PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/05618
GOGF 17/30 Al
(43) International Publication Date: 4 February 1999 (04.02.99)
(21) International Application Number: PCT/US98/09711 | (81) Designated States: CN, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 13 May 1998 (13.05.98) SE).
(30) Priority Data: Published
08/898,652 22 July 1997 (22.07.97) Us With international search report.

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: BRADEN-HARDER, Lisa; 12003 Creekbend
Drive, Reston, VA 20194 (US). CORSTON, Simon, H,;
605 Boylston Avenue E #109, Seattle, WA 98102 (US).
DOLAN, William, B.; 7412 153rd Court N.E., Redmond,
WA 98052 (US). VANDERWENDE, Lucy, H.; 16415
N.E. 30th Street, Bellevue, WA 98008 (US).

(74) Agent: MICHAELSON, Peter, L.; Michaelson & Wallace,
Parkway 109 Office Center, 328 Newman Springs Road,
P.O. Box 8489, Red Bank, NJ 07701 (US).

(54) Title: APPARATUS AND METHODS FOR AN INFORMATION RETRIEVAL SYSTEM THAT EMPLOYS NATURAL LAN-
GUAGE PROCESSING OF SEARCH RESULTS TO IMPROVE OVERALL PRECISION

5
QUERY /7\ Vad
(FULL-TEXT -
FORM) RETRIEVED
DOCUMENTS
A 4
NATURAL RANKED
DATA- > R'ELRG'IE,}’QL | LANGUAGE RETRIEVED
ST | 4 g5 | PROCESSOR | sb DOCUMENTS
STORED))
DOCUMENTS 20 30

(57) Abstract

Apparatus and accompanying methods for an information retrieval system that utilizes natural language processing to process results
retrieved by, for example, an information retrieval engine such as a conventional statistical-based search engine, in order to improve
overall precision. Specifically, such a search ultimately yields a set of retrieved documents. Each such document is then subjected to
natural language processing to produce a set of logical forms. Each such logical form encodes, in a word-relation-word manner, semantic
relationships, particularly argument and adjunct structure, between words in a phrase. A user—supplied query is analyzed in the same
manner to yield a set of corresponding logical forms therefor. Documents are ranked as a predefined function of the logical forms from
the documents and the query. Specifically, the set of logical forms for the query is then compared against a set of logical forms for each
of the retrieved documents in order to ascertain a match between any such logical forms in both sets. Each document that has at least
one matching logical forms is heuristically scored, with each different relation for a matching logical forms being assigned a different
corresponding predefined weight. The score of each such document is, e.g., a predefined function of the weights of its uniquely matching
logical forms. Finally, the retained documents are ranked in order of descending score and then presented to a user in that order.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
CI
cM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU

ML
MN
MR

MX
NE
NL
NO
NZ
PL

RO
RU
SDh
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/05618 PCT/US98/09711

APPARATUS AND METHODS FOR AN INFORMATION

RETRIEVAL SYSTEM THAT EMPLOYS NATURAL LANGUAGE

PROCESSING OF SEARCH RESULTS TO IMPROVE OVERALL
PRECISION '

BACKGROUND OF THE DISCLOSURE

1. Field of the Invention

The invention relates to apparatus and
accompanying methods for an information retrieval
system that utilizes natural language processing to
process results retrieved by, for example, an
information retrieval engine such as a conventional
statistical-based search engine, in order to improve

overall precision.

2. Description of the Prior Art

Starting several decades ago and continuing
to the present, automated information retrieval
techniques have increasingly been used to retrieve
stored information from a mass data store, such as a
conventional database containing published materials
and/or bibliographic information therefor. Such a
conventional database tends to be specialized in that
it generally contains information directed to a
particular, though broad-based topic, such as
electrical engineering and computer related technology,
as, e.g., in an INSPEC database maintained by the
Institute of Electrical and Electronic engineers (IEEE)

and currently accessible through, e.g., Dialog

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-2-

Information Services of Knight-Ridder Information. Inc.
(DIALOG is a registered servicemark of Knight-Ridder
Information, Inc.). While databases of this type
certainly exhibit continuing growth as an increasing
number of pertinent articles and other materials are
published, the growth tends to be relatively moderate
and reasonably well-controlled. Also, such specialized

databases tend to be rather well organized.

However, with the advent and proliferation of
the so-called "world-wide web" (hereinafter simply
referred to as the "web") accessible through the
Internet and the relative ease and low-cost associated
with posting information to the web and accessing
information therefrom as contrasted with traditional
publishing, the amount of information available on the
web manifests highly exponential, if not explosive,
growth, with apparently no realistic limit in sight.
While the web offers an increasingly rich array of
information across all disciplines of human endeavor,
information content on the web is highly chaotic and
extremely disorganized, which severely complicates and
often frustrates information access and retrieval

therefrom.

In an attempt to significantly ease the task
of retrieving information from the web, a number of
computerized search engines have been developed over
the past few years for widespread public use.

Generally speaking, these conventional engines, through
software-implemented "web crawlers", automatically
visit web sites, and trace hypertext links therein, in

seriatim and extract, abstract and index each document

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-3-

encountered therein, through so-called "key words",
into a large database for subsequent access.
Specifically, through such abstraction, each such
document encountered by the crawler is reduced to what
is commonly called a "bag of words" which contains
content-bearing words that exist in the document,
though stripped of all semantic and syntactic
information. The content words may occur in the
document itself and/or in just a description field of a
hypertext-markup language (HTML) version of that
document. In any event, the engine establishes an
entry, i.e., a document record, for each such document.
For each document, each of its content words is indexed
into a searchable data structure with a link back to
the document record. The document record typically
contains: (a) a web address, i.e., a URL -- uniform
resource locator, through which the corresponding
document can be accessed by a web browser; (b) wvarious
content words in that document, along with, in certain
engines, a relative address of each such content word
relative to other content words in that document; (c) a
short summary, often just a few lines, of the document
or a first few lines of that document; and possibly (d)
the description of the document as provided in its HTML
description field. To search the database, a user
supplies the engine with a keyword based query. The
query typically contains one or more user-supplied
keywords, often just a small number, with, depending on
the capabilities of the engine, possibly a Boolean
(such as "AND" or "OR") or similar (such as a numeric
proximity) operator situated between successive key
words. In response to the query, the engine attempts

to locate documents that contain as many of the

10

15

20

25

30

WO 99/05618 ' PCT/US98/09711

-4-

keywords as possible, and, if a logical or proximity
operator was provided, those key words in the specific
combination requested or within a certain "range"
(specified number of content words) of each other. 1In
doing so, the engine searches through its database to
locate documents that contain at least one word that
matches one of the key words in the query and, where
requested, according to the operator and/or range
specified therewith. For each such document it finds,
the engine retrieves the document record therefor and
presents that record to the user ranked according to a
number of keyword matches in that document relative to

those for the other such documents.

Often, a great majority of documents
retrieved solely in response to a user-supplied keyword
gquery would be simply irrelevant to the query, thus

frustrating the user.

Consequently, to reduce the number of
irrelevant documents that are retrieved, conventional
keyword based search engines (hereinafter referred to
as simply "statistical search engines") incorporate
statistical processing into their search methodologies.
For example, based on a total number of matching key
words between those in the query and the content words
in each retrieved document record and how well these
words match, i.e., in the combination and/or within a
proximity range requested, a statistical search engine
calculates numeric measures, collectively frequently
referred to as "statistics", for each such document
record retrieved. These statistics may include an

inverse document frequency for each matching word. The

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-5-

engine then ranks the document records in terms of
their statistics and returns to the user the document
records for a small predefined number of retrieved
records, typically 5-20 or less, that have the highest
rankings. Once the user has reviewed a first group of
document records (or, for some engines, the documents
themselves if they are returned by the engine) for a
first group of retrieved documents, the user can then
request a next group of document records having the
next highest rankings, and so forth until all the

retrieved document records have been so reviewed.

Traditionally, the performance of search
engines has been assessed in terms of recall and
precision. Recall measures, as a percentage of all
relevant documents in a dataset, the number of such
documents actually retrieved in response to a given
guery. Precision, on the other hand, measures, as a
percentage of all documents retrieved, the number of
those documents that are actually relevant to the
query. We believe that in the context of a web search
engine, recall is not an important metric of
performance, inasmuch as the sheer number of documents
ultimately retrieved is unimportant. In fact, for some
queries, this number could be inordinately large.
Hence, we believe that not all relevant documents
indexed by the engine need to be retrieved in order to
produce a useful result; however, we believe that
precision is extremely important, i.e., the documents
that have the highest ranking and are presented first
to a user should be those that are the most relevant to

the query.

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-6-

The rather poor precision of conventional
statistical search engines stems from their assumption
that words are independent variables, i.e., words in
any textual passage occur independently of each other.
Independence in this context means that a conditional
probability of any one word appearing in a document
given the presence of another word therein is always
zero, 1.e., a document simply contains an unstructured
collection of words or simply put a "bag of words". As
one can readily appreciate, this assumption, with
respect to any language, is grossly erroneous.

English, like other languages, has a rich and complex
syntactic and lexico-semantic structure with words
whose meanings vary, often widely, based on the
specific linguistic context in which they are used,
with the context determining in any one instance a
given meaning of a word and what word(s) can
subsequently appear. Hence, words that appear in a
textual passage are simply not independent of each
other, rather they are highly inter-dependent. Keyword
based search engines totally ignore this fine-grained
linguistic structure. For example, consider an
illustrative query expressed in natural language: "How
many hearts does an octopus have?" A statistical
search engine, operating on content words "hearts” and
"octopus", or morphological stems thereof, might likely
return or direct a user to a stored document that
contains a recipe that has at its ingredients and hence
its content words: "artichoke hearts, squid, onions and
octopus". This engine, given matches in the two
content words "octopus" and "hearts", may determine,
based on statistical measures, e.g. including proximity

and logical operators, that this document is an

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-7

excellent match, when, in reality, the document is

quite irrelevant to the query.

The art teaches various approaches for
extracting elements of syntactic phrases as
head-modifier pairs in unlabeled relations. These
elements are then indexed as termg (typically without
internal structure) in a conventional statistical

vector-space model.

One example of such an approach is taught in
J. L. Fagan, "Experiments in Automatic Phrase Indexing
for Document Retrieval: A Comparison of Syntactic and
Non-Syntactic Methods", Ph.D. Thesis, Cornell
University, 1988, pages i-261. Specifically, this
approach uses natural language processing to analyze
English sentences and extract syntactic phrasal
constituents elements wherein these phrasal
constituents are then treated as terms and indexed in
an index using a statistical vector-space model.
During retrieval, the user enters a query in natural
language which, under this approach, 1is subjected to
natural language processing for analysis and to extract
elements of syntactic phrasal constituents analogous to
the elements stored in the index. Thereafter, attempts
are made to match the elements of the syntactic phrasal
constituents from the query to those stored in the
index. The author contrasts this purely syntactic
approach to a statistical approach, in which a
stochastic method is used to identify elements within
syntactic phrases. The author concludes that natural
language processing does not yield substantial

improvements over stochastic approaches, and that the

10

15

20

25

30

WO 99/05618

PCT/US98/09711
-8-

small improvements in precision that natural language
processing does sometimes produce do not justify the
substantial processing cost associated with natural

language processing.

Another such syntactic based-approach is
described, in the context of using natural language
processing for selecting appropriate terms for
inclusion within search queries, in T. Strzalkowski,
"Natural Language Information Retrieval: TIPSTER-2

Final Report", Proceedings of Advances in Text

Processing: Tipster Program Phase 2, DARPA, 6-8 May

1996, Tysons Corner, Virginia, pages 143-148
(hereinafter the "DARPA paper"); and T. Strzalkowski,

"Natural Language Information Retrieval", Information

Processing and Management, Vol. 31, No. 3, 1995,

pages 397-417. While this approach offers theoretical
promise, the author on pages 147-8 of the DARPA paper,
concludes that, owing to the sophisticated processing
required to implement the underlying natural language

techniques, this approach is currently impractical:

"... [I]t is important to keep in
mind that NLP [natural language
processing] techniques that meet our
performance requirements (or at least are
believed to be approaching these
requirements) are still fairly
unsophisticated in their ability to handle
natural language text. In particular,
advanced processing involving conceptual
structuring, logical forms, etc. is still

beyond reach, computationally. It may be

10

15

20

25

30

WO 99/05618 ' PCT/US98/09711

-9-

assumed that these advanced techniques
will prove even more effective, since they
address the problem of
representation-level limits; however, the
experimental evidence is sparse and
necessarily limited to rather small scale

tests".

A further syntactic-based approach of this
sort 1s described in B. Katz, "Annotating the World
Wide Web using Natural Language", Conference

Proceedings of RIAO 97, Computer-Assisted Information

Searching in Internet, McGill University, Quebec,

Canada, 25-27 June 1997, Vol. 1, pages 136-155

[hereinafter the "Katz publication"]. As described in
the Katz publication, subject-verb-object expressions

are created while preserving the internal structure so
that during retrieval minor syntactic alternations can

be accommodated.

Because these syntactic approaches have
yvielded lackluster improvements or have not been
feasible to implement in natural language processing
systems available at the time, the field has moved away
from attempting to directly improve the precision and
recall of the initial results of query to improvements
in the user interface, i.e. specifically through
methods for refining the query based on interaction
with the user, such as through "find-similar" user
responses to a retrieved result, and methods for
visualizing the results of a query including displaying

results in appropriate clusters.

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-10-

While these improvements are useful in their
own right, the added precision attainable through these
improvements is still disappointingly low, and
certainly insufficient to drastically reduce user
frustration inherent in keyword searching.
Specifically, users are still required to manually sift
through relatively large sets of documents that are

only sparsely populated with relevant responses.

Therefore, a need exists in the art for a
technique, specifically apparatus and accompanying
methods, for retrieving information that can vyield a
significant improvement in precision over that
attainable through conventional statistical approaches
to information retrieval. Moreover, such a technique
needs to yield reliable and repeatable results across a
wide range of sentence types and lengths in arbitrarily
occurring text, and be practical and cost-effective to
implement. To significantly improve precision over
that of such conventional approaches and in spite of
the problems inherent in the art, such a technique
should preferably utilize natural language processing
to advantageously select relevant documents for
retrieval and subsequent user presentation based on
matching their semantic content vis-a-vis that of a

query.

SUMMARY OF THE INVENTION

In accordance with our broad teachings, the
present invention satisfies this need by employing

natural language processing to improve the accuracy of

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-11-

a keyword-based document search performed by, e.g., a

statistical web search engine.

Broadly speaking, this processing involves
production, comparison and weighting of matching
logical forms respectively associated with a search
guery and each of the retrieved documents. The
retrieved documents are rank ordered, based on a
predefined function of "logical forms" for both the
query and the retrieved documents, specifically a sum
of weights associated with matching logical forms
associated with the documents, and finally displayed in
that ordering. A logical form is a directed acyclic
graph in which words representing text of any arbitrary
size are linked by labeled relations. In particular, a
logical form portrays semantic relationships,
particularly argument and adjunct relationships,
between important words in an input string. This
portrayal can take various specific forms, such as, a
logical form graph or any sub-graph thereof, the latter
including, for example, a list of logical form triples,
with each of the triples being illustratively of a form
*word-relation-word"; wherein, any one of these forms

can be used with our invention.

In accordance with our specific teachings,

‘such a search ultimately yields a set of retrieved

documents from, e.g. a database or the world wide web.
Each document is then subjected to natural language
processing, specifically morphological, syntactic and
logical form, to ultimately produce appropriate logical
forms for each sentence in each document. A

user-supplied query is analyzed in the same manner to

10

15

20

25

30

WO 99/05618 PCT/US98/09711

~12-

yvield a set of corresponding logical form triples
therefor. The set of logical forms for the query is
then compared to the sets of logical forms associated
with each of the retrieved documents in order to
ascertain a match between logical forms from the query
set and logical forms from each document set.

Documents that produce no matches are eliminated from
further consideration. Each remaining document is then
heuristically scored. In particular, each different
relation type, i.e., such as deep subject, deep object,
operator and the like, that can occur in a logical form
is assigned a predefined weight. The score of each
such remaining document is a predefined function of the
weights of the matching logical forms therein. This
function may be, e.g., a sum of the weights associated
with all unique matching triples (duplicate matches
being ignored) which occur in that document. Finally,
the retained documents are then presented to a user in
descending rank order based on their scores, typically
in groups of a small predefined number of, e.g. five or
ten, documents starting with the group having the
highest scores, then followed, in descending rank
order, by other groups in succession, as the user so

selects.

The present invention can be used in several
different processing topologies: (a) both the query and
keyword based search (document retrieval) can be
processed by a common computer, such as a local
personal computer (PC); (b) the keyword-based search
can be processed by a remote computer, e.g. a remote
server, with the query and the search results being

processed on, e.g., a client PC; or (c) the query can

10

15

20

25

30

WO 99/05618 PCT/US98/09711

~13-

be generated at a client PC and the remaining
processing being distributed throughout various remote
servers. In addition, each document in the database
can be preprocessed, as it is being indexed into the
database, to yield associated logical forms which are
then stored for subsequent access, thereby saving
execution time whenever that document is subsequently

retrieved and subjected to natural language processing.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be
readily understood by considering the following
detailed description in conjunction with the

accompanying drawings, in which:

FIG. 1 depicts a very high-level block
diagram of information retrieval system 5 in accordance

with our present invention;

FIG. 2 depicts a high-level embodiment of
information retrieval system 200, of the type shown in
FIG. 1, that utilizes the teachings of our present

invention;

FIG. 3 depicts a block diagram of computer
system 300, specifically a client personal computer,

that is contained within system 200 shown in FIG. 2;

FIG. 4 depicts a very-high level block
diagram of application programs 400 that execute within

computer 300 shown in FIG. 3;

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-14-

FIGs. 5A-5D depict different corresponding
examples of English language sentences of varying
complexity and corresponding logical form elements

therefor;

FIG. 6 depicts the correct alignment of the
drawing sheets for FIGs. 6A and 6B;

FIGs. 6A and 6B collectively depict a

flowchart of our inventive Retrieval process 600;

FIG. 7 depicts a flowchart of NLP routine 700

that is executed within process 600;

FIG. 8A depicts illustrative Matching Logical
Form Triple Weighting table 800;

FIG. 8B graphically depicts logical form
triple comparison; and document scoring, ranking and
selection processes, in accordance with our inventive
teachings, that occur within blocks 650, 660, 665 and
670, all shown in FIGs. 6A and 6B, for an illustrative
query and an illustrative set of three statistically

retrieved documents;

FIGs. 9A-9C respectively depict three
different embodiments of information retrieval systems
that incorporate the teachings of our present

invention;

FIG. 9D depicts an alternate embodiment of

remote computer (server) 930 shown in FIG. 9C for use

10

15

20

25

30

WO 99/05618 PCT/US98/09711

~15-

in implementing yet another different embodiment of our

present invention;

FIG. 10 depicts the correct alignment of the
drawing sheets for FIGs. 10A and 10B;

FIGs. 10A and 10B collectively depict yet
another embodiment of our present invention wherein the
logical form triples for each document are precomputed
and stored, along with the document record therefor,
for access during a subsequent document retrieval

operation;

FIG. 11 depicts Triple Generation
process 1100 that is performed by Document Indexing

engine 1015 shown in FIGs. 10A and 10B;

FIG. 12 depicts the correct alignment of the
drawing sheets for FIGs. 12A and 12B;

FIGs. 12A and 12B collectively depict a
flowchart of our inventive Retrieval process 1200 that
is executed within computer system 300 shown in

FIGs. 10A and 10B;

FIG. 13A depicts a flowchart of NLP
routine 1300 which is executed within Triple Generation

process 1100; and

FIG. 13B depicts a flowchart of NLP
routine 1350 which is executed within Retrieval

process 1200.

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-16-

To facilitate understanding, identical
reference numerals have been used, where possible, to

designate elements that are common to the figures.

DETAILED DESCRIPTION

After considering the following description,
those skilled in the art will clearly realize that the
teachings of our present invention can be readily
utilized in nearly any information retrieval system to
increase the precision of a search engine used therein,
regardless of whether that engine is a conventional
statistical engine or not. Moreover, our invention can
be utilized to improve precision in retrieving textual
information from nearly any type of mass data store,
e.g. a database whether stored on magnetic, optical
(e.g. a CD-ROM) or other media, and regardless of any
particular language in which the textual information

exists, e.g. English, Spanish, German and so forth.

Generally speaking and in accordance with our
present invention, we have recognized that precision of
a retrieval engine can be significantly enhanced by
employing natural language processing to process, i.e.,
specifically filter and rank, the records, i.e.,
ultimately the documents, provided by a search engine

used therein.

With this in mind, FIG. 1 depicts a very
high-level block diagram of information retrieval
system 5 that utilizes our invention. System 5 is
formed of conventional retrieval engine 20, e.g. a

keyword based statistical retrieval engine, followed by

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-17-

processor 30. Processor 30 utilizes our inventive
natural language processing technique, as described
below, to filter and re-rank documents produced by
engine 20 to yield an ordered set of retrieved
documents that are moré relevant to a user-supplied

query than would otherwise arise.

Specifically, in operation, a user supplies a
search query to system 5. The query should be in
full-text (commonly referred to as "literal") form in
order to take full advantage of its semantic content
through natural language processing and thus provide an
increase in precision over that associated with
engine 20 alone. System 5 applies this query both to
engine 20 and processor 30. In response to the query,
engine 20 searches through dataset 10 of stored
documents to yield a set of retrieved documents
therefrom. This set of documents (also referred to
herein as an "output document set") is then applied,
as symbolized by line 25, as an input to processor 30.
Within processor 30, as discussed in detail below, each
of the documents in the set is subjected to natural
language processing, specifically morphological,
syntactic and logical form, to produce logical forms
for each sentence in that document. Each such logical
form for a sentence encodes semantic relationships,
particularly argument and adjunct structure, between
words in a linguistic phrase in that sentence.
Processor 30 analyzes the query in an identical fashion
to yield a set of corresponding logical forms therefor.
Processor 30 then compares the set of forms for the
query against the sets of logical forms associated with

each of the documents in the set in order to ascertain

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-18-

any match between logical forms in the query set and
logical forms for each document. Documents that
produce no matches are eliminated from further
consideration. Each remaining document that contains
at least one logical form which matches the query
logical form is retained and heuristically scored by
processor 30. As will be discussed below, each
different relation type, i.e., such as deep subject,
deep object, operator and the like, that can occur in a
logical form triple is assigned a predefined weight.
The total weight (i.e., score) of each such document
is, e.g., the sum of the weights of all its uniquely
matching triples, i.e. with duplicate matching triples
being ignored. Finally, processor 30 presents the
retained documents to the user rank-ordered based on
their score, typically in groups of a predefined
number, e.g. five or ten, starting with those documents

that have the highest score.

Inasmuch as system 5 is very general purpose
and can be adapted to a wide range of different
applications, then, to simplify the following
discussion, we will discuss use of our invention in one
illustrative context. That context will be an
information retrieval system that employs a
conventional keyword based statistical Internet search
engine to retrieve stored records of English-language
documents indexed into a dataset from the world wide
web. Each such record generally contains predefined
information, as set forth below, for a corresponding
document. For other search engines, the record may
contain the entire document itself. Though the

following discussion addresses our invention in the

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-19-

context of use with a conventional Internet search
engine that retrieves a record containing certain
information about a corresponding document including a
web address at which that document can be found,
generically speaking, the ultimate item retrieved by
that engine is, in fact, the document, even though an
intermediate process, using that address, is generally
employed to actually access the document from the web.
After considering the following description, those
skilled in the art will readily appreciate how our
present invention can be easily adapted for use in any

other information retrieval application.

FIG. 2 depicts a high-level block diagram of
a particular embodiment of our invention used in the
context of an Internet search engine. Our invention
will principally be discussed in detail in the context
of this particular embodiment. As shown, system 200
contains computer system 300, such as a client personal
computer (PC), connected, via network connection 205,
through network 210 (here the Internet, though any
other such network, e.g. an intranet, could be
alternatively used), and network connection 215, to
server 220. The server typically contains computer 222
which hosts Internet search engine 225, typified by,
e.g., the ALTA VISTA search engine (ALTA VISTA is a
registered trademark of Digital Equipment Corporation
of Maynard, Massachusetts) and is connected to mass
data store 227, typically a dataset of document records
indexed by the search engine and accessible through the
World Wide Web on the Internet. Each such record
typically contains: (a) a web address (commonly

referred to as a uniform resource locator -- URL) at

10

15

20

25

30

WO 99/05618

PCT/US98/09711
-20-

which a corresponding document can be accessed by a web
browser, (b) predefined content words which appear in
that document, along with, in certain engines, a
relative address of each such word relative to other
content words in that document; (c¢) a short summary,
often just a few lines, of the document or a first few
lines of the document; and possibly (d) a description
of the document as provided in its hypertext markup

language (HTML) description field.

A user stationed at computer system 300
establishes an Internet connection, through, e.g., an
associated web browser (such as based on the "Internet
Explorer" version 3.0 browser available from the
Microsoft Corporation and appropriately modified to
include our inventive teachings) executing at this
system to server 220 and particularly to search
engine 222 executing thereat. Thereafter, the user
enters a query, here symbolized by line 201, to the
browser which, in turn, sends the query, via system 300
and through the Internet connection to server 220, to
search engine 225. The search engine then processes
the query against document records stored within
dataset 227 to yield a set of retrieved records, for
documents, that the engine determines is relevant to
the query. Inasmuch as the manner through which
engine 225 actually indexes documents to form document
records for storage in data store 227 and the actual
analysis which the engine undertakes to select any such
stored document record are both irrelevant to the
present invention, we will not discuss either of these
aspects in any further detail. Suffice it to say, that

in response to the query, engine 225 returns a set of

10

15

20

25

30

WO 99/05618 PCT/US98/09711

—21-

retrieved document records, via the Internet
connection, back to web browser 420. Browser 420,
simultaneously while engine 225 is retrieving documents
and/or subsequent thereto, analyzes the query to yield
its corresponding set of logical form triples. Once
the search engine completes its search and has
retrieved a set of document records and has supplied
that set to the browser, the corresponding documents
(i.e., to form an output document set) are themselves
accessed by the browser from associated web servers
(the datasets associated therewith collectively forming
a "repository" of stored documents; such a repository
can also be a stand-alone dataset as well, such as in,
e.g., a self-contained CD-ROM based data retrieval
application). The browser, in turn, then analyzes each
of the accessed documents (i.e., in the output document
set) to form a corresponding set of logical form
triples for each such document. Thereafter, as
discussed in detail below, browser 420, based on
matching logical form triples between the query and the
retrieved documents, scores each document having such a
match and presents the user with those documents, as
symbolized by line 203, ranked in terms of descending
score, typically in a group of a predefined small
number of documents having the highest rankings, then
followed, if the user so selects through the browser,
by the next such group and so forth until the user has
examined a sufficient number of the documents so
presented. Though FIG. 2 depicts our invention as
illustratively utilizing a network connection to obtain
document records and documents from a remote server,
our invention is not so limited. As will be discussed

in detail below, in conjunction with FIG. 9A, such a

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-22-

networked connection is not necessary where the
retrieval application and our invention are both
executed on a common computer, i.e. a local PC, and an
accompanying dataset, e.g. stored in CD-ROM or other

suitable media, is situated and accessible thereat.

FIG. 3 depicts a block diagram of computer
system 300 shown in FIG. 2, which incorporates the

teachings of our present invention.

As shown, this system, illustratively a
client personal computer, comprises input interfaces
(INPUT I/F) 330, processor 340, communications
interface (COMM I/F) 350, memory 375 and output
interfaces (OUTPUT I/F) 360, all conventionally
interconnected by bus 370. Memory 375, which generally
includes different modalities (all of which are not
specifically shown for simplicity), illustratively
random access memory (RAM) and hard disk storage,
stores operating system (0/S) 378 and application
programs 400. Software that implements our inventive
teachings is typically incorporated within application
programs 400, specifically for this embodiment, within
a web browser (shown in FIG. 4). This operating system
may be implemented by any conventional operating
system, such as the WINDOWS NT operating system which
is currently available from Microsoft Corporation of
Redmond, Washington (which also owns the registered
trademark "WINDOWS NT"). Given that, we will not
discuss any components of 0/S 378, inasmuch as its
constituent processes are irrelevant to the invention.
However, the browser, and hence our inventive software,

may also be incorporated within the operating system

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-23-

itself. Nevertheless, for the sake of illustration and
simplicity, we will assume that the browser is
separable from the operating system and is located
within application programs 400. Application

programs 400 execute under control of 0/S 378. For
each executing application program including the web
browser, one or more separate task instances are
invoked by a user in response to each user specified
command, typically entered interactively through
appropriate manipulation of user input device 390 given
available command choices, such as in a menu or icons
in a toolbar, and accompanying information then

presented on display 380.

As shown in FIG. 3, incoming information can
arise from two illustrative external sources: network
supplied information, e.g., from the Internet and/or
other networked facility such as an intra-net (all
generally shown as network 210 in FIG. 2), through
network connection 205 to communications interface 350
(shown in FIG. 3), or from a dedicated input source via
path(s) 310 to input interfaces 330. Dedicated input
can originate from a wide variety of sources, e.g., an
external dataset whether local or remote or other input
source. Input interfaces 330 are connected to
path(s) 310 and contain appropriate circuitry to
provide the necessary and corresponding electrical
connections required to physically connect and
interface each differing dedicated source of input
information to computer system 300. Under control of
the operating system, application programs 400 exchange
commands and data with external sources, such as a

remote web server, via network connection 205 or

10

15

20

25

30

WO 99/05618

PCT/US98/09711
-24-

dedicated sources via path(s) 310, to transmit and
receive information typically requested by a user

during program execution.

Input interfaces 330 can also electrically
connect, via leads 395, and interface user input
device 390, such as a keyboard and mouse, to computer
system 300. Display 380, such as a conventional color
monitor, and printer 385, such as a conventional laser
printer, can be connected, via leads 363 and 367,
respectively, to output interfaces 360. The output
interfaces provide requisite circuitry to electrically
connect and interface the display and printer to the
computer system. Hardcopy output information from an
executing application is provided to the user through
printer 385. In particular, through the display and
printer and appropriate manipulation of input
devices 390 (specifically the mouse and keyboard), a
user stationed at system 300 can, e.g., graphically
communicate, via the Internet, with any of a vast
number of remote web servers, including a search
engine(s) accessible therethrough, and download
information, such as documents, therefrom for local

display and printing.

Since the specific hardware components of
computer system 300 as well as all aspects of the
software stored within memory 375, apart from those
necessary to implement the present invention, are
conventional and well-known, they will not be discussed

in any further detail.

10

15

20

25

30

WO 99/05618 PCT/US98/09711

_25-

FIG. 4 depicts a very-high level block
diagram of application programs 400 that execute within
computer 300 shown in FIG. 3. These programs, to the
extent relevant to the present invention, include, as
shown in FIG. 4, web browser 420 which, for
implementing our present invention, comprises retrieval
process 600 (which will be discussed below in detail in
conjunction with FIGs. 6A and 6B). Assuming an
Internet connection is established between the web
browser and, e.g., a user-selected statistical search
engine, such as the ALTA VISTA search engine, the user
then supplies, as symbolized by line 422 shown in
FIG. 4, process 600 with a full-text ("literal") search
query. This process forwards, as symbolized by
line 426, the query through the web browser to the
search engine. 1In addition, though not specifically
shown, process 600 also internally analyzes the query
to produce its corresponding logical form triples which
are then locally stored within computer 300. In
response to the query, the search engine supplies, as
symbolized by line 432, process 600 with a set of
statistically retrieved document records. Each of
these records includes, as noted above, a web address,
specifically a URL, at which that document can be
accessed and appropriate command(s) required by a
remote web server, at which that document resides,
sufficient to download, over the Internet, a computer
file containing that document. Once process 600
receives all the records, this process then sends, via
web browser 420 and as symbolized by line 436, the
appropriate commands to access and download all the
documents specified by the records (i.e., to form the

output document set). These documents are then

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-26-

accessed, 1in seriatim, from their corresponding web
servers and downloaded to web browser 420 and
specifically process 600, as symbolized by line 442.
Once these documents are downloaded, process 600
analyzes each such document to produce and locally
store the corresponding logical form triples therefor.
Thereafter, through comparing the logical form triples
for the query against those for each document,

process 600 scores each document that contains at least
one matching logical form triple, then ranks these
particular documents based on their scores, and finally
instructs web browser 400 to present these particular
documents, as symbolized by line 446, in ranked order
by descending document score on a group-by-group basis
to the user. Browser 400 generates a suitable
selection button, on a screen of display 380 (see

FIG. 3), through which the user can select, by
appropriately "clicking" thereon with his(her) mouse,
to display each successive group of documents, as

desired.

To fully appreciate the utility of logical
forms in determining, preserving and encoding semantic
information, at this point, we will digress from
discussing the processing that implements our invention
to illustrate and describe, to the extent relevant,
logical form and logical form triples as used in the
present invention and provide a brief overview of the

manner through which they are produced.

Broadly speaking, a logical form is a
directed acyclic graph in which words representing text

of any arbitrary size are linked by labeled relations.

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-27-

A logical form portrays semantic relationships between
important words in a phrase, which may include
hypernyms and/or synonyms thereof. As will be
discussed and illustrated in FIGs. 5A-5D, a logical
form can take on any one of a number of different
forms, e.g. a logical form graph or any sub-graph
thereof such as, for example, a list of logical form
triples, each of the triples being illustratively of a
form "word-relation-word". While our present
invention, as specifically embodied, generates and
compares logical form triples, our invention can
readily utilize any other form, such as those noted
above, that can portray a semantic relationship between

words.

Since logical form triples and their
construction can best be understood through a series of
examples of increasingly complex sentences, first
consider FIG. 5A. This figure depicts logical form
graph 515 and logical form triples 525 for illustrative
input string 510, specifically a sentence "The octopus

has three hearts.".

In general, to generate logical form triples
for an illustrative input string, e.g. for input
string 510, that string is first parsed into its
constituent words. Thereafter, using a predefined
record (not to be confused with document records
employed by a search engine), in a stored lexicon, for
each such word, the corresponding records for these
constituent words, through predefined grammatical
rules, are themselves combined into larger structures

or analyses which are then, in turn, combined, again

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-28-

through predefined grammatical rules, to form even
larger structures, such as a syntactic parse tree. A
logical form graph is then built from the parse tree.
Whether a particular rule will be applicable to a
particular set of constituents is governed, in part, by
presence or absence of certain corresponding attributes
and their values in the word records. The logical form
graph is then converted into a series of logical form
triples. Illustratively, our invention uses such a
lexicon having approximately 165,000 head word entries.
This lexicon includes various classes of words, such
as, e.g., prepositions, conjunctions, verbs, nouns,
operators and quantifiers that define syntactic and
semantic properties inherent in the words in an input
string so that a parse tree can be constructed
therefor. Clearly, a logical form (or, for that
matter, any other representation, such as logical form
triples or logical form graph within a logical form,
capable of portraying a semantic relationship) can be
precomputed, while a corresponding document is being
indexed, and stored, within, e.g., a record for that
document, for subsequent access and use rather than
being computed later once that document has been
retrieved. Using such precomputation and storage, as
occurs in another embodiment of our invention discussed
in detail below in conjunction with FIGs. 10-13B,
drastically and advantageously reduces the amount of
natural language processing, and hence execution time
associated therewith, required to handle any retrieved

document in accordance with our invention.

In particular, an input string, such as

sentence 510 shown in FIG. 5A, is first morphologically

10

15

20

25

30

35

WO 99/05618 PCT/US98/09711

-29-

analyzed, using the predefined record in the lexicon
for each of its constituent words, to generate a
so-called "stem" (or "base") form therefor. Stem forms
are used in order to normalize differing word forms,
e.g., verb tense and singular-plural noun variations,
to a common morphological form for use by a parser.
Once the stem forms are produced, the input string is
syntactically analyzed by the parser, using the
grammatical rules and attributes in the records of the
constituent words, to yield the syntactic parse tree
therefor. This tree depicts the structure of the input
string, specifically each word or phrase, e.g. noun
phrase "The octopus", in the input string, a category
of its corresponding grammatical function, e.g., NP for
noun phrase, and link(s) to each syntactically related
word or phrase therein. For illustrative sentence 510,

its associated syntactic parse tree would be:

DECL

---NP -- DETP-ADJ* "The"
-- NOUN* "octopus"

---VERB* has

---NP -—- QUANP-ADJ* "three"
-- NOUN* "hearts"

---CHAR “on

TABLE 1 -- SYNTACTIC PARSE TREE

for "The octopus has three hearts."

A start node located in the upper-left hand corner of

the tree defines the type of input string being parsed.

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-30-

Sentence types include "DECL" (as here) for a
declarative sentence, "IMPR" for an imperative sentence
and "QUES" for a question. Displayed vertically to the
right and below the start node is a first level
analysis. This analysis has a head node indicated by

an asterisk, typically a main verb (here the word

"hag"), a premodifier (here the noun phrase "The
octopus"), followed by a postmodifier (the noun phrase
"three hearts"). Each leaf of the tree contains a

lexical term or a punctuation mark. Here, as labels,
"NP" designates a noun phrase, and "CHAR" denotes a

punctuation mark.

The syntactic parse tree is then further
processed using a different set of rules to yield a
logical form graph, such as graph 515 for input
string 510. The process of producing a logical form
graph involves extracting underlying structure from
syntactic analysis of the input string; the logical
form graph includes those words that are defined as
having a semantic relationship therebetween and the
functional nature of the relationship. The "deep"
cases or functional roles used to categorize different

semantic relationships include:

Dsub -- deep subject

Dind -- deep indirect object

Dobj -- deep object

Dnom -- deep predicate nominative
Dcmp -- deep object complement.

TABLE 2

10

15

20

25

30

WO 99/05618 PCT/US98/09711
-31-

To identify all the semantic relationships in an input
string, each node in the syntactic parse tree for that
string is examined. In addition to the above
relationships, other semantic roles are used, e.g. as

follows:

PRED -- predicate

PTCL -- particle in two-part verbs

Ops -- Operator, e.g. numerals

Nadj -- adjective modifying a noun

Dadj -- predicate adjective

PROPS-- otherwise unspecified modifier that

is a clause
MODS -- otherwise unspecified modifier that

is not a clause

TABLE 3

Additional semantic labels are defined as well, for

example:

TmeAt -- time at which
LocAt -- location
TABLE 4

In any event, the results of such analysis
for input string 510 is logical form graph 515. Those
words in the input string that exhibit a semantic
relationship therebetween (such as, e.g. "Octopus" and
"Have") are shown linked to each other with the
relationship therebetween being specified as a linking

attribute (e.g. Dsub). This graph, typified by

10

15

20

25

30

WO 99/05618 PCT/US98/09711

32—

graph 515 for input string 510, captures the structure
of arguments and adjuncts for each input string. Among
other things, logical form analysis maps function
words, such as prepositions and articles, into features
or structural relationships depicted in the graph.
Logical form analysis also resolves anaphora, i.e.,
defining a correct antecedent relationship between,
e.g., a pronoun and a co-referential noun phrase; and
detects and depicts proper functional relationships for
ellipsis. Additional processing may well occur during
logical form analysis in an attempt to cope with
ambiguity and/or other linguistic idiosyncrasies.
Corresponding logical form triples are then simply read
in a conventional manner from the logical form graph
and stored as a set. Each triple contains two node
words as depicted in the graph linked by a éemantic
relationship therebetween. For illustrative input
string 510, logical form triples 525 result from
processing graph 515. Here, logical form triples 525
contain three individual triples that collectively
convey the semantic information inherent in input

string 510.

Similarly, as shown in FIGs. 5B-5D, for input
strings 530, 550 and 570, specifically exemplary
sentences "The octopus has three hearts and two
lungs.", "The octopus has three hearts and it can
swim.", and "I like shark fin soup bowls.", logical
form graphs 535, 555 and 575, as well as logical form
triples 540, 560 and 580, respectively result.

There are three logical form constructions

for which additional natural language processing is

10

15

20

25

30

WO 99/05618

PCT/US98/09711
-33-

required to correctly yield all the logical form
triples, apart from the conventional manner, including
a conventional "graph walk", in which logical form
triples are created from the logical form graph. In
the case of coordination, as in exemplary sentence "The
octopus has three hearts and two lungs", i.e. input
string 530, a logical form triple is created for a
word, its semantic relation, and each of the values of
the coordinated constituent. According to a "special™
graph walk, we find in figure 540 two logical form
triples "have-Dobj-heart" and "have-Dobj-lung". Using
only a conventional graph walk, we would have obtained
only one logical form triple "have-Dobj-and".
Similarly, in the case of a constituent which has
referents (Refs), as in exemplary sentence "The octopus
has three hearts and it can swim", i.e. input

string 550, we create a logical form triple for a word,
its semantic relation, and each of the values of the
Refs attribute, in additional to the triples generated
by the conventional graph walk. According to this
special graph walk, we find in triples 560 the logical
form triple "swim-Dsub-octopus" in addition to the
conventional logical form triple "swim-Dsub-it".
Finally, in the case of a constituent with noun
modifiers, as in the exemplary sentence "I like shark
fin soup bowls", i.e. input string 570, additional
logical form triples are created to represent possible
internal structure of the noun compounds. The
conventional graph walk created the logical form
triples "bowl-Mods-shark", "bowl-Mods-fin" and
bowl-Mods-soup", reflecting the possible internal
structure [[shark] [fin] [soup] bowl]. 1In the special

graph walk, we create additional logical form triples

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-34-

to reflect the following possible internal structures

[[shark fin] [soup] bowl] and [[shark] [fin soup] bowl]
and [[shark [fin] soup] bowl], respectively:
"fin-Mods-shark", "soup-Mods-fin", and

"soup-Mods-shark".

Inasmuch as the specific details of the
morphological, syntactic, and logical form processing
are not relevant to the present invention, we will omit
any further details thereof. However, for further
details in this regard, the reader is referred to
co-pending United States patent applications entitled
"Method and System for Computing Semantic Logical Forms
from Syntax Trees", filed June 28, 1996 and assigned
serial number 08/674,610 and particularly "Information
Retrieval Utilizing Semantic Representation of Text",
filed March 7, 1997 and assigned serial number

; both of which have been assigned to the
present assignee hereof and are incorporated by

reference herein.

With this overview of logical forms and their
construction in mind, we will now return to discussing

the processing that implements our present invention.

A flowchart of our inventive retrieval
process 600, as used in the specific embodiment of our
invention shown in FIGs. 2, 3 and 4, is collectively
depicted in FIGs. 6A and 6B; for which the correct
alignment of the drawing sheets for these figures is
shown in FIG. 6. With exception of the operations
shown in dashed block 225, the remaining operations

shown in these figures are performed by computer

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-35-

system, e.g. client PC 300 (see FIGs. 2 and 3) and
specifically within web browser 420. To simplify
understanding, the reader should simultaneously refer
to FIGs. 2, 3 and 6A-6B throughout the following

discussion.

Upon entry into process 600, execution
proceeds first to block 605. This block, when
executed, prompts a user to enter a full-text (literal)
guery through web browser 420. The query can be in the
form of a single question (e.g. "Are there any
air-conditioned hotels in Bali?") or a single sentence
(e.g. "Give me contact information for all fireworks
held in Seattle during the month of July.") or a
sentence fragment (e.g. "Clothes in Ecuador"). Once
this query is obtained, execution splits and proceeds,
via path 607, to block 610 and, via path 643, to
path 645. Block 645, when performed, invokes NLP
routine 700 to analyze the query and construct and
locally store its corresponding set of logical form
triples. Block 610, when performed, transmits, as
symbolized by dashed line 615, the full-text query from
web browser 420, through an Internet connection, to a
remote search engine, such as engine 225 situated on
server 220. At this point, block 625 is performed by
the search engine to retrieve a set of document records
in response to the query. Once this set is formed, the
set is transmitted, as symbolized by dashed line 630,
by the remote server back to computer system 300 and
specifically to web browser 420 executing thereat.
Thereafter, block 635 is performed to receive the set
of records, and then for each record: extract a URL

from that record, access a web site at that URL and

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-36-

download therefrom an associated file containing a
document corresponding to that record. Once all the
documents have been downloaded, block 640 is performed.
For each such document, this block first extracts all
the text from that document, including any text
situated within HTML tags associated with that
document. Thereafter, to facilitate natural language
processing which operates on a single sentence at a
time, the text for each document is broken into a text
file, through a conventional sentence breaker, in which
each sentence (or question) occupies a separate line in
the file. Thereafter, block 640 repeatedly invokes NLP
routine 700 (which will be discussed in detail below in
conjunction with FIG. 7), for each line of text in that
document, to analyze each of these documents and
construct and locally store a corresponding set of
logical form triples for each line of text in that
document. Though the operations in block 645 have been
discussed as being performed essentially in parallel
with those in blocks 610, 635 and 640, the operations
in the former block, based on actual implementation
considerations, could be performed serially either
before or after the operations in blocks 610, 635 and
640. Alternatively, as in the case of another
embodiment of our invention as discussed below in
conjunction with FIGs. 10-13B, the logical form triples
for each document can be precomputed and stored for
subsequent access and use during document retrieval, in
which case, these triples would simply be accessed
rather than computed during document retrieval. In
this case, the triples may have been stored, in some

manner, as properties of that stored document or as,

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-37-

e.g., a separate entry in either the record for that

document or in the dataset containing that document.

In any event and returning to process 600
shown in FIGs. 6A and 6B, once the sets of logical form
triples have been constructed and fully stored for both
the query and for each of the retrieved documents in
the output document set, block 650 is performed. This
block compares each of the logical form triples in the
query against each of the logical form triples for each
of the retrieved documents to locate a match between
any triple in the query and any triple in any of the
documents. An illustrative form of matching is defined
as an identical match between two triples both in terms
of the node words as well as in the relation type in
these triples. In particular, for an illustrative pair
of logical form triples: wordla-relationl-word2a and
wordlb-relation2-word2b, a match only occurs if the
node words wordla and word lb are identical to each
other, node words word2a and word2b are identical to
each other, and relationl and relation2 are the same.
Unless all three elements of one triple identically
match corresponding elements of another triple, these
two triples do not match. Once block 650 completes,
block 655 is performed to discard all retrieved
documents that do not exhibit a matching triple, i.e.,
having no triple that matches any triple in the query.
Thereafter, block 660 is performed. Through block 660,
all remaining documents are assigned a score, based on
the relation type(s) of matching triples and their
weights, that exist for each of those documents. In
particular, each different type of relation that can

arise in a logical form triple is assigned a

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-38-

corresponding weight, such as those shown in table 800
in FIG. 8A. For example, as shown, illustrative
relations Dobj, Dsub, Ops and Nadj may be assigned
predetermined static numeric weights of 100, 75, 10 and
10, respectively. The weight reflects a relative
importance ascribed to that relation in indicating a
correct semantic match between a query and a document.
The actual numeric values of these weights are
generally defined on an empirical basis. As described
in detail in conjunction with FIG. 8B below, for each
remaining document, its score is a predefined function,
illustratively here a numeric sum, of the weights of
its unique matching triples (ignoring all duplicate
matching triples). Once the documents are so weighted,
block 665 is performed to rank order the documents in
order of descending score. Finally, block 670 is
performed to display the documents in rank order,
typically in terms of a small predefined group of
documents, typically five or ten, that exhibit the
highest scores. Thereafter, the user, can by, for
example, appropriately "clicking" his(her) mouse on a
corresponding button displayed by web browser 420, have
computer system (client PC) 300 display the next group
of ranked documents, and so forth until the user has
sufficiently examined all the ranked documents in

succession, at which point process 600 is completed.

FIG. 7 depicts a flowchart of NLP
routine 700. This routine, given a single line of
input text -- whether it be a query, sentence in a
document, or text fragment, constructs the

corresponding logical form triples therefor.

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-30-

In particular, upon entry into routine 700,
block 710 is first executed to process a line of input
text to yield a logical form graph, such as
illustrative graph 515 shown in FIG. S5A. This
processing includes morphological and syntactic
processing to yield a syntactic parse tree from which a
logical form graph is then computed. Thereafter, as
shown in FIG. 7, block 720 is performed to extract
(read) a set of corresponding logical form triples from
the graph. Once this occurs, block 730 is executed to
generate each such logical form triple as a separate
and distinct formatted text string. Finally, block 740
is executed to store, in a dataset (or database), the
line of input text and, as a series of formatted text
strings, the set of logical form triples for that line.
Once this set has been completely stored, execution
exits from block 700. Alternatively, if in lieu of
logical form triples, a different representation, e.g.
a logical form graph, associated with a logical form is
to be used in conjunction with our invention, then
blocks 720 and 730 would be readily modified to
generate that particular form as the formatted string,
with block 740 storing that form in lieu of logical

form triples into the dataset.

To fully appreciate the manner through which
our invention compares and weights matching logical
form triples, and ranks corresponding documents,
consider FIG. 8B. This figure graphically depicts
logical form triple comparison; document scoring,
ranking and selection processes, in accordance with our
inventive teachings, that occur within blocks 650, 660,

665 and 670, all shown in FIGs. 6A and 6B, for an

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-40-

illustrative query and an illustrative set of three
retrieved documents. Agssume for purposes of
illustration, that a user supplied full-text query 810
to our inventive retrieval system, with the query being
"How many hearts does an octopus have?". Also, assume
that, in response to this query, through a statistical
search engine, three documents 820 were ultimately
retrieved. Of these documents, a first document
(denoted Document 1) is a recipe containing artichoke
hearts and octopus. A second document (denoted
Document 2) is an article about octopi. A third
document (denoted Document 3) is an article about deer.
These three documents and the query are converted into
their constituent logical form triples, the process
therefor being generically represented by "NLP"
(natural language processing). The resulting logical
form triples for the query and Document 1, Document 2
and Document 3 are given in blocks 830, 840, 850 and
860, respectively.

Once these triples have been so defined, then
as symbolized by dashed lines 845, 855 and 865, the
logical form triples for the query are compared, in
seriatim, against the logical form triples for
Document 1, Document 2 and Document 3, respectively, to
ascertain whether any document contains any triple that
matches any logical form triple in the query. Those
documents that contain no such matching triples, as in
the case of Document 1, are discarded and hence
considered no further. Document 2 and Document 3, on
the other hand, contain matching triples. In
particular, Document 2 contains three such triples:

"HAVE-Dsub-OCTOPUS", "HAVE-Dsub-HEART" illustratively

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-41-

associated with one sentence, and "HAVE-Dsub-OCTOPUS"
associated illustratively with another sentence (these
sentences not specifically shown). Of these triples,
two are identical, i.e., "HAVE-Dsub-OCTOPUS". A score
for a document is illustratively a numeric sum of the
weights of all uniquely matching triples in that
document. All duplicate matching triples for any
document are ignored. An illustrative ranking of the
relative weightings of the different types of relations
that can occur in a triple, in descending order from
their largest to smallest weightings are: first,
verb-object combinations (Dobj); verb-subject
combinations (Dsub); prepositions and operators (e.g.
Ops), and finally modifiers (e.g. Nadj). Such a
weighting scheme is given in illustrative triple
weighting table 800 shown in FIG. 8A. To simplify this
figure, table 800 does not include all the different
relations that can arise in a logical form triple, but
rather just those pertinent for the triples shown in
FIG. 8B. With this metric, the particular triples in
each document that contribute to its score are
indicated by a check ("vY'") mark. Of course, other
predefined metrics for scoring documents may be used
than those we have chosen, such as, e.g., multiplying
rather than adding weights in order to provide enhanced
document selectivity (discrimination), or summing the
weights in a different predefined fashion, such as
including multiple matches of the same type and/or
excluding the weights of other triples than those noted
above. In addition, for any document, the score may
also take into account, in some fashion: the node words
in the triples themselves in that document, or the

frequency or semantic content of these node words in

10

15

20

25

30

WO 99/05618 PCT/US98/09711

—42-

that document; the fregquency or semantic content of
specific node words in that document; or the frequency
of specific logical forms (or paraphrases thereof)
and/or of particular logical form triples as a whole in

that document; as well as the length of that document.

Thus, given the scoring metric we have chosen
and the weights listed in table 800 in FIG. 8A, the
score for Document 2 is 175 and is formed by combining
the weights, i.e., 100 and 75, for the first two
triples associated with the first sentence in the
document and indicated in block 850. The third triple
in this document and associated with the second
sentence thereof, and listed in this block, which
already matches one of other triples existing in the
document is ignored. Similarly, the score for
Document 3 is 100 and is formed of the weight,
here 100, for the sole matching triple, as listed in
block 860, in this particular document. Based on the
scores, Document 2 is ranked ahead of Document 3 with
these documents being presented to the user in that
order. In the event, which has not occurred here, that
any two documents have the same score, then those
documents are ranked in the same order provided by the
conventional statistical search engine and are

presented to the user in that order.

Clearly, those skilled in the art will
readily appreciate that various portions of the
processing used to implement our present invention can
reside in a single computer or be distributed among
different computers that collectively form an

information retrieval system. In that regard,

10

15

20

25

30

WO 99/05618 PCT/US98/09711

—43-

FIGs. 9A-9C respectively depict three different
embodiments of information retrieval systems that

incorporate the teachings of our present invention.

One such alternate embodiment is shown in
FIG. 9A wherein all the processing resides in single
local computer 910, such as a PC. 1In this case,
computer 910 hosts a search engine and, through that
engine, indexes input documents and searches a dataset
(either locally situated thereat, such as on a CD-ROM
or other storage medium, or accessible to that
computer), in response to a user-supplied full-text
guery, to ultimately yield a set of retrieved documents
that form an output document set. This computer also
hosts our inventive processing to: analyze both the
query and each such document to produce its
corresponding set of logical form triples; then compare
the sets of triples and select, score and rank the
documents in the fashion discussed above, and finally
present the results to a local user, e.g., stationed

thereat or accessible thereto.

Another alternate embodiment is shown in
FIG. 9B, which encompasses the specific context shown
in FIG. 2, wherein the retrieval system is formed of a
client PC networked to a remote server. Here, client
PC 920 is connected, via network connection 925, to
remote computer (server) 930. A user stationed at
client PC 920 enters a full-text query which the PC, in
turn, transmits over the network connection to the
remote server. The client PC also analyzes the query
to produce its corresponding set of logical form

triples. The server hosts, e.g., a conventional

10

15

20

25

30

WO 99/05618 PCT/US98/09711

—44-

statistical search engine and consequently, in response
to the query, undertakes statistical retrieval to yield
a set of document records. The server then returns the
set of records and ultimately, either on instruction of
the client or autonomously based on the capabilities of
the search engine or associated software, returns each
document in an output document set to the client PC.
The client PC then analyzes each of the corresponding
documents, in the output document set, it receives to
produce a set of logical form triples therefor. The
client PC then completes its processing by
appropriately comparing the sets of triples and
selecting, scoring and ranking the documents in the
fashion discussed above, and finally presenting the

results to the local user.

A further embodiment is shown in FIG. 9C.
Though this embodiment employs the same physical
hardware and network connections as in FIG. 9B, client
PC 920 accepts a full-text query from a local user and
transmits that query onward, via networked
connection 925, to remote computer (server) 930. This
server, instead of merely hosting a conventional search
engine, also provides natural language processing in
accordance with our invention. In this case, the
server, rather than the client PC, would appropriately
analyze the query to produce a corresponding set of
logical form triples therefor. The server would also
download, if necessary, each retrieved document in an
output document set and then analyze each such document
to produce the corresponding sets of logical form
triples therefor. Thereafter, the server would

appropriately compare the sets of triples for the query

10

15

20

25

30

WO 99/05618 PCT/US98/09711

~45-

and documents and select, score and rank the documents
in the fashion discussed above. Once this ranking has
occurred, then server 930 would transmit the remaining
retrieved documents in rank order, via networked
connection 925, to client PC 920 for display thereat.
The server could transmit these documents either on a
group-by-group basis, as instructed by the user in the
manner set forth above, or all in seriatim for
group-by-group selection thereamong and display at the

client PC.

Moreover, remote computer (server) 930 need
not be implemented just by a single computer that
provides all the conventional retrieval, natural
language and associated processing noted above, but can
be a distributed processing system as shown in FIG. 9D
with the processing undertaken by this server being
distributed amongst individual servers therein. Here,
server 930 is formed of front-end processor 940 which
distributes messages, via connections 950, to a series
of servers 960 (containing server 1, server 2, ...,
server n). Each of these servers implements a specific
portion of our inventive process. In that regard,
server 1 can be used to index input documents into
dataset on a mass data store for subsequent retrieval.
Server 2 can implement a search engine, such as a
conventional statistical engine, for retrieving, in
response to a user-supplied query routed to it by
front-end processor 940, a set of document records from
the mass data store. These records would be routed,
from server 2, via front-end processor 940, to, e.g.,
server n for subsequent processing, such as downloading

each corresponding document, in an output document set,

10

15

20

25

30

WO 99/05618 PCT/US98/09711

—_46-

from a corresponding web site or database. Front-end
processor 940 would also route the gquery to server n.
Server n would then appropriately analyze the query and
each document to produce the corresponding sets of
logical form triples and then appropriately compare the
sets of triples and select, score and rank the
documents in the fashion discussed above and return
ranked documents, via front-end processor 940, to
client PC 920 for ranked display thereat. Of course,
the various operations used in our inventive processing
could be distributed across servers 960 in any one of
many other ways, whether static or dynamic, depending
upon run-time and/or other conditions occurring
thereat. Furthermore, server 930 could be implemented
by illustratively a well-known sysplex configuration
with a shared direct access storage device (DASD)
accessible by all processors therein (or other similar
distributed multi-processing environment) with, e.g.,
the database for the conventional search engine and the
lexicon used for natural language processing both

stored thereon.

Though we have described our invention as
downloading documents in response to each retrieved
document record and then locally analyzing that
document, though, e.g., a client PC, to produce its
corresponding logical form triples, these triples could
alternatively be generated while the document is being
indexed by a search engine. In that regard, as the
search engine locates each new document for indexing,
through, e.g. use of a web crawler, the engine could
download a complete file for that document and then

either immediately thereafter or later, wvia a batch

10

15

20

25

30

WO 99/05618 ‘ PCT/US98/09711

—47-

process, preprocess the document by analyzing that
document and producing its logical form triples. To
complete the preprocessing, the search engine would
then store these triples, as part of an indexed record
for that document, in its database. Subsequently,
whenever that document record is retrieved, such as in
response to a search query, the triples therefor will
be returned as part of the document record to the
client PC for purposes of comparison and so forth. By
virtue of preprocessing the documents in the search
engine, a substantial amount of processing time at the
client PC can be advantageously saved, thereby

increasing client throughput.

Furthermore, though we have discussed our
invention in the specific context of use with an
Internet-based search engine, our invention is equally
applicable to use with: (a) any network accessible
search engine, whether it be intranet-based or not,
accessible through a dedicated network facility or
otherwise; (b) a localized search engine operative with
its own stored dataset, such as a CD-ROM based data
retrieval application typified by an encyclopedia,
almanac or other self-contained stand-alone dataset;

and/or (c) any combination thereof.

With the above in mind, FIGs. 10A and 10B
collectively depict yet another embodiment of our
present invention which generates logical form triples
through document preprocessing with the resulting
triples, document records and documents themselves
being collectively stored, as a self-contained

stand-alone dataset, on common storage media, such as

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-48-

one or more CD-ROMs or other transportable mass media
(typified by removable hard disk, tape, or
magneto-optical or large capacity magnetic or
electronic storage devices), for ready distribution to
end-users. The correct depiction of the drawing sheets
for these figures is shown in FIG. 10. By collectively
placing on, common media, the retrieval application
itself and the accompanying dataset which is to be
searched, a stand-alone data retrieval applications
results; hence, eliminating a need for a network

connection to a remote server to retrieve documents.

As shown, this embodiment is comprised of
essentially three components: document indexing
component 1005;, duplication component 1005; and user
component 10053. Component 1005; gathers documents for
indexing into a dataset, illustratively dataset 1030,
that, in turn, will form the document repository for a
self-contained document retrieval application, such as,
e.g., an encyclopedia, almanac, specialized library
(such as a decisional law reporter), journal collection
or the like. With the rapidly diminishing cost
associated with duplicating CD-ROMs and other forms of
media that have substantial storage capacity, this
embodiment is particularly attractive to
cost-effectively disseminate large collections of
documents, together with the ability to accurately
search through the collection, to a wide user

community.

In any event, incoming documents to be
indexed into the dataset are gathered from any number

of a wide variety of sources and applied, in seriatim,

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-49-

to computer 1010. This computer implements, through
appropriate software stored within memory 1015, a
document indexing engine which establishes a record
within dataset 1030 for each such document and stores
information into that record for the document, and also
establishes an appropriate stored entry, in the
dataset, containing a copy of the document itself.
Engine 1015 executes triple generation process 1100.
This process, to be described in detail below in
conjunction with FIG. 11, is separately executed for
each document being indexed. 1In essence, this process,
in essentially the same manner as discussed above for
block 640 shown in FIGs. 6A and 6B, analyzes the
textual phrases in the document and, through so doing,
constructs and stores a corresponding set of logical
form triples, for that document, within dataset 1030.
Inasmuch as all other processes executed by indexing
engine 1010, shown in FIGs. 10A and 10B, to index a
document, including generating an appropriate record
therefor, are all irrelevant to the present invention,
we will not address them in any detail. Suffice it to
say, that once the set of triples is generated through
process 1100, engine 1015 stores this set onto

dataset 1030 along with a copy of the document itself
and the document record created therefor. Hence,
dataset 1030, at the conclusion of all indexing
operations, not only stores a complete copy of every
document indexed therein and a record therefor, but
also stores a set of logical form triples for that

document.

Once all the desired documents are

appropriately indexed, dataset 1030, being viewed as a

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-50-

"Master Dataset" is itself then duplicated through
duplication component 1005,. Within component 1005,,
conventional media duplication system 1040 repetitively
writes a copy of the contents of the master dataset, as
supplied over line 1035, along with a copy of
appropriate files for the retrieval software including
a retrieval process and a user installation program, as
supplied over line 1043, onto common storage media,
such one or more CD-ROMs, to collectively form the
stand-alone document retrieval application. Through
system 1040, a series 1050 of media replicas 1050 is
produced having individual replicas 1050;, 1050;,

1050,. All the replicas are identical and contain, as
specifically shown for replica 1050;, a copy of the
document retrieval application files, as supplied over
line 1043, and a copy of dataset 1030, as supplied over
line 1035. Depending on the size and organization of
the dataset, each replica may extend over one or more
separate media, e.g. separate CD-ROMs. Subsequently,
the replicas are distributed, typically by a purchased
license, throughout a user community, as symbolized by

dashed line 1055.

Once a user, e.g. User;, obtains a replica,
such as CD-ROM; (also denoted as CD-ROM 1060), as
depicted in user component 10053, the user can execute
the document retrieval application, including our
present invention, through computer system 1070 (such
as a PC having a substantially, if not identical
architecture, to client PC 300 shown in FIG. 3),
against the dataset stored in CD-ROM; to retrieve
desired documents therefrom. In particular, after the

user obtains CD-ROM;, the user inserts the CD-ROM into

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-51-

PC 1070 and proceeds to execute the installation
program stored on the CD-ROM in order to create and
install a copy of the document retrieval application
files into memory 1075, usually a predefined directory
within a hard disk, of the PC, thereby establishing
document retrieval application 1085 on the PC. This
application contains search engine 1090 and retrieval
process 1200. Once installation is complete and
application 1085 is invoked, the user can then search
through the dataset on CD-ROM; by providing an
appropriate full-text query to the application. In
response to the query, the search engine retrieves,
from the dataset, a document set including the records
for those documents and the stored logical form triples
for each such document. The query is also applied to
retrieval process 1200. This process, very similar to
that of retrieval process 600 discussed above in
conjunction with FIGs. 6A and 6B, analyzes the query
and constructs the logical form triples therefor.
Thereafter, process 1200, shown in FIGs. 10A and 10B,
compares the logical form triples for each of the
retrieved documents, specifically the records therefor,
in the set against the triples for the query. Based on
the occurrence of matching triples therebetween and
their weights, process 1200 then scores, in the manner
described in detail above, each of the documents that
exhibits at least one matching triple, ranks these
documents in terms of descending score, and finally
visually presents the user with a small group of the
document records, typically 5-20 or less, that have the
highest rankings. The user, upon reviewing these
records, can then instruct the document retrieval

application to retrieve and display an entire copy of

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-52-

any of the associated documents that appears to be
interest. Once the user has reviewed a first group of
document records for a first group of retrieved
documents, the user can then request a next group of
document records having the next highest rankings, and
so forth until all the retrieved document records have
been so reviewed. Though application 1085 initially
returns ranked document records in response to a query,
this application could alternatively return ranked
copies of the documents themselves in response to the

query.

FIG. 11 depicts Triple Generation
process 1100 that is performed by Document Indexing
engine 1015 shown in FIGs. 10A and 10B. As discussed
above, process 1100 preprocesses a document to be
indexed by analyzing the textual phrases in that
document and, through so doing, constructing and
storing a corresponding set of logical form triples,
for that document, within dataset 1030. 1In particular,
upon entry into process 1100, block 1110 is executed.
This block first extracts all the text from that
document, including any text situated within HTML tags
associated with that document. Thereafter, to
facilitate natural language processing which operates
on a single sentence at a time, the text for each
document is broken into a text file, through a
conventional sentence breaker, in which each sentence
(or question) occupies a separate line in the file.
Thereafter, block 1110 invokes NLP routine 1300 (which
will be discussed in detail below in conjunction with
FIG. 132), separately for each line of text in that

document, to analyze this document and construct and

10

15

20

25

30

WO 99/05618 ‘ PCT/US98/09711

-53-

locally store a corresponding set of logical form
triples for that line and stored the set within
dataset 1030. Once these operations have been
completed, execution exits from block 1110 and

process 1100.

A flowchart of our inventive retrieval
process 1200, as used in the specific embodiment of our
invention shown in FIGs. 10A and 10B is collectively
depicted in FIGs. 12A and 12B; for which the correct
alignment of the drawing sheets for these figures is
shown in FIG. 12. In contrast with Retrieval
process 600 (shown in FIGs. 6A and 6B and discussed in
detail above), all the operations shown in FIGs. 12A
and 12B are performed on a common computer system, here
PC 1070 (see FIGs. 10A and 10B). To simplify
understanding, the reader should also simultaneously
refer to FIGs. 10A and 10B throughout the following

discussion.

Upon entry into process 1200, execution
proceeds first to block 1205. This block, when
executed, prompts a user to enter a full-text query.
Once this query is obtained, execution splits and
proceeds, via path 1207, to block 1210 and, via
path 1243, to path 1245. Block 1245, when performed,
invokes NLP routine 1350 to analyze the query and
construct and locally store its corresponding set of
logical form triples within memory 1075. Block 1210,
when performed, transmits, as symbolized by dashed
line 1215, the full-text query to search engine 1090.
At this point, the search engine performs block 1220 to

retrieve both a set of document records in response to

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-54-

the query and the associated logical form triples
associated with each such record. Once this set and
the associated logical form triples are retrieved, both
are then applied, as symbolized by dashed line 1230,
back to process 1200 and specifically to block 1240
therein. Block 1240 merely receives this information
from search engine 1090 and stores it within

memory 1075 for subsequent use. Though the operations
in block 1245 have been discussed as being performed
essentially in parallel with those in blocks 1210, 1090
and 1220, the operations in block 1245, based on actual
implementation considerations, could be performed
serially either before or after the operations in
blocks 1210, 1090 or 1220.

Once the sets of logical form triples have
been stored in memory 1075 for both the query and for
each of the retrieved document records, block 1250 is
performed. This block compares, in the manner
described in detail above, each of the logical form
triples in the query against each of the logical form
triples for each of the retrieved document records to
locate a match between any triple in the query and any
triple in any of the corresponding documents. Once
block 1250 completes, block 1255 is performed to
discard all retrieved records for documents that do not
exhibit a matching triple, i.e., having no triple that
matches any triple in the query. Thereafter,
block 1260 is performed. Through block 1260, all
remaining document records are assigned a score as
defined above and based on the relation type(s) of
matching triples and their weights, that exist for each

of the corresponding documents. Once the document

10

15

20

25

30

WO 99/05618 ‘ PCT/US98/09711

-55-

recordé are so weighted, block 1265 is performed to
rank order the records in order of descending score.
Finally, block 1270 is performed to display the records
in rank order, typically in terms of a small predefined
group of document records, typically five or ten, that
exhibit the highest scores. Thereafter, the user, can,
for example, by appropriately "clicking" his(her) mouse
on a corresponding button displayed by computer

system 1070, have that system display the next group of
ranked document records, and so forth until the user
has sufficiently examined all the ranked document
records (and has accessed and examined any document of
interest therein) in succession, at which point

process 1200 is completed with execution then exiting

therefrom.

FIG. 13A depicts a flowchart of NLP
routine 1300 which is executed within Triple Generation
process 1100 shown in FIG. 11. As stated above, NLP
routine 1300 analyzes an incoming document to be
indexed, specifically a single line of text therefor,
and constructs and locally stores a corresponding set
of logical form triples for that document within
dataset 1030, shown in FIG. 10A and 10B. Routine 1300
operates in essentially the same fashion as does NLP
routine 700 shown in FIG. 7 and discussed in detail

above.

In particular, upon entry into routine 1300,
block 1310 is first executed to process a line of input
text to yield a logical form graph, such as
illustrative graph 515 shown in FIG. 5A. Thereafter,
as shown in FIG. 132, block 1320 is performed to

10

15

20

25

30

WO 99/05618 ' PCT/US98/09711

-56-

extract (read) a set of corresponding logical form
triples from the graph. Once this occurs, block 1330
is executed to generate each such logical form triple
as a separate and distinct formatted text string.
Finally, block 1340 is executed to store, in

dataset 1030, the line of input text and, as a series
of formatted text strings, the set of logical form
triples for that line. Once this set has been
completely stored, execution exits from block 1300.
Alternatively, if in lieu of logical form triples, a
different form, e.g. a logical form graph or sub-graph
thereof, is to be used in conjunction with our
invention, then blocks 1320 and 1330 would be readily
modified to generate that particular form as the
formatted string, with block 1340 storing that form in

lieu of logical form triples into the dataset.

FIG. 13B depicts a flowchart of NLP
routine 1350 which is executed within Retrieval
process 1200. As stated above, NLP routine 1350
analyzes a query supplied by User; to document
retrieval application 1085 (shown in Figs. 10A and 10B)
and constructs and locally stores a corresponding set
of logical form triples therefor and within
memory 1075. The only difference in operation between
routine 1350 and routine 1300, discussed in detail
above in conjunction with FIG. 13A, lies in the
location where the corresponding triples are stored,
i.e. in dataset 1030 through execution of block 1340 in
NLP routine 1300 and in memory 1075 through execution
of block 1390 for NLP routine 1350. Inasmuch as the
operations performed by the other blocks, specifically
blocks 1360, 1370 and 1380, of routine 1350 are

10

15

20

25

30

WO 99/05618

~-57-

substantially the same as those performed by
blocks 1310, 1320 and 1330, respectively, in
routine 1300, we will dispense with discussing the

former blocks in any detail.

To experimentally test the performance of our
inventive retrieval process, as generally described
above in conjunction with FIG. 1, we used the ALTA
VISTA search engine as the search engine in our
retrieval system. This engine, which is publicly
accessible on the Internet, is a conventional
statistical search engine that ostensibly has over 31
million indexed web pages therein and is widely used
(to the order of approximately and currently 28 million
hits per day). We implemented our inventive retrieval
process 600 on a standard Pentium 90 MHz PC using
various natural language processing components,
including a dictionary file, that are contained within
a grammar checker that forms a portion of MICROSOFT
OFFICE 97 program suite ("OFFICE" and "OFFICE 97" are
trademarks of Microsoft Corporation of Redmond,
Washington). We used an on-line pipelined processing
model, 1.e., documents were gathered and processed
online in a pipelined fashion while a user waited for
ensuing results. Through this particular PC,
approximately one-third to one-half second were
required to generate logical form triples for each

sentence.

Volunteers were asked to generate full-text
qgueries for submission to the search engine. A total
of 121 widely divergent queries were generated, with

the following ones being representative: "Why was the

PCT/US98/09711

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-58-

Celtic civilization so easily conquered by the
Romans?", "Why do antibiotics work on colds but not on
viruses?", "Who is the governor of Washington?", "Where
does the Nile cross the equator?" and "When did they
start vaccinating for small pox?". We submitted each
of these 121 queries to the ALTA VISTA search engine
and obtained, where available, the top 30 documents
that were returned in response to each query. In those
instances where fewer than 30 documents were returned
for some of the queries, we used all the documents that
were returned. Cumulatively, for all 121 queries, we

obtained 3361 documents (i.e., "raw" documents).

Each of the 3361 documents and the 121
gueries were analyzed through our inventive process to
produce corresponding sets of logical form triples.
The sets were appropriately compared, with the
resulting documents being selected, scored and ranked

in the fashion discussed above.

All 3361 documents were manually and
separately evaluated as to their relevance to the
corresponding query for which the document was
retrieved. To evaluate relevance, we utilized a human
evaluator, who was unfamiliar with our specific
experimental goals, to manually and subjectively rank
each of these 3361 documents for its relevance, as
being "optimal", "relevant" or "irrelevant", to its
corresponding query. An optimal document was viewed as
one which contained an explicit answer to the
corresponding query. A relevant document was one that
did not contain an explicit answer to the query but was

nevertheless relevant thereto. An irrelevant document

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-59-

was one that was not a useful response to the query,
e.g. a document that was irrelevant to the query, in a
language other than English or could not be retrieved
from a corresponding URL provided by the ALTA VISTA
engine (i.e., a "cobweb" link). To increase the
accuracy of the evaluation, a second human evaluator
examined a sub-set of these 3361 documents,
specifically those documents that exhibited at least
one logical form triple that matched a logical form
triple in its corresponding query (431 out of the 3361
documents), and those documents previously ranked as
relevant or optimal but which did not have any matching
logical form triples (102 out of the 3361 documents).
Any disagreements in these rankings for a document were
reviewed by a third human evaluator who served as a

"tie-breaker".

As a result of this experiment, we observed
that, across all the documents involved, our inventive
retrieval system yielded improvements, over that of the
raw documents returned by the ALTA VISTA search engine,
on the order of approximately 200% in overall precision
(i.e., of all documents selected) from approximately
16% to approximately 47%, and approximately 100% of
precision within the top five documents from
approximately 26% to approximately 51%. In addition,
use of our inventive system increased the precision of
the first document returned as being optimal by
approximately 113% from approximately 17% to

approximately 35%, over that for the raw documents.

Though we have specifically described our

invention in the context of use with a statistical

10

15

20

25

30

WO 99/05618 PCT/US98/09711

-60-

search engine, our invention is not so limited. 1In
that regard, our invention can be used to process
retrieved documents obtained through substantially any
type of search engine in order to improve the precision

of that engine.

Rather than using fixed weights for each
different attribute in a logical form triple, these
weights can dynamically vary and, in fact, can be made
adaptive. To accomplish this, a learning mechanism,
such as, e.g., a Bayesian or neural network, could be
appropriately incorporated into our inventive process
to vary the numeric weight for each different logical
form triple to an optimal value based upon learned

experiences.

Though our inventive process required logical
form triples to exactly match, the criteria for
determining a match, for purposes of identifying
sufficiently similar semantic content across triples,
can be relaxed to encompass paraphrases as matching. A
paraphrase may be either lexical or structural. An
example of a lexical paraphrase would be either a
hypernym or a synonym. A structural paraphrase is
exemplified by use of either a noun appositive or a
relative clause. For example, noun appositive
constructions such as "the president, Bill Clinton"
should be viewed as matching relative clause
constructions such as "Bill Clinton, who is president".
At a semantic level, fine-grained judgments can be made
as to how semantically similar two words are to one
another, thereby sanctioning matches between a query

"Where is coffee grown?" and sentences in a corpus such

WO 99/05618 PCT/US98/09711
—61-

as "Coffee is frequently farmed in tropical mountainous
regions." In addition, a procedure for determining
whether a match exists could be modified according to a
type of query being asked. For example, if a query
asks where something is, then the procedure should
insist that a "Location" attribute be present in any
triple associated with the sentence being tested in
order for it to be viewed as matching against the
guery. Hence, logical form triples "matches" are
generically defined to encompass not only identical
matches but also those that result from all such

relaxed, judgmental and modified matching conditions.

Moreover, our invention can be readily
combined with other processing techniques which center
on retrieving non-textual information, e.g. graphics,
tables, video or other, to improve overall precision.
Generally speaking, non-textual content in a document
is frequently accompanied in that document by a
linguistic (textual) description, such as, e.g., a
figure legend or short explanation. Hence, use of our
inventive process, specifically the natural language
components thereof, can be used to.analyze and process
the linguistic description that often accompanies the
non-textual content. Documents could be retrieved
using our inventive natural language processing
technique first to locate a set of documents that
exhibit linguistic content semantically relevant to a
query and then processing this set of documents with
respect to their non-textual content to locate a
document (s) that has relevant textual and non-textual
content. Alternatively, document retrieval could occur

first with respect to non-textual content to retrieve a

10

WO 99/05618 PCT/US98/09711
—62-

set of documents; followed by processing that set of
documents, through our inventive technique, with
respect to their linguistic content to locate a

relevant document(s).

Although various embodiments which
incorporate the teachings of the present invention have
been shown and described in detail herein, those
skilled in the art can readily devise many other

embodiments that still utilize these teachings.

O W 0 NN o ;W N

WO 99/05618 ' PCT/US98/09711

-63-
We claim:

1. Apparatus for use in.an information retrieval
system for retrieving stored documents from a
repository, said system having a retrieval system,
responsive to a query, for retrieving, from the
repository, a plurality of stored documents related to
the query so as to define an output document set; said
apparatus comprising:
a processor; and
memory having executable instructions stored
therein; and
wherein the processor, in response to the
instructions stored in the memory:
produces, in response to the query, a first
logical form therefor, wherein the first logical form
portrays semantic relationships between words
assoclated with the query;
obtains a corresponding second logical form
for each different one of the documents in the output
document set, wherein the second logical form portrays
semantic relationships between words associated with a
phrase in said one document;
ranks a plurality of the documents in the
output document set as a predefined function of the
first logical form of the query and the second logical
form for each one of the plurality of documents in the
output document set so as to define a rank order; and
provides, as output and in said rank order, a
plurality of stored entries associated with the output

document set.

s W N

0 3 o0 Uk W N [S2 NN~ VI O A

W o 3 o U1 W NP

l_\

WO 99/05618 PCT/US98/09711

—64-

2. The apparatus in claim 1 wherein each of the
entries i1s either a corresponding one of the documents
in the output document set or a record associated with

said corresponding one document.

3. The apparatus in claim 2 wherein each of the first
and second logical forms, for the query and for each
different document in the output document set,
respectively, is a logical form graph, a sub-graph

thereof or a list of logical form triples.

4. The apparatus in claim 3 wherein the processor, in
response to the stored instructions:

reads, the corresponding second logical form, for
said each different one of the documents in the output
document set, from a storage media; or

produces said corresponding second logical form by
analyzing said each different one document in the

output document set.

5. The apparatus in claim 4 wherein the function
yvields a score, for said one of the documents, based on
a predetermined relationship between said first logical
form associated with the query and each of said second
logical forms associated with said one document, and
wherein the processor, in response to the stored
instructions, ranks the stored entries in accordance
with the score associated with each of the documents in

the output document set so as to define the rank order.

6. The apparatus in claim 5 wherein either said first
or second logical forms, associated with either the

query or with said one of the documents in the output

I._J
O W W NN o U W DN (62 BT~ VS S O OV 0 N oy U W NN N

=

WO 99/05618 PCT/US98/09711
-65-

document set, further comprises a paraphrase of the
words associated with said query or said one of the

documents, respectively.

7. The apparatus in claim 6 wherein each of said
first and second logical forms comprise corresponding
first and second lists of one or more logical form
triples such that said logical form triples, in said
first and second lists, are each comprised of a stem
form of each of two words, which are semantically
related in a corresponding logical form graph, in the
guery or a phrase in said each one of the documents,
respectively, and a predefined relation representing a

semantic relationship between the two words.

8. The apparatus in claim 5 wherein said match
between said first logical form associated with the
guery and said any of the second logical forms
associated with any document in the output document set

is an identical match.

9. The apparatus in claim 8 wherein each of said
first and second logical forms comprise corresponding
first and second lists of one or more logical form
triples such that said logical form triples, in said
first and second lists, are each comprised of a stem
form of each of two words, which are semantically
related in a corresponding logical form graph, in the
guery or a phrase in said each one of the documents,
respectively, and a predefined relation representing a

semantic relationship between the two words.

[\

0 N o0 U W N

11
12
13

WO 99/05618 PCT/US98/09711

-66-

10. The apparatus in claim 5 wherein the repository

comprises a dataset.

11. The apparatus in claim 5 wherein the query is a

full-text query.

12. The apparatus in claim 5 wherein the retrieval

system comprises a statistical search engine.

13. The apparatus in claim 5 further comprising:

a client computer for obtaining a query from a
user and for displaying, in said rank order, the
plurality of documents in the output document set; and

a server connected, via a networked connection, to
the client computer, said server comprising said
processor and said memory, wherein the processor, in
response to the instructions stored in the memory:

obtains the query from the client computer,
and

provides said plurality of documents in the
output document set in said rank order to the client

computer.

14. The apparatus in claim 13 wherein the server

comprises a plurality of individual servers.

15. The apparatus in claim 13 wherein the retrieval

system comprises a statistical search engine.

16. The apparatus in claim 15 wherein the networked

connection is an Internet or intranet connection.

[
0 g 0 U W N B O W W <3 6 U B W N

—

[N}

[«) W ©2 ! =N CU RN 0O B

WO 99/05618 PCT/US98/09711

-67-

17. The apparatus in claim 16 wherein the search
engine, in response to the query, retrieves a stored
record from the repository for each one of said
plurality of documents in the output document set, the
record containing information specifying where said
each one of the documents in the output document set
can be found; and the processor, in response to the
instructions stored in the memory and the information
contained in the record, accesses and downloads said
each one of the documents from an associated server

therefor for inclusion within the output document set.

18. The apparatus in claim 5 further comprising:

a client computer having said processor and said
memory; and

a server connected, via a networked connection to
the client computer, said server implementing said
retrieval system and supplying, in response to the
query provided by the client computer, said output

document set to the client computer.

19. The apparatus in claim 18 wherein the retrieval

system comprises a statistical search engine.

20. The apparatus in claim 19 wherein the networked

connection is an Internet or intranet connection.

21. The apparatus in claim 20 wherein the search
engine, in response to the query, retrieves a stored
record from the repository for each one of said
plurality of documents in the output document set, the
record containing information specifying where said

each one of the documents in the output document set

W N

NI

o N o U1 W M

=

[\

B W N

WO 99/05618 PCT/US98/09711

-68-

can be found; and the processor, in response to the
instructions stored in the memory and the information
contained in the record, accesses and downloads said
each one of the documents from an associated server

therefor for inclusion within the output document set.

22. The apparatus in claim 5 further comprising a
computer having said processor and said memory, wherein
the computer in response to instructions stored in the

memory, also implements said retrieval system.

23. The apparatus in claim 22 wherein the retrieval

system comprises a statistical search engine.

24. The apparatus in claim 5 wherein the score for
said one document is also a predetermined function of
node words in the second logical forms for said one
document, a frequency or semantic content of said node
words in said one document, frequency or semantic
content of predefined node words in said one document,
a frequency of specific logical form triples for said

one document, or a length of said one document.

25. The apparatus in claim 24 wherein the query is a

full-text query.

26. The apparatus in claim 24 wherein the retrieval

system comprises a statistical search engine.

27. The apparatus in claim 24 further comprising:
a client computer for obtaining a query from a
user and for displaying, in said rank order, the

plurality of documents in the output document set; and

0o J o U

11
12
13

N

R O WwW 0 1 o Ul W N

N

WO 99/05618 PCT/US98/09711

-69-

a server connected, via a networked connection, to
the client computer, said server comprising said
processor and said memory, wherein the processor, in
response to the instructions stored in the memory:

obtains the query from the client computer,
and

provides said plurality of documents in the
output document set in said rank order to the client

computer.

28. The apparatus in claim 27 wherein the server

comprises a plurality of individual servers.

29. The apparatus in claim 27 wherein the retrieval

system comprises a statistical search engine.

30. The apparatus in claim 29 wherein the networked

connection is an Internet or intranet connection.

31. The apparatus in claim 30 wherein the search
engine, in response to the query, retrieves a stored
record from the repository for each one of said
plurality of documents in the output document set, the
record containing information specifying where said
each one of the documents in the output document set
can be found; and the processor, in response to the
instructions stored in the memory and the information
contained in the record, accesses and downloads said
each one of the documents from an associated server

therefor for inclusion within the output document set.

32. The apparatus in claim 24 further comprising:

= 0o 1 o U W N

N

N
B O W o 3o U AW N R

S W N

=

WO 99/05618 PCT/US98/09711

~70-

a client computer having said processor and said
memory; and

a server connected, via a networked connection to
the client computer, said server implementing said
retrieval system and supplying, in response to the
query provided by the client computer, said output

document set to the client computer.

33. The apparatus in claim 32 wherein the retrieval

system comprises a statistical search engine.

34. The apparatus in claim 33 wherein the networked

connection is an Internet or intranet connection.

35. The apparatus in claim 34 wherein the search
engine, in response to the query, retrieves a stored
record from the repository for each one of said
plurality of documents in the output document set, the
record containing information specifying where said
each one of the documents in the output document set
can be found; and the processor, in response to the
instructions stored in the memory and the information
contained in the record, accesses and downloads said
each one of the documents from an associated server

therefor for inclusion within the output document set.

36. The apparatus in claim 24 further comprising a
computer having said processor and said memory, wherein
the computer in response to instructions stored in the

memory, also implements said retrieval system.

37. The apparatus in claim 36 wherein the retrieval

system comprises a statistical search engine.

[
O U1 W N O WOWw oo Jd o0 U W N

0 1 o Ul W N

[« JNNN ©2 BENN' ~ VS O B

WO 99/05618 PCT/US98/09711

~71-

38. The apparatus in claim 5 wherein each of said
first and second logical forms comprise corresponding
first and second lists of one or more logical form
triples such that said logical form triples, in said
first and second lists, are each comprised of a stem
form of each of two words, which are semantically
related in a corresponding logical form graph, in the
query or a phrase in said each one of the documents,
respectively, and a predefined relation representing a

semantic relationship between the two words.

39. The apparatus in claim 38 wherein either said
first or second lists of logical form triples,
associated with either the query or with said one of
the documents in the output document set, further
comprises a paraphrase of the words associated with

said query or said one of the documents, respectively.

40. The apparatus in claim 38 wherein the score for
said one document is also a predetermined function of
node words in the second logical forms for said one
document, a frequency or semantic content of said node
words in said one document, a frequency or semantic
content of predefined node words in said one document,
frequency of specific logical form triples for said one

document, or a length of said one document.

41. The apparatus in claim 38 wherein the function is
a sum of weights taken across the logical form triples,
associated with each of said plurality of documents in
the output document set, that identically match at
least one of the logical form triples associated with

the query, wherein a weight assigned to each matching

o 1 o Ul WD [00)

e R R R S S T el o i
O 00 ~3 o U1 W NN P O W

Ul W NN

WO 99/05618 PCT/US98/09711

-72-

logical form triple is defined by a type of semantic

relation associated therewith.

42. The apparatus in claim 41 wherein the processor,
in response to the instructions stored in the memory:

determines whether any of the logical form triples
associated with the query matches any of the logical
form triples associated with any document in the output
document set so as to define a matching triple
assocliated with said any document;

for every one of documents in said output document
set that has at least one matching logical form triple
associated therewith, weights matching logical form
triples in said every one document using a numeric
weight predefined by the semantic relationship
associated with said each matching logical form triple
so as to form one or more weights for said one
document ;

calculates a score for said one document as a
function of said one or more weights; and

ranks every one of said documents in accordance

with said score thereof so as to define the rank order.

43. The apparatus in claim 42 wherein the rank order

is descending weight order.

44. The apparatus in claim 38 wherein the processor,
in response to the instructions stored in the memory,
presents a first predefined group of said entries for
said output document set that has highest successive

rankings of the documents in said output document set.

U W NN N oy O W N W N

v W N

’.—l

WO 99/05618 PCT/US98/09711

~73-

45. The apparatus in claim 44 wherein the plurality of
documents in the output document set consists of
documents in said output document set that have at

least one matching triple associated therewith.

46. The apparatus in claim 45 wherein each of said
first and second logical form triples is comprised of a
stem form of each of two words, which are semantically
related in a corresponding logical form graph, in the
query or a phrase in said each one of the documents,
respectively, and a predefined relation representing a

semantic relationship between the two words.

47. The apparatus in claim 38 wherein said logical
form triples, associated with either the query or with
said one of the documents in the output document set,
further comprise a logical form triple containing a

hypernym or synonym of either of said words.

48. The apparatus in claim 38 wherein said match

between said any of the logical form triples associated
with the query and said any of the logical form triples
associated with any document in the output document set

is an identical match.

49. The apparatus in claim 38 wherein the repository

comprises a dataset.

50. The apparatus in claim 38 wherein the query is a

full-text query.

51. The apparatus in claim 38 wherein the retrieval

system comprises a statistical search engine.

0 ~J o Ul W N PR

11
12
13

[N

W 00 3 o U1 b W N B

WO 99/05618 PCT/US98/09711

-74-

52. The apparatus in claim 38 further comprising:

a client computer for obtaining a query from a
user and for displaying, in said rank order, the
plurality of documents in the output document set; and

a server connected, via a networked connection, to
the client computer, said server comprising said
processor and said memory, wherein the processor, in
response to the instructions stored in the memory:

obtains the query from the client computer,
and

provides said plurality of documents in the
output document set in said rank order to the client

computer.

53. The apparatus in claim 52 wherein the server

comprises a plurality of individual servers.

54. The apparatus in claim 52 wherein the retrieval

system comprises a statistical search engine.

55. The apparatus in claim 54 wherein the networked

connection is an Internet or intranet connection.

56. The apparatus in claim 55 wherein the search
engine, in response to the query, retrieves a stored
record from the repository for each one of said
plurality of documents in the output document set, the
record containing information specifying where said
each one of the documents in the output document set
can be found; and the processor, in response to the
instructions stored in the memory and the information

contained in the record, accesses and downloads said

10

0o 1 o U W N

O W 0O N o0 U kW NP [\

PP
H

WO 99/05618 PCT/US98/09711

-75-

each one of the documents from an associated server

therefor for inclusion within the output document set.

57. The apparatus in claim 38 further comprising:

a client computer having said processor and said
memory; and

a server connected, via a networked connection to
the client computer, said server implementing said
retrieval system and supplying, in response to the
query provided by the client computer, said output

document set to the client computer.

58. The apparatus in claim 57 wherein the retrieval

system comprises a statistical search engine.

59. The apparatus in claim 58 wherein the networked

connection is an Internet or intranet connection.

60. The apparatus in claim 59 wherein the search
engine, in response to the query, retrieves a stored
record from the repository for each one of said
plurality of documents in the output document set, the
record containing information specifying where said
each one of the documents in the output document set
can be found; and the processor, in response to the
instructions stored in the memory and the information
contained in the record, accesses and downloads said
each one of the documents from an associated server

therefor for inclusion within the output document set.

61. The apparatus in claim 38 further comprising a

computer having said processor and said memory, wherein

N

o 3 o U W DN

11
12
13
14
15
16
17
18
19
20
21
22
23
24

WO 99/05618 PCT/US98/09711

~76-

the computer in response to instructions stored in the

memory, also implements said retrieval system.

62. The apparatus in claim 61 wherein the retrieval

system comprises a statistical search engine.

63. A method for use in an information retrieval
system for retrieving stored documents from a
repository, said system having a retrieval system,
responsive to a query, for retrieving, from the
repository, a plurality of stored documents related to
the query so as to define an output document set; the
method comprising the steps of:

producing, in response to the query, a first
logical form therefor, wherein the first logical form
portrays semantic relationships between words
associated with the query;

obtaining a corresponding second logical form for
each different one of the documents in the output
document set, wherein the second logical form portrays
semantic relationships between words associated with a
phrase in said one document;

ranking a plurality of the documents in the output
document set as a predefined function of the first
logical form of the query and the second logical form
for each one of the plurality of documents in the
output document set so as to define a rank order; and

providing, as output and in said rank order, a
plurality of stored entries associated with the output

document set.

64. The method in claim 63 wherein each of the entries

is either a corresponding one of the documents in the

W 00 3 o U B W N 0 <3 o U1 W NP U W N

= W D

WO 99/05618 PCT/US98/09711

-77-~

output document set or a record associated with said

corresponding one document.

65. The method in claim 64 wherein each of the first
and second logical forms, for the query and for each
different document in the output document set,
respectively, is a logical form graph, sub-graph

thereof or a list of logical form triples.

66. The method in claim 65 wherein the obtaining step
comprises the step of:
reading, the corresponding second logical form,
for said each different one of the documents in the
output document set, from a storage media; or
producing said corresponding second logical form
by analyzing said each different one document in the

output document set.

67. The method in claim 66 wherein the function yields
a score, for said one of the documents, based on a
predetermined relationship between said first logical
form associated with the query and each of said second
logical forms associated with said one document, and
wherein the ranking step comprises the step of ranking
the stored entries in accordance with the score
associated with each of the documents in the output

document set so as to define the rank order.

68. The method in claim 67 wherein either said first
or second logical forms, associated with either the
query or with said one of the documents in the output

document set, further comprises a paraphrase of the

O W 00 NN o Uk WD o)}

=

U W N

O W O N o U W N R

(Y

l_)

WO 99/05618 PCT/US98/09711

-78-

words associated with said query or said one of the

documents, respectively.

69. The method in claim 68 wherein each of said first
and second logical forms comprise corresponding first
and second lists of one or more logical form triples
such that said logical form triples, in said first and
second lists, are each comprised of a stem form of each
of two words, which are semantically related in a
corresponding logical form graph, in the query or a
phrase in said each one of the documents, respectively,
and a predefined relation representing a semantic

relationship between the two words.

70. The method in claim 67 wherein said match between
said any of the first logical form associated with the
query and said any of the second logical forms

associated with any document in the output document set

is an identical match.

71. The method in claim 70 wherein each of said first
and second logical forms comprise corresponding first
and second lists of one or more logical form triples
such that said logical form triples, in said first and
second lists, are each comprised of a stem form of each
of two words, which are semantically related in a
corresponding logical form graph, in the query or a
phrase in said each one of the documents, respectively,
and a predefined relation representing a semantic

relationship between the two words.

72. The method in claim 67 wherein the repository

comprises a dataset.

0 2 o U W N B [\

e T S R
U WD R o W

[\

Uk W N

WO 99/05618 PCT/US98/09711

-79-

73. The method in claim 67 wherein the query is a

full-text query.

74. The method in claim 67 wherein the retrieval

system comprises a statistical search engine.

75. The method in claim 67 wherein the system further
comprises a client computer, wherein the method
comprises the steps, in the client computer of:

obtaining a query from a user; and

displaying, in said rank order, the plurality
of documents in the output document set; and

the system further comprises a server connected,

via a networked connection, to the client computer,
wherein the method further comprises the steps, in the
server, of:

obtaining the query from the client computer,
and

providing said plurality of documents in the
output document set in said rank order to the client

computer.

76. The method in claim 75 wherein the retrieval

system comprises a statistical search engine.

77. The method in claim 76 wherein the networked

connection is an Internet or intranet connection.

78. The method in claim 77 further comprising the
steps, in the search engine and in response to the
query, of retrieving a stored record from the
repository for each one of said plurality of documents

in the output document set, the record containing

o
B O W W I o

W 0 N oy U W N N} |l 0o 1 oo U o W N

=Y
(o]

WO 99/05618 PCT/US98/09711

-80-

information specifying where said each one of the
documents in the output document set can be found; and
in the server and in response to information contained
in the record, of accessing and downloading said each
one of the documents from an associated server therefor

for inclusion within the output document set.

79. The method in claim 67 wherein the system further
comprises a client computer and a server connected, via
a networked connection to the client computer, said
server implementing said retrieval system; wherein the
method further comprises the step, in the server, of
supplying, in response to the query provided by the
client computer, said output document set to the client

computer.

80. The method in claim 79 wherein the retrieval

system comprises a statistical search engine.

81. The method in claim 80 wherein the networked

connection is an Internet or intranet connection.

82. The method in claim 81 further comprising the
steps, in the search engine and in response to the
query, of retrieving a stored record from the
repository for each one of said plurality of documents
in the output document set, the record containing
information specifying where said each one of the
documents in the output document set can be found; and
in the client computer, in response to information
contained in the record, of accessing and downloading

said each one of the documents from an associated

11
12

W N B

NI

0 g o0 U W N R

N

W NN

WO 99/05618 PCT/US98/09711

-81-

server therefor for inclusion within the output

document set.

83. The method in claim 67 wherein the system further
comprises a computer, wherein the method comprises the
step, in the computer, of implementing said retrieval

system.

84. The method in claim 83 wherein the retrieval

system comprises a statistical search engine.

85. The method in claim 67 wherein the score for said
one document is also a predetermined function of node
words in the second logical forms for said one
document, a frequency or semantic content of said node
words in said one document, frequency or semantic
content of predefined node words in said one document,
a frequency of specific logical form triples for said

one document, or a length of said one document.

86. The method in claim 85 wherein the repository

comprises a dataset.

87. The method in claim 85 wherein the query is a

full-text query.

88. The method in claim 85 wherein the retrieval

system comprises a statistical search engine.

89. The method in claim 85 wherein the system further
comprises a client computer, wherein the method
comprises the steps, in the client computer, of:

obtaining a query from a user; and

o 1 o W

11
12
13
14
15

[\

N
P O W O oUW N

l_)

WO 99/05618

PCT/US98/09711
-82-

displaying, in said rank order, the plurality

of documents in the output document set; and
the system further comprises a server connected,

via a networked connection, to the client computer,
wherein the method further comprises the steps in the
server of:

obtaining the query from the client computer,
and

providing said plurality of documents in the
output document set in said rank order to the client

computer.

90. The method in claim 89 wherein the retrieval

system comprises a statistical search engine.

91. The method in claim 90 wherein the networked

connection is an Internet or intranet connection.

92. The method in claim 91 further comprising the
step, in the search engine and in response to the
query, of retrieving a stored record from the
repository for each one of said plurality of documents
in the output document set, the record containing
information specifying where said each one of the
documents in the output document set can be found; and,
in the server and in response to information contained
in the record, of accessing and downloading said each
one of the documents from an associated server therefor

for inclusion within the output document set.

93. The method in claim 85 wherein the system
comprises a client computer and a server connected, via

a networked connection to the client computer, said

0o <3 o U

W 0 I o U1 »x W N 2]

L
N R O

W D

'._\

WO 99/05618 PCT/US98/09711

-83-

server implementing said retrieval system; wherein the
method further comprises the step, in the server, of
supplying, in response to the query provided by the
client computer, said output document set to the client

computer.

94. The method in claim 93 wherein the retrieval

system comprises a statistical search engine.

95. The method in claim 94 wherein the networked

connection is an Internet or intranet connection.

96. The method in claim 95 further comprising the
steps, in the search engine and in response to the
query, of retrieving a stored record from the
repository for each one of said plurality of documents
in the output document set, the record containing
information specifying where said each one of the
documents in the output document set can be found; and
in the client computer and in response to information
contained in the record, of accessing and downloading
said each one of the documents from an associated
server therefor for inclusion within the output

document set.

97. The method in claim 85 wherein the system further
comprises a computer, wherein the method comprises the
step, in the computer, of implementing said retrieval

system.

98. The method in claim 97 wherein the retrieval

system comprises a statistical search engine.

H
O W 0 N o0 LT W N

0 N oy ol WD o U1 W N

o Ul W N

WO 99/05618 PCT/US98/09711

-84-

99. The method in claim 67 wherein each of said first
and second logical forms comprise corresponding first
and second lists of one or more logical form triples
such that said logical form triples, in said first and
second lists, are each comprised of a stem form of each
of two words, which are semantically related in a
corresponding logical form graph, in the query or a
phrase in said each one of the documents, respectively,
and a predefined relation representing a semantic

relationship between the two words.

100. The method in claim 99 wherein either said first
or second lists of logical form triples, associated
with either the query or with said one of the documents
in the output document set, further comprises a
paraphrase of the words associated with said query or

said one of the documents, respectively.

101. The method in claim 99 wherein the score for said
one document is also a predetermined function of node
words in the second logical forms for said one
document, a frequency or semantic content of said node
words in said one document, a frequency or semantic
content of predefined node words in said one document,
frequency of specific logical form triples for said one

document, or a length of said one document.

102. The method in claim 99 wherein the function is a
sum of weights taken across the logical form triples,
associated with each of said plurality of documents in
the output document set, that identically match at
least one of the logical form triples associated with

the query, wherein a weight assigned to each matching

O W o N oy UL WD oo

S e e e =
W W NN U™ W N R

[\

;o WD

WO 99/05618 PCT/US98/09711

-85-

logical form triple is defined by a type of semantic

relation associated therewith.

103. The method in claim 102 wherein the ranking step
comprises the steps of:

determining whether any of the logical form
triples associated with the query matches any of the
logical form triples associated with any document in
the output document set so as to define a matching
triple associated with said any document;

for every one of documents in said output document
set that has at least one matching logical form triple
associated therewith, weighting matching logical form
triples in said every one document using a numeric
weight predefined by the semantic relationship
associated with said each matching logical form triple
so as to form one or more weights for said one
document;

calculating a score for said one document as a
function of said one or more weights; and

ranking every one of said documents in accordance

with said score thereof so as to define the rank order.

104. The method in claim 103 wherein the rank order is

descending weight order.

105. The method in claim 99 wherein stored entries
providing step comprises the step of presenting a first
predefined group of said entries for said output
document set that has highest successive rankings of

the documents in said output document set.

U W NN S oy U W NP oW N

oo W N

WO 99/05618 PCT/US98/09711

-86-

106. The method in claim 105 wherein the plurality of
documents in the output document set consists of
documents in said output document set that have at

least one matching triple associated therewith.

107. The method in claim 106 wherein each of said first
and second logical form triples is comprised of a stem
form of each of two words, which are semantically
related in a corresponding logical form graph, in the
query or a phrase in said each one of the documents,
respectively, and a predefined relation representing a

semantic relationship between the two words.

108. The method in claim 99 wherein said logical form
triples, associated with either the query or with said
one of the documents in the output document set,
further comprise a logical form triple containing a

hypernym or synonym of either of said words.

109. The method in claim 99 wherein said match between
said any of the logical form triples associated with
the query and said any of the logical form triples
associated with any document in the output document set

is an identical match.

110. The method in claim 99 wherein the repository

comprises a dataset.

111. The method in claim 99 wherein the query is a

full-text query.

112. The method in claim 99 wherein the retrieval

system comprises a statistical search engine.

WO 99/05618 ' PCT/US98/09711

0 N o Ul W DD

T e
U o W N R o L

[\

O O 00 N oy Uk W N

P
l_\

-87-

113. The method in claim 99 wherein the system further
comprises a client computer, wherein the method
comprises the steps, in the client computer, of:

obtaining a query from a user; and

displaying, in said rank order, the plurality
of documents in the output document set; and

the system further comprises a server connected,

via a networked connection, to the client computer,
wherein the method further comprises the steps in the
server of:

obtaining the query from the client computer,
and

providing said plurality of documents in the
output document set in said rank order to the client

computer.

114. The method in claim 113 wherein the retrieval

system comprises a statistical search engine.

115. The method in claim 114 wherein the networked

connection is an Internet or intranet connection.

116. The method in claim 115 further comprising the
step, in the search engine and in response to the
query, of retrieving a stored record from the
repository for each one of said plurality of documents
in the output document set, the record containing
information specifying where said each one of the
documents in the output document set can be found; and,
in the server and in response to information contained
in the record, of accessing and downloading said each
one of the documents from an associated server therefor

for inclusion within the output document set.

WO 99/05618 PCT/US98/09711

[o« IS B NS A B O S

0 N o Ul W NP

S
N 2 O W

Sw N

-88-

~117. The method in claim 99 wherein the system

comprises a client computer and a server connected, via
a networked connection to the client computer, said
server implementing said retrieval system; wherein the
method further comprises the step, in the server, of
supplying, in response to the query provided by the
client computer, said output document set to the client

computer.

118. The method in claim 117 wherein the retrieval

system comprises a statistical search engine.

119. The method in claim 118 wherein the networked

connection is an Internet or intranet connection.

120. The method in claim 119 further comprising the
steps, in the search engine and in response to the
query, of retrieving a stored record from the
repository for each one of said plurality of documents
in the output document set, the record containing
information specifying where said each one of the
documents in the output document set can be found; and
in the client computer and in response to information
contained in the record, of accessing and downloading
said each one of the documents from an associated
server therefor for inclusion within the output

document set.

121. The method in claim 99 wherein the system further
comprises a computer, wherein the method comprises the
step, in the computer, of implementing said retrieval

system.

WO 99/05618 ~ PCT/US98/09711
-89~

1 ©122. The method in claim 121 wherein the retrieval

system comprises a statistical search engine.

1 123. A computer readable medium having computer
executable instructions stored therein for performing

the steps of claim 63.

WO 99/05618 PCT/US98/09711

1 / 14
5
QUERY /21\ P
(FULL-TEXT -
FORM) RETRIEVED
DOCUMENTS
\ 4
NATURAL RANKED
DATA- > RiﬂgﬁmﬁL | ANGUAGE > RETRIEVED
SET_ |44 »5 | PROCESSOR | & DOCUMENTS
STORED))
DOCUMENTS 20 30 FIG. 1
| 3;0
201 300 200 22
y 200
\[=m 4
BROWSER NETWORK 210 vl I Reveo
RANKED | COMPUTER (e.g. INTERNET) CONPUTER SET
DOCUMENTS | | SYSTEM
(CLIENT PC) 257
SERVER
02 FIG. 2
420
QUERY QUERY
(FROM USER) > S > (T0 SEARCH
) ENGINE)

N 422 RETRIEVAL 426 ,
s o
DOCUMENT DOWNLOAD

[> < DOCUMENT FOR
RECORDS) 600) EACH RETRIEVED
(FROM SEARCH 432 436 RECORD
ENGINE) -
RANKED
RETRIEVED o | > RETRIEVED
DOCUMENTS) DOCUMENTS
442 WEB BROWSER
4001
APPLICATION PROGRAMS

FIG. 4

PCT/US98/09711

WO 99/05618

14

ISNOW

QUY0EATY & Dl
SNOILOT13S [301A3Q 00%
% SANYANOD | LNdNI = 7 -~
439N 435N 56¢
S
062 (IN3ND 2d)
WILSAS ¥3LNANOD cus 0se |
00y
SNVY90Yd
NOILYDI1ddV
mmm $303N0S
- m\o T 1NdNI
YIINIYd = w 7 0l¢ Q3LvoIa3a
£9¢ AYON3N
08¢S m_)] omm, @_
(LNdLno [I Il 1 LNdNI
AV1dSIQ = f 1/]
x5 w NHoo | | 80553004 (13N-vaIN *679)
\ f SS30JV
09¢ 03¢ ovg SHOMLIN
43HL0
~ 40/aNY
; > JINYIINI
507

WO 99/05618 PCT/US98/09711
3 /7 14

5310
" INPUT STRING: THE OCTOPUS HAS THREE HEARTS.

LOGICAL FORM HAVE _~515
GRAPH: ——Dsub—0CTOPUS
——Dobj — HEART
L Ops — THREE

LOGICAL FORM

TRIPLES: HAVE—Dsub—OCTOPUS
HAVE— Dobj — HEART ¢+ 525
HEART— Ops —THREE

FIG. 5A

550
"~ INPUT STRING: THE OCTOPUS HAS THREE HEARTS AND TWO LUNGS.

LOGICAL FORM
GRAPH: HAVE

Dsub— OCTOPUS s
Dobj — AND
Crds HEART
OF|>3————THREE
LUNG
O!)s—TWO

LOGICAL FORM
TRIPLES: HAVE — Dsub — OCTOPUS
HAVE — Dobj — HEART
HAVE —Dobj —LUNG | 540
HEART — Ops — THREE
LUNG —Ops —TWO

FIG. 5B

-~

WO 99/05618

PCT/US98/09711

4 / 14

550~ |NPUT STRING: THE OCTOPUS HAS THREE HEARTS AND

LOGICAL FORM
GRAPH:

LOGICAL FORM
TRIPLES:

ST0, \NPUT STRING: |

LOGICAL FORM
GRAPH:

LOGICAL FORM
TRIPLES:

IT CAN SWIM.
Crds
—Dsub = OCTOPUS
——Dobj — HEART
Ops —THREE
—SWIM
| Dsub IT

Refs — OCTOPUS

HAVE — Dsub — OCTOPUS |
HAVE — Dobj — HEART
HEART — Ops — THREE 560
SWIM — Dsub — IT

SWIM — Dsub — OCTOPUS

FIG. 5C

LIKE SHARK FIN SOUP BOWLS.

LIKE 30
Dsub—|
——Dobj — BOWL
Mods — SHARK
FIN
L—— SOUP
LIKE — Dsub — |)

LIKE — Dobj — BOWL
BOWL — Mods — SHARK
BOWL — Mods — FIN

BOWL — Mods — SOUP
FIN. — Mods — SHARK
SOUP — Mods — SHARK
SOUP — Mods — FIN

FIG. 8D

>580

~/

WO 99/05618 PCT/US98/09711
5 / 14
RETRIEVAL
@ ENTER PROCESS
600
OBTAIN FULL TEXT |- 605
QUERY FROM
USER . o
w SEARCH
SEND FULL-TEXT QUERY ! ENGINE 625
610~ QUERY TO SEARCH F—r—=—> RETRIEVE
ENGINE 615 SET OF !
— 643 Y DOCUMENT
RECEIVE SET OF | RECORDS N |
DOCUMENT RECORDS | g30 RESPONSE TO
15 [FROM SEARCH ENGINE; | "+ | OUERY '
ACCESS AND DOWNLOAD
EACH CORRESPONDING | | — —-—-—-—
SOCUMENT RETRIEVED DOCUMENT
RECORDS
L 645 , 640
CONVERT EACH DOCUMENT TO TEXT:
%"UOT’EEE N7Lgo PERFORM SENTENCE BREAKING
ON EACH DOCUMENT: AND
T0 YIELD LOGICAL
INVOKE NLP ROUTINE 700
FORM TRIPLES
o FOR EACH DOCUMENT TO
YIELD LOGICAL FORM TRIPLES
?NUEL%YC AALN% A?L%‘EE THEREFOR AND STORE IN
DATASET
\ \
COMPARE LOGICAL
FORM TRIPLES FOR QUERY
AGAINST LOGICAL
FORM TRIPLES FOR 650
EACH DOCUMENT IN SET
TO LOCATE MATCHING
LOGICAL FORM TRIPLES
A
DISCARD ALL DOCUMENTS
WHICH DO NOT CONTAIN 655
ANY MATCHING LOGICAL
FORM TRIPLES FIG. 6A

I E—

WO 99/05618 PCT/US98/09711

6 / 14
Y
FOR EACH REMAINING
DOCUMENT, ASSIGN WEIGHT
T0 EACH MATCHING LOGICAL
FORM TRIPLE THEREIN; AND 660
SUM WEIGHTS ACROSS EACH
DOCUMENT, AS APPROPRIATE,
TO OBTAIN WEIGHT FOR
THAT DOCUMENT
! FIG.
6A
RANK DOCUMENTS IN TERMS
OF DESCENDING ORDER OF 665 FIG
THEIR WEIGHTS 68.
Y '
DISPLAY RETRIEVED DOCUMENTS L 670

INRANKED ORDER

é EXIT

FIG. 6B

WO 99/05618

NLP ROUTINE

700

7 1/ 14

ENTER

PCT/US98/09711

PROCESS INPUT TEXT TO YIELD LOGICAL
FORM GRAPH

—710

[

EXTRACT LOGICAL FORM TRIPLES FROM GRAPH

— /20

A

OUTPUT EACH LOGICAL FORM TRIPLE
AS A DISTINCT FORMATTED STRING

— 730

FOR INPUT TEXT, STORE EACH LOGICAL
FORM TRIPLE THEREFOR ALONG WITH ITS

ASSOCIATED DOCUMENT AND SENTENCE
PROVENANCE (i.e. SOURCE LOCATION)

— 740

IN A DATASET
(%)EXIT

FIG. 7

PCT/US98/09711

WO 99/05618

14

¢ ININNDOQ T8Vl
7 INIHND0Q ONILHIAM T1dIL 009
INOLLYIN3IS34d W04 Y1907 L
:m%ooaﬂo 43040 ONIHLYN _
1HI3M V8 9l 01 fPoN
gg o4 ™ c o
T S/ ansg
INDINV 00} 420
\ / LHOIIM T1dIML ONIHOLYA
00}=1H91IM GL1=G/+001=1HIIIM } INJNNJ0a Y04 3dAL
ININN0Q V101 INIWN20G V101 QuvISIa JIHSNOLLYT3Y
ST1dIL ST1dNL STNdHL
A¥IND HLUM| og A9IND HUM| ocg AYIND HUM| opg 058
HOLVA | , SHOLWN 7| ¢ HOLYW ON ((
—-qQnsQ- ~sdpn-
LyVIH-la0g-3avH ~| [P0 .Q_ 0= InvH $Nd0120-1900-A¥3 ANVI-2C0—Ldv3H
$Nd0L90-9nS~IAVH . $Nd0170—-9nsq-IAVH
A S A LA
mmw/vm, ﬁ@WOIQI . mmm - @Wﬂ@W@HHNHM@%ﬁM;@WW&\ ! 00
. STIdNL WH04 V01907 /
dIN 078
4330 1008V TNV € ININND0Q SINIWND0a
140190 1N0aY T1ILY :Z ININNDOT QALY
SNdOLO0 ANV SLUVIH IHOHIILYY ONINIVINOD 3dIDFd 1 INIWNDOT ATIVOLLSILYLS
4IAVH SNdOLD0 NV S300 SINVIH ANVA MOH :A¥InD <018

PCT/US98/09711

WO 99/05618

14

ONISS320dd

JOVNONVT TVHNLIVN

% VAIINLIY TVOILSILYIS
‘ONIXJONI IN3INNJ0Q

TVAINLIY TVOILSILYLS
B ONIX3IONI IN3INNJ0Q

B oo B - “(yanas) | oss
| INISS300¥d 43LNdNOD _
JOVNONYT | u ¥IAY3S 06 EILLEN!
VANV e
_ ‘036 : - 0557904 _ .
IVAIRLY | 7z yIAu3s PR aNg < - Q@ mu_m
Szmcﬁm_ —INOYA
)
ONIXIAN | ¥3IAY3S
ININND0Q *___096
SININNJ0G
—
CEITED) aa_w_mm Q3IINVY -
ﬁwﬁmo mwm ~—03N0 INIMO NOILVYINI9 A4IND O@ .G_..._
, (vy3Ln) 1xaL-Tind w
06 SININNDOQ 0c6
QIAINYLIY . .
ATIVOILSILYLS — NISS3J0Yd
(43ny3S) mmm)) 2d JOVNONYT TVINLIYN %
mwwﬁmo ~—04IND IN3MD NOILY¥INI9 A¥IND mm .G_n_
; (vy3Ln) LaAL-TIN ,
0¢6 026
INISSIO0Nd
(0d "63) | J9VNINY] TVINIWN ¥
NILNdWN0D | “IYATILIY TVOILSILYLS .
1¥201 ‘ONIXIANI ININNJ0Q <® 0_n_

)
016

PCT/US98/09711

WO 99/05618

14

10

{5001

¢5001

OF ©I4| go94 | voiod
NOIIVOMdNa ST
| INIWN20a
010!
(
| SI1dINL ci0p 43LNdWOD
Q3LYID0SSY |
0v0! ® INIONT
{ SININNJ0Q INIX3ANI INFWND0d
NILSAS Geol 13 Q3X3IaNI
NOILYDI1dNa | m«m&wu oﬂwfwwwmmwl < 38 0l
VIQIN omo_pnuuuL Tl SININNI0GA
X | (13sv1va
Y3LSYN)
AJOWIN
701 (WY4904d
NOILYTIVLSNI ¥3sn | /
‘5$3004d VAINLIY ® o
INIONT HO¥v3S “b9) b 5001
SIN4 NOILYIINddY

TVAIIEL3Y INIWNO0A

PCT/US98/09711

WO 99/05618

14

11

g0l ol

£0501

hyasn
AYIND
435N
e
135 ININN20G
. QIAINLIY) _
| L SININNDOA
5 0611
; — INION3 _ 5901
0021 Y
$SI004d | Howvas | | | ! -ﬁwﬁ_
. WAINLIY _ ¢
m - STTdINL _ 290}
S

. V1090 Iwoy-ao
_ NOILYOIddY TVAIISLIY ININAIOG |
| 0 ~ SNV3904d NOILVOMddY |

080+ AHONIN

5701
(0d) W3LSAS ¥3LNJWOD
(a3Av14S10) ONw_
 SININND0Q M
QIINVY

NOILYOMdNG VIGIN 1 ycq,

.

SHdidL

7 "J0SSY
0601 - X

§204

Q3IX30NI

S34
N,/ 1ddV
VALY

- INIHNJ0a
050!

_/

(SWo¥-Q) 'b8)
050} SYOId3y
VIQIN

[y0) !

WO 99/05618 PCT/US98/09711
12 / 14
ENTER
FIG. 11 (DOCUMENT TO BE INDEXED)
TRIPLE CONVERT DOCUMENT TO TEXT:
GENERATION PERFORM SENTENGE BREAKING
PROCESS ON DOCUMENT; AND
1100 INVOKE NLP ROUTINE 1300
TO YIELD LOGICAL FORM 1110
TRIPLES ASSOCIATED WITH
THAT DOCUMENT AND TO
STORE TRIPLES IN
DATASET 1030
@%} EXIT

NLP ROUTINE 1300

(%) ENTER
1310

PROCESS INPUT TEXT, e.g. QUERY,
TO YIELD LOGICAL FORM GRAPH

NLP ROUTINE 1350

(%) ENTER
1360
ya

V13

PROCESS INPUT TEXT, e.g. QUERY,
TO YIELD LOGICAL FORM GRAPH

EXTRACT LOGICAL FORM
TRIPLES FROM GRAPH

IEEE

y 1330

EXTRACT LOGICAL FORM
TRIPLES FROM GRAPH

OUTPUT EACH LOGICAL FORM TRIPLE
AS A DISTINCT FORMATTED STRING

IRED

V1340

OUTPUT EACH LOGICAL FORM TRIPLE
AS A DISTINCT FORMATTED STRING

FOR CURRENT INPUT TEXT, STORE
EACH LOGICAL FORM TRIPLE
THEREFOR IN DATASET 1030

‘ 1390

é EXIT

FOR QUERY, STORE EACH LOGICAL
FORM TRIPLE THEREFOR IN
MEMORY 1075

é EXIT

WO 99/05618 PCT/US98/09711
13 / 14
ENTER RETRIEVAL
PROCESS
OBTAIN FULL TEXT |-1205 1200
QUERY FROM
—1207 1090
1210 S, W —
Y s ["SEARCH ENGINE]
SEND FULL-TEXT |quERY | |
QUERY T0 SEARCH ool IN RESPONSE | |
ENGINE 1215 TO QUERY; }
1243 | RETRIEVE SET |
Y OF DOCUMENT 1
RECEVE SET OF | 1290 Asggﬁfﬁ?ﬁ #EI%LES |
DOCUMENT RECORDS [<—— 1 |
AND ASSOCIATED . s |
TRIPLES FROM L1220]
1245 SEARCH ENGINE
Yy | 1090 AND RETRIEVED DOCUMENT
INVOKE NLP STORE IN RECORDS AND ASSOCIATED
ROUTINE 1350 MEMORY 1075 DOCUMENT TRIPLES
TO YIELD LOGICAL ;
FORM TRIPLES 1240

FOR FULL-TEXT
QUERY AND STORE
IN MEMORY 1075

L

Y

Y

COMPARE LOGICAL
FORM TRIPLES FOR QUERY
AGAINST LOGICAL
FORM TRIPLES FOR
EACH DOCUMENT IN SET
TO LOCATE MATCHING
LOGICAL FORM TRIPLE

— 1250

DISCARD ALL DOCUMENTS

WHICH DO NOT CONTAIN

ANY MATCHING LOGICAL
FORM TRIPLES

— 1255

______ A

WO 99/05618

14 / 14

_______ —

FOR EACH REMAINING
DOCUMENT, ASSIGN WEIGHT
TO EACH MATCHING LOGICAL
FORM TRIPLE THEREIN; AND
SUM WEIGHTS ACROSS EACH
DOCUMENT, AS APPROPRIATE,

TO OBTAIN WEIGHT FOR
THAT DOCUMENT

Y

RANK DOCUMENTS IN TERMS
OF DESCENDING ORDER OF
THEIR WEIGHTS

—~1265

\

DISPLAY RETRIEVED DOCUMENTS
IN RANKED ORDER

—1270

é} EXIT

FIG. 12B

—1260

PCT/US98/09711

FIG.
12A

FIG.
12B

FIG. 12

INTERNATIONAL SEARCH REPORT

Interr ral Application No

PCT/US 98/09711

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F17/30

According to Intemational Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimumdocumentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A WO 92 04681 A (GTE LABORATORIES INC) 1,63
19 March 1992
see abstract
see page 1, line 1 - page 4, line 8

A EP 0 386 825 A (BSO BURO VOOR 1,63
SYSTEEMONTWIKKEL) 12 September 1990
see abstract

A WO 96 23265 A (BRITISH TELECOMM ;DAVIES 1,63
NICHOLAS JOHN (GB); WEEKS RICHARD (GB))
1 August 1996

see abstract

A WO 95 29452 A (APPLE COMPUTER ;ROSE DANIEL 1,63
E (US); BORNSTEIN JEREMY J (US); TIENE)
2 November 1995

see abstract

D Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :)) o
"T* later document published after the international filing date
or priotity date and not in conflict with the application but

"A" document defining the general state of the art which is not cited to Understand the principle of theory underlying the

considered to be of partticular relevance

invention
"E" earfier document but published on or after the international " document of particular relevance; the claimed invention
fiing date cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

which is cited to establish the publicationdate of another

citation o other special reason (as specified) Y" document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the

"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
“P* document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of theinternational search Date of mailing of the international search report
9 September 1998 16/09/1998
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fax: (+31-70) 340-3016 Katerbau, R

Form PCT/ASA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

u.. :rmation on patent family members

Intern

PCT/US 98/09711

al Appiication No

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 9204681 A 19-03-1992 us 5321833 A 14-06-1994
CA 2071485 A 01-03-1992
EP 0497960 A 12-08-1992
JP 5502533 T 28-04~-1993

EP 0386825 A 12-09-1990 NL 8900587 A 01-10-1990
CA 2011411 A 10-09-1990
JP 3087975 A 12-04-1991
us 5128865 A 07-07-1992

WO 9623265 A 01-08-1996 AU 4454996 A 14-08-1996
BR 9606931 A 11-11-1997
CA 2210581 A 01-08-1996
CN 1169195 A 31-12-1997
EP 0807291 A 19-11-1997
FI 973080 A 22-07-1997
NO 973372 A 22-09-1997

WO 9529452 A 02-11-1995 us 5724567 A 03-03-1998
AU 2363895 A 16-11-1995

Formm PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

