a2 United States Patent

Panek et al.

US009367775B2

US 9,367,775 B2
Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

TONER LIMIT PROCESSING MECHANISM

Applicants: Alexandru-Virgil Panek, Ghiroda (RO);
John Thomas Varga, Longmont, CO
(US)

Inventors: Alexandru-Virgil Panek, Ghiroda (RO);

John Thomas Varga, Longmont, CO

(US)

Assignee: Ricoh Company, Ltd., Tokyo (IP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/603,619

Filed: Jan. 23, 2015
Prior Publication Data
US 2015/0139542 Al May 21, 2015

Related U.S. Application Data

Continuation of application No. 13/780,270, filed on
Feb. 28, 2013, now Pat. No. 8,971,621.

Int. Cl1.

GO6K 9/36 (2006.01)

GO6K 15/02 (2006.01)

GO6K 15/00 (2006.01)

GO6F 3/12 (2006.01)

U.S. CL

CPC ... GO6K 15/1823 (2013.01); GO6F 3/1204

(2013.01); GO6F 3/1205 (2013.01); GO6F
3/1206 (2013.01); GO6F 3/1254 (2013.01);
GOG6F 3/1257 (2013.01); GOG6F 3/1285
(2013.01); GO6K 15/1878 (2013.01); GO6K
15/407 (2013.01); GO6K 15/4065 (2013.01)
Field of Classification Search
CPC .. GO6T 11/00;, GO6T 3/4015; HO4N 1/32112;
HO4N 2201/3243; GO2F 1/133514; GO2F

1/133516; GO9G 3/3607; GO9G 5/02; G09G
5/24; GO9G 5/28; GOGF 3/1204; GOGF
3/1205; GOGF 3/1206; GOG6F 3/1254; GO6F
3/1257;, GOGF 3/1285; GO6K 15/1823; GO6K
15/1878; GO6K 15/4065; GO6K 15/407
USPC 382/166;358/1.9, 538, 518, 1.17, 1.16;
345/89, 87, 88

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,647,010 A * 7/1997 Okuboco.. GO7D 7/20
283/902

6,188,385 B1* 2/2001 Hilloovvvvrenrnnn GO09G 3/20
345/468

6,243,070 B1* 6/2001 Hilletal.coeeevn. 345/589

6,356,359 Bl 3/2002 Motamed

6,396,505 B1* 5/2002 Luietalcccoveenrns 345/613

6,577,291 B2* 6/2003 Hill et al. 345/89

6,782,217 B1* 82004 Andoc.ccooveinieeniiennnn. 399/79

7,116,444 B2 10/2006 Barry et al.

7,359,088 B2* 4/2008 Clarketal. 358/1.9

7,437,100 B2* 10/2008 Kiryuccccoceovvevvrennn. 399/167

7,804,629 B2 9/2010 Jacobs et al.

8,009,316 B2* 82011 Varga ..o GO6T 11/00
358/1.16

8,121,501 B2* 2/2012 Mashibaccooovveennn 399/45

8,180,230 B2 5/2012 Klassen

8,254,002 B2 8/2012 Nakahara

8,289,572 B2 10/2012 Ernstet al.

(Continued)

Primary Examiner — Mekonen Bekele
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

A method is disclosed. The method includes analyzing a
meta-data structure corresponding to each tile of a sheetside
image to detect a blank state of the sheetside image, detecting
a sensing display item in a data stream and scanning the
sheetside image in response to detecting the sensing display
item.

16 Claims, 7 Drawing Sheets

US 9,367,775 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

8,971,621 B2*
2001/0019416 Al*

2004/0070784 Al
2006/0119897 Al*

3/2015 Panek GO6K 15/407
358/1.16

9/2001 Montyc........ HO4N 1/00132
358/1.9

4/2004 Shannon

6/2006 Morikawa 358/3.27

2008/0165379 Al*
2009/0109510 Al*
2011/0013241 Al*

2012/0050786 Al
2014/0241628 Al*

* cited by examiner

7/2008
4/2009
1/2011

3/2012
82014

Zuber ... B41J 29/393
358/1.9

Vargaocceevine GO6T 11/00
358/538

Oharaccooovvveennn. 358/518

Rudolph et al.

Panek GO6K 15/407

382/166

U.S. Patent

%m&’m& 5|
[ata
bjects

Jun. 14, 2016

Sheet 1 of 7

US 9,367,775 B2

| Data Object

Froossser e o {ptonal)

Cplirizey

102

§

]

Memory

Table o e
Limn Stneclures

Soved Usts
Ohiaols Memory

¥

Sibrrsap
Gompressr
XM

H

Comprossed
Fage Simaps |

112
_.\ SR

{omgrassed-Bimap Cenarator

Frossnialion
Jevice

feg., Peindes)

Figure 1

U.S. Patent

Jun. 14, 2016

Sheet 2 of 7

Foston A

TR

Sorion B

Ponion £

Paortica &
203

Parkon £
S

Poghon &
245

Fortion G

Portion B

207

Fodion

Posticn J
208

Yorton B

Partion L

211

Type of
Dota

Uaa
Ingicator

Figure 2

US 9,367,775 B2

Sitrmap

108

Feta-Data
Structures
o TO8

{

¥

“Fartion &

“Faortion &

*Fation &

*Fortion €

“Fostion

*Posticn G

Tadon B =097

*Fortion J

"Fortion K

“Foston L

U.S. Patent Jun. 14,2016 Sheet 3 of 7 US 9,367,775 B2

Associate a Meta-Data Strutiure
with Each of a Fluralty of e W
Porions of the Bitman Memory

¥

(Start of Sheetside Image)

¥

iniislize Al Meta-Data
Strictures fo Indicate "Compact” 204
(8.4, Cleared) Type of Data

¥y

Process [ala Qbjecis fora
Sheetside tmage by Undating
Meta-Data Structures and o,
Weting *Non-Cormpact Typesof [308
Uata ko Corresponding Portions
of the Bitmap Memory

¥

Gererats Compressed Bitmap
Bata using Meta-Data Skuclures
and using Bitmap Memory for

Those Meta-Uata Struclures P~ 308
Incicating "Non-Compact” Type
of Data in Coresponding
Portions of the Bilmap Memaory

Figure 3

U.S. Patent Jun. 14, 2016

Sheet 4 of 7

US 9,367,775 B2

!

1 Gt Next Dats Objedt
" for shesiside

!

Delerming Alfeciad
Portions of Bitmag
Memory & Data Object
were Writlen tn Bimap
Mamory

- 400

e 410

¥

et Mela-Data Strecture
fnr Newl Affacied Portion

e 4004

Coirpact

¥

Update Type of Data Feld of
Mota-Dials Shruchure for Negt
Affected Porion to Indicate
Mew Tupe of Data
Ardd
Updaie Data ndicator of
Mela-Dala Structure o
Repressnt the Data Ohject

406

4

N S
T Mom TN
. Affected Portions?

" More
[iata Oiacts?

Yes

l

_ s 419
Corrgsponding .
Aortion Now a “Non-Compact

Type of Data?

Mon-Cormpact

Write
Coresponding
Portion of Tala 412
Ohjact to Portion of
Bitmap Memary

Figure 4

U.S. Patent Jun. 14,2016 Sheet 5 of 7 US 9,367,775 B2

Calculate Pel Sum

Sum Exceeds Limit?
520

510

Calculate Factor
540

A 4

Apply Factor
550

More Pixels?
530

Figure 5

U.S. Patent Jun. 14,2016 Sheet 6 of 7 US 9,367,775 B2

{ Start)

Y

Detect ACS
610
¥
Analyze Color Plane
620 Y
Y
¥
Analyze Tile
630

More Planes?
690

Blank Page

Monochrome Page Colored Page 695

670 660

Figure 6

U.S. Patent Jun. 14,2016 Sheet 7 of 7 US 9,367,775 B2

700 —~
|
725 726 77
Main
721 722\ 723 724\ Memary ROM Storage
Y K
Communication| | Cursor Control || Keyboard H Display ‘
1 3 A 4 A 4 v
| Bus 720 |
A
A A 4 h 4 \ 4 b
' < J o _ﬁl
750 \
730 710

Figure 7

US 9,367,775 B2

1
TONER LIMIT PROCESSING MECHANISM

The present patent application is a Continuation applica-
tion claiming priority from application Ser. No. 13/780,270,
filed Feb. 28, 2013 which is currently pending.

FIELD OF THE INVENTION

This invention relates generally to the field of printing
systems. More particularly, the invention relates to image
processing.

BACKGROUND

In a variety of document presentation systems such as
printing systems, it is common to rasterize data to generate a
bitmap representation of each sheetside image of the docu-
ment by processing a sequence of data objects. The data
objects are typically initially defined in a page description
language or other suitable encoding and at some point prior to
writing to a bitmap are represented as regions of rectangles of
pixels. Typically, the sheetside image is then generated into a
bitmap memory as a two dimensional matrix of pixels repre-
senting the intended document sheetside image, and subse-
quently compressed.

During sheetside processing, a toner limit process may be
implemented in which maximum values of toner (or ink) is
monitored and, if necessary, reduced. Such monitoring and
reduction involves many calculations. For example, over 134
million calculations of an algorithm may be required for
CMYK (e.g., 4 planes) data included in 1,200 dpi bitmaps of
an 8.5 by 11 inch page.

If'the limit of toner or ink is exceeded (based on the current
limit due to object type), the values of the cyan, magenta, and
yellow planes must be proportionately reduced to prevent the
appropriate limit from being exceeded. This is a large amount
of calculation that reads and writes large amounts of memory
(typically in excess of 0.5 GB per letter side). As print speeds
increase, the amount of time required per page becomes pro-
hibitive.

Accordingly, an efficient toner limit processing mecha-
nism is desired.

SUMMARY

In one embodiment, a method is disclosed. The method
includes analyzing a meta-data structure corresponding to
each tile of a sheetside image to detect a blank state of the
sheetside image, detecting a sensing display item in a data
stream and scanning the sheetside image in response to
detecting the sensing display item.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc-
tion with the following drawings, in which:

FIG. 1is a block diagram illustrating one embodiment of a
system that processes data objects to generate compressed
bitmaps utilizing meta-data structures;

FIG. 2 is a block diagram illustrating one embodiment of a
description of an association of each meta-data structure in a
table of structures with a corresponding portion of the page
bitmap memory;

FIG. 3 is a flow diagram illustrating one embodiment of
processing data objects representing a sheetside image utiliz-
ing meta-data structures;

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 is a flow diagram illustrating one embodiment of
processing data objects for a sheetside;

FIG. 5 is a flow diagram illustrating one embodiment of
performing toner limit processing;

FIG. 6 is a flow diagram illustrating one embodiment of
detecting colors and blanks; and

FIG. 7 illustrates one embodiment of a computer system.

DETAILED DESCRIPTION

Efficient toner limit processing and colors and blank detec-
tion mechanisms are described. In the following description,
for the purposes of explanation, numerous specific details are
set forth in order to provide a thorough understanding of the
present invention. It will be apparent, however, to one skilled
in the art that the present invention may be practiced without
some of these specific details. In other instances, well-known
structures and devices are shown in block diagram form to
avoid obscuring the underlying principles of the present
invention.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

FIG. 1 is a block diagram of a system 100 for generating
compressed bitmaps. A source of data objects 120 provides a
sequence of data objects that represent a sheetside image.
Data object processor 102 processes the sequence of data
objects to generate a sheetside image represented in bitmap
memory 106 and/or in a table of meta-data structures 108.
Each sheetside image causes generation of a compressed
page bitmap 112 by operation of the bitmap compressor 104.

Such a sequence of compressed page bitmaps 112 may
represent a stored document or job to be transmitted to a
presentation device 130. Presentation device 130 may be, for
example, a printer and thus the sequence of compressed page
bitmaps 112 may represent a print job or document to be
printed by a printer.

Data object processor 102 processes the data objects rep-
resenting information to be presented on a sheetside image.
The data objects as received may be encoded in any of several
well-known encoding standards such as page description lan-
guages and other document description standards. A data
object may represent, for example, text or graphical informa-
tion to be positioned within the sheetside image of the docu-
ment. Thus, data object processor 102 is generally operable to
process the data object by storing information derived from
the data object in the bitmap memory 106 and/or in associated
meta-data structures 108.

In one embodiment, data object processor 102 utilizes a
table of meta-data structures 108 to reduce the need to write
bitmap memory 106 for each data object and thus reduce
utilization of memory bandwidth between data object proces-
sor 102 and bitmap memory 106. Reduced utilization of
bitmap memory bandwidth improves efficiency of the gen-
eration of the corresponding compressed bitmaps by speed-
ing the generation of the uncompressed sheetside image.

Specifically, data object processor 102 stores information
relating to portions of bitmap memory 106 in corresponding
entries of meta-data structure table 108. Processing of many
data objects affecting portions of the bitmap memory 106
may be completed by simply updating information in corre-
sponding entries of meta-data structure table 108. Other, or

US 9,367,775 B2

3

subsequent, data objects may require that the bitmap memory
106 be written in accordance with data represented by the data
object.

Data object processor 102 therefore determines in process-
ing each data object for the sheetside image whether portions
of the data object must be written to portions of bitmap
memory 106 or whether they may be compactly represented
in corresponding meta-data structures within the table of
meta-data structures 108 without requiring writing of por-
tions of bitmap memory 106.

In one embodiment, a significant number of data objects
may be represented by compact meta-data structures in table
108 and thus processor 102 may avoid the necessity of writing
pixel by pixel information into bitmap memory 106. Some
simple data objects such as those representing a solid color
(e.g., a cleared bitmap or a solid color in a portion of the
bitmap) may be represented in very compact form in meta-
data structures of table 108 without requiring writing of any
data in bitmap memory 106. Even more complex data objects
such as a transparency masks or an opaque image may be
represented compactly in a meta-data structure in table 108.

Processor 102 retains the received data objects in memory
110 and the meta-data structures may indirectly point to the
saved data objects that are compactly represented thereby.
Again with such a compact representation in the meta-data
structure, data object processor 102 may reduce the volume of
memory bandwidth utilization required to generate data
objects.

Compressed-bitmap generator 100 also includes bitmap
compressor 104 to generate compressed data representing a
compressed page bitmap 112 following completion of the
generation of a sheetside image by data object processor 102.
When data object processor 102 has completed processing of
a sequence of data objects representing a particular sheetside
image, bitmap compressor 104 is operable to retrieve each
meta-data structure and to generate compressed data in a
compressed page bitmap 112 based on the information stored
in the meta-data structure.

Where a meta-data structure provides sufficient informa-
tion to generate a compressed representation of the corre-
sponding portion of bitmap data, bitmap compressor 104
need not read bitmap memory 106 to generate a portion of the
compressed page bitmap 112. Where the meta-data structure
indicates that the corresponding portion of the bitmap con-
tains the data to be compressed, bitmap compressor 104 reads
the indicated portion of bitmap memory 106 to generate the
corresponding portions of compressed page bitmaps 112.

FIG. 2 is a block diagram illustrating one embodiment of a
relationship between a plurality of portions (or tiles) of a
bitmap memory 106 and the table of meta-data structures 108.
As shown in FIG. 2, bitmap memory 106 is logically subdi-
vided into a plurality portions (or tiles) that may all be of
equal size.

In one embodiment, bitmap 106 includes a plurality of
identically sized, rectangular portions 200 through 211 (“Por-
tion A” through “Portion [.””). Each portion has a correspond-
ing entry (220 through 231) in the table of meta-data struc-
tures 108. In particular, meta-data structure table 108 entry
220 (“*Portion A”") includes information regarding the corre-
sponding “Portion A” 200 of the bitmap memory 106. In like
manner meta-data structure entry 221 (““*Portion B”) corre-
sponds to “Portion B” 201 of bitmap memory 106, etc.

Any suitable number of portions may be predefined in
accordance with features and aspects hereof. Thus the num-
ber of such portions (200-211), the corresponding number of
meta-data structures (221-231) in table 108, and the associ-

20

25

30

35

40

45

50

55

60

65

4

ated size of each of the portions may be predetermined and
statically fixed within the system.

In one embodiment, each meta-data entry (220 through
231) includes a type of data field 240 and a data indicator field
242. The type of data field 240 indicates a type of data pres-
ently associated with the corresponding portion (200 through
211) of bitmap memory 106. Data indicator field 242 points
(indirectly) at the saved data object that is presently associ-
ated with the portion corresponding to the meta-data struc-
ture. In a further embodiment, data indicator field 242 may
directly encode the data of the data object presently associ-
ated with the portion.

Returning again to operation of data object processor 102
of FIG. 1, if the data derived from a data object were written
to bitmap memory 106, the data may span one or more por-
tions ofthe bitmap memory 106. As data object processor 102
processes data objects, for each portion of the bitmap memory
106 that would be affected by writing the data object, the
corresponding meta-data structure in table 108 is updated to
record information regarding the effect the data object would
have on corresponding portions of the bitmap memory 106.

For example, if a data object would affect “Portion A” 200
and “Portion B” 201, data object processor 102 updates meta-
data structures “*Portion A” 220 and “*Portion B” 221.
Depending on the particular new data object and the current
data compactly represented by the meta-data structure of a
portion of the bitmap, updating the meta-data structures 220
and 221 may suffice to represent the new data object without
needing to write data into the bitmap memory portions 200
and 201.

In one embodiment, the type of data field 240 of a meta-
data structure entry may indicate that the corresponding por-
tion of the bitmap memory is a “compact” type of data or a
“non-compact” type of data. A data indicator field 242 rep-
resents the data of the corresponding portion in a compact
form.

Most generally, if the data that would be in a portion of the
bitmap memory may be compactly represented in the meta-
data structure without requiring that the data be written to the
corresponding portion of the bitmap memory, then the type of
data for the affected meta-data structure is “compact” and the
data indicator field represents the new data for the corre-
sponding portion of the bitmap memory

If the data that would be in a portion cannot be compactly
represented in the meta-data structure, the type of data for the
affected meta-data structure is “non-compact” and the data
object/objects are simply written to the corresponding portion
of'the bitmap memory. Those of ordinary skill will recognize
that these particular “type of data” values (“compact” and
“non-compact”) are intended mere as exemplary.

More specifically, a “compact” type of data indicates that
the data of the corresponding portion of the bitmap is com-
pactly represented by the information in the meta-data struc-
ture and hence is not written in the corresponding portion of
the bitmap memory. For example, the bitmap memory at the
start of processing of a sheetside image is logically cleared
(e.g., a solid white background often represented as zeros in
the bitmap memory).

As data objects are processed for the sheetside image,
portions of the bitmap and corresponding meta-data struc-
tures may be affected by the processed data objects. A “com-
pact” type of data in the meta-data structure for such an
affected portion of the bitmap then indicates that some data
object has been processed that has affected the corresponding
portion of the bitmap and that the effect on the corresponding
portion is represented compactly in the meta-data structure by
the data indicator field.

US 9,367,775 B2

5

For example, the data indicator field may indirectly point to
the data object in the saved data object memory. In another
example, the data indicator field may directly represent that
data object by an encoded value (such as the color of a
rectangular data object that affects the corresponding portion
of the bitmap memory). Hence, the portion of the bitmap
memory corresponding to a meta-data structure having the
“compact” data type has no relevant information written
therein thus reducing bitmap memory bandwidth utilization
that would be required to write the data objects to the bitmap
memory.

A “non-compact” type of data indicates that the data of the
corresponding portion of the bitmap cannot be compactly
represented in a meta-data structure alone for any of various
reasons (i.e., cannot be adequately represented by the data
indicator field). In such a case, the data object or objects that
affect the corresponding portion of the bitmap memory are
simply written to the bitmap memory.

Numerous conditions may arise to preclude a “compact”
type of data representation for a portion of the bitmap. Other
conditions may arise where, as a matter of design choice, the
portion could be represented by either a “compact” type of
data or by a “non-compact” type of data in the corresponding
meta-data structure. Based on cost/benefit implementation
details for a particular application it may be determined that a
“compact” representation is not desired.

For example, added computational complexity to com-
pactly represent combinations of data objects overlapping
within a portion may be too high although the particular
overlapping data could be represented compactly. In another
example, if image objects are a rarity in a particular applica-
tion, there may be little benefit in compactly representing
image data objects in a “compact” type of data meta-data
structure.

In yet another example, where image objects are frequent
and often overlapping in portions of the bitmap memory (e.g.,
a photo montage), significant benefits may be realized in
assuring that portions with such overlapping image objects
are compactly represented whenever possible to avoid using
bitmap memory bandwidth to write image data that is likely to
be overwritten by a later image data object. These and other
heuristics and design choices will be readily apparent
enhancements to the features and aspects hereof to optimize
the systems and methods for particular applications.

According to one embodiment, an optional optimizer ele-
ment 114 may be operable in system 100 to analyze the
efficiency of the number and size of the portions for a par-
ticular set of data objects. Based upon such analysis, opti-
mizer 114 may adjust the size and number of such portions
and correspondingly adjust the number of meta-data struc-
tures in table 108. For certain types of documents or jobs,
fewer such portions of larger size may provide optimal results
in processing sheetside images.

In other types of documents or jobs, a larger number of
smaller portions may provide optimal sheetside image pro-
cessing. Where the portions are all of equal shape and size, the
association between a meta-data structure (220 through 231)
and its corresponding portion (200 through 211) ofthe bitmap
memory 106 may be determined by a simple indexing calcu-
lation to associate the meta-data structure by its index posi-
tion within the table 108 with its corresponding bitmap
memory portion. Where the number, size, and/or shape of the
bitmap portions are variable, each meta-data structure (220
through 231) may include suitable addressing information to
identify its corresponding portion (200 through 211) of the
bitmap memory.

20

25

30

35

40

45

50

55

60

65

6

FIG. 3 is a flow diagram illustrating one embodiment of
processing data objects representing a sheetside image utiliz-
ing meta-data structures. Processing block 300 associates a
meta-data structure with each of a plurality of portions of the
bitmap memory. As noted above, the number of such portions,
and hence the number of corresponding meta-data structures,
may be statically predetermined or may be dynamically deter-
mined by optimization analysis in the processing of sheet side
images. Processing block 300 therefore represents any suit-
able determination of an initial number of such portions and
initialization of corresponding meta-data structures.

Prior to processing any data object, processing block 304
sets the type of data field of every meta-data structure to
“compact” and the data indicator field is set to zero values (or
other values representing a cleared state) to represent the
cleared state of the bitmap memory at the start of generating
a sheetside image (e.g., a “white” or “blank™ sheetside image
or a “cleared” sheetside image pre-set to a defined back-
ground color).

Processing of the sheetside image then continues to pro-
cessing block 306 where the data object processor is operable
to process the data objects corresponding to a sheetside
image. The processing for each data object includes updating
the meta-data structures for any corresponding portions of the
bitmap that would be affected if data derived from the data
object were to be written in the bitmap memory. The type of
data field in each meta-data structure corresponding to an
affected portion of the bitmap is updated to indicate the type
of data now associated with the bitmap portion.

The data indicator field for each meta-data structure corre-
sponding to an affected portion of the bitmap is also updated
to represent the new data object that is associated with the
corresponding portion of the bitmap. Exemplary details of the
processing of processing block 306 for determining which
portions of the bitmap memory may be affected by processing
of the data object and associated processing to update corre-
sponding meta-data structures are discussed further herein
below. In general, the type of data field is updated to indicate
changes in the corresponding affected portion of the bitmap
from a “compact” type of data to a “non-compact” type of
data.

Following completion of processing of the data objects for
a sheetside image at processing block 306, processing block
308 represents processing of the bitmap compressor of sys-
tem 100 to generate a compressed bitmap data representation
of the sheetside image. The bitmap compressor uses each
meta-data structure to determine from the type of data field
whether the compressed data may be generated exclusively
from the information in the meta-data structure (e.g., for
“compact” types of data) or whether the compressed data
must be generated by reading the data stored in the corre-
sponding portion of the bitmap memory (e.g., for “non-com-
pact” type of data). Thus, processing of the bitmap compres-
sor in processing block 308 further reduces bitmap memory
bandwidth utilization by avoiding the need to read bitmap
memory for portions containing non-“non-compact” types of
data.

Rather, for such “compact” types of data, the meta-data
structure alone provides sufficient information for the bitmap
compressor to generate compressed data representing the
corresponding portion of the bitmap. Completion of the pro-
cessing of processing blocks 304 through 308 thus generates
acompressed bitmap representation of a sheetside image with
reduced utilization of the bitmap memory bandwidth.

FIG. 4 is a flow diagram illustrating one embodiment of
processing data objects for a sheetside. Processing block 400
gets the next (or first) data object for the sheetside image to be

US 9,367,775 B2

7

generated. Processing block 402 then determines which por-
tions of the bitmap memory would be affected by the data
object ifthe data object were written to the bitmap memory by
standard bitmap processing techniques. The portions affected
may be determined by comparing geometric parameters of
the object (e.g., bounding box dimensions and position of the
object on the bitmap) with the dimensions of the various
portions. For each portion of the bitmap that would be
affected by the data object, processing blocks 404 through
414 are repeated.

Processing block 404 gets the next (first) meta-data struc-
ture corresponding to a next affected portion of the bitmap.
Processing block 406 then updates the type of data field of the
meta-data structure to indicate any change to the field in
accordance with the particular data object. In addition, pro-
cessing block 406 updates the data indicator of the meta-data
structure to represent the data object being processed if the
object is to be compactly represented in the meta-data struc-
ture.

Exemplary additional details of processing block 406 are
discussed further herein below. In general, the data type field
of'the meta-data structure is updated to indicate “compact” if
the affect of the data object on the corresponding portion of
the bitmap memory will be compactly represented by the
meta-data structure fields (in combination with the saved data
object represented by the data indicator field).

If the effect on the portion will not be compactly repre-
sented by the meta-data structure, the type of data field is
updated to indicate a “non-compact” type of data and the
affect of the data object is actually written to the correspond-
ing portion of the bitmap (processing block 412 below). For
example, overlaying certain data objects by other data objects
may not be compactly represented (in some cases) and hence
the data object is simply written to the corresponding affected
portion of the bitmap memory. However, before the data
object is written into the corresponding affected portion of the
bitmap memory, if there are previous objects that are to
remain visible in that portion, the compact data is first written
into the portion to initialize the memory to the prior object(s).

Alternatively, as a matter of design choice certain objects
or combinations of objects may be written to the bitmap for
optimization consideration in a particular application. In
other embodiments, portions or edges of a data object may
cover only part of a portion of the bitmap. Again, as a matter
of design choice such partial coverage of a portion by an
object may or may not be represented by the corresponding
meta-data structure.

These and other heuristic decisions may be employed
within the processing of processing block 406 to determine in
what conditions the affected portion can be and will be rep-
resented compactly by the meta-data structure. Thus in pro-
cessing block 406, a determination is made as to whether it is
possible to compactly represent the affected portion and
whether it is desirable to do so in a particular application.

Processing block 410 determines whether the meta-data
structure type of data field has been updated to indicate a
“non-compact” type of data. If so, processing block 412
writes the corresponding portion of the bitmap memory with
the rasterized data derived from the data object. In either case,
processing continues at processing block 414 to determine
whether additional affected portions remain to be processed.

If so, processing continues looping back to processing
block 404 to process meta-data structures corresponding to
other affected portions and processing of this data object. If
not, processing block 416 next determines whether additional
data objects remain to be processed for this sheetside image.
If so, processing continues looping back to processing block

20

25

30

35

40

45

50

55

60

65

8

400 to retrieve and process a next data object for the current
sheetside image. Otherwise processing of this sheetside
image is completed.

In one embodiment, updating the meta-data structure, as
referred to in processing block 406 comprises determining
whether the affected portion will be compactly represented by
the corresponding meta-data structure. As noted above, this
determination may entail determining not only whether the
affected portion can be represented compactly but also deter-
mining whether it is desirable to do so based on design
choices in the implementation of features and aspects hereof.

For example, it may be possible to compactly represent a
portion of a bitmap even if the data object affects only part of
the portion of the bitmap. Additionally, it may be possible to
compactly represent a portion of a bitmap even if multiple
objects overlay one another in particular ways within the
affected portion.

If the new object cannot be compactly represented by the
meta-data structure, it is next determined whether the meta-
data structure presently indicates that the corresponding por-
tion is already written with data from one or more prior
objects (e.g., already indicates a “non-compact” type of data
in the meta-data structure). If so, processing is complete.
Otherwise the type of data is changed to “non-compact” and
all previously represented data objects to the affected portion
of the bitmap is written

Specifically, the data that is represented by the present
meta-data structure is written to the corresponding portion of
the bitmap memory. In other words, the currently represented
“compact” type of data object/objects represented in the
meta-data structure is/are written to the corresponding por-
tion of the bitmap memory.

Since these previously processed objects have not yet been
written to the bitmap, they must be written to the affected
portion before the data derived from the new data object is
written in the affected portion. Subsequently, the type of data
is set to “non-compact” to complete processing of this meta-
data structure and corresponding bitmap portion affected by
the new data object.

If it is determined that the present meta-data structure
indicates that the new object can be compactly represented by
the meta-data structure (and if it is determined to be desirable
as amatter of design choice), it is next determined whether the
new object will affect a change of the affected portion. For
example, if the meta-data structure indicates a “compact”
type of data that indicates a solid color is represented and if
the new data object does not change that color (e.g., because
it is the same color or transparent), then the new object would
not change the portion and processing is complete.

If it is determined that the data object changes the meta-
data representation of the corresponding portion, the type of
data field is updated (or set) to indicate a “compact” type of
data and the data indicator field is set to represent the new data
object (e.g., indirectly point to the saved data object or oth-
erwise directly encode the data object in the data indicator
field). Processing of this meta-data structure corresponding to
an affected portion of the bitmap is then complete.

Inone embodiment, an effect a data object may have onone
or more portions of the bitmap that it overlays depends on the
particular semantic of the data object. Any of a variety of data
objects may be encountered depending upon design choices
in implementation of features and aspects hereof. In general
all objects may be considered as a collection of pixels—each
pixel having some value indicating a color and/or indicating a
transparency value.

In general, all objects are represented as a 2-dimensional
array of such pixel values (e.g., a rectangular bounding box of

US 9,367,775 B2

9

pixel values). The value of a pixel may be encoded in a
number of manners. For example, full color data objects may
be defined as a pixel intensity value for each of three primary
color planes and the color black. In another example, each
pixel may simply encode an index value into a table of pre-
defined colors (e.g., a palette). Further, each pixel value may
encode a transparency level indicating that the pixel is trans-
parent (i.e., has no color—no effect on the bitmap) or has
some opaque color value (with the color specified by the value
as indicated above).

Features and aspects hereof may be used with any and all
such data object encodings and shapes. In one embodiment,
data objects may be classified in one of four broad categories:
rectangle, transparency mask, palette, and image with pos-
sible transparency and/or translucency.

A “rectangle” is any data object that represents a rectan-
gular area where the pixels of the rectangular area each rep-
resent a specified opaque color. Thus, a rectangle object is
typically defined by its geometric dimensions and a single
color value. A rectangle may thus be compactly represented
in a portion of the bitmap by a corresponding meta-data
structure as a “compact” type of data where the data indicator
field either points to the saved data object or encodes the
dimensions and color of the rectangle.

A “transparency mask” is any data object (typically also
rectangular in shape though not necessarily) where each pixel
of'the mask is either a “transparent” bit or an “opaque” bit of
some specified color. This kind of data object is also some-
times referred to as a “bi-level image”. Text is often repre-
sented as such a transparency mask. The glyph representing a
character code or a sequence of such glyphs are represented as
opaque pixels (all of the same color) against a bounding box
background of transparent bits that do not affect the bitmap
memory. When writing such a transparency mask to bitmap
memory, the opaque pixels are written to the bitmap memory
and the transparent pixels have no effect such that whatever
was previously in the corresponding pixel locations of the
bitmap memory remains unchanged. Typically the transpar-
ency mask is defined as a rectangular area with the transparent
and opaque pixels defined therein. A transparency mask may
thus be compactly represented in a portion of the bitmap by a
corresponding meta-data structure as a “compact” type of
data where the data indicator field points to the saved data
object.

A “palette” is any data object that defines a shape (often a
rectangular area) filled with one or more colors where the
colors are selected from a limited set of colors (a palette).
Thus, the colors are specified as index values in the relatively
small range of palette values. In one embodiment of such a
palette object, one palette color index value is reserved to
represent a “transparent pixel” and all other palette color
index values represent other corresponding colors in the pal-
ette. A palette data object may thus be compactly represented
in a portion of the bitmap by a corresponding meta-data
structure as a “compact” type of data where the data indicator
field points to the saved data object.

An “image” data object is any object where each pixel has
a pixel value in a color spectrum. Photographic images are
exemplary of such an image object. An image is typically
defined as a rectangular area of such pixel values. An image
may thus be compactly represented in a portion of the bitmap
by a corresponding meta-data structure as a “compact” type
of data where the data indicator field points to the saved data
object. Further, the pixels of an image object may be com-
pressed and encoded according to a number of well known
standards such as LZW and JPEG standards.

20

25

30

35

40

45

50

55

60

65

10

When data objects of these exemplary types are associated
with portions by means of positioning the data object on a
sheetside, the data object can be represented by a series of
portions aligned with the portions of the underlying sheetside.
Some affected portions of the bitmap memory are completely
filled and some are only partially filled depending on the
position of the data object on the sheetside. For example, a
rectangle data object may include portions only partially
affected by the data object at a boundary of the rectangle (i.e.,
showing the edges of the rectangle) and solid portions (i.e.,
the center areas, completely filled by the rectangle). Simi-
larly, other types of objects (e.g., image data objects, trans-
parency mask data objects, and palette data objects) may
affect portions of the bitmap differently where the object
completely fills a portion versus portions that are only par-
tially affected by the data object at a boundary edge of the
object. As noted above, such portions that are only partially
affected by processing of a data object may nonetheless be
compactly represented by the meta-data structure for that
portion.

As data objects are processed to update meta-data struc-
tures corresponding to affected portions of the bitmap
memory, combinations of data objects of the above types may
be processed within any single affected portion (e.g., a
sequence of objects may each affect a common portion each
object overwriting or in some way adding to the pixels of the
portion).

In one embodiment, the specific effect on a portion of the
bitmap from processing a data object depends, in part, on the
present type of data associated with the portion as indicated in
the corresponding meta-data structure. In general, if an
affected portion presently indicates a “compact” type of data
in its corresponding meta-data structure, a next data object
processed that completely fills the portion will typically
retain the “compact” type of data but update the data indicator
to represent the new object.

If the new object only partially covers the portion that is
currently compactly represented by a corresponding meta-
data structure, then the type of data may be changed to “non-
compact” to represent the mixture of the effects of the prior
data object mixed with the partial effect of the new data
object.

If a “transparency mask™ object is processed, its effect on
any portion currently represented by a “compact” type of data
meta-structure may depend on what the prior data object was.
As can be seen from the above few examples, a variety of
objects and combinations of objects may be represented com-
pactly in the meta-data structure for an affected portion while
other combinations of objects affecting a portion may require
non-compact representation by writing to the bitmap memory
portion.

As discussed above, bitmap compressor 104 generates a
compressed representation of a sheetside image using the
meta-data structures. In such an embodiment, the compressed
data may be generated by stepping through each horizontal
line across the bitmap memory (e.g., each scanline) and gen-
erating compressed data from the meta-data structures that
intersect each scanline.

In a further embodiment, compressed data is generated
according to a PackBits compression scheme (e.g., PackBits)
for run-length encoding of the bitmap data. PackBits com-
presses raw data by looking for repeated strings having the
same 8-bit value. A control byte is used to indicate repeat
(negative values) or pass-thru (positive values) data. The
absolute value of the control byte is the number of repeated or
passed-thru values decremented by 1.

US 9,367,775 B2

11

For instance, values O thru 127 indicate that 1 thru 128
passed-thru values will follow the control byte, while values
-1 thru -127 indicate that the following value is repeated for
atotal of 2 thru 128 times. The value —128 is not defined, and
thus may be used in non-standard ways. In one embodiment,
3 or more identical 8-bit data values are coded as a repeat
sequence (e.g., 0 0 0 raw 8-bit data is coded as -2 0). Further,
a string of non-identical data values is coded as a pass-thru (or
literal) string (e.g., 21 22 23 24 raw data is coded as 3 21 22
23 24).

After a sheetside is compressed, the bitmap data is later
processed for printing. Specifically, the data may be retrieved,
decompressed and processed for printing. For instance, pro-
cessing may involve converting the bitmap to a size commen-
surate with a printing bitmap. Also, additional bitmaps (e.g.,
N-up) or other data ((e.g., header/footer, watermark, etc.)
may need to be added and/or overlaid.

In conventional processes, decompressing and re-com-
pressing the data requires data in the PackBits format to be
converted to image data, and subsequently back to the Pack-
Bits format. Such a process is inefficient in the use of memory,
as well as in the time incurred for the PackBits decompression
and compression.

According to one embodiment, retrieved PackBits data is
left in that format and used in the generation ofthe subsequent
sheetside generation, thus eliminating the compression and
decompression times. In such an embodiment, a new object
classification is introduced such that the broad categories now
includes a PackBits object type, in addition to the rectangle,
transparency mask, palette and image classifications dis-
cussed above.

In a further embodiment, a PackBits object location is
saved as rectangle data, where the background color is solid
and a PackBits “color” refers to a similar offset of PackBits
data. Moreover, transparency data may be stored with Pack-
Bits data to allow blending and bleed through, where trans-
parent areas show only solid background color. Non-solid
backgrounds (e.g., previous tile state) typically cause non-
compact tiles if transparency is active or are not affected if the
entire tile area is being overlaid with a completely transparent
area.

Further, a tile having a PackBits object is processed accord-
ing to the above-described mechanism such that a PackBits
display item is found from a data indicator 242 pointer in the
meta-data structure, and PackBits display items combined
with other object types other than color create non-compact
portions. Accordingly, the processing of tiles with PackBits
objects is handled according to the “compact” and “non-
compact” indications in the meta-data structures discussed
above with reference to FIG. 4.

For example, when a PackBits object is retrieved for a
sheetside image, a determination is made as to which portions
of the bitmap memory affected by the PackBits object, a
corresponding meta-data structure to a next affected portion
of the bitmap is retrieved, the type of data field of the meta-
data structure is updated to indicate a change to the field and
to represent the data object being processed if the object is to
be compactly represented in the meta-data structure. Thus,
the effect of PackBits object processing is that data is pulled
from referenced PackBits data upon encountering a PackBits
tile during a subsequent bitmap processing and prior to
recompression for printing.

Subsequently, the sheetside image is compressed accord-
ing to processing block 308 discussed above with reference to
FIG. 3. However, during compression of the sheetside image,
data from PackBits objects may be simply realigned and
inserted into the corresponding bitmap without compression

20

25

30

35

40

45

50

55

60

65

12

since the objects are already in a compressed format. For
instance, tiles exclusively including PackBits objects are
inserted into the bitmap without decompression or further
compression, while tiles mixed with PackBits objects and
other objects may require additional decompression and
recompression.

Toner Limits

As discussed above, sheetside processing may feature a
toner limit process in which maximum values of toner/ink are
monitored for possible reduction. In one embodiment, the
above-described meta-data structures are implemented to
monitor toner limits. In such an embodiment, the toner limit
process is significantly reduced by using tile object values,
where each tile represents 4096 pixels. In a further embodi-
ment, a single calculation may be implemented to determine
if atileis over the limit, and if so, to calculate new color values
for the tile.

For instance, a solid tile is a single color for which a single
calculation is used to find the limited values. Further, a rect-
angle tile has two colors (e.g., background and foreground),
and thus two calculations are performed. Also, calculations
may be performed for PackBits tiles, which include many
different colors. Therefore, solid, rectangle and PackBits tile
metadata types con be limited using the meta-data structures.

FIG. 5 is a flow diagram illustrating one embodiment of
performing toner limit processing for a PackBits tile in a
sheetside image. At processing block 510, the highest value
used in each Cyan, Magenta, Yellow, Black (CMYK) color
plane for a pixel is calculated. Given a CMYK (with four
color planes: C, M, Y, K) sidemap with MxN pels, a sum S(i,j)
is calculated as S(i,j) as C(1,))+M(1,))+Y (i,j)+K(i,)) for each
sidemap pel (i,j), whereiin [0...M-1]andjin[0...N-1].

At decision block 520, it is determined whether the sum
S(i,)) exceeds the toner ink threshold value L (e.g., the maxi-
mum allowed amount of toner/ink per any pel of the
sidemap). If the sum does not exceed the threshold, no limit-
ing is necessary, and it is determined if additional pixels
remain to be processed, decision block 530.

Ifthe sum exceeds the threshold, a factor F(i,j) is calculated
as a function of S(i,j) and L, processing block 540. If L is the
ink limit and C;;, M, Y,;, K;; are the ink values of the (i,))
sidmap pel, S,=C,+M,+Y,+K,; is calculated as the sum of
the four ink values. If S, >I, the ink values (with the exception
ofK,) need tobe limited such that §', =L (where §', is the sum
of the ink values after limiting). Since K';=K,; (the values of
the K channel should not modified), we will determine the
factor F;; such that C', +M', +Y'=F x(C +M,+Y,)) when C,+
M,+Y,+S,-K; and C' +M' +Y',=[-K,. Based on the
above, L-K, =Fijx(Sij-Kij) giving

_ L-Kjj
YT oS- Ky’

F,, is applied in the same amount to each of the C
values as: C',=F, xC, F',xM';; and Y', =F xY .

At processing block 550, the factor is applied to each color
for the pixel, such that F(i,j) is applied to C(i,j), M(i,j) and
Y(i,j). Subsequently, it is determined if additional pixels
remain to be processed, decision block 530. If so, control is
returned to processing block 510 for another pixel in the
sidemap to be processed.

However the process may be complicated in certain
embodiments since, besides the C, M, Y and K values, each
sidemap pel may also have a tag value. (e.g.) T(i,j), where
T(,j)is [0 . . . 3] for any pel of the sidemap (e.g., there are at

M, anle.j

i

US 9,367,775 B2

13

most four different tag values for all of the pels in the sidemap
considered). If the tag values are present, there may be mul-
tiple toner/ink threshold values (e.g., one per each type of
tag). Thus in such an embodiment, each pel toner/ink must be
checked against the associated limit value; the above toner
limit algorithm becomes in this case. Accordingly, in decision
block 520, the toner ink threshold value is represented as
L(i,j), and at processing block 540 the factor is calculated as
a function of S(i,j) and L(i,).

The above-described toner limit processing operates on
meta-tiles to combine the tiles at the same (row,col) location
in the C, M, Y, K tile tables into a single, corresponding
CMYK meta-tile. For example, in the first tile position, (0,0),
may have a SOLID(100) tile in plane C, a SOLID(200) tile in
plane M, a RECT(50,150) tile in plane Y and a RECT(0, 250)
tile in plane K. For the RECT tiles, the first numeric value is
the background color while the second one is the foreground
color).

Inthis case, provided that the RECT tiles from planes Y and
K have the same rectangle coordinates, the four tiles are
treated as a RECT meta-tile with the background color
(C=100, M=200,Y=50, K=0) and a foreground color (C=100,
M=200, Y=150, K=250). Then, two summations are per-
formed: 100+200+50+0=350 (that is 350*100/255=137%)
and 1004+200+150+250=700 (or 700%100/255=275%).

If the corresponding toner threshold/limit is 290% then no
limiting is necessary (e.g., skip the pel-by-pel processing)
because both 137% and 275% are less than 290%. If some (C,
M, Y, K) tile tuple cannot be treated as a CMYK meta-tile
(e.g., if the above K tile would be MIXED or RECT with
different coordinates), then all the compact tiles in that posi-
tion will be transformed in non-compact tiles (rasterized) and
after that the toner limit algorithm will be applied on a pel-
by-pel basis.

In a further embodiment, the maximum ink value per each
CMYK plane is monitored when writing the sidemap tiles.
For example, all sidemaps may start as
max_C=max_M=max_Y=max_K=0values for all their pels.
Then, if a solid color rectangle with a CMYK color is written
max_C if C>max_C, max_M if M>max_M and so on, are
updated for all the objects written on the sidemap.

When the sidemap is compressed and saved in PackBits
format, these limits are saved along with the PackBits data.
Subsequently, when the PackBits object is written on the
destination sidemap, the destination sidemap maximum val-
ues is updated accordingly. If a toner limiting operation is
requested on a sidemap, it can be skipped altogether if
max_C+max_M+max_Y+max_K<=[(the limit value).

According to one embodiment, 1 to 4 streams of PackBits
data are processed simultaneously for each PackBits. For
example, iftwo tiles (let’s say C and M) are SOLID with some
specific background values and max_Y+max_K<=[-C-M
(if the remaining leeway is sufficient/greater-than-equal to
the sum of the worst-case remaining PackBits values), the
meta-tile will be skipped from toner limiting.

Further, the data for simultaneous runs (e.g., all colors are
identical) can be efficiently checked. When a limit is detected
that is not the start of a run and the current run is repeated, that
line is copied (up to the point of detection). However, when a
limit is detected at the start of a run, the limited value is
remembered and the existing value is replaced once the run is
completed and copied.

In a further embodiment, a PackBits tile may be decom-
pressed if a limit is found, subsequently limited according to
object, and then new runs compressed back to PackBits (or
done when the sheetside is compressed back to PackBits for
printing). When beginning final compression, solid colors,

20

25

30

40

45

55

14

background and foreground colors of rectangles and bi-level
tiles can be replaced with limited values.

In one embodiment, the PackBits data may be copied or
may remain in place for each line. Alternatively, a mapping of
the original PackBits line starts may be created, copying only
the lines that are altered. Subsequently, the compressed result
is generated using the mapping, rather than the raw PackBits
data in a line by line basis.

Color & Blank Detection

Currently, printers inspect plane data to determine if ink or
toner is required on a sheetside, and may thus skip applying
toner or ink to blank sheetsides. However, discovering this on
the final bitmaps may prevent their usage. For example, if a
color control bar is requested, it will apply toner or ink to all
of'the CMYK planes. However, if that is the only data on the
page, the printer cannot skip any of the planes, even when
they are otherwise blank.

To prevent this, some printers must check the output for
each page and force a monochrome setting to all pages on a
sheetside, thus switching between color and monochrome
control bars. If all pages output no data, a blank sheetside is
then detected and the control bar must be suppressed. This
process requires synchronization so that the control bar is not
known until the after rasterization. This synchronization
requirement prevents a pipeline of independent activities in
this area, causing slower performance.

According to one embodiment, a sensing display item
(Auto Color Sense (or ACS)) is included to examine a sheet-
side to determine whether the sheetside is of color, mono-
chrome or blank. Further, subsequent controls may be used
based on the sensed results to prevent adding additional ele-
ments to blank planes. These are needed if final bitmaps are
needed per plane. Otherwise, bitmaps are not provided to the
marking engine, even though they may acquire data after the
ACS (such as for the control bar).

In one embodiment, an ACS item is inserted after all user
data is presented (e.g., pages and other items such as header/
footer, watermarks, etc.). Subsequently, the control causes
examination of the sheetside at the point in time it is encoun-
tered. A final value then notes which planes are used and
which are empty. [f the CMY planes are empty, the sheet side
can be printed in monochrome, and if all CMYK are empty,
the sheet side is blank.

In one embodiment, the above-described meta-data struc-
tures are implemented for color and blank detection. In such
an embodiment, a meta-data structure is used to determine
whether all tiles on a sheetside are solid and white (e.g.,
implying no data has been written) without having to examine
the actual data.

For other tile types, the color values may also indicate that
the plane has no data (e.g., O values in both background and
foreground for a rectangle object, or 0 max value for a Pack-
Bits object). Only non-compact tiles (e.g., where tile data has
been written into memory) are examined pixel by pixel for
non-blank data.

In some embodiments, certain printers accept the lack of'a
plane as blank. However in other embodiment, printers
require the actual planes. In such an embodiment, a condi-
tional control item is implemented to turn off adding data to
the sheet side for a plane based on the result of the ACS. This
suppresses adding the CMY parts of a color bar, as well as
other marks (e.g., watermarks) if the user data is blank. The
conditional control item turns the ignoring of data off and
back on based on ACS results, and is specific to each plane.

FIG. 6 is a flow diagram illustrating one embodiment of
detecting colors and blanks. At processing block 610, an ACS
is detected after user data, resulting in the sheetside tiles being

US 9,367,775 B2

15

scanned. At processing block 620, a color plane (e.g., C, M, Y
or K) is analyzed. At processing block 630, a tile is analyzed.
In one embodiment, tiles representing solids, rectangles or
text are scanned for non-blankness (e.g., a non-zero value for
background and foreground), while tiles representing Pack-
Bits are scanned for maximum limit values (e.g., a value of
zero). Tiles representing non-compact data may be scanned
line by line in search of data.

At decision block 640 it is determined whether the tile has
non-zero data. If so, it is determined whether the plane being
analyzed is a C, M or Y plane. If so, the sidesheet is a colored
page, processing block 660. Otherwise, the plane being ana-
lyzed is black and the sidesheet is a monochrome page, pro-
cessing block 670. If, at decision block 640, the tile has all
zero data, there is a determination as to whether there are
additional tiles in the sidesheet that need to be analyzed,
decision block 680.

If'so, control is returned to processing block 630, where the
next tile is analyzed. However if there are no more tiles to
analyzed in the current color plane, a determination is made
as to whether there are additional color planes to analyze for
the sidesheet, decision block 690. If so, control is returned to
processing block 620, where the next color plane is analyzed.
If, however, there are no additional color planes to analyze,
the sidesheet is determined to be a blank page.

The above-described process enables analysis before man-
datory marks are added to the sheetside. Additionally, the
process allows sheetsides to be classified for overcoat (when
limited to non-blanks) despite always having side-two verify
data, for example. It also allows planes to be ignored (as in cut
sheet), although CMY values in color control bars are added
afterwards.

Although described with reference to PackBits, one skilled
in the art will appreciate the above-described mechanisms
may be implemented using other compression formats (e.g.,
Run ends).

FIG. 7 illustrates a computer system 700 on which com-
pressed bitmap generator 100 and/or decompressors 125 may
be implemented. Computer system 700 includes a system bus
720 for communicating information, and a processor 710
coupled to bus 720 for processing information.

Computer system 700 further comprises a random access
memory (RAM) or other dynamic storage device 725 (re-
ferred to herein as main memory), coupled to bus 720 for
storing information and instructions to be executed by pro-
cessor 710. Main memory 725 also may be used for storing
temporary variables or other intermediate information during
execution of instructions by processor 710. Computer system
700 also may include a read only memory (ROM) and or other
static storage device 726 coupled to bus 720 for storing static
information and instructions used by processor 710.

A data storage device 725 such as a magnetic disk or
optical disc and its corresponding drive may also be coupled
to computer system 700 for storing information and instruc-
tions. Computer system 700 can also be coupled to a second
1/Obus 750 via an [/O interface 730. A plurality of /O devices
may be coupled to I/O bus 750, including a display device
724, an input device (e.g., an alphanumeric input device 723
and or a cursor control device 722). The communication
device 721 is for accessing other computers (servers or cli-
ents). The communication device 721 may comprise a
modem, a network interface card, or other well-known inter-
face device, such as those used for coupling to Ethernet, token
ring, or other types of wired or wireless networks.

Embodiments of the invention may include various pro-
cessing blocks as set forth above. The processing blocks may
be embodied in machine-executable instructions. The

5

20

25

30

35

40

45

50

55

60

65

16

instructions can be used to cause a general-purpose or spe-
cial-purpose processor to perform certain processing blocks.
Alternatively, these processing blocks may be performed by
specific hardware components that contain hardwired logic
for performing the processing blocks, or by any combination
of programmed computer components and custom hardware
components.

Elements of the present invention may also be provided as
a machine-readable medium for storing the machine-execut-
able instructions. The machine-readable medium may
include, but is not limited to, floppy diskettes, optical disks,
CD-ROMs, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMs, magnetic or optical cards, propagation
media or other type of media/machine-readable medium suit-
able for storing electronic instructions. For example, the
present invention may be downloaded as a computer program
which may be transferred from a remote computer (e.g., a
server) to a requesting computer (e.g., a client) by way of data
signals embodied in a carrier wave or other propagation
medium via a communication link (e.g., a modem or network
connection).

Throughout the foregoing description, for the purposes of
explanation, numerous specific details were set forth in order
to provide a thorough understanding of the invention. It will
be apparent, however, to one skilled in the art that the inven-
tion may be practiced without some of these specific details.
Accordingly, the scope and spirit of the invention should be
judged in terms of the claims which follow.

What is claimed is:

1. A computer generated method comprising:

analyzing a meta-data structure corresponding to each tile

of a sheetside image to detect a blank state of the sheet-
side image;

determining whether a sensing display item has been

detected in a data stream, wherein the sensing display
item is an auto color sense inserted to the data stream
after all user data is presented;

scanning the sheetside image in response to detecting a

sensing display item in the data stream; and
disregarding the sheetside image upon determining that no
sensing display item is included in the data stream.

2. The method of claim 1 further comprising:

determining if any Cyan, Magenta or Yellow (CMY) color

value is not zero; and

determining that the sheetside image has color if one or

more of the CMY values are non-zero.

3. The method of claim 2 further comprising:

determining if any Black (K) color value is non-zero if the

CMY color values are all zero; and
determining that the sheetside image is monochrome if any
K value is non-zero.

4. The method of claim 3 further comprising determining
that the sheetside image is blank if no K value is non-zero.

5. The method of claim 1 wherein tiles representing solids,
rectangles and text are scanned for a non-zero value in a
background and foreground.

6. The method of claim 1 wherein tiles representing com-
pressed data are scanned for maximum limit values.

7. The method of claim 5 wherein a tile having an associ-
ated solid object is processed by comparing a color value of
the object to the predetermined maximum value.

8. The method of claim 5 wherein a tile having an associ-
ated rectangle object is processed by:

comparing a first color value of the object to the predeter-

mined maximum value; and

comparing a second color value of the object to the prede-

termined maximum value.

US 9,367,775 B2

17

9. An article of manufacture comprising a non-transitory
computer-readable medium including instructions, which
when executed performs a process comprising:

analyzing a meta-data structure corresponding to each tile

of a sheetside image to detect a blank state of the sheet-
side image;

determining whether a sensing display item has been

detected in a data stream, wherein the sensing display
item is an auto color sense inserted to the data stream
after all user data is presented;

scanning the sheetside image in response to detecting a

sensing display item in the data stream; and
disregarding the sheetside image upon determining that no
sensing display item is included in the data stream.

10. The article of manufacture of claim 9 comprising a
non-transitory computer-readable medium including instruc-
tions, which when executed performs a process further com-
prising:

determining if any Cyan, Magenta or Yellow (CMY) color

value is not zero; and

determining that the sheetside image has color if one or

more of the CMY values are non-zero.

11. The article of manufacture of claim 10 comprising a
non-transitory computer-readable medium including instruc-
tions, which when executed performs a process further com-
prising:

20

25

18

determining if any Black (K) color value is non-zero if the
CMY color values are all zero; and

determining that the sheetside image is monochrome if any
K value is non-zero.

12. The article of manufacture of claim 11 comprising a
non-transitory computer-readable medium including instruc-
tions, which when executed performs a process further com-
prising determining that the sheetside image is blank if no K
value is non-zero.

13. The article of manufacture of claim 9 wherein tiles
representing solids, rectangles and text are scanned for a
non-zero value in a background and foreground.

14. The article of manufacture of claim 9 wherein tiles
representing compressed data are scanned for maximum limit
values.

15. The article of manufacture of claim 14 wherein a tile
having an associated solid object is processed by comparing
a color value of the object to the predetermined maximum
value.

16. The article of manufacture of claim 14 wherein a tile
having an associated rectangle object is processed by:

comparing a first color value of the object to the predeter-

mined maximum value; and

comparing a second color value of the object to the prede-

termined maximum value.

#* #* #* #* #*

