wo 2018/090130 A1 | 0000 00 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property 3
Organization
International Bureau —/
(43) International Publication Date ——/
24 May 2018 (24.05.2018) WIPO |

(10) International Publication Number

WO 2018/090130 A1
PCT

(51) International Patent Classification:
GO6F 1/32 (2006.01) H02J 13/00 (2006.01)

(21) International Application Number:
PCT/CA2017/051322

(22) International Filing Date:
07 November 2017 (07.11.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
15/355,569

Applicant: ATT TECHNOLOGIES ULC [CA/CA]; One
Commerce Valley Drive East, Markham, Ontario L3T7X6
(CA).

Inventors: PEZESHGI, Shahriar; 47 Chalmers Rd, Rich-
mond Hill, Ontario L4B1S7 (CA). HUANG, Jun; One
Commerce Valley Drive East, Markham, Ontario L3T 7X6
(CA). MOUSAZADEH, Mohammad Hamed; One Com-
merce Valley Drive East, Markham, Ontario L3T 7X6 (CA).
DUENAS, Alexander S.; One Commerce Valley Drive
East, Markham, Ontario L3T 7X6 (CA).

18 November 2016 (18.11.2016) US
(71)

a2

(74) Agent: SMART & BIGGAR; 1100-150 York Street,
Toronto, Ontario M5H 3S5 (CA).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(54) Title: APPLICATION PROFILING FOR POWER-PERFORMANCE MANAGEMENT

Application 126 300
API 302
Driver Stack 125
A\
Device Driver _ Configuration 24
122 Instructions —
Device 304
Y
Firmware 306

(57) Abstract: A processing apparatus is provided which includes memory configured to store hardware parameter settings for each
of a plurality of applications. The processing apparatus also includes a processor in communication with the memory contigured to
store, in the memory, the hardware parameter settings, identify one of the plurality of applications as a currently executing application
and control an operation of hardware by tuning a plurality of hardware parameters according to the stored hardware parameter settings
for the identified application.

[Continued on next page]

WO 2018/090130 A1 {10000 RO R

Published:
— with international search report (Art. 21(3))

WO 2018/090130 PCT/CA2017/051322

APPLICATION PROFILING FOR POWER-PERFORMANCE MANAGEMENT

CROSS REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of U.S. Patent Application No.
15/355,569 filed November 18, 2016, which is incorporated by reference as if fully

set forth herein.

BACKGROUND
[0002] The hardware of some processing devices is managed by hardware
parameters stored at the device (e.g., firmware) which are used to control
operation of the hardware. The settings (i.e., dynamic power management (DPM)
settings) for these parameters affect both the performance of the hardware as
well as the power consumed by the hardware to perform various functions, such
as executing applications. Further, the performance and the power consumption
are interdependent. For example, an increase in hardware performance level
often includes increased power consumption. DPM settings have historically
been hardcoded in driver software, however, which cannot be altered without

modifying the driver software.

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] A more detailed understanding can be had from the following
description, given by way of example in conjunction with the accompanying
drawings wherein:
[0004] FIG. 1 is a block diagram of an example device in which application
profiling for power-performance management is implemented;
[0005] FIG. 2 is a block diagram illustrating additional details related to
execution of processing tasks on the accelerated processing device shown in FIG.
1;
[0006] FIG. 3 is a block diagram illustrating an exemplary interconnection
and information flow in an exemplary power-performance management system;
[0007] FIG. 4 i1s a flow diagram illustrating an exemplary method of

receiving hardware parameter settings to manage power-performance; and

WO 2018/090130 PCT/CA2017/051322

[0008] FIG. 5 is a flow diagram illustrating an exemplary method of power-

performance management at application runtime.

DETAILED DESCRIPTION

[0009] Efforts have been made to provide global DPM settings for a
particular integrated circuit (IC), such as an application-specific integrated
circuit (ASIC). These global settings result, however, in varied performance
levels. For example, an application executing on the IC at the global settings
performs at a first level of performance (e.g., performance level renders a high
quality of video display) while another application executes on the IC performs at
a second level of performance (e.g., performance level renders a low quality of
video display).

[0010] The present application discloses an apparatus and method of
managing power and performance by utilizing hardware parameter settings
customized for each application to be executed on a device. Customization also
includes hardware parameter settings for each application programming
interface (API) and each processor of the device. The hardware parameter
settings are customized for each application by changing (i.e., overwriting) a
configuration file of a driver stack without changing the device driver. The
hardware parameter settings for an application are used to tune hardware
parameters (e.g., set values of hardware parameters) stored on firmware at the
device to control the power consumed by the hardware to execute the application
and maintain a level of performance without affecting performance when
executing other applications.

[0011] The present application provides a processing apparatus which
includes memory configured to store hardware parameter settings for each of a
plurality of applications. The processing apparatus also includes a processor in
communication with the memory configured to store, in the memory, the
hardware parameter settings, identify one of the plurality of applications as a
currently executing application and control an operation of hardware by tuning a
plurality of hardware parameters according to the stored hardware parameter

settings for the identified application.

WO 2018/090130 PCT/CA2017/051322

[0012] The present application provides a computer implemented method
of power-performance management. The method includes receiving hardware
parameter settings for each of a plurality of applications, storing the hardware
parameter settings, executing an application of the plurality of applications,
identifying the executing application and controlling an operation of hardware by
tuning hardware parameters according to the stored hardware parameter
settings for the identified executing application.

[0013] The present application provides a non-transitory computer
readable medium including instructions for causing a computer to execute a
method of power-performance management. The instructions include storing
hardware parameter settings for each of a plurality of applications, executing an
application of the plurality of applications, identifying the executing application
and controlling an operation of hardware by tuning hardware parameters
according to the stored hardware parameter settings for the identified executing
application.

[0014] As used herein, programs includes any sequence of instructions to
be executed using one or more processors to perform procedures or routines (e.g.,
operations, computations, functions, processes, jobs). As used herein, execution of
programmed instructions (e.g., applications, drivers, operating systems or other
software) on a processor includes any of a plurality of stages, such as but not
limited to fetching, decoding, scheduling for execution, beginning execution and
execution of a particular portion (e.g., rendering of video on full screen) of the
programmed instructions. Programmed instructions include parameter settings
(e.g., hardware parameter settings) and parameters (e.g., hardware parameters)
having tunable (i.e., changeable) values used to control operation of hardware.
[0015] FIG. 1 is a block diagram of an exemplary device 100. The device
100 includes, for example, a computer, a gaming device, a handheld device, a set-
top box, a television, a mobile phone, or a tablet computer. As shown in FIG. 1,
exemplary device 100 includes a processor 102, memory 104, a storage 106, one
or more input devices 108, one or more output devices 110, an input driver 112
and an output driver 114. It is understood that the device 100 can include

additional components not shown in FIG. 1.

-3-

WO 2018/090130 PCT/CA2017/051322

[0016] Example processor types for processor 102 include a CPU, a GPU, a
CPU and GPU located on the same die, or one or more processor cores, wherein
each processor core is a CPU or a GPU. Memory 104 is, for example, located on
the same die as the processor 102 or located separately from the processor 102.
Example memory types for memory 104 include volatile memory, (e.g., random
access memory (RAM), dynamic RAM, or a cache) and non-volatile memory (e.g.,
a hard-disk, motherboard boot read only memory (ROM), and BIOS memory)
configured to store, for example firmware which includes hardware parameters,
as described in more detail below.

[0017] Example storage types for storage 106 include a fixed or removable
storage, for example, a hard disk drive, a solid state drive, an optical disk, or a
flash drive. Example input device types for input device 108 include a keyboard,
a keypad, a touch screen, a touch pad, a detector, a microphone, an
accelerometer, a gyroscope, a biometric scanner, or a network connection (e.g., a
wireless local area network card for transmission and/or reception of wireless
IEEE 802 signals). Example output device types for output devices 110 include a
display, a speaker, a printer, a haptic feedback device, one or more lights, an
antenna, or a network connection (e.g., a wireless local area network card for
transmission and/or reception of wireless IEEE 802 signals).

[0018] The input driver 112 communicates with the processor 102 and the
input devices 108, and permits the processor 102 to receive input from the input
devices 108. The output driver 114 communicates with the processor 102 and the
output devices 110, and permits the processor 102 to send output to the output
devices 110. It is noted that the input driver 112 and the output driver 114 are
optional components and that the device 100 will operate in the same manner if
the input driver 112 and the output driver 114 are not present.

[0019] As shown in FIG. 1, the output driver 114 (e.g., graphics card)
includes an accelerated processing device (APD) 116 which is coupled to a display
device 118. The APD 116 is configured to accept compute commands and
graphics rendering commands from processor 102, to process those compute and
graphics rendering commands, and to provide pixel output to display device 118

for display. As described in further detail below, the APD 116 includes one or

4-

WO 2018/090130 PCT/CA2017/051322

more parallel processing units configured to perform computations in accordance
with a single-instruction-multiple-data (SIMD) paradigm. Although various
functionality is described herein as being performed by or in conjunction with the
APD 116, the functionality described as being performed by the APD 116 is also
performed by other computing devices having similar capabilities that are not
driven by a host processor (e.g., processor 102) and configured to provide
graphical output to a display device 118. The functionality described herein is,
for example, performed by any processing system that performs processing tasks
in accordance with a SIMD paradigm. Alternatively, the functionality described
herein is performed by computing systems that do not perform processing tasks
in accordance with a SIMD paradigm.

[0020] FIG. 2 is a block diagram illustrating additional details related to
execution of processing tasks on the APD 116 of the device 100 shown in FIG. 1.
The processor 102 maintains, in system memory 104, one or more control logic
modules which include programmed instructions for execution by the processor
102. Programmed instructions can also be included in processor 102 (e.g., CPU).
The control logic modules include an operating system 120, a device driver 122
(e.g., kernel mode driver, user mode driver, universal mode driver), applications
126 which execute on the APD 116 and configuration instructions 124 (e.g.,
instructions in a configuration file, blob file, extension file, and the like) which
store predetermined hardware parameter settings for each executable
application 126. As shown in FIG 2, the device driver 122, and configuration
instructions 124 are part of a driver stack 125. Driver stack 125 also includes, for
example, programmed instructions which support the tuning of hardware
parameters (e.g., clock speed parameters, clock voltage parameters, clock gating
parameters) to manage the power consumption by the hardware during
execution of each application.

[0021] These control logic modules control various aspects of the operation
of the processor 102 and the APD 116. For example, the operating system 120
directly communicates with hardware (e.g., CPU, GPU and compute units 132)
and provides an interface to the hardware for other software executing on the

processor 102. The device driver 122 controls operation of the APD 116 by, for

.5-

WO 2018/090130 PCT/CA2017/051322

example, providing an API to software (e.g., applications 126) executing on the
processor 102 to access various functionality of the APD 116. The device driver
122 also includes a just-in-time compiler that compiles programs for execution by
processing components of the APD 116.

[0022] The APD 116 executes commands and programs for selected
functions, such as graphics operations and non-graphics operations suited, for
example, to perform parallel processing. The APD 116 is used, for example, to
execute graphics pipeline operations such as pixel operations, geometric
computations, and rendering an image to display device 118 based on commands
received from the processor 102. The APD 116 also executes compute processing
operations that are not directly related to graphics operations, such as operations
related to video, physics simulations, computational fluid dynamics, or other
tasks, based on commands received from the processor 102.

[0023] Exemplary processor types for APD 116 include a CPU, a GPU, a
CPU and GPU located on the same die, or one or more processor cores (i.e.,
compute units) 132 wherein each processor core is a CPU or a GPU. Each
compute unit (i.e., compute core) 132 includes one or more SIMD units 138 each
configured to perform operations at the request of the processor 102 in a parallel
manner according to a SIMD paradigm. The SIMD paradigm is one in which
multiple processing elements share a single program control flow unit and
program counter and thus execute the same program but are able to execute that
program with different data. In one example, each SIMD unit 138 includes
sixteen lanes, where each lane executes the same instruction at the same time as
the other lanes in the SIMD unit 138 but can execute that instruction with
different data. Lanes can be switched off with predication if not all lanes need to
execute a given instruction. Predication can also be used to execute programs
with divergent control flow. More specifically, for programs with conditional
branches or other instructions where control flow is based on calculations
performed by an individual lane, predication of lanes corresponding to control
flow paths not currently being executed, and serial execution of different control

flow paths allows for arbitrary control flow.

WO 2018/090130 PCT/CA2017/051322

[0024] A scheduler 136 is configured to perform operations related to
scheduling various units of execution (e.g., work groups and wavefronts) on
different compute units 132 and SIMD units 138. Execution of processing tasks
on the APD 116 is suitable for graphics related operations such as pixel value
calculations, vertex transformations, and other graphics operations. A graphics
pipeline 134 which accepts graphics processing commands from the processor
102 can therefore provide computation tasks to the compute units 132 for
execution in parallel.

[0025] The compute units 132 are also used to perform computation tasks
not related to graphics or not performed as part of the “normal” operation of a
graphics pipeline 134 (e.g., custom operations performed to supplement
processing performed for operation of the graphics pipeline 134). An application
126 or other software executing on the processor 102 transmits programs that
define such computation tasks to the APD 116 for execution.

[0026] FIG. 3 is a block diagram 300 illustrating an exemplary
interconnection and information flow in an exemplary power-performance
management system. As shown in FIG. 3, the system includes an application 126
provided with API 302 (which represents one or more APIs), a driver stack 125
including device driver 122 and configuration instructions 124 and device 304
(e.g., output driver 114 shown in FIG. 1) including firmware 306 configured to
execute at device 304.

[0027] The driver stack 125 includes device driver 122 used to interface
between the operating system 120 and the firmware 306 and configuration
instructions 124. The configuration instructions 124 include, for each application
126 to be processed, predetermined (e.g., determined prior to application
runtime) hardware parameter settings, used to tune the plurality of hardware
parameters configured to control the operation of the hardware during execution
of each application 126.

[0028] Firmware 306 includes hardware parameters and associated values
to control operation of hardware of the device 304 (e.g., graphics card) and
provide an interface between the hardware (e.g., APD 116) of the device 304 and

device driver 122. As described above, firmware is stored in non-volatile memory

-

WO 2018/090130 PCT/CA2017/051322

(e.g., a hard-disk, motherboard boot read only memory (ROM), and BIOS
memory). Processor 102 is configured to identify an executing application. For
example, an application executing on APD 116 at device 304 (e.g., output driver
114) is identified and firmware 306 is read from non-volatile memory (e.g.,
portion of memory 104) to be processed at device 304, as shown in FIG. 3.
Alternatively, an application executing on a processor at device 100, which does
not include output driver, is identified. The firmware 306 is used, along with the
device driver 122, to control operation of hardware (e.g., APD 116 of output
driver 114, one or more other processors of device 100 as well as encoders,
decoders, memory cells and circuitry (not shown)).

[0029] Examples of hardware parameters include dynamic power
management (DPM) parameters (e.g., clock speed parameters, clock voltage
parameters, and clock gating parameters), memory timing parameters, heat
generated (e.g., thermal design power (TDP)) and other parameters used to
control the power distribution to execute the identified application. The APD 116
is configured to execute (e.g., schedule for execution, execute) an application 126
using, for example, the operating system 120, the device driver 122 and the
configuration instructions 124. For example, the operating system 120
communicates with firmware 306 and provides an interface to the hardware for
application 126 executing on the APD 116. The device driver 122 controls
operation of the APD 116 by, for example, providing API 302 to applications 126
executing on the APD 116 to access various functionality of the APD 116.

[0030] Processor 102 identifies the application being executed at device
304, for example, via an application name. Processor 102 is also configured to
identify the executing application 126 via an API identifier which identifies the
API 302 used by the application 126. API 302 includes, for example, instructions
used to interface (e.g., make requests) with the device driver 122. Examples of
APIs include but are not limited to open computing language (OpenCL), open
graphics library (OpenGL) and DirectX APIs.

[0031] Hardware parameter settings for an application 126 are stored in
configuration instructions 124. When a new application becomes available (e.g.,

available to execute) for execution by a particular processor or device (e.g.,

.8-

WO 2018/090130 PCT/CA2017/051322

graphics card), the application 126, using the provided API 302, is tested (e.g.,
executed) for the device with different parameter settings resulting in different
levels of power consumption and performance. Each device (e.g., device 100,
output driver 114, device 304) includes hardware (e.g., an IC, a processor such as
processor 102 or APD 116, memory cells, an encoder, a decoder and circuitry).
The hardware is identified, for example, using a hardware identifier (e.g., device
ID or a revision ID). When the hardware parameter settings for the identified
hardware are determined for the new application 126, the settings are sent, for
example, as part of updated configuration instructions (e.g., configuration file,
blob file or other file) via a network (not shown). The settings are received (e.g.,
at device 100) which includes the device (e.g., output driver 114, device 304) and
hardware (e.g., APD 116) When the updated configuration instructions are
received at the device 100, the parameter settings for the new application 126
are stored (e.g., via processor 102) in volatile memory (e.g., volatile portion of
memory 104) at the device 100 by overwriting the configuration instructions 124
of the driver stack 125 without changing the device driver 122.

[0032] When the executing application 126 is identified, processor 102
controls the operation of the hardware by executing firmware 306 (e.g., at the
device 304) and tuning a plurality of hardware parameters (e.g., clock voltage)
according to the stored hardware parameter settings in the configuration
instructions 124 corresponding to the executing application 126. Tuning is
performed by setting the values associated with hardware parameters according
to the hardware parameter settings stored in the configuration instructions 124.
For example, when the executing application 126 is identified, device driver 122
parses the configuration instructions 124 and reads the settings from the
configuration instructions 124 for the identified application 126 and API 302.
The stored data is passed to device driver 122 (e.g., kernel mode driver) and
additional structures, which support the stored settings to manage power and
performance.

[0033] The stored settings include, for example, increasing or decreasing a
value of the clock voltage parameter based on a comparison of an activity level of

the hardware to a value of an activity level threshold parameter. The activity

9.

WO 2018/090130 PCT/CA2017/051322

level of the hardware and the value of the activity level threshold parameter
correspond, for example, to a percentage or fraction of time a processor executes
during a sampling interval (e.g., 10 ms), a number of times a processor executes
during a sampling interval, or another metric for measuring activity level of a
processor executes during a sampling interval. For example, the value of the
clock voltage parameter is decreased when an activity level of the hardware
during a sampling interval is less than the value of the activity level threshold
parameter and the value of the clock voltage parameter is increased when the
activity level of the hardware during a sampling interval is equal to or greater
than the value of the activity level threshold parameter. The settings also
include, for example, setting a limit for the value of the clock voltage parameter.
[0034] FIG. 4 is a flow diagram 400 illustrating an exemplary method of
receiving hardware parameter settings for power-performance management.
[0035] As shown in block 402 of FIG. 4, the method 400 includes receiving
hardware parameter settings at a device (e.g., via a device identifier) for a
plurality of hardware parameters used to control operation of hardware. The
customized hardware settings are received at a device, for example, as part of a
set of configuration instructions (e.g., configuration file) over a network (not
shown) for updating the currently stored configuration instructions.

[0036] The configuration file is updated at block 404 of method 400.
Updating the configuration instructions include, for example, overwriting each
portion of the configuration file (i.e., overwriting the file itself), overwriting one
or more portions of the configuration file (e.g., updating hardware parameter
settings for previously received settings for one or more applications) and adding
hardware parameter settings for one or more newly tested applications.
Currently stored parameter settings (e.g., previously received settings for one or
more applications) are identified, for example, via application names or API
identifiers. The instructions are stored by overwriting the configuration
instructions without overwriting or changing the device driver. That is, the
settings are not hardcoded in the device driver and can be altered without

modifying the device driver

-10-

WO 2018/090130 PCT/CA2017/051322

[0037] The updated configuration instructions are stored (e.g., as
firmware) in non-volatile memory (e.g., hard-disk, motherboard boot ROM, and
the like). Identifiers (e.g., application names and API identifiers) are also stored
to identify hardware parameter settings with corresponding application names
and API identifiers provided for the applications. When an application is
executed, the instructions, including the identified hardware parameter settings
for the corresponding application, are executed via memory at the device.

[0038] FIG. 5 is a flow diagram 500 illustrating an exemplary method of
power-performance management at application runtime.

[0039] As shown in block 502 of FIG. 5, the method 500 includes executing
an application. The application is executed, for example, by fetching the
application, decoding the application, scheduling the application for execution,
beginning execution of the application and executing a particular portion (e.g.,
rendering of video on full screen) of the application.

[0040] As shown in block 504 of FIG. 5, the method 500 includes
identifying the executing application. The application is identified, for example,
by an application identifier that identifies the application and an API identifier
which identifies an API provided for the application. Because each application
and each API can result in a different performance level using the same power
distribution values, the settings are customized for each application and each
API to control power consumed by the hardware to execute the application and
maintain a level of performance without affecting performance when executing
another application.

[0041] As shown at decision block 506 of FIG. 5, the method includes
determining whether hardware parameter settings are stored for the identified
application. For example, it i1s determined whether hardware parameter
settings, for the identified application, are stored in the configuration file
described in FIG. 4. When parameter settings The hardware parameter settings
are stored for the identified application

[0042] As shown in block 508 of method 500 in FIG. 5, when it is
determined that hardware parameter settings are stored for the identified

application (e.g., via an application identifier and an API identifier), the

-11-

WO 2018/090130 PCT/CA2017/051322

hardware parameters are tuned to execute the application according to the
stored hardware parameter settings for the identified application. The settings
are executed via memory at the device. The tuning is used to control the
operation of the hardware, such as controlling power that is consumed by the
hardware to execute the identified application while maintaining a performance
level of execution. For example, the power distribution is managed by tuning a
clock voltage parameter (e.g., changing a value of the clock voltage parameter)
based on a comparison of an activity level of the hardware during a sampling
interval to an activity level threshold parameter for the sampling interval. As
shown in block 510 of method 500 in FIG. 5, when it is determined that
hardware parameter settings are not stored for the identified application (e.g.,
hardware parameter settings are not yet received for an identified application),
the hardware parameters are tuned to execute the application according to
stored global hardware parameter settings.

[0043] It should be understood that many variations are possible based on
the disclosure herein. Although features and elements are described above in
particular combinations, each feature or element can be used alone without the
other features and elements or in various combinations with or without other
features and elements.

[0044] The methods provided include implementation in a general purpose
computer, a processor, or a processor core. Suitable processors include, by way of
example, a general purpose processor, a special purpose processor, a
conventional processor, a digital signal processor (DSP), a plurality of
miCroprocessors, one or more microprocessors in association with a DSP core, a
controller, a microcontroller, Application Specific Integrated Circuits (ASICs),
Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated
circuit (IC), and/or a state machine. Such processors can be manufactured by
configuring a manufacturing process using the results of processed hardware
description language (HDL) instructions and other intermediary data including
netlists (such instructions capable of being stored on a computer readable

media). The results of such processing can be maskworks that are then used in a

.12-

WO 2018/090130 PCT/CA2017/051322

semiconductor manufacturing process to manufacture a processor which
implements application profiling for power-performance management.

[0045] The methods or flow charts provided herein can be implemented in
a computer program, software, or firmware incorporated in a non-transitory
computer-readable storage medium for execution by a general purpose computer
or a processor. Examples of non-transitory computer-readable storage mediums
include a ROM, a random access memory (RAM), a register, cache memory,
semiconductor memory devices, magnetic media such as internal hard disks and
removable disks, magneto-optical media, and optical media such as CD-ROM

disks, and digital versatile disks (DVDs).

-13-

WO 2018/090130 PCT/CA2017/051322

CLAIMS
What is claimed is:
1. A processing apparatus comprising:
memory configured to store hardware parameter settings for each of a
plurality of applications;
a processor, in communication with the memory, configured to:
store, in the memory, the hardware parameter settings;
identify one of the plurality of applications as a currently executing
application; and
control an operation of hardware by tuning a plurality of hardware
parameters according to the stored hardware parameter settings for the

identified one application.

2. The processing apparatus of claim 1, wherein the hardware
comprises an accelerated processing device, comprising a plurality of processor

types, configured to execute the application.

3. The processing apparatus of claim 1, wherein the processor is
further configured to identify the application executing on the hardware via an
application identifier which identifies the executing application and an
application programming interface identifier which identifies an application

programming interface provided to the executing application.

4, The processing apparatus of claim 1, wherein the hardware includes
a hardware identifier and the hardware parameter settings are used to control

the operation of the hardware identified by the hardware identifier.

5. The processing apparatus of claim 1, wherein the plurality of
hardware parameters are power management parameters configured to control
an amount of power that is consumed by the hardware to execute the identified

one application while maintaining a performance level of execution, and

-14-

WO 2018/090130 PCT/CA2017/051322

the processor is further configured to control the amount of power that is
consumed by the hardware by tuning the plurality of power management
parameters according to the stored hardware parameter settings for the

identified one application.

6. The processing apparatus of claim 5, wherein the power
management parameters comprise a clock voltage parameter and an activity
level threshold parameter for a sampling interval, and

the processor is further configured to tune the clock voltage parameter by:

comparing an activity level of the hardware during the sampling
interval to the activity level threshold parameter for the sampling
interval; and

changing a value of the clock voltage parameter based on the
comparing of the activity level of the hardware during the sampling
interval to the activity level threshold parameter for the sampling

interval.

7. The processing apparatus of claim 1, wherein the processor is
further configured to:

determine whether the hardware parameter settings are stored for the
identified one application;

when it is determined that hardware parameter settings are stored for the
identified one application, tune the hardware parameters to execute the
application according to the stored hardware parameter settings for the
identified one application; and

when it is determined that hardware parameter settings are not stored for
the identified one application, tune the hardware parameters to execute the

application according to stored global hardware parameter settings.

8. The processing apparatus of claim 1, wherein the processor is

further configured to store the hardware parameter settings in a configuration

-15-

WO 2018/090130 PCT/CA2017/051322

file separate from a device driver which is configured to control operation of the

hardware by using the configuration file.

9. The processing apparatus of claim 8, wherein the processor is
further configured to update the configuration file without modifying the device
driver when new parameter settings are received for one or more of the

applications.

10. The processing apparatus of claim 1, wherein the memory is further
configured to store an executable device driver and the processor is further
configured to

store the hardware parameter settings in a non-executable configuration
file; and

control the operation of the hardware by using the executable device
driver to tune the plurality of hardware parameters according to the stored

hardware parameter settings stored in the non-executable configuration file.

11. A computer implemented method of power-performance
management, the method comprising:

receiving hardware parameter settings for each of a plurality of
applications;

storing the hardware parameter settings;

executing an application of the plurality of applications;

identifying the executing application; and

controlling an operation of hardware by tuning hardware parameters
according to the stored hardware parameter settings for the identified executing

application.
12. The method of claim 11, further comprising:

determining whether the hardware parameter settings are stored for the

identified executing application;

-16-

WO 2018/090130 PCT/CA2017/051322

when it is determined that hardware parameter settings are stored for the
identified executing application, tuning the hardware parameters to execute the
application according to the stored hardware parameter settings for the
identified executing application; and

when it is determined that hardware parameter settings are not stored for
the identified executing application, tuning the hardware parameters to execute

the application according to stored global hardware parameter settings.

13. The method of claim 11, further comprising providing one or more
application programming interfaces to the executing application, and wherein
identifying the executing application comprises identifying the one or more

application programming interfaces provided to the executing application.

14. The method of claim 11, further comprising storing the hardware
parameter settings in a configuration file separate from a device driver which is
configured to control operation of the hardware by using the hardware

parameter settings stored in the configuration file.

15. The method of claim 14, further comprising updating the
configuration file without modifying the device driver when the hardware

parameter settings are stored for each of the plurality of applications.

16. The method of claim 11, wherein the plurality of hardware
parameters are power management parameters which control an amount of
power that is consumed by the hardware to execute the identified executing
application while maintaining a performance level of execution, and

the method further comprises controlling the amount of power that is
consumed by the hardware by tuning the plurality of power management

parameters according to the stored hardware parameter settings.

-17-

WO 2018/090130 PCT/CA2017/051322

17. The method of claim 16, wherein the power management
parameters comprise a clock voltage parameter and an activity level threshold
parameter for a sampling interval, and

the method further comprises tuning the clock voltage parameter by:

comparing an activity level of the hardware during the sampling
interval to the activity level threshold parameter for the sampling
interval; and

changing a value of the clock voltage parameter based on the
comparison of the activity level of the hardware during the sampling
interval to the activity level threshold parameter for the sampling

interval.

18. The method of claim 17, further comprising

storing an executable device driver which includes instructions to control
the operation of the hardware;

storing the hardware parameter settings in a non-executable configuration
file; and

controlling the operation of the hardware by using the executable device
driver to tune the plurality of hardware parameters according to the stored

hardware parameter settings stored in the non-executable configuration file.

19. A non-transitory computer readable medium comprising
instructions for causing a computer to execute a method of power-performance
management, the instructions comprising:

storing hardware parameter settings for each of a plurality of applications;

executing an application of the plurality of applications;

identifying the executing application; and

controlling an operation of hardware by tuning hardware parameters
according to the stored hardware parameter settings for the identified executing

application.

-18-

WO 2018/090130 PCT/CA2017/051322

20. The non-transitory computer readable medium of claim 19, wherein
the instructions further comprise:

storing, for each of the plurality of applications, the hardware parameter
settings in a configuration file separate from a device driver which is configured
to control operation of the hardware by using the hardware parameter settings
stored in the configuration file; and

updating the configuration file without modifying the device driver when
the hardware parameter settings are stored for each of the plurality of

applications.

-19.-

PCT/CA2017/051322

WO 2018/090130

1/5

wzl\J

o:I\J

IAaQ Aedsiq

A

S22IA9Q INdINO

l Old

80T

\

> adv

[

JBALQ INdInO

911

EHL

AlOWBd|y

$92I1ARQ INdu]

(] Jossso0d
d
\—/

rOT

I

J19ALIQ Indug

NSL

abelois

901 \L

)

[41!

00T

PCT/CA2017/051322

WO 2018/090130

2/5

| e » |
nun nun nun
8€T AWIS 8ET QWIS 8€T AWIS
. . o o . .
aun nun uun
8ET AWIS 8ET AWIS 8€T dWIS
_ nn — nun — N
CET 2)ndwo) CET andwo) CET andwod
A » y
’ H i o
p— Jg|npayd
— PET aulRdld buissanold saydelo INPILS
i A
> 91T 201n2Q Buissedo.ld paiessjeidy
— N suonPNSUI — JaALQ — WSISAS
ot suopedyiddy bl uoneinbyuod (44} culllg] 0ct bunesadQ
GZT PelS JeAuQ $0T Alowsy

PCT/CA2017/051322

WO 2018/090130

3/5

00€

e

Old

90¢ aJemull

'y
50 2o1A8q
- sUoIPNIISU] R [443
K4 uoneJnbyuod - 19ALIQ 301AS(T
A
[543 YoRIS AL
70€ Idv
9T1 uope)|ddy

PCT/CA2017/051322

WO 2018/090130

4/5

¥ Old

sbumes Jssweled aJempleH 3101

90t IM

A

914 uoneinblyuod) IMIBAQ

144% IM

r 3

sBUMBS I8jaWeIRd SIBMPIBH DAY

200

00

PCT/CA2017/051322

WO 2018/090130

5/5

sbumes
|eqols 03 bulpaoooy

G Old

uoped|iddy payiuspl J10j sbumes
pa.401S 03 buiplodoy Ssiajoweled aun|

809 .M

¢uoneoiddy

0TS

siajaweleq aung

00S

-«

ON 10} po401s sbuimess aJuy

uonediddy Ayuspl

b5 —> 1

uonediddy a3noax3

[4V) |V

International application No.

PCT/CA2017/051322

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC: GO6F 1/32 (2006.01) , HO02J 13/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
TPC (2006.01): GO6F 1/32, H02J 13/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Database: EPOQUE, Canadian Patent Database, Google
Keywords: hardware, parameter?, setting?, application?, tun+, dynamic?, power+, resource?, manag+, adjust+, chang+, driver?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005/0204125 A1 (Chin), 15 September 2005 (15-09-2005) 1-20
*paragraphs [0007], [0016]-[0018], [0021]-[0025], [0033]
*Figures 2, 3
A US 8,276,133 B1 (Lebaredian et al.), 25 September 2012 (25-09-2012) 1-20

*whole document

A US 2006/0080677 Al (Louie), 13 April 2006 (13-04-2006) 1-20
*whole document

"W Further documents are listed in the continuation of Box C. "# See patent family annex.
* |Special categories of cited documents: “T” |later document published after the international filing date or priority

“A” |document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

“E” |earlier application or patent but published on or after the international “X” |document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

“L” |document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other “Y” |document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

“0” |document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination

being obvious to a person skilled in the art

“P” |document published prior to the international filing date but later than “&” |document member of the same patent family

the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

06 February 2018 (06-02-2018) 08 February 2018 (08-02-2018)

Name and mailing address of the ISA/CA Authorized officer

Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT Dominic Lam (819) 576-2195
50 Victoria Street

Gatineau, Quebec K1A 0C9
Facsimile No.: 819-953-2476

Form PCT/ISA/210 (second sheet) (January 2015) Page 2 of 3

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT /C A2017, /05 1322

Patent Document Publication Patent Family Publication

Cited in Search Report Date Member(s) Date

US2005204125A1 15 September 2005 (15-09-2005) US2005204125A1 15 September 2005 (15-09-2005)
TWI237793B 11 August 2005 (11-08-2005)
TW200530918A 16 September 2005 (16-09-2005)

US8276133B1 25 September 2012 (25-09-2012) None

US2006080677A1 13 April 2006 (13-04-2006) US2006080677A1 13 April 2006 (13-04-2006)
US7636921B2 22 December 2009 (22-12-2009)
EP1662386A2 31 May 2006 (31-05-2006)
EP1662386A3 26 September 2007 (26-09-2007)
EP1662386B1 17 June 2015 (17-06-2015)
US2010115534A1 06 May 2010 (06-05-2010)
US8051435B2 01 November 2011 (01-11-2011)

Form PCT/ISA/210 (patent family annex) (January 2015)

Page 3 of 3

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report

