while a second portion of the interposer 602 may include interconnects with a second density property (e.g., pitch, spacing) that is different than the first density property. An example of different interconnect density properties are further described in FIG. 10. The differences between the interposer 602 and the interposer 202 is further illustrated and described in FIG. 7.

[0056] FIG. 7 illustrates a cross-sectional profile view of the interposer 602 that includes a plurality of passive components. The interposer 602 includes an encapsulation layer 300, the first passive component 220, the second passive component 222, the third passive component 224, and the plurality of interconnects 230 (e.g., interconnects 230g-230h). The first passive component 220, the second passive component 222, and/or the third passive component 224 are coupled to the plurality of interconnects 230 in a manner similar as described in FIG. 3.

[0057] The plurality of interconnects 230 may include vias, traces, and/or pads. The interconnect 230g includes the interconnect 630g (e.g., pad), the interconnect 632g (e.g., trace), and the interconnect 634g (e.g., via). The interconnect 230g may be a redistribution interconnect that redistributes signaling from the IC package 201 to other locations or components of the IC module 600. The interconnect 630g is coupled to the solder interconnect 217g. The interconnect 634g is coupled to the solder interconnect 219g. The interconnect 230h is coupled to the solder interconnect 219h. As mentioned above, an interconnect may include a via, a trace, a pad or a combination thereof.
Exemplary Integrated Circuit (IC) Module Comprising an Integrated Circuit (IC) Package and an Interposer Comprising a Plurality of Passive Components

[0058] FIG. 8 illustrates another integrated circuit (IC) module 800 that includes the integrated circuit (IC) package 201, an interposer 802 and the printed circuit board (PCB) 204. The IC module 800 of FIG. 8 is similar to the IC module 600 of FIG. 6, except that the IC module 800 includes an interposer 802 with a different design than the interposer 602 of FIG. 6. In some implementations, the interposer 802 is a fan out interposer.

[0059] The IC package 201 is coupled to the interposer 802 through the plurality of first solder interconnects 217 (e.g., solder balls). The interposer 802 is coupled (e.g., mounted over) the PCB 204 through the plurality of second solder interconnects 219 (e.g., solder balls). As shown in FIG. 8, the interposer 802 is located between the IC package 201 and the PCB 204. The differences between the interposer 802 and the interposer 602 is further illustrated and described in FIG. 9.

[0060] FIG. 9 illustrates a cross-sectional profile view of the interposer 802 that includes a plurality of passive components. The interposer 802 includes an encapsulation layer 300, the first passive component 220, the second passive component 222, the third passive component 224, and the plurality of interconnects 230 (e.g., interconnects 230g-230h). The first passive component 220, the second passive component 222, and/or the third passive component 224 are coupled to the plurality of interconnects 230 in a manner similar as described in FIG. 3.

[0061] The plurality of interconnects 230 may include vias, traces, and/or pads. The interconnect 230g includes the interconnect 630g (e.g., pad), the interconnect 632g (e.g., trace), the interconnect 634g (e.g., via), and the interconnect 930g. The interconnect 230g may be a redistribution interconnect that redistributes signaling from the IC package 201 to other locations or components of the IC module 800. The interconnect 630g is coupled to the solder interconnect 217g. The interconnect 930g is coupled to the solder interconnect 219g. The interconnect 930h is coupled to the solder interconnect 219h. As mentioned above, an interconnect may include a via, a trace, a pad or a combination thereof.

[0062] It is noted that an interconnect comprising a trace and/or pad can be formed on the top surface, the bottom surface, or both, of the encapsulation layer 300. In some implementations, some interconnects from the plurality of interconnects 230 and/or some interconnects from the plurality of interconnects 430, may be configured to
operate as an inductor (e.g., built-in inductor). An example of a built-in inductor in an
interposer is further illustrated and described below in FIGS. 17-18.

Exemplary Fan Out Interposer Comprising a Plurality of Passive Components

[0063] As mentioned above, in some implementations, an interposer comprising
embedded passive components may be a fan out interposer. For example, the interposer
602 and the interposer 802 may be a fan out interposer.

[0064] A fan out interposer includes a redistribution portion (e.g., a fan out portion)
for fanning or routing of signaling to and from devices with different I/O pitches. A
redistribution portion may redistribute signaling from I/O pads of a die or package to
other locations or components of an integrated circuit (IC) module.

[0065] FIG. 10 illustrates a plan view (e.g., top view) of an interposer 1002. The
interposer 1002 includes a first portion 1040 and a second portion 1042. A plurality of
first solder interconnects 1017 (e.g., solder balls) is coupled to the interposer 1002. A
plurality of second solder interconnects 1019 (e.g., solder balls) is coupled to the
interposer 1002. For the purpose of clarity, interconnects such as vias, traces, and pads
are not shown in the interposer 1002 of FIG. 10. The interposer 1002 may correspond to
any of the interposers described in the present disclosure.

[0066] FIG. 10 illustrates that the plurality of first solder interconnects 1017 are
coupled to the first portion 1040 of the interposer 1002, and the plurality of second
solder interconnects 1019 are coupled to the second portion 1042. The first portion 1040
is a portion of the interposer 1002 that includes low density solder interconnects. The
second portion 1042 is a portion of the interposer 1002 that includes high density solder
interconnects. That is, the pitch and/or spacing of the solder interconnects from the
plurality of first solder interconnects 1017 is greater than the pitch and/or spacing of the
solder interconnects from the plurality of second solder interconnects 1019. In some
implementations, the plurality of first solder interconnects 1017 are solder interconnects
that are coupled to an integrated circuit (IC) package (e.g., IC package 201), while the
plurality of second solder interconnects 1019 are solder interconnects that are coupled to
a printed circuit board (PCB) (e.g., PCB 204). In some implementations, the second
portion 1042 of the interposer 1002 is the fan out portion of the interposer 1002.

[0067] In some implementations, the first portion 1040 includes a plurality of first
interconnects (not shown) that includes a first minimum pitch, and the second portion
1042 includes a plurality of second interconnects (not shown) that includes a second
minimum pitch. In some implementations, the second minimum pitch is less than the first minimum pitch. The second portion 1042 is a perimeter portion of the interposer 1002.

[0068] FIG. 10 also illustrates several passive components 1020 and 1022 (e.g., passive component 1020a, passive component 1022a). These passive components 1020 and 1022 may be embedded or positioned in various portions of the interposer 1002. For example, the passive component 1020a and the passive component 1022a are located in the first portion 1040, while the passive component 1020b and the passive component 1022b are located in the second portion 1042.

Exemplary Sequence for Fabricating an Interposer Comprising a Plurality of Passive Components

[0069] In some implementations, providing / fabricating an interposer comprising a plurality of passive components includes several processes. FIG. 11 (which includes FIGS. 11A-11B) illustrates an exemplary sequence for providing / fabricating an interposer comprising a plurality of passive components. In some implementations, the sequence of FIGS. 11A-11B may be used to provide / fabricate the interposer of FIGS. 2-9 and/or other interposers described in the present disclosure. However, for the purpose of simplification, FIGS. 11A-11B will be described in the context of providing / fabricating the interposer 202 of FIG. 3.

[0070] It should be noted that the sequence of FIGS. 11A-11B may combine one or more stages in order to simplify and/or clarify the sequence for providing an interposer. In some implementations, the order of the processes may be changed or modified.

[0071] Stage 1, as shown in FIG. 11A, illustrates a state after a carrier 1100 and a lamination layer 1101 is provided. The lamination layer 1101 is provided over the carrier 1100. In some implementations, the lamination layer 1101 may be an adhesive layer.

[0072] Stage 2 illustrates a state after the first passive component 220, the second passive component 222, and the third passive component 224 are placed over the lamination layer 1101 and/or the carrier 1100. The first passive component 220, the second passive component 222, and the third passive component 224 may be placed using a pick and place tool.

[0073] Stage 3 illustrates a state after the encapsulation layer 300 is formed over the first passive component 220, the second passive component 222, and the third passive
component 224. The encapsulation layer 300 may include a mold and/or an epoxy fill. In some implementations, the encapsulation layer 300 may be a litho-patternable layer. A litho-patternable layer / material that is a material that is photo etchable. That is, the litho-patternable layer / material is made of a material that can be etched and/or removed (e.g., through a lithography process) through the exposure of the material to a light source (e.g., ultraviolet (UV) light) through a mask (e.g., photomask). One advantage of a litho-patternable layer / material is that interconnects with lower pitch and/or spacing may be formed in the litho-patternable layer / material.

Stage 4 illustrates a state after the encapsulation layer 300, the first passive component 220, the second passive component 222, and the third passive component 224 are decoupled from the lamination layer 1101 and/or the carrier 1100.

Stage 5 illustrates a state after a portion of the encapsulation layer 300 is removed. In some implementations, a grinding process is used to remove a top portion of the encapsulation layer 300. In some implementations, the grinding process is an optional process.

Stage 6, as shown in FIG. 11B, illustrates a state after several cavities 1110 are formed in the encapsulation layer 300. Different implementations may use different processes for forming the cavities 1110. In some implementations, a laser process is used to form the cavities 1110. In some implementations, a photo-etching process is used to form the cavities 1110.

Stage 7 illustrates a state after one or more metal layers 1120 are formed. The one or more metal layers 1120 may include copper.

Stage 8 illustrates a state after the one or more metal layers 1120 are etched to form the plurality of interconnects 230 (e.g., interconnects 230b, 230d, 230e). In some implementations, a photo-etching process may be used to form the plurality of interconnects 230 from the one or more metal layers 1120. Stage 8 illustrates the interposer 202 that includes the encapsulation layer 300, the first passive component 220, the second passive component 222, the third passive component 224, and the plurality of interconnects 230.

Stage 9 illustrates a state after the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are formed on the interposer 202. The plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are formed over the plurality of interconnects 230, the first passive component 220, the second passive component 222 and the third passive component
For example, the solder interconnect 217b is formed over the interconnect 230b, the solder interconnect 217d is formed over the interconnect 230d, the solder interconnect 217e is formed over the interconnect 230e, the solder interconnect 219b is formed over the first passive component 220, the solder interconnect 219d is formed over the interconnect 230d, and the solder interconnect 219e is formed over the second passive component 222.

In some implementations, the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are formed using a solder printing process. In some implementations, the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are solder paste.

Exemplary Sequence for Fabricating an Interposer Comprising a Plurality of Passive Components

In some implementations, providing / fabricating an interposer comprising a plurality of passive components includes several processes. FIG. 12 (which includes FIGS. 12A-12B) illustrates an exemplary sequence for providing / fabricating an interposer comprising a plurality of passive components. In some implementations, the sequence of FIGS. 12A-12B may be used to provide / fabricate the interposer of FIGS. 2-9 and/or other interposers described in the present disclosure. However, for the purpose of simplification, FIGS. 12A-12B will be described in the context of providing / fabricating the interposer 802 of FIG. 9.

It should be noted that the sequence of FIGS. 12A-12B may combine one or more stages in order to simplify and/or clarify the sequence for providing an interposer. In some implementations, the order of the processes may be changed or modified.

Stage 1, as shown in FIG. 12A, illustrates a state after a carrier 1100 and a lamination layer 1101 is provided. The lamination layer 1101 is provided over the carrier 1100. In some implementations, the lamination layer 1101 may be an adhesive layer.

Stage 2 illustrates a state after the first passive component 220 and the second passive component 222 are placed over the lamination layer 1101 and/or the carrier 1100. The first passive component 220 and the second passive component 222 may be placed using a pick and place tool.

Stage 3 illustrates a state after the encapsulation layer 300 is formed over the first passive component 220 and the second passive component 222. The encapsulation
layer 300 may include a mold and/or an epoxy fill. In some implementations, the encapsulation layer 300 may be a litho-patternable layer. A litho-patternable layer / material that is a material that is photo etchable. That is, the litho- patternable layer / material is made of a material that can be etched and/or removed (e.g., through a lithography process) through the exposure of the material to a light source (e.g., ultraviolet (UV) light) through a mask (e.g., photomask). One advantage of a litho- patternable layer is that interconnects with lower pitch and/or spacing may be formed in the litho-patternable layer.

[0086] Stage 4 illustrates a state after the encapsulation layer 300, the first passive component 220 and the second passive component 222 are decoupled from the lamination layer 1101 and/or the carrier 1100.

[0087] Stage 5 illustrates a state after a portion of the encapsulation layer 300 is removed. In some implementations, a grinding process is used to remove a top portion of the encapsulation layer 300. In some implementations, the grinding process is an optional process.

[0088] Stage 6, as shown in FIG. 11B, illustrates a state after several cavities 1110 are formed in the encapsulation layer 300. Different implementations may use different processes for forming the cavities 1110. In some implementations, a laser process is used to form the cavities 1110. In some implementations, a photo-etching process is used to form the cavities 1110.

[0089] Stage 7 illustrates a state after one or more metal layers 1120 are formed. The one or more metal layers 1120 may include copper.

[0090] Stage 8 illustrates a state after the one or more metal layers 1120 are etched to form the plurality of interconnects 230 (e.g., interconnects 230d, 230e, 230g). In some implementations, a photo-etching process may be used to form the plurality of interconnects 230 from the one or more metal layers 1120. Stage 8 illustrates the interposer 802 that includes the encapsulation layer 300, the first passive component 220, the second passive component 222, the third passive component 224, and the plurality of interconnects 230.

[0091] Stage 9 illustrates a state after the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are formed on the interposer 802. The plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are formed over the plurality of interconnects 230, the first passive component 220 and the second passive component 222. For example, the solder
interconnect 217g is formed over the interconnect 230g, the solder interconnect 217d is formed over the interconnect 230d, the solder interconnect 217e is formed over the interconnect 230e, the solder interconnect 219g is formed over the interconnect 230g, the solder interconnect 219d is formed over the interconnect 230d, and the solder interconnect 219e is formed over the interconnect 830e.

[0092] In some implementations, the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are formed using a solder printing process. In some implementations, the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are solder paste.

Exemplary Method for Fabricating an Interposer Comprising a Plurality of Passive Components

[0093] In some implementations, providing / fabricating an interposer comprising a plurality of passive components includes several processes. FIG. 13 illustrates an exemplary flow diagram of a method for providing / fabricating an interposer comprising a plurality of passive components. In some implementations, the method of FIG. 13 may be used to provide / fabricate the interposer of FIGS. 2-9 and/or other interposers described in the present disclosure. However, for the purpose of simplification, FIG. 13 will be described in the context of providing / fabricating the interposer 202 of FIG. 3.

[0094] It should be noted that the flow diagram of FIG. 13 may combine one or more processes in order to simplify and/or clarify the method for providing an interposer. In some implementations, the order of the processes may be changed or modified.

[0095] The method places (at 1305) at least one passive component (e.g., first passive component 220) over a carrier (e.g., carrier 1100) and/or a lamination layer (e.g., lamination layer 1101). In some implementations, the lamination layer may be an adhesive layer.

[0096] The method forms (at 1310) an encapsulation layer (e.g., encapsulation layer 300) over the at least one passive component. The encapsulation layer may include a mold and/or an epoxy fill. In some implementations, the encapsulation layer may be a litho-patternable layer. A litho-patternable layer / material that is a material that is photo etchable. That is, the litho-patternable layer / material is made of a material that can be
etched and/or removed (e.g., through a lithography process) through the exposure of the material to a light source (e.g., ultraviolet (UV) light) through a mask (e.g., photomask).

[0097] The method decouples (at 1315) the encapsulation layer (e.g., encapsulation layer 300) and the at least one passive component (e.g., first passive component 220) from the lamination layer (e.g., lamination layer 1101) and/or the carrier (e.g., carrier 1100).

[0098] The method optionally removes (at 1320) a portion of the encapsulation layer (e.g., encapsulation layer 300). In some implementations, a grinding process is used to remove a top portion of the encapsulation layer.

[0099] The method forms (at 1325) a plurality of cavities 1110 in the encapsulation layer. Different implementations may use different processes for forming the plurality of cavities (e.g., cavities 1110). In some implementations, a laser process is used to form the cavities. In some implementations, a photo-etching process is used to form the cavities.

[0100] The method forms (at 1330) one or more metal layers (e.g., metal layers 1120) in/on the encapsulation layer. The metal layers may include copper.

[0101] The method selectively removes (at 1335) portions of the metal layer to form a plurality of interconnects (e.g., plurality of interconnects 230). In some implementations, a photo-etching process may be used to form the plurality of interconnects from the one or more metal layers.

[0102] The method forms (at 1340) a plurality of solder interconnects on the interposer. For example, the method may form (at 1340) the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 on the interposer 202 and/or the passive component. In some implementations, the plurality of solder interconnects are formed using a solder printing process. In some implementations, the plurality of solder interconnects are solder paste. In some implementations, the plurality of solder interconnects is optional to fabricate the interposer. In some implementations, the solder interconnects may be formed or provided during a later or earlier state of a fabrication process of an integrated circuit (IC) module (e.g., IC module 200).

Exemplary Sequence for Fabricating an Integrated Circuit (IC) Module Comprising an Interposer Comprising a Plurality of Passive Components
In some implementations, providing / fabricating an integrated circuit (IC) module that includes an interposer comprising a plurality of passive components includes several processes.

FIGS. 14-16 illustrate three exemplary sequences for fabricating an integrated circuit (IC) module that includes an interposer with at least one passive component. The main difference between the three exemplary sequences is when and how the solder interconnects (e.g., plurality of first solder interconnects 217, plurality of second solder interconnects 219) are formed during the fabrication process of the IC module. For all three sequences shown in FIGS. 14-16, the sequences will be described in the context of fabricating the integrated circuit (IC) module 600. However, the exemplary sequences shown in FIGS. 14-16 may be used to fabricate any of the IC modules described in the present disclosure.

FIG. 14 illustrates an exemplary sequence for providing / fabricating an integrated circuit (IC) module that includes an interposer with at least one passive component. In some implementations, the sequence of FIG. 14 may be used to provide / fabricate the integrated circuit (IC) module that includes an interposer with at least one passive component of FIGS. 2, 4, 6, 8 and/or other IC modules described in the present disclosure. However, for the purpose of simplification, FIG. 14 will be described in the context of providing / fabricating the IC module 600 of FIG. 6.

It should be noted that the sequence of FIG. 14 may combine one or more stages in order to simplify and/or clarify the sequence for providing an IC module. In some implementations, the order of the processes may be changed or modified.

Stage 1 illustrates a state after an integrated circuit (IC) package 201 is provided. The IC package 201 includes the die 210, the package substrate 212, the encapsulation layer 214, and the plurality of solder interconnects 215. The encapsulation layer 214 at least partially encapsulates the die 210.

Stage 2 illustrates a state after the interposer 602 is provided. The interposer 602 includes the encapsulation layer 300, the first passive component 220, the second passive component 222, and the plurality of interconnects 230. The interposer 602 also includes the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219. In some implementations, the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are formed using a solder printing process. In some implementations, the plurality of first solder interconnects 217 and the plurality of second solder interconnects 219 are solder paste.
Stage 3 illustrates a state after the IC package 201 is coupled to the interposer 602 through the plurality of first solder interconnects 217. In some implementations, stage 3 illustrates a state after a reflow process. The plurality of first solder interconnects 217 is coupled to the package substrate 212 of the IC package 201.

Stage 4 illustrates a state after a printed circuit board (PCB) 204 is provided.

Stage 5 illustrates a state after the IC package 201 and the interposer 602 is coupled to the PCB 204. As shown at stage 5, the interposer 602 is coupled to the PCB 204 through the plurality of second solder interconnects 219. In some implementations, stage 5 illustrates a state after a reflow process (e.g., second reflow process). In some implementations, stage 5 illustrates the integrated circuit (IC) module 600 that includes the IC package 201, the interposer 602 and the PCB 204.

FIG. 15 illustrates another exemplary sequence for providing / fabricating an integrated circuit (IC) module that includes an interposer with at least one passive component. In some implementations, the sequence of FIG. 15 may be used to provide / fabricate the integrated circuit (IC) module that includes an interposer with at least one passive component of FIGS. 2, 4, 6, 8 and/or other IC modules described in the present disclosure. However, for the purpose of simplification, FIG. 15 will be described in the context of providing / fabricating the IC module 600 of FIG. 6.

It should be noted that the sequence of FIG. 15 may combine one or more stages in order to simplify and/or clarify the sequence for providing an IC module. In some implementations, the order of the processes may be changed or modified.

Stage 1 illustrates a state after an integrated circuit (IC) package 201 is provided. The IC package 201 includes the die 210, the package substrate 212, the encapsulation layer 214, and the plurality of solder interconnects 215. The encapsulation layer 214 at least partially encapsulates the die 210. The IC package 201 also includes a plurality of first solder interconnects 217 (e.g., solder balls), which is coupled to the package substrate 212. In some implementations, the plurality of first solder interconnects 217 may be coupled to interconnects bumps (not shown) that are coupled to the package substrate 212.

Stage 2 illustrates a state after the interposer 602 is provided. The interposer 602 includes the encapsulation layer 300, the first passive component 220, the second passive component 222, and the plurality of interconnects 230. The interposer 602 also includes the plurality of second solder interconnects 219. Thus, the interposer 602 at stage 2 in FIG. 12 is different than the interposer 602 at stage 2 in FIG. 11, in that the
interposer 602 at stage 2 in FIG. 12 does not include the plurality of first solder interconnects 217. However, it should be noted that the interposer 602 at stage 2 may include the plurality of first solder interconnects 217. In some implementations, the plurality of second solder interconnects 219 are formed using a solder printing process. In some implementations, the plurality of second solder interconnects 219 are solder paste.

[00116] Stage 3 illustrates a state after the IC package 201 is coupled to the interposer 602 through the plurality of first solder interconnects 217. In some implementations, stage 3 illustrates a state after a reflow process.

[00117] Stage 4 illustrates a state after a printed circuit board (PCB) 204 is provided.

[00118] Stage 5 illustrates a state after the IC package 201 and the interposer 602 is coupled to the PCB 204. As shown at stage 5, the interposer 602 is coupled to the PCB 204 through the plurality of second solder interconnects 219. In some implementations, stage 5 illustrates a state after a reflow process (e.g., second reflow process). In some implementations, stage 5 illustrates the integrated circuit (IC) module 600 that includes the IC package 201, the interposer 602 and the PCB 204.

[00119] FIG. 16 illustrates an exemplary sequence for providing / fabricating an integrated circuit (IC) module that includes an interposer with at least one passive component. In some implementations, the sequence of FIG. 16 may be used to provide / fabricate the integrated circuit (IC) module that includes an interposer with at least one passive component of FIGS. 2, 4, 6, 8 and/or other IC modules described in the present disclosure. However, for the purpose of simplification, FIG. 16 will be described in the context of providing / fabricating the IC module 600 of FIG. 6.

[00120] It should be noted that the sequence of FIG. 16 may combine one or more stages in order to simplify and/or clarify the sequence for providing an IC module. In some implementations, the order of the processes may be changed or modified.

[00121] Stage 1 illustrates a state after an integrated circuit (IC) package 201 is provided. The IC package 201 includes the die 210, the package substrate 212, the encapsulation layer 214, and the plurality of solder interconnects 215. The encapsulation layer 214 at least partially encapsulates the die 210. The IC package 201 also includes a plurality of first solder interconnects 217 (e.g., solder balls), which is coupled to the package substrate 212. In some implementations, the plurality of first solder interconnects 217 may be coupled to interconnects bumps (not shown) that are coupled to the package substrate 212.
Stage 2 illustrates a state after the interposer 602 is provided. The interposer 602 includes the encapsulation layer 300, the first passive component 220, the second passive component 222, and the plurality of interconnects 230.

Stage 3 illustrates a state after the IC package 201 is coupled to the interposer 602 through the plurality of first solder interconnects 217. In some implementations, stage 3 illustrates a state after a reflow process. The plurality of first solder interconnects 217 is coupled to the package substrate 212 of the IC package 201.

Stage 4 illustrates a state after a printed circuit board (PCB) 204 is provided. The PCB 204 also includes the plurality of second solder interconnects 219 (e.g., solder balls).

Stage 5 illustrates a state after the IC package 201 and the interposer 602 is coupled to the PCB 204. As shown at stage 5, the interposer 602 is coupled to the PCB 204 through the plurality of second solder interconnects 219. In some implementations, stage 5 illustrates a state after a reflow process (e.g., second reflow process). In some implementations, stage 5 illustrates the integrated circuit (IC) module 600 that includes the IC package 201, the interposer 602 and the PCB 204.

Exemplary Fan Out Interposer Comprising Built-in Inductors

As mentioned above, in some implementations, an interposer may include a built-in inductor. In some implementations, a built-in inductor is an inductor comprising a plurality of first interconnects formed in/on the interposer. In some implementations, a built-in inductor may be more practical and/or cost effective than providing an off the shelf inductor (e.g., third passive component) in the interposer. For example, a built-in inductor can be formed in the interposer with a lower height than an off the shelf inductor. Moreover, a built-in inductor may be more customizable than an off the shelf inductor. In some implementations, a built-in inductor of an interposer is an inductor that is fabricated during the same fabrication process as the interposer. That is, a built-in inductor of an interposer may be an inductor that is fabricated as the interposer is being fabricated. In some implementations, an off the shelf inductor of an interposer, is an inductor that is fabricated using a separate fabrication process than the interposer, and is embedded in the interposer after the off the shelf inductor has been fabricated.

FIG. 17 illustrates a cross-sectional profile view of an interposer 1702 that includes a plurality of passive components and a plurality of built-in interposers. The interposer 1702 is similar to the interposer 802 of FIG. 9, except that some interconnects...
from the plurality of interconnects 230 and/or some interconnects from the plurality of interconnects 430, are formed and configured to operate as inductors (e.g., built-inductors). The interposer 1702 may be implemented as part of any of the IC modules described in the present disclosure.

[00128] The interposer 1702 includes the encapsulation layer 300, the first passive component 220, the second passive component 222, the plurality of interconnects 230 (e.g., interconnects 230i-230m), the first inductor 1710, and the second inductor 1720. The first inductor 1710 includes a plurality of first interconnects (e.g., interconnect 230i, interconnect 230j). Thus, the interconnect 230i and the interconnect 230j are configured to operate as a first inductor 1710. The second inductor 1720 includes a plurality of second interconnects (e.g., interconnect 230k, interconnect 230m). Thus, the interconnect 230k and the interconnect 230m are configured to operate as a second inductor 1720. The first inductor 1710 and the second inductor 1720 may be built-in inductors.

[00129] The interconnect 230i may include a trace and a pad. The interconnect 230j may include a trace, a pad and a via. The interconnect 230i is formed at least on a first surface (e.g., top surface) of the encapsulation layer 300, and the interconnect 230j is formed at least on a second surface (e.g., bottom surface) of the encapsulation layer 300. The interconnect 230j may also be formed in the encapsulation layer 300 (e.g., as a via that traverses the encapsulation layer 300). Thus, a portion (e.g., trace, pad) of the interconnect 230j is on a surface of the encapsulation layer 300, and another portion (e.g., via) of the interconnect 230j traverses the encapsulation layer 300. A solder interconnect 219j is formed over the interconnect 230j.

[00130] The interconnect 230k may include a trace, a pad and a via. The interconnect 230m may include a trace and a pad. The interconnect 230k is formed at least on a first surface (e.g., top surface) of the encapsulation layer 300, and the interconnect 230m is formed at least on a second surface (e.g., bottom surface) of the encapsulation layer 300. The interconnect 230k may also be formed in the encapsulation layer 300 (e.g., as a via that traverses the encapsulation layer 300). Thus, a portion (e.g., trace, pad) of the interconnect 230k is on a surface of the encapsulation layer 300, and another portion (e.g., via) of the interconnect 230k traverses the encapsulation layer 300. A solder interconnect 219k is formed over the interconnect 230k.

[00131] FIG. 18 illustrates a plan view (e.g., top view) of the interposer 1702. The interposer 1702 includes a first portion 1040 and a second portion 1042. The first
passive component 220 and the second passive component 222 are located in the first portion 1040 of the interposer. The first inductor 1710 (e.g., first built-in inductor) and the second inductor 1720 (e.g., second built-in inductor) are located in the second portion 1042. However, the first inductor 1710 and the second inductor 1720 may be located in any portion of the interposer 1702. The first inductor 1710 includes a plurality of first interconnects (e.g., interconnect 230i, the interconnect 230j). The second inductor 1720 includes a plurality of second interconnects (e.g., interconnect 230k, interconnect 230m). As shown in FIG. 18, the first inductor 1710 and the second inductor 1720 may be configured to operate as solenoid inductors.

[00132] The first portion 1040 is a portion of the interposer 1702 that includes low density interconnects. The second portion 1042 is a portion of the interposer 1702 that includes high density interconnects. That is, the pitch and/or spacing of the interconnects (e.g., interconnect 230i) from the plurality of interconnects 230 in the second portion 1042, is greater than the pitch and/or spacing of the interconnects from the plurality of interconnects 230 in the first portion 1040. In some implementations, the second portion 1042 of the interposer 1002 is the fan out portion of the interposer 1002.

Exemplary Electronic Devices

[00133] FIG. 19 illustrates various electronic devices that may be integrated with any of the aforementioned integrated device, semiconductor device, integrated circuit, die, interposer, package or package-on-package (PoP). For example, a mobile phone device 1902, a laptop computer device 1904, and a fixed location terminal device 1906 may include an integrated device 1900 as described herein. The integrated device 1900 may be, for example, any of the IC modules, interposer, integrated circuits, dies, integrated devices, integrated device packages, integrated circuit devices, device packages, integrated circuit (IC) packages, package-on-package devices described herein. The devices 1902, 1904, 1906 illustrated in FIG. 19 are merely exemplary. Other electronic devices may also feature the integrated device 1900 including, but not limited to, a group of devices (e.g., electronic devices) that includes mobile devices, hand-held personal communication systems (PCS) units, portable data units such as personal digital assistants, global positioning system (GPS) enabled devices, navigation devices, set top boxes, music players, video players, entertainment units, fixed location data units such as meter reading equipment, communications devices, smartphones, tablet computers, computers, wearable devices, servers, routers, electronic devices
implemented in automotive vehicles (e.g., autonomous vehicles), or any other device that stores or retrieves data or computer instructions, or any combination thereof.

[00134] One or more of the components, processes, features, and/or functions illustrated in FIGS. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11A-11B, 12A-12B, 13, 14, 15, 16, 17, 18 and/or 19 may be rearranged and/or combined into a single component, process, feature or function or embodied in several components, processes, or functions. Additional elements, components, processes, and/or functions may also be added without departing from the disclosure. It should also be noted that FIGS. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11A-1 IB, 12A-12B, 13, 14, 15, 16, 17, 18 and/or 19 and its corresponding description in the present disclosure is not limited to dies and/or ICs. In some implementations, FIGS. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11A-11B, 12A-12B, 13, 14, 15, 16, 17, 18 and/or 19 and its corresponding description may be used to manufacture, create, provide, and/or produce integrated devices. In some implementations, a device may include an IC module, a die, an integrated device, a die package, an integrated circuit (IC), a device package, an integrated circuit (IC) package, a wafer, a semiconductor device, a package on package (PoP) device, and/or an interposer.

[00135] The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any implementation or aspect described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term "aspects" does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation. The term "coupled" is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another—even if they do not directly physically touch each other.

[00136] Also, it is noted that various disclosures contained herein may be described as a process that is depicted as a flowchart, a flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed.

[00137] The various features of the disclosure described herein can be implemented in different systems without departing from the disclosure. It should be noted that the foregoing aspects of the disclosure are merely examples and are not to be construed as
limiting the disclosure. The description of the aspects of the present disclosure is intended to be illustrative, and not to limit the scope of the claims. As such, the present teachings can be readily applied to other types of apparatuses and many alternatives, modifications, and variations will be apparent to those skilled in the art.
CLAIMS

1. An interposer comprising:
 an encapsulation layer;
 a passive component at least partially embedded in the encapsulation layer; and
 a plurality of interconnects coupled to the passive component.

2. The interposer of claim 1, wherein a surface of the passive component is substantially co-planar with a surface of the encapsulation layer.

3. The interposer of claim 1, wherein the encapsulation layer comprises an E-glass, a mold and/or an epoxy fill.

4. The interposer of claim 1, wherein the encapsulation layer comprises a litho-patternable layer.

5. The interposer of claim 1, further comprising:
 a plurality of first solder interconnects coupled to the plurality of interconnects;
 and
 a plurality of second solder interconnects coupled to the passive component.

6. The interposer of claim 5, further comprising a pad coupled to the passive component, wherein at least one solder interconnect from the second solder interconnect is coupled to the pad.

7. The interposer of claim 1, wherein the interposer is a fan out interposer comprising:
 a first portion comprising a plurality of first interconnects comprising a first minimum pitch; and
 a second portion comprising a plurality of second interconnects comprising a second minimum pitch.
8. The interposer of claim 7, wherein the second minimum pitch is less than the first minimum pitch.

9. The interposer of claim 1, further comprising an inductor formed by a plurality of first interconnects.

10. The interposer of claim 1, wherein the passive component comprises a capacitor or an inductor.

11. The interposer of claim 1, wherein the passive component is configured to operate as part of an electronic voltage regulator (EVR).

12. The interposer of claim 1, wherein the interposer is incorporated into a device selected from a group consisting of a music player, a video player, an entertainment unit, a navigation device, a communications device, a mobile device, a mobile phone, a smartphone, a personal digital assistant, a fixed location terminal, a tablet computer, a computer, a wearable device, a laptop computer, a server, and a device in an automotive vehicle, and further including the device.

13. An integrated circuit (IC) module comprising:
 an integrated circuit (IC) package;
 a plurality of first solder interconnects coupled to the IC package;
 an interposer coupled to the IC package through the plurality of first solder interconnects, the interposer comprising:
 an encapsulation layer;
 a passive component at least partially embedded in the encapsulation layer; and
 a plurality of interconnects coupled to the passive component;
 a plurality of second solder interconnects coupled to the interposer; and
 a printed circuit board (PCB) coupled to the interposer through the plurality of second solder interconnects.

14. The IC module of claim 13, wherein a surface of the passive component is substantially co-planar with a surface of the encapsulation layer.
15. The IC module of claim 13, wherein the encapsulation layer comprises an E-glass, a mold and/or an epoxy fill.

16. The IC module of claim 13, wherein the encapsulation layer comprises a litho-patternable layer.

17. The IC module of claim 13, wherein the interposer further comprises an inductor formed by a plurality of first interconnects.

18. The IC module of claim 13, wherein the plurality of first solder interconnects coupled to the plurality of interconnects, and the plurality of second solder interconnects is coupled to the passive component.

19. The IC module of claim 13, wherein the interposer is a fan out interposer comprising:
 a first portion comprising a plurality of first interconnects comprising a first minimum pitch; and
 a second portion comprising a plurality of second interconnects comprising a second minimum pitch.

20. The IC module of claim 13, wherein the passive component comprises a capacitor or an inductor.

21. The IC module of claim 13, wherein the IC module is incorporated into a device selected from a group consisting of a music player, a video player, an entertainment unit, a navigation device, a communications device, a mobile device, a mobile phone, a smartphone, a personal digital assistant, a fixed location terminal, a tablet computer, a computer, a wearable device, a laptop computer, a server, and a device in a automotive vehicle, and further including the device.

22. A method for fabricating an integrated circuit (IC) module, comprising
 providing an interposer, wherein providing the interposer comprises:
 providing at least one passive component;
forming an encapsulation layer over the at least one passive component;
and
forming a plurality of interconnects in the encapsulation layer;
providing an integrated circuit (IC) package;
coupling the IC package to the interposer by using a plurality of first solder interconnects;
providing a printed circuit board (PCB); and
coupling the PCB to the interposer by using a plurality of second solder interconnects.

23. The method of claim 22, wherein forming the encapsulation layer comprises forming the encapsulation layer over the at least one passive component such that a surface of the encapsulation layer is substantially co-planar with a surface of the at least one passive component.

24. The method of claim 22, wherein forming the encapsulation layer over the at least one passive component comprises forming an E-glass, a mold and/or an epoxy fill over the at least one passive component.

25. The method of claim 22, wherein forming the encapsulation layer over the at least one passive component comprises forming a litho-patternable layer over the at least one passive component.

26. The method of claim 22, wherein coupling the IC package to the interposer by using the plurality of first solder interconnects comprises coupling the plurality of first solder interconnects to the plurality of interconnects of the interposer.

27. The method of claim 22, wherein coupling the PCB to the interposer by using the plurality of second solder interconnects comprises coupling the plurality of second solder interconnects to the at least one passive component.

28. The method of claim 22, wherein the passive component is configured to operate as part of an electronic voltage regulator (EVR).
29. The method of claim 22, wherein providing the interposer comprises providing a fan out interposer.

30. The method of claim 22, wherein forming the plurality of interconnects in the encapsulation layer comprises:

 forming a plurality of first interconnects comprising a first minimum pitch, in a first portion of the encapsulation layer; and

 forming a plurality of second interconnects comprising a second minimum pitch, in a second portion of the encapsulation layer.
(PRIOR ART)

FIG. 1
FIG. 4

FIG. 5
PLACE PASSIVE COMPONENT(S) (E.G., CAPACITOR, INDUCTOR) OVER A CARRIER AND/OR A LAMINATION LAYER

FORM ENCAPSULATION LAYER OVER PASSIVE COMPONENT(S)

DECOUPLE (E.G., DETACH) PASSIVE COMPONENT(S) AND ENCAPSULATION LAYER FROM CARRIER AND/OR LAMINATION LAYER

REMOVE (E.G., GRIND) PORTIONS OF THE ENCAPSULATION LAYER (OPTIONAL)

FORM CAVITIES IN THE ENCAPSULATION LAYER

FORM METAL LAYER(S) IN / ON THE ENCAPSULATION LAYER

SELECTIVELY REMOVE (E.G., ETCH) METAL LAYER(S) TO FORM INTERCONNECTS (E.G., PADS, VIAS, TRACES)

FORM (E.G., PRINT) SOLDER INTERCONNECT(S) ON INTERCONNECTS (E.G., PADS, VIAS) (OPTIONAL)

FIG. 13
INTERNATIONAL SEARCH REPORT

Classifications of Subject Matter

INV. H01L23/498 H01L21/48 H01L23/50 H01L23/64

B. Fields searched

Minimum documentation searched (classification system followed by classification symbols)

H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. Documents considered to be relevant

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>paragraphs [0021] - [0024], [0031] - [0036], [0039]; figures 5A-F, 9A-F</td>
<td>7,8, 19, 29, 30</td>
</tr>
<tr>
<td>X</td>
<td>US 2010/220448 Al (NOMURA MASAT0 [JP]) 2 September 2010 (2010-09-02)</td>
<td>1-30</td>
</tr>
<tr>
<td></td>
<td>paragraphs [0029] - [0030]; figure 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0033]; figures 14A-C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0058] - [0079], [0090]; figures 10A-j</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

A: Document defining the general state of the art which is not considered to be of particular relevance

E: Earlier application or patent but published earlier than the international filing date

L: Document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O: Document referring to an oral disclosure, use, exhibition or other means

P: Document published prior to the international filing date but later than the priority date claimed

*T: Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*X: Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*Y: Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*Z: Document member of the same patent family

Date of the actual completion of the international search: 28 October 2016

Date of mailing of the international search report: 08/11/2016

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040; Fax: (+31-70) 340-3016

Authorized officer:

Edmeades, Michael

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102014110552 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015028463 A</td>
</tr>
<tr>
<td>US 2010220448 Al</td>
<td>02-09-2010</td>
<td>JP 4329884 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010220448 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009066504 A</td>
</tr>
<tr>
<td>US 2008012154 Al</td>
<td>17-01-2008</td>
<td>TW 200806118 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008012154 A</td>
</tr>
<tr>
<td>US 2014264789 Al</td>
<td>18-09-2014</td>
<td>CN 104051334 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 10201400559P A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201445653 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014264789 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015325511 A</td>
</tr>
<tr>
<td>US 2015237732 Al</td>
<td>20-08-2015</td>
<td>CN 106030782 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015237732 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015126640 A</td>
</tr>
<tr>
<td>US 2010230806 Al</td>
<td>16-09-2010</td>
<td>SG 165232 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 178790 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201041084 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010230806 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011233726 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012168963 A</td>
</tr>
</tbody>
</table>