
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0112222 A1

US 2006O112222A1

Barrall (43) Pub. Date: May 25, 2006

(54) DYNAMICALLY EXPANDABLE AND Publication Classification
CONTRACTIBLE FAULTTOLERANT
STORAGE SYSTEMPERMITTING (51) Int. Cl.
VARIOUSLY SIZED STORAGE DEVICES G06F 2/6 (2006.01)
AND METHOD (52) U.S. Cl. .. 711A114

(76) Inventor: Geoffrey S. Barrall, San Jose, CA (US)
Correspondence Address:
BROMBERG & SUNSTEIN LLP (57) ABSTRACT
125 SUMMER STREET

BOSTON, MA 02110-1618 (US) A dynamically expandable and contractible fault-tolerant
storage system permits variously sized storage devices. Data

(21) Appl. No.: 11/267,938 is stored redundantly across one or more storage devices if
(22) Filed: Nov. 4, 2005 possible. The layout of data across the one or more storage

a rs devices is automatically reconfigured as storage devices are
Related U.S. Application Data added or removed in order to provide an appropriate level of

redundancy for the data to the extent possible. A hash-based
(60) Provisional application No. 60/625,495, filed on Nov. compression technique may be used to reduce storage con

5, 2004. Provisional application No. 60/718,768, filed Sumption. Techniques for freeing unused storage blocks are
on Sep. 20, 2005. also disclosed.

2602

Store data on a first storage device in a manner
that the data stored thereon appears reduntantly

on at least one other storage device

2604

Detect replacement of the first storage device
with a replacement device having greater storage capacity

than the first storage device

2606

Automatically reproduce the data that was stored
on the first device onto the replacement device

using the data stored redundantly on other devices

2608

Make the additional storage space on the replacement device
available for storing new data redundantly

2610

Store new data redundantly within the
additional storage space on the replacement device

if no other device has a sufficient amount of available
storage capacity to provide redundancy for the new data

2612

Store new data redundantly across multiple storage devices
if at least one other device has a sufficient amount of available

storage capacity to provide redundancy for the new data

US 2006/0112222 A1 Patent Application Publication May 25, 2006 Sheet 1 of 24

I "OICH

D
?s? k=s

Patent Application Publication May 25, 2006 Sheet 2 of 24 US 2006/0112222 A1

BEFORE - CHUNK IS MIRRORED

CHUNK FORMAT LOCATIONs A
#1347 2 1:57, 2:400

N/
222

14
CHUNK TABLE -

211 212

2

21

FIG. 2A

AFTER - CHUNK IS STRIPED

Device 3

Patent Application Publication May 25, 2006 Sheet 3 of 24 US 2006/0112222 A1

CHUNKS #1, #2, #3 STORED USING PATTERN 3 (STRIPING USING 3 DEVICES)

CHUNKS #10, #11, #12 STORED USING PATTERN 2 (MIRRORED USING 2 DEVICES)

CHUNKS #20, #21 STORED USING PATTERN 1 (MIRRORED USING 1 DEVICE)

FIG. 3

Patent Application Publication May 25, 2006 Sheet 4 of 24 US 2006/0112222 A1

REDUNDANCY ACROSS
ALL DEVICES

120 GB

REDUNDANCY FOR
NEW OBJECT ON TWO

DEVICES ONLY

FIG. 4B 120 GB

REDUNDANCY FOR
NEW OBJECTS ON

SINGLE DEVICE ONLY

FIG. 4C 120 GB

9. "OICH

US 2006/0112222 A1 2006 Sheet 5 of 24 Patent Application Publication May 25,

Patent Application Publication May 25, 2006 Sheet 6 of 24 US 2006/0112222 A1

Mirrored
Block - A

Mirrored
Block - B

FIG. 6

Patent Application Publication May 25, 2006 Sheet 7 of 24 US 2006/0112222 A1

Zone A

Stripe(373G

Drive O Drive 1 Drive 2 Drive 3

FIG. 7

Patent Application Publication May 25, 2006 Sheet 8 of 24 US 2006/0112222 A1

M is fixed
regardless
of drives in
the array.

Lookup Table

On drives in
the array.

S varies
S depending

Virtual Sparse
Volume Space Array Physical

Volume Space

FIG. 8

Patent Application Publication May 25, 2006 Sheet 9 of 24 US 2006/0112222 A1

a) All Drives OK with Array space available.

FIG. 9

Patent Application Publication May 25, 2006 Sheet 10 of 24 US 2006/0112222 A1

b) Slot C & Slot D full- data not redundant. Add drive to empty Slot A

FIG. 10

Patent Application Publication May 25, 2006 Sheet 11 of 24 US 2006/0112222 A1

c) Array cannot maintain redundant data in the event of a power failure: Replace drive in Slot D

FIG 11

US 2006/0112222 A1 Patent Application Publication May 25, 2006 Sheet 12 of 24

d) Drive in Slot C has failed

FIG. 12

Device Drivers

Peripheral USB;
iSCS

Host Request Manager

-
ge S. --- ----------

Reads

\ Layer 3a
ar Hash

/
Journal Manager !-------7-

- - - - ---------- --- - . - - - - -
:

layer 3b
F------------ CAT lock Table Cluster Manager

Wirtualization

- - -ss-r- ------------- - ------------ -
--Journal {

data .---. X
--------- --- is A4-2. -n - - - - -

r

disk utilization daemo zoniaer ex N layout Manager

i------------ ---

Patent Application Publication May 25, 2006 Sheet 13 of 24 US 2006/0112222 A1

layer 1
Regions Manager

layer 0a
: Disk Manager

Abstraction

. . . .
Layer Ob

Device Drivers

FIG 13

Error and Disk Even
Manager

-
Cache Manager

Patent Application Publication May 25, 2006 Sheet 14 of 24 US 2006/0112222 A1

Cluster offset -
/ - 1

Cluster offset

Cluster Offset

av "

Cluster offset

FIG. 14

-> Virtual Zone

--> Virtual Zone

Patent Application Publication May 25, 2006 Sheet 15 of 24 US 2006/0112222 A1

Zone

host Write Request

Allocate and write data to cluster(s)

Cluster(s) To Disk

Update Journal Table

Journal Table

To Disk
Seq ea is to one

FIG. 15

US 2006/0112222 A1

?— — -- ~ ~ ~- -7?????? TTTTTTTTT}?– – – – – – –T?????? TTTTT----------?i aeg------

Patent Application Publication May 25, 2006 Sheet 16 of 24

Copies of DSs of other disks

D
FIG 16

DIS Copy 1

DIS Copy 0

Patent Application Publication May 25, 2006 Sheet 17 of 24 US 2006/0112222 A1

Zone containing part :
w of CAT

Y
a s

/
-r / ---------

--- Y
r ^
H- M

M

/ - . --------------- / -- :

/
/ i Zone containing part

| t / ly Of CAT
v / /

f
1. ----- - - - - - - - - - - - - -

--------------------- / 1.
CAT Linked List y - 1

Node 3 vs. - 1 Zone containing part
CAT Linked List D - w of CAT

Node 2 - - 1
-------------------, - 1. i----------------------...-
---------------...--------------. . . .-- w

CAT Linked List
s

-- - - - - - Node 1 - --- Zone containing part
----------------- -------i - - of CAT

CAT Linked List - - - - :
Node 0 it arm - we wom

Zone containing part
of Hash Table :

| - M
i 1 w

HASHTable Linked -

List Node 0
is Nodeo Zone containing part

HASHTable Linked - - - - - - - - - of Hash Table List Node 0 List Node 0 .)
\ . HASHTable Linked -

\ | list Node 0 - - - -
\: s a Zone containing part
\ s of Hash Table
\
: \ . -/ ------------

\---------------- -
- a

Zone 0 info Table
w

FIG. 1 7

Patent Application Publication May 25, 2006 Sheet 18 of 24 US 2006/0112222 A1

Data
ReConstructor Error Manager

FIG. 18

Patent Application Publication May 25, 2006 Sheet 19 of 24 US 2006/0112222 A1

Error Manager

RM :

5.
3 is C

DM :
is

3.

FIG. 19

Patent Application Publication May 25, 2006 Sheet 20 of 24 US 2006/0112222 A1

Copy next sector
Copy old Region

f to New
Copy next sector

w

Bad Sector
Read?

Update ZT to point
to new Region

re-Yes.

Create sector of Os

No

igure out if we ree
to duplicate other va . . .

K Regions in the '''' --

N Redundant Set /

N/
Mark other
Regions for
duplication

FIG. 20

IZ POIAI SISS\/HO

US 2006/0112222 A1

Z09 Z

NS|S
| w | u

Patent Application Publication May 25, 2006 Sheet 21 of 24

Patent Application Publication May 25, 2006 Sheet 22 of 24 US 2006/0112222 A1

2102

Determine a re-layout scenario for each possible disk failure
2104

Determine the amount of space needed on each drive
for re-layout of data redundantly in a worst case scenario

2106

Determine the amount of spare Working Space regions needed
for re-layout of data redundantly in a Worst case scenario

2108

Determine the total amount of Space needed on each drive in order
to permit re-layout of data redundantly in a worst case scenario

2110

Determine whether the storage system contains
an adequate amount of available storage

2112
YES

Adequate? seed
Determine which drive/slot requires upgrade

Signal additional storage Space needed and
indicate which drive/slot requires upgrade

2199

FIG. 22

US 2006/0112222 A1 2006 Sheet 23 of 24 Patent Application Publication May 25

SZ (OICH

f7Z (OICH

£Z (OIH

Patent Application Publication May 25, 2006 Sheet 24 of 24 US 2006/0112222 A1

2602

Store data on a first storage device in a manner
that the data stored thereon appears reduntantly

on at least one other storage device

2604

Detect replacement of the first storage device
with a replacement device having greater storage capacity

than the first storage device

2606

Automatically reproduce the data that was stored
on the first device onto the replacement device

using the data stored redundantly on other devices

2608

Make the additional storage space on the replacement device
available for storing new data redundantly

2610

Store new data redundantly within the
additional storage space on the replacement device

if no other device has a Sufficient amount of available
storage capacity to provide redundancy for the new data

2612

Store new data redundantly across multiple storage devices
if at least one other device has a sufficient amount of available

storage capacity to provide redundancy for the new data

FIG. 26

US 2006/0112222 A1

DYNAMICALLY EXPANDABLE AND
CONTRACTIBLE FAULTTOLERANT STORAGE
SYSTEMPERMITTING VARIOUSLY SIZED

STORAGE DEVICES AND METHOD

PRIORITY

0001. This application claims priority from the following
U.S. Provisional Patent Applications, which are hereby
incorporated herein by reference in their entireties: 60/625,
495 filed on Nov. 5, 2004; and 60/718,768 filed on Sep. 20,
2005.

TECHNICAL FIELD AND BACKGROUND ART

0002 The present invention relates to digital data storage
systems and methods, and more particularly to those pro
viding fault-tolerant storage.
0003. It is known in the prior art to provide redundant
disk storage in a pattern according to any one of various
RAID (Redundant Array of Independent Disks) protocols.
Typically disk arrays using a RAID pattern are complex
structures that require management by experienced infor
mation technologists. Moreover in many array designs using
a RAID pattern, if the disk drives in the array are of
non-uniform capacities, the design may be unable to use any
capacity on the drive that exceeds the capacity of the
smallest drive in the array.
0004 One problem with a standard RAID system is that

it is possible for disc-surface corruption to occur on an
infrequently used area of the disk array. In the event that
another drive fails, it is not always possible to determine that
corruption has occurred. In Such a case, the corrupted data
may be propagated and preserved when the RAID array
rebuilds the failed drive.

0005. In many storage systems, a spare storage device
will be maintained in a ready state so that it can be used in
the event another storage device fails. Such a spare storage
device is often referred to as a “hot spare.” The hot spare is
not used to store data during normal operation of the storage
system. When an active storage device fails, the failed
storage device is logically replaced by the hot spare, and
data is moved or otherwise recreated onto the hot spare.
When the failed storage device is repaired or replaced, the
data is typically moved or otherwise recreated onto the
(re-)activated storage device, and the hot spare is brought
offline so that it is ready to be used in the event of another
failure. Maintenance of a hot spare disk is generally com
plex, and so is generally handled by a skilled administrator.
A hot spare disk also represents an added expense.

SUMMARY OF THE INVENTION

0006. In a first embodiment of the invention there is
provided a method of storing data in a set of storage devices
including at least one storage device. The method involves
automatically determining a mixture of redundancy
schemes, from among a plurality of redundancy schemes,
for storing the data in the set of storage devices in order to
provide fault tolerance and, when the set of storage devices
happens to include a plurality of devices of different storage
capacities, enhanced storage efficiency; and storing the data
in the set of storage devices using the mixture of redundancy
schemes.

May 25, 2006

0007. In a related embodiment, the method may also
involve automatically reconfiguring data previously stored
on a first arrangement of storage devices using a first
redundancy scheme to being stored using one of (a) a second
redundancy scheme on the same arrangement of storage
devices, (b) a second redundancy scheme on a different
arrangement of storage devices, and (c) the same redun
dancy scheme on a different arrangement of storage devices
for accommodating without data loss at least one of expan
sion of capacity by the addition of another storage device to
the set and contraction of capacity by the removal of a
storage device from the set.
0008. In a second embodiment of the invention there is
provided a method of storing data in a set of storage devices
including at least one storage device in a manner permitting
dynamic expansion and contraction of the set. The method
involves storing data on the set of storage devices using a
first redundancy scheme and, upon a change in the compo
sition of the set of storage devices, automatically reconfig
uring the data on the set of storage devices using one of (a)
a second redundancy scheme on the same arrangement of
storage devices, (b) a second redundancy scheme on a
different arrangement of storage devices, and (c) the same
redundancy scheme on a different arrangement of storage
devices.

0009. In a third embodiment of the invention there is
provided a system for storing data including a set of storage
devices having at least one storage device and a storage
manager for storing the data in the set of storage devices
using a mixture of redundancy schemes. The storage man
ager automatically determines the mixture of redundancy
schemes, from among a plurality of redundancy schemes,
for storing the data in the set of storage devices in order to
provide fault tolerance and, when the set of storage devices
happens to include a plurality of devices of different storage
capacities, enhanced storage efficiency.
0010. In a related embodiment, the storage manager
automatically reconfigures data previously stored on a first
arrangement of storage devices using a first redundancy
scheme to being stored using one of (a) a second redundancy
scheme on the same arrangement of storage devices, (b) a
second redundancy scheme on a different arrangement of
storage devices, and (c) the same redundancy scheme on a
different arrangement of storage devices for accommodating
without data loss at least one of expansion of capacity by the
addition of another storage device to the set and contraction
of capacity by the removal of a storage device from the set.
0011. In a fourth embodiment of the invention there is
provided a system for storing data including a set of storage
devices having at least one storage device and a storage
manager for storing the data in the set of storage devices.
The storage manager Stores data on the set of storage devices
using a first redundancy scheme and, upon a change in the
composition of the set of storage devices, automatically
reconfigures the data on the set of storage devices using one
of (a) a second redundancy scheme on the same arrangement
of storage devices, (b) a second redundancy scheme on a
different arrangement of storage devices, and (c) the same
redundancy scheme on a different arrangement of storage
devices.

0012. In related embodiments, the redundancy schemes
may be selected from the group including mirroring, striping

US 2006/0112222 A1

with parity, RAID6, dual parity, diagonal Parity, Low Den
sity Parity Check codes, and turbo codes.

0013 In other related embodiments, the data may be
reconfigured by converting a mirrored pattern across two
storage devices to a mirrored pattern on a single storage
device; converting a mirrored pattern across a first pair of
storage devices to a mirrored pattern across a second pair of
storage devices; converting a striped pattern across three
storage devices to a mirrored pattern across two storage
devices; converting a first striped pattern across a first
plurality of storage devices to a second striped pattern across
a second plurality of storage devices; converting a mirrored
pattern across one storage device to a mirrored pattern
across two storage devices; converting a mirrored pattern on
one storage device to a mirrored pattern on another storage
device; converting a mirrored pattern across two storage
devices to striped pattern across three storage devices; or
converting a first striped pattern across a first plurality of
storage devices to a second striped pattern across a second
plurality of storage devices including a storage device added
to the set.

0014. In still other related embodiments, an object may
be parsed into chunks, each chunk having particular content,
and only chunks having unique content may be stored in the
storage system. The chunks may be identified as having
unique content based on a predetermined hash function. In
Such embodiments, storing only chunks identified as being
unique may involve computing a hash number for each
chunk and storing in the storage system a unique identifier
for the object linked to hash numbers for the stored chunks
and location information therefor. Storing a unique identifier
for the object may involve using an object table that lists the
unique identifier for the object and the hash numbers for the
stored chunks. Storing location information may involve
storing in a chunk table a listing for each chunk stored
therein including a representation of its physical location in
the storage system. Objects stored in the storage system may
be translated into a representation of at least one of a single
storage device and a file system and an object storage
system. Physical allocation of storage of chunks in the
storage system may be managed so as to provide fault
tolerant storage, even when the storage system may include
storage devices of varying capacity. Upon retrieving a
particular chunk from the storage system, the contents of the
retrieved chunk may be verified based on the stored hash
number for the chunk, for example, by computing a hash
number for the retrieved chunk and comparing the computed
hash number with the corresponding stored hash number for
the chunk.

0015. In another embodiment of the invention there is
provided a method of storing data in a set of storage devices
involving storing data on the set of storage devices using at
least one redundancy scheme, detecting removal of a storage
device from the set, reconfiguring a portion of the data from
the removed storage device using the remaining storage
devices, detecting reinsertion of the removed storage device
into the set, freeing regions of the reinserted Storage device
corresponding to said portion, and refreshing any remaining
regions of the reinserted storage device that may have been
modified between removal and reinsertion.

0016. In yet another embodiment of the invention there is
provided a method for freeing unused storage blocks in a

May 25, 2006

storage system. The method involves identifying a free
block, determining a logical sector address for the free
block, identifying a cluster access table entry for the free
block based on the logical sector address, decrementing a
reference count associated with the cluster access table
entry, and freeing the block if the decremented reference
count is Zero.

0017. In related embodiments, identifying a free block
may involve identifying a free block bitmap associated with
the host filesystem and parsing the free block bitmap to
identify clusters that are no longer being used by the
filesystem. Identifying the free block bitmap associated with
the host filesystem may involve maintaining a partition
table, parsing the partition table to locate an operating
system partition, parsing the operating system partition to
locate a Superblock, and identifying the host filesystem
based on the superblock. A working copy of the free block
bitmap may be made, in which case the working copy may
be parsed to identify clusters that are no longer being used
by the filesystem.

BRIEF DESCRIPTION OF THE DRAWINGS

0018. The foregoing features of the invention will be
more readily understood by reference to the following
detailed description, taken with reference to the accompa
nying drawings, in which:
0.019 FIG. 1 is an illustration of an embodiment of the
invention in which an object is parsed into a series of chunks
for storage.

0020 FIG. 2 illustrates in the same embodiment how a
pattern for fault-tolerant storage for a chunk may be dynami
cally changed as a result of the addition of more storage.
0021 FIG. 3 illustrates in a further embodiment of the
invention the storage of chunks in differing fault-tolerant
patterns on a storage system constructed using different
sized storage devices.
0022 FIG. 4 illustrates another embodiment of the
invention in which indicator states are used to warn of
inefficient storage use and low levels of fault tolerance.
0023 FIG. 5 is a block diagram of functional modules
used in the storage, retrieval and re-layout of data in
accordance with an embodiment of the invention.

0024 FIG. 6 shows an example in which mirroring is
used in an array containing more than two drives.
0025 FIG. 7 shows some exemplary Zones using differ
ent layout schemes to store their data.
0026 FIG. 8 shows a lookup table for implementing
sparse Volumes.
0027 FIG. 9 shows status indicators for an exemplary
array having available storage space and operating in a
fault-tolerant manner, in accordance with an exemplary
embodiment of the present invention.
0028 FIG. 10 shows status indicators for an exemplary
array that does not have enough space to maintain redundant
data storage and more space must be added, in accordance
with an exemplary embodiment of the present invention.
0029 FIG. 11 shows status indicators for an exemplary
array that would be unable to maintain redundant data in the

US 2006/0112222 A1

event of a failure, in accordance with an exemplary embodi
ment of the present invention.
0030 FIG. 12 shows status indicators for an exemplary
array in which a storage device has failed, in accordance
with an exemplary embodiment of the present invention.
Slots B, C, and D are populated with storage devices.
0031 FIG. 13 shows a module hierarchy representing the
different software layers of an exemplary embodiment and
how they relate to one another.
0032 FIG. 14 shows how a cluster access table is used
to access a data clusters in a Zone, in accordance with an
exemplary embodiment of the present invention.
0033 FIG. 15 shows a journal table update in accordance
with an exemplary embodiment of the present invention.
0034 FIG. 16 shows drive layout in accordance with an
exemplary embodiment of the invention.
0035 FIG. 17 demonstrates the layout of Zone 0 and
how other Zones are referenced, in accordance with an
exemplary embodiment of the invention.
0.036 FIG. 18 demonstrates read error handling in accor
dance with an exemplary embodiment of the invention.
0037 FIG. 19 demonstrates write error handling in
accordance with an exemplary embodiment of the invention.
0038 FIG. 20 is a logic flow diagram demonstrating
backup of a bad Region by the Error Manager in accordance
with an exemplary embodiment of the invention.
0.039 FIG. 21 is a schematic block diagram showing the
relevant components of a storage array in accordance with
an exemplary embodiment of the present invention.
0040 FIG. 22 is a logic flow diagram showing exem
plary logic for managing a virtual hot spare in accordance
with an exemplary embodiment of the present invention.
0041 FIG. 23 is a logic flow diagram showing exem
plary logic for determining a re-layout scenario for each
possible disk failure, as in block 2102 of FIG. 22, in
accordance with an exemplary embodiment of the present
invention.

0.042 FIG. 24 is a logic flow diagram showing exem
plary logic for invoking the virtual hot spare functionality in
accordance with an exemplary embodiment of the present
invention.

0.043 FIG. 25 is a logic flow diagram showing exem
plary logic for automatically reconfiguring the one or more
remaining drives to restore fault tolerance for the data, as in
block 2306 of FIG. 24, in accordance with an exemplary
embodiment of the present invention.
0044 FIG. 26 is a logic flow diagram showing exem
plary logic for upgrading a storage device, in accordance
with an exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

0045. Definitions. As used in this description and the
accompanying claims, the following terms shall have the
meanings indicated, unless the context otherwise requires:

May 25, 2006

0046. A “chunk” of an object is an abstract slice of an
object, made independently of any physical storage being
used, and is typically a fixed number of contiguous bytes of
the object.
0047 A fault-tolerant “pattern' for data storage is the
particular which by data is distributed redundantly over one
or more storage devices, and may be, among other things,
mirroring (e.g., in a manner analogous to RAID1), Striping
(e.g., in a manner analogous to RAID5), RAID6, dual parity,
diagonal Parity, Low Density Parity Check codes, turbo
codes, or other redundancy scheme or combination of redun
dancy Schemes.
0048. A hash number for a given chunk is “unique' when
the given chunk produces a hash number that generally will
differ from the hash number for any other chunk, except
when the other chunk has data content identical to the given
chunk. That is, two chunks will generally have different hash
numbers whenever their content is non-identical. As
described in further detail below, the term “unique' is used
in this context to cover a hash number that is generated from
a hash function occasionally producing a common hash
number for chunks that are non-identical because hash
functions are not generally perfect at producing different
numbers for different chunks.

0049. A “Region' is a set of contiguous physical blocks
on a storage medium (e.g., hard drive).
0050. A “Zone' is composed of two or more Regions.
The Regions that make up a Zone are generally not required
to be contiguous. In an exemplary embodiment as described
below, a Zone stores the equivalent of 1 GB of data or
control information.

0051) A “Cluster” is the unit size within Zones and
represents a unit of compression (discussed below). In an
exemplary embodiment as described below, a Cluster is 4
KB (i.e., eight 512-byte sectors) and essentially equates to a
Chunk.

0052 A “Redundant set is a set of sectors/clusters that
provides redundancy for a set of data.
0053 “Backing up a Region' involves copying the con
tents of one Region to another Region.
0054 A“first pair and a “second pair of storage devices
may include a common storage device.
0055. A “first plurality” and a “second plurality” of
storage devices may include one or more common storage
devices.

0056. A “first arrangement” and a “second arrangement'
or “different arrangement of storage devices may include
one or more common storage devices.
0057 FIG. 1 is an illustration of an embodiment of the
invention in which an object, in this example, a file, is parsed
into a series of chunks for storage. Initially the file 11 is
passed into the storage software where it is designated as an
object 12 and allocated a unique object identification num
ber, in this case, #007. A new entry 131 is made into the
object table 13 to represent the allocation for this new object.
The object is now parsed into “chunks” of data 121, 122, and
123, which are fixed-length segments of the object. Each
chunk is passed through a hashing algorithm, which returns
a unique hash number for the chunk. This algorithm can later

US 2006/0112222 A1

be applied to a retrieved chunk and the result compared with
the original hash to ensure the retried chunk is the same as
that stored. The hash numbers for each chunk are stored in
the object table 13 in the entry row for the object 132 so that
later the complete object can be retrieved by collection of the
chunks.

0.058 Also in FIG. 1, the chunk hashes are now com
pared with existing entries in the chunk table 14. Any hash
that matches an existing entry 141 is already stored and so
no action is taken (i.e., the data is not stored again, leading
to automatic compression of the objects). A new hash (one
which has no corresponding entry in the chunk table 14) is
entered into the chunk table 141. The data in the chunk is
then stored on the available storage devices 151, 152, and
153 in the most efficient manner for fault-tolerant storage.
This approach may lead to the chunk data's being stored, for
example, in a mirrored fashion on a storage system com
prised of one or two devices or parity Striped on a system
with more than two storage devices. This data will be stored
on the storage devices at physical locations 1511, 1521, and
1531, and these locations and the number of locations will
be stored in the chunk table columns 143 and 142 so that all
physical parts of a chunk may later be located and retrieved.
0059 FIG. 2 illustrates in the same embodiment how a
pattern for fault-tolerant storage for a chunk may be dynami
cally changed as a result of the addition of more storage. In
particular, FIG. 2 shows how a chunk physically stored on
the storage devices may be laid out in a new pattern once
additional storage is added to the overall system. In FIG.
2(a), the storage system comprises two storage devices 221
and 222 and the chunk data is physically mirrored onto the
two storage devices at locations 2211 and 2221 to provide
fault tolerance. In FIG. 2(b) a third storage device 223 is
added, and it become possible to store the chunk in a parity
striped manner, a pattern which is more storage efficient than
the mirrored pattern. The chunk is laid out in this new
pattern in three physical locations 2311, 2321, and 2331,
taking a much lower proportion of the available storage. The
chunk table 21 is updated to show the new layout is in three
locations 212 and also the new chunk physical locations
2311, 2321, and 2331 are recorded 213.
0060 FIG. 3 shows a mature storage system, in accor
dance with an embodiment of the present invention, which
has been functioning for some time. This illustrates how
chunks may be physically stored over time on Storage
devices with varying storage capacities.
0061 The figure shows a storage system comprised of a
40 GB storage device 31, an 80 GB storage device 32 and
a 120 GB storage device 33. Initially chunks are stored in a
fault tolerant stripe pattern 34 until the 40 GB storage device
31 became full. Then, due to lack of storage space, new data
is stored in a mirrored pattern 36 on the available space on
the 80 GB 32 and the 120 GB 33 storage devices. Once the
80 GB storage device 32 is full, then new data is laid out in
a single disk fault tolerant pattern 37. Even though the
storage devices comprise a single pool for storing data, the
data itself, as stored in the chunks, has been stored in a
variety of distinct patterns.

0062 FIG. 4 illustrates another embodiment of the
invention in which indicator states are used to warn of
inefficient storage use and low levels of fault tolerance. In
FIG. 4(a), all three storage devices 41, 42, and 45 have free

May 25, 2006

space and the indicator light 44 is green to show data is being
stored in an efficient and fault-tolerant manner. In FIG. 4 (b)
the 40 GB storage device 41 has become full, and thus new
data can be stored only on the two storage devices 42 and 43
with remaining free space in a mirrored pattern 46. In order
to show the data is still fully redundant but not efficiently
stored, the indicator light 44 has turned amber. In FIG. 4 (c),
only the 120 GB storage device 43 has free space remaining
and so all new data can be stored only in a mirrored pattern
on this one device 43. Because the fault-tolerance is less
robust and the system is critically short of space, the
indicator light 44 turns red to indicate the addition of more
storage is necessary.

0063. In one alternative embodiment, an indicator is
provided for each drive/slot in the array, for example, in the
form of a three-color light (e.g., green, yellow, red). In one
particular embodiment, the lights are used to light the whole
front of a disk carrier with a glowing effect. The lights are
controlled to indicate not only the overall status of the
system, but also which drive/slot requires attention (if any).
Each three-color light can be placed in at least four states,
specifically off green, yellow, red. The light for a particular
slot may be placed in the off state if the slot is empty and the
system is operating with Sufficient storage and redundancy
so that no drive need be installed in the slot. The light for a
particular slot may be placed in the green state if the
corresponding drive is sufficient and need not be replaced.
The light for a particular slot may be placed in the yellow
state if system operation is degraded such that replacement
of the corresponding drive with a larger drive is recom
mended. The light for a particular slot may be placed in the
red state if the corresponding drive must be installed or
replaced. Additional states could be indicated as needed or
desired, for example, by flashing the light between on and
off states or flashing the light between two different colors
(e.g., flash between red and green after a drive has been
replaced and re-layout of data is in progress). Additional
details of an exemplary embodiment are described below.
0064 Of course, other indication techniques can be used
to indicate both system status and drive/slot status. For
example, a single LCD display could be used to indicate
system status and, if needed, a slot number that requires
attention. Also, other types of indicators (e.g., a single status
indicator for the system (e.g., green/yellow/red) along with
either a slot indicator or a light for each slot) could be used.
0065 FIG. 5 is a block diagram of functional modules
used in the storage, retrieval and re-layout of data in
accordance with an embodiment of the invention, such as
discussed above in connections with FIGS. 1-3. The entry
and exit point for communication are the object interface
511 for passing objects to the system for storage or retrieving
objects, the block interface 512, which makes the storage
system appear to be one large storage device, and the CIFS
interface 513, which makes the storage system appear to be
a Windows file system. When these interfaces require the
storage of data, the data is passed to the Chunk Parser 52.
which performs the break up of the data into chunks and
creates an initial entry into the object table 512 (as discussed
above in connection with FIG. 1). These chunks are then
passed to the hash code generator 53, which creates the
associated hash codes for each chunk and enters these into
the object table so the chunks associated with each object are
listed 512 (as discussed above in connection with in FIG. 1).

US 2006/0112222 A1

The chunk hash numbers are compared with the entries in
the chunk table 531. Where a match is found, the new chunk
is discarded, as it will be identical to a chunk already stored
in the storage system. If the chunk is new, a new entry for
it is made in the chunk table 531, and the hashed chunk is
passed to the physical storage manager 54. The physical
storage manager stores the chunk in the most efficient
pattern possible on the available storage devices 571, 572,
and 573 and makes a corresponding entry in the chunk table
531 to show where the physical storage of the chunk has
occurred so that the contents of the chunk can be retrieved
later 512 (as discussed above in connection with FIG. 1).
0066. The retrieval of data in FIG. 5 by the object 511,
block 512 or CIFS 513 interface is performed by a request
to the retrieval manager 56, which consults the object table
521 to determine which chunks comprise the object and then
requests these chunks from the physical storage manager 54.
The physical storage manager 54 consults the chunk table
531 to determine where the requested chunks are stored and
then retrieves them and passes the completed data (object)
back to the retrieval manager 56, which returns the data to
the requesting interface. Also included in FIG. 5 is the fault
tolerant manager (FTL) 55, which constantly scans the
chunk table to determine if chunks are stored in the most
efficient manner possible. (This may change as storage
devices 571, 572, and 573 are added and removed.) If a
chunk is not stored in the most efficient manner possible,
then the FTL will request the physical storage manager 54
to create a new layout pattern for the chunk and update the
chunk table 531. This way all data continues to remain
stored in the most efficient manner possible for the number
of storage devices comprising the array (as discussed above
in connection with FIGS. 2 and 3).
0067. The following provides additional details of an
exemplary embodiment of the present invention.
Data Layout Scheme—Zones
0068 Among other things, a Zone has the effect of hiding
redundancy and disk re-layout from the actual data being
stored on the disk. Zones allow additional layout methods to
be added and changed without affecting the user of the Zone.
0069. The storage array lays out data on the disk in virtual
sections called Zones. A Zone stores a given and fixed
amount of data (for example 1 GBytes). A Zone may reside
on a single disk or span across one or more drives. The
physical layout of a Zone provides redundancy in the form
specified for that Zone.
0070 FIG. 6 shows an example in which mirroring is
used in an array containing more than two drives. FIG. 7
shows some example Zones using different layout Schemes
to store their data. The diagram assumes a Zone stores 1 GB
of data. Note the following points:
0.071) i) A Zone that spans multiple drives does not
necessarily use the same offset into the drive across the set.
0072 ii) A single drive mirror requires 2 G of storage to
store 1 G of data

0.073 iii) A dual drive mirror requires 2 G of storage to
store 1 G of data.

0074 iv) A3 drive stripe requires 1.5G of storage to store
1 G of data.

May 25, 2006

0075 v). A 4 drive stripe requires 1.33 G of storage to
store 1 G of data.

0076 vi) Zone A, Zone B etc. are arbitrary Zone names.
In a real implementation each Zone would be identified by a
unique number.
0077 vii) Although implied by the diagram, Zones are not
necessarily contiguous on a disk (see regions later).
0078 viii) There is no technical reason why mirroring is
restricted to 2 drives. For example, in a 3 drive system 1
copy of the data could be stored on 1 drive and half of the
mirrored data could be stored on each of the other two
drives. Likewise, data could be mirrored across three drives,
with half the data on each of two drives and half of the
mirror on the other two drives.

Data Layout Scheme—Regions
0079 Each disk is split into a set of equal-sized Regions.
The size of a Region is much smaller than a Zone and a Zone
is constructed from one or more regions from one or more
disks. For efficient use of disk space, the size of a Region is
typically a common factor of the different Zone sizes and the
different number of disks supported by the array. In an
exemplary embodiment, Regions are /12 the data size of a
Zone. The following table lists the number of Regions/Zone
and the number of Regions/disk for various layouts, in
accordance with an exemplary embodiment of the invention.

Layout Method Number of regions/Zone Number of regions disk

1 drive mirror 24 24
2 drive mirror 24 12
3 drive stripe 18 6
4 drive stripe 16 4

0080 Individual Regions can be marked as used, free or
bad. When a Zone is created, a set of free Regions from the
appropriate disks are selected and logged in a table. These
Regions can be in any arbitrary order and need not be
contiguous on the disk. When data is written to or read from
a Zone, the access is redirected to the appropriate Region.
Among other things, this allows data re-layout to occur in a
flexible and efficient manner. Over time, the different sized
Zones will likely cause fragmentation to occur, leaving
many disk areas too small to hold a complete Zone. By using
the appropriate Region size, all gaps left by fragmentation
will be at least one Region in size, allowing easy reuse of
these Small gaps with out having to de-fragment the whole
disk.

Data Layout Scheme Re-Layout
0081. In order to facilitate implementation, a fixed
sequence of expansion and contraction may be enforced. For
example, if two drives are Suddenly added, the expansion of
a Zone may go through an intermediate expansion as though
one drive was added before a second expansion is performed
to incorporate the second drive. Alternatively, expansion and
contraction involving multiple drives may be handled atomi
cally, without an intermediate step.
0082 Before any re-layout occurs, the required space
must be available. This should be calculated before starting
the re-layout to ensure that unnecessary re-layout does not
OCCU.

US 2006/0112222 A1

Data Layout Scheme—Drive Expansion
0083. The following describes the general process of
expanding from single drive mirroring to dual drive mirror
ing in accordance with an exemplary embodiment of the
invention:

0084 i) Assuming single drive mirror has data A and
mirror 'B'

0085 ii) Allocate 12 regions on drive to expand Zone on
to C

0086) iii) Copy mirror B to region set 'C'
0087 iv) Any writes made to data already copied must be
mirrored to the appropriate place in C
0088 v) When copy is complete, update Zone table with
new layout type and replace pointers to B with pointers to
“C”

0089 vi) Mark the regions that make-up B as free.
0090 The following describes the general process of
expanding from dual drive mirroring to triple drive striping
with parity in accordance with an exemplary embodiment of
the invention:

0.091 i) Assume one drive has data A and a second drive
has mirror 'B'

0092 ii) Allocate 6 regions on third drive for parity
information C

0093 iii) Calculate parity information using first 6
regions of A and the second 6 regions of B
0094)
0.095 v) Any writes made to data already processed must
be parity'd to the appropriate place in C

iv) Place parity information in C

0.096 vi) When copy is complete, update Zone table with
new layout type point table to first half of A, second half
of “B” and “C”

0097. vii) Mark second half of A and first half of Bas
free.

0098. The following describes the general process of
expanding from triple drive striping to quad drive striping
with parity in accordance with an exemplary embodiment of
the invention:

Zone type
missing data

Any

Single drive
mirror
Dual Drive
Mirror

3 Drive
Striping

May 25, 2006

0099 i) Assume one drive has data 'A', a second drive
has data B and a third has parity P

0.100 ii) Allocate four regions on a fourth drive for strip
data “C”

0101 iii) Copy last two regions of A to the first two
regions of C

0102)
of “C

iv) Copy first two regions of B to last to regions

0.103 v) Allocate four regions on parity drive D’

0.104 vi) Calculate parity information using first four
regions of A, C and the last four regions of B

0105 vii) Place parity information in D

0106 viii) Any writes made to data already processed
must be parity'd to the appropriate place in D

0.107 ix) Update Zone table with new layout type and
point table to first four regions of A, C, second four
regions of B and D

0.108 x) Mark last two regions of A and first two regions
of “B” as free.

Data Layout Scheme Drive Contraction

0109) Drive contraction takes place when a disk is either
removed or fails. In Such a case, the array contracts the data
to get all Zones back into a redundant state if possible. Drive
contraction is slightly more complex than expansion as there
are more choices to make. However, transitions between
layout methods happen in a similar way to expansion, but in
reverse. Keeping the amount of data to be reproduced to a
minimum allows redundancy to be achieved as quickly as
possible. Drive contraction generally precedes one Zone at a
time while space is available until all Zones are re-layed out.
Generally speaking, only data which resides on the removed
or failed disk will be rebuilt.

Choosing How to Contract

0110. The following table describes a decision tree for
each Zone that needs to be re-laid out, in accordance with an
exemplary embodiment of the present invention:

Condition Action

No Space available for Zone
re-layout

Leave Zone in degraded State until new
disk added or removed disk is
replaced.
Lock down system and wait for reset
or for the missing drive to be replaced
Convert to single drive mirror

Data inconsistent

1 disk left in system
Space only available on drive
that contains remaining data
2 or 3 disks left in system with
space is available
2 disks left in system with
space available
3 disks left in system with
space available

Reconstruct mirror on another drive

Convert to 2 drive mirroring

Reconstruct missing stripe segment on
the third drive

US 2006/0112222 A1

-continued

Zone type
missing data Condition Action

4 Drive
Striping

3 disks left in system with
space available

Convert to 3 drive striping

0111. The following describes the general process of
contracting from dual drive mirroring to single drive mir
roring in accordance with an exemplary embodiment of the
invention:

0112 i) Assuming single drive mirror has data A and
missing mirror B or visa versa
0113 ii) Allocate 12 regions on the drive that contains A
as 'C'

0114 iii) Copy data A to region set 'C'
0115 iv) Any writes made to data already copied must be
mirrored to the appropriate place in C
0116 V) When copy is complete, update Zone table with
new layout type and replace pointers to B with pointers to
“C”

0117 The following describes the general process of
contracting from triple drive stripe to dual drive mirror
(missing parity) in accordance with an exemplary embodi
ment of the invention:

0118 i) Assuming that stripe consists of data blocks A.
B and C on different drives. Parity C is missing.
0119) ii) Define A as containing the first half of the Zone
and “B” as the second half of the Zone.

0120 iii) Allocate 6 regions D on the A drive and 6
regions E on the B drive
0121 iv) Copy 'A' to E.
0122) v) Copy “B” to ‘D’
0123 vi) Any writes made to data already copied must be
mirrored to the appropriate place in D and 'E'
0124 vii) When copy is complete, update Zone table with
new layout type and set pointers to A/D and E/B
0125 The following describes the general process of
contracting from triple drive stripe to dual drive mirror
(missing data) in accordance with an exemplary embodi
ment of the invention:

0126 i) Assuming that stripe consists of data blocks A.
B and C on different drives. Data C is missing.
0127 ii) Define A as containing the first half of the Zone
and C as the second half of the Zone.

0128 iii) Allocate 6 regions D on the A drive and 12
regions E on the B drive
0129 iv) Copy 'A' to the first half of E
0130 v) Reconstruct missing data from A and B.
Write data to ‘D’

0131 vi) Copy 'D' to second half of E.

May 25, 2006

0.132 vii) Any writes made to data already copied must
be mirrored to the appropriate place in D and E
0.133 viii) When copy is complete, update Zone table
with new layout type and set pointers to A/D and E
0.134) ix) Mark B regions as free.
0.135 The following describes the general process of
contracting from quad drive stripe to triple drive stripe
(missing parity) in accordance with an exemplary embodi
ment of the invention:

0.136 i) Assuming that stripe consists of data blocks A.
“B”, “Cand 'D' on different drives. Parity D is missing.
0.137 ii) Define A as containing the first third, B as the
second third and C as the third third of the Zone

0138 iii) Allocate 2 regions 'G' on the A drive, 2
regions E on the 'C' drive and 6 regions F on the B drive.
0.139) iv) Copy first half of “B” to “G”
0140 v) Copy second half of B to E
0141 vi) Construct parity from A/G and E/Cand
write to F

0.142 vii) Any writes made to data already copied must
be mirrored to the appropriate place in G', 'E' and F
0.143 viii) When copy is complete, update Zone table
with new layout type and set pointers to A/G”, “E/Cand
F.

0144) ix) Mark B regions as free.
0145 The following describes the general process of
contracting from quad drive stripe to triple drive stripe (first
1/3 missing) in accordance with an exemplary embodiment
of the invention:

0146 i) Assuming that stripe consists of data blocks A.
B, C and D on different drives. Data A is missing.
0147 ii) Define 'A' as containing the 15 third, “B” as the
2" third and 'C' as the 3" third of the Zone and D as the
parity.

0148) iii) Allocate 4 regions E on the B drive, 2
regions F. on the 'C' drive and 6 regions 'G' on the D
drive.

0149)
0.150 V) Construct missing data from B, C and Dand
write to E

0151 vi) Construct new parity from E/1 half B and
FFC and write to “G”

iv) Copy second half of B to F

0152 vii) Any writes made to data already copied must
be mirrored to the appropriate place in B, E, F and 'G'

US 2006/0112222 A1

0153 viii) When copy is complete, update Zone table
with new layout type and set pointers to E/1 half B and
FAC and G

0154) ix) Mark 2" half “B” and 'D' regions as free.
0155 The following describes the general process of
contracting from quad drive stripe to triple drive stripe
(second /3 missing) in accordance with an exemplary
embodiment of the invention:

0156 i) Assuming that stripe consists of data blocks A.
B, C and D on different drives. Data B is missing.
0157 ii) Define 'A' as containing the 15 third, “B” as the
2" third and C as the 3' third of the Zone and D as the
parity.

0158 iii) Allocate 2 regions E on the A drive, 2 regions
° F on the C drive and 6 regions “G” on the 'D' drive.
0159) iv) Construct missing data from 15 half A, 15 half
C and 15 half D and write to E

0160 v) Construct missing data from 2" half A. 2"
half ‘C’ and 2" half ‘D’ and write to F

0161 vi) Construct new parity from A/E and F/C
and write to G

0162 vii) Any writes made to data already copied must
be mirrored to the appropriate place in E, F and 'G'
0163 viii) When copy is complete, update Zone table
with new layout type and set pointers to E, F and 'G'
0164 ix) Mark 'D' regions as free.
0165. The following describes the general process of
contracting from quad drive stripe to triple drive stripe (third
/3 missing) in accordance with an exemplary embodiment of
the invention:

0166 i) Assuming that stripe consists of data blocks A.
B, C and D on different drives. Data C is missing.
0167 ii) Define 'A' as containing the 15 third, “B” as the
2" third and C as the 3' third of the Zone and D as the
parity.

0168 iii) Allocate 2 regions E on the A drive, 4 regions
Fon the B drive and 6 regions 'G' on the 'D' drive.
0169) iv) Copy 15 half “B” to “E”
0170 V) Construct missing data from A, B and Dand
write to F

0171 vi) Construct new parity from A/E and 2" half
BAF and write to “G”

0172 vii) Any writes made to data already copied must
be mirrored to the appropriate place in E, F and 'G'
0173 viii) When copy is complete, update Zone table
with new layout type and set pointers to A/E and 2" half
BAF and G

0174) ix) Mark 1 half “B” and 'D' regions as free.
0175 For example, with reference again to FIG. 3, dual
drive mirror (Zone B) could be reconstructed on Drive 2 if
either Drive 0 or Drive 1 is lost, provided there is sufficient
space available on Drive 2. Similarly, three drive stripe

May 25, 2006

(Zone C) could be reconstructed utilizing Drive 3 if any of
Drives 0-2 are lost, provided there is sufficient space avail
able on Drive 3.

Data Layout Scheme—Zone Reconstruction
0176 Zone reconstruction occurs when a drive has been
removed and there is enough space on the remaining drives
for ideal Zone re-layout or the drive has been replaced with
a new drive of larger size.
0177. The following describes the general process of dual
drive mirror reconstruction in accordance with an exemplary
embodiment of the invention:

0.178 i) Assuming single drive mirror has data A and
missing mirror 'B'
0.179 ii) Allocate 12 regions C on a drive other than that
containing A
0180 iii) Copy data 'A' to 'C'
0181 iv) Any writes made to data already copied must be
mirrored to the appropriate place in C
0182 v) When copy is complete, update Zone table
pointers to B with pointers to 'C'
0183 The following describes the general process of
three drive Stripe reconstruction in accordance with an
exemplary embodiment of the invention:
0.184 i) Assume one drive has data 'A', a second drive
has data B and a third has parity P. B is missing. Note
it doesn’t matter which piece is missing, the required action
is the same in all cases.

0185. ii) Allocate 6 regions D on a drive other than that
containing A and P
0186 iii) Construct missing data from A and P. Write
data to ‘D’

0187 iv) Any writes made to data already processed must
be parity'd to the appropriate place in D
0188 v) Update Zone table by replacing pointers to B
with pointers to D
0189 In this exemplary embodiment, four-drive-recon
struction can only occur if the removed drive is replaced by
another drive. The reconstruction consists of allocating six
regions on the new drive and reconstructing the missing data
from the other three region sets.
Data Layout Scheme The Temporarily Missing Drive
Problem

0190. When a drive is removed and there is no room for
re-layout, the array will 20 continue to operate in degraded
mode until either the old drive is plugged back in or the drive
is replaced with a new one. If a new one is plugged in, then
the drive set should be rebuilt. In this case, data will be
re-laid out. If the old disk is placed back into the array, it will
no longer be part of the current disk set and will be regarded
as a new disk. However, if a new disk is not placed in the
array and the old one is put back in, the old one will still be
recognized as being a member of the disk set, albeit an out
of date member. In this case, any Zones that have already
been re-laid out will keep their new configuration and the
regions on the old disk will be freed. Any Zone that has not
been re-laid out will still be pointing at the appropriate

US 2006/0112222 A1

regions of the old disk. However, as some writes may have
been performed to the degraded Zones, these Zones need to
be refreshed. Rather than logging every write that has
occurred, degraded regions that have been modified may be
marked. In this way, when the disk is replaced, only the
regions that have been modified need to be refreshed.
0191) Furthermore, Zones that have been written to may
be placed further up the priority list for re-layout. This
should reduce the number of regions that need to be
refreshed should the disk be replaced. A timeout may also be
used, after which point the disk, even if replaced, will be
wiped. However, this timeout could be quite large, possibly
hours rather than minutes.

Data Layout Scheme—Data Integrity

0192 As discussed above, one problem with a standard
RAID system is that it is possible for disc-surface corruption
to occur on an infrequently used area of the disk array. In the
event that another drive fails, it is not always possible to
determine that corruption has occurred. In Such a case, the
corrupted data may be propagated and preserved when the
RAID array rebuilds the failed drive.
0193 The hash mechanism discussed above provides an
additional mechanism for data corruption detection over that
which is available under RAID. As is mentioned elsewhere,
when a chunk is stored, a hash value is computed for the
chunk and stored. Any time the chunk is read, a hash value
for the retrieved chunk can be computed and compared with
the stored hash value. If the hash values do not match
(indicating a corrupted chunk), then chunk data can be
recovered from redundant data.

0194 In order to minimize the time window in which
data corruption on the disk can occur, a regular scan of the
disks will be performed to find and correct corrupted data as
Soon as possible. It will also, optionally, allow a check to be
performed on reads from the array.

Data Layout Scheme Volume

0.195. In a sparse volume, regardless of the amount of
storage space available on discs in the array, the array always
claims to be a fixed size—for example, M Terabytes.
Assume that the array contains S bytes of actual storage
space, where S-M, and that data can be requested to be
stored at locations L1, L2, L3, etc. within the M Terabyte
space. If the requested location LindS, then the data for Ln
must be stored at a location Pn-S. This is managed by
including a lookup table to index Pn based on Ln, as shown
in FIG. 8. The feature is allows the array to work with
operating systems that do not support Volume expansion,
Such as Windows, Linux, and Apple operating systems. In
addition, the array can provide multiple Sparse Volumes
which all share the same physical storage. Each sparse
volume will have a dedicated lookup table, but will share the
same physical space for data storage.
Drive Slot Indicators

0196. As discussed above, the storage array consists of
one or more drive slots. Each drive slot can either be empty
or contain a hard disk drive. Each drive slot has a dedicated
indicator capable of indicating four states: Off, OK,
Degraded and Fail. The states are interpreted generally as
follows:

May 25, 2006

Indicator
State Meaning for Array User

Off Drive slot is empty and is available
for an additional drive to be inserted.

OK Drive in slot is functioning correctly.
Degraded Action by user recommend: if slot is

empty, add a drive to this slot; if slot
contains a drive, replace drive with
another, higher-capacity drive.

Fail Action by user required ASAP: if slot
is empty, add a drive to this slot; if
slot contains a drive, replace drive
with another, higher-capacity drive.

0197). In this exemplary embodiment, red/amber/green
light emitting diodes (LEDs) are used as the indicators. The
LEDs are interpreted generally as follows:

LED Indicator
State State

Example circumstances under which
state may occur FIGS.

Off Off Slot is empty. Array has available 9, 10, 12
Space.

Green OK Drive is functioning correctly, array 9, 10, 11,
data is redundant and array has 12
available disk space.

Amber Degraded Array is approaching a Fail condition; 11
Not enough space to maintain redundant
data in the event of a disc failure.
Disk in this slot has failed and must be 10, 12
replaced; the array does not have
enough space to maintain redundant
data storage and more space must be
added.

Red Fail

0198 FIG. 9 shows an exemplary array having available
storage space and operating in a fault-tolerant manner, in
accordance with an exemplary embodiment of the present
invention. Slots B, C, and D are populated with storage
devices, and there is Sufficient storage space available to
store additional data redundantly. The indicators for slots B,
C, and Dare green (indicating that these storage devices are
operating correctly, the array data is redundant, and the array
has available disk space), and the indicator for slot A is off
(indicating that no storage device needs to be populated in
slot A).
0199 FIG. 10 shows an exemplary array that does not
have enough space to maintain redundant data storage and
more space must be added, in accordance with an exemplary
embodiment of the present invention. Slots B, C, and Dare
populated with storage devices. The storage devices in slots
C and D are full. The indicators for slots B, C, and D are
green (indicating that these storage devices are operating
correctly), and the indicator for slot A is red (indicating that
the array does not have enough space to maintain redundant
data storage and a storage device should be populated in slot
A).
0200 FIG. 11 shows an exemplary array that would be
unable to maintain redundant data in the event of a failure,
in accordance with an exemplary embodiment of the present
invention. Slots A, B, C, and D are populated with storage
devices. The storage devices in slots C and D are full. The

US 2006/0112222 A1

indicators for slots A, B, and C are green (indicating that
they are operating correctly), and the indicator for slot D is
amber (indicating that the storage device in slot D should be
replaced with a storage device having greater storage capac
ity).

0201 FIG. 12 shows an exemplary array in which a
storage device has failed, in accordance with an exemplary
embodiment of the present invention. Slots B, C, and D are
populated with storage devices. The storage device in slot C
has failed. The indicators for slots B and D are green
(indicating that they are operating correctly), the indicator
for slot C is red (indicating that the storage device in slot C
should be replaced), and the indicator for slot A is off
(indicating that no storage device needs to be populated in
slot A).
0202 The following is a description of the software
design for an exemplary embodiment of the present inven
tion. The Software design is based on six Software layers,
which span the logical architecture from physically access
ing the disks to communicating with the host computing
system.

0203. In this exemplary embodiment, a file system
resides on a host server, Such as a Windows, Linux, or Apple
server, and accesses the storage array as a USB or iSCSI
device. Physical disk requests arriving over the host inter
face are processed by the Host Request Manager (HRM). A
Host I/O interface coordinates the presentation of a host
USB or iSCSI interface to the host, and interfaces with the
HRM. The HRM coordinates data read/write requests from
the host I/O interface, dispatches read and write requests,
and co-ordinates the retiring of these requests back to the
host as they are completed.

0204 An overarching aim of the storage array is to
ensure that once data is accepted by the system, it is stored
in a reliable fashion, making use of the maximum amount of
redundancy the system currently stores. As the array
changes physical configuration, data is re-organized so as to
maintain (and possibly maximize) redundancy. In addition,
simple hash based compression is used to reduce the amount
of storage used.

0205 The most basic layer consists of disk drivers to
store data on different disks. Disks may be attached via
various interfaces, such as ATA tunneled over a USB inter
face.

0206 Sectors on the disks are organized into regions,
Zones, and clusters, each of which has a different logical
role.

0207 Regions represent a set of contiguous physical
blocks on a disk. On a four drive system, each region is /12
GB in size, and represents minimal unit of redundancy. If a
sector in a region is found to be physically damaged, the
whole region will be abandoned.

0208 Zones represent units of redundancy. A Zone will
consist of a number of regions, possibly on different disks to
provide the appropriate amount of redundancy. Zones will
provide 1 GB of data capacity, but may require more regions
in order to provide the redundancy. 1 GB with no redun
dancy require one set of 12 regions (1 GB); a 1 GB mirrored
Zone will require 2 sets of 1 GB regions (24 regions); a 1 GB

May 25, 2006

3-disk stripped Zone will require 3 sets of 0.5 GB regions (18
regions). Different Zones will have different redundancy
characteristics.

0209 Clusters represent the basic unit of compression,
and are the unit size within Zones. They are currently 4 KB:
8x512 byte sectors in size. Many clusters on a disk will
likely contain the same data. A cluster access table (CAT) is
used to track the usage of clusters via a hashing function.
The CAT translates between logical host address and the
location of the appropriate cluster in the Zone.

0210. When writing to disk, a hash function is used to see
if the data is already present on the disk. If so, the appro
priate entry in the CAT table is set to point to the existing
cluster.

0211 The CAT table resides in its own Zone. If it exceeds
the size of the Zone, an additional Zone will be used, and a
table will be used to map logical address to the Zone for that
part of the CAT. Alternatively, Zones are pre-allocated to
contain the CAT table.

0212. In order to reduce host write latency and to ensure
data reliability, a journal manager will record all write
requests (either to disk, or to NVRAM). If the system is
rebooted, journal entries will be committed on reboot.
0213 Disks may come and go, or regions may be retired
if they are found to have corruption. In either of these
situations, a layout manager Will be able to re-organize
regions within a Zone in order to change its redundancy type,
or change the regional composition of a Zone (should a
region be corrupted).

0214. As the storage array provides a virtual disk array,
backed by changing levels of physical disk space, and
because it presents a block level interface, it is not obvious
when clusters are no longer in use by the file system. As a
result, the cluster space used will continue to expand. A
garbage collector (either located on the host or in firmware)
will analyze the file system to determine which clusters have
been freed, and remove them from the hash table.

0215. The following table shows the six software layers
in accordance with this exemplary embodiment of the inven
tion:

Layer 5: Garbage collector, Host Interface (USB/iSCSI)
Layer 4: Host request manager
Layer 3: CAT HASH, Journal manager
Layer 2: Zones manager. Allocates frees chunks of sectors called Zones.

Knows about SDM, DDM, SD3 etc in order to deal with errors
and error recovery. Layout Manager

Layer 1: Read/write physical clusters sectors. Allocates Regions per disk
Layer 0: Disk access drivers

0216 FIG. 13 shows a module hierarchy representing the
different software layers and how they relate to one another.
Software layering is preferably rigid in order to present clear
APIs and delineation.

0217. The Garbage Collector frees up clusters which are
no longer used by the host file system. For example, when
a file is deleted, the clusters that were used to contain the file
are preferably freed.

US 2006/0112222 A1

0218. The Journal Manager provides a form of journaling
of writes so that pending writes are not lost in the case of a
power failure or other error condition.
0219. The Layout Manager provides run-time re-layout
of the Zones vis-a-vis their Regions. This may occur as a
result of disk insertion/removal or failure.

0220. The Cluster Manager allocates clusters within the
set of data Zones. The Disk Utilization Daemon checks for
free disk space on a periodic basis.
0221) The Lock Table deals with read after write collision
issues.

0222. The Host Request Manager deals with the read/
write requests from the Host and Garbage Collector. Writes
are passed to the Journal Manager, whereas Reads are
processed via the Cluster Access Table (CAT) Management
layer.

0223) As discussed above, in typical file systems, some
amount of the data will generally be repetitive in nature. In
order to reduce disk space utilization, multiple copies of this
data are not written out to the disks. Instead, one instance is
written, and all other instances of the same data are refer
enced to this one instance.

0224. In this exemplary embodiment, the system operates
on a cluster of data at any time (e.g., 8 physical sectors), and
this is the unit that is hashed. The SHA1 algorithm is used
to generate a 160-bit hash. This has a number of benefits,
including good uniqueness, and being Supported on-chip in
a number of processors. All 160-bits will be stored in the
hash record, but only the least significant 16-bits will be
used as an index into a hash table. Other instances matching
the lowest 16-bits will be chained via a linked-list.

0225. In this exemplary embodiment, only one read/write
operation may occur at a time. For performance purposes,
hash analysis is not permitted to happen when writing a
cluster to disk. Instead, hash analysis will occur as a back
ground activity by the hash manager.
0226 Write requests are read from the journal's write
queue, and are processed to completion. In order to ensure
data consistency, writes must be delayed if a write operation
is already active on the cluster. Operations on other clusters
may proceed un-impeded.

0227. Unless a whole cluster is being written, the data
being written will need to be merged with the existing data
stored in the cluster. Based on the logical sector address
(LSA), the CAT entry for the cluster is located. The hash key,
Zone and cluster offset information is obtained from this
record, which can then be used to search the hash table to
find a match. This is the cluster.

0228. It might well be necessary to doubly hash the hash
table; once via the SHA1 digest, and then by the Zone/cluster
offset to improve the speed of lookup of the correct hash
entry. If the hash record has already been used, the reference
count is decremented. If the reference count is now Zero, and
there is no snapshot referenced by the hash entry, the hash
entry and cluster can be freed back to their respective free
lists.

0229. The original cluster data is now merged with the
update section of the cluster, and the data is re-hashed. A
new cluster is taken off the free-list, the merged data is

May 25, 2006

written to the cluster, new entry is added to the hash table,
and the entry in the CAT table is updated to point to the new
cluster.

0230. As a result of updating the hash table, the entry is
also added to an internal queue to be processed by a
background task. This task will compare the newly added
cluster and hash entry with other hash entries that match the
hash table row address, and will combine records if they are
duplicates, freeing up hash entries and CAT table entries as
appropriate. This ensures that write latency is not burdened
by this activity. If a failure (e.g., a loss of power) occurs
during this processing, the various tables can be deleted,
with a resulting loss of data. The tables should be managed
in Such a way that the final commit is atomic or the journal
entry can be re-run if it did not complete fully.
0231. The following is pseudocode for the write logic:

While (stuff to do)
writeRecord = journalMgr.read();
lsa = writeRecord.GetLsa ();
catEntry = catMgr. GetCATEntry(Isa);
if (catMgr.writeInProgress(catEntry)) delay ();
originalCluster = catMgr. readCluster(catEntry);
originalHash = hashMgr. calcHash (originalCluster);
hashRecord = hashMgr. Lookup(original Hash, Zone, offset);
if ((hashRecord. Refcount == 1) &&. (hashRecord. Snapshot == 0))

hashRecord.free();
originalCluster.free();
| Note there are some optimizations here where we can reuse

if this cluster without having to free & re-allocate it.
f otherwise, still users of this cluster, so update & leave it alone
hashRecord. Refcount--.
hashRecord. Update(hashRecord);
if Now add new record
mergedCluster = mergeCluster(originalCluster, new Cluster);
newHash = hash Mgr. calcHash(mergedCluster);
newCluster = clusterMgr. AllocateCluster(Zone, offset);
clusterMgr.write(cluster, mergedCluster);
ZoneMgr. write(cluster, mergedCluster);

hashMgraddhash (newHash, newCluster, Zone, offset)
(internal: queue new hash for background processing)

catMgr. Update(Iba, Zone, offset, newHash);
// We've completed the journal entry successfully. Move on to the next
Ole.

journalMgr.next();

0232 Read requests are also processed one cluster (as
opposed to "sector”) at a time. Read requests do not go
through the hash-related processing outlined above. Instead,
the host logical sector address is used to reference the CAT
and obtain a Zone number and cluster offset into the Zone.
Read requests should look up the CAT table entry in the CAT
Cache, and must be delayed in the write-in-progress bit is
set. Other reads/writes may proceed un-impeded. In order to
improve data integrity checking, when a cluster is read, it
will be hashed, and the hash compared with the SHA1 hash
value stored in the hash record. This will require using the
hash, Zone and cluster offset as a search key into the hash
table.

0233 Clusters are allocated to use as few Zones as
possible. This is because Zones correspond directly to disk
drive usage. For every Zone, there are two or more Regions
on the hard drive array. By minimizing the number of Zones,
the number of physical Regions is minimized and hence the
consumption of space on the hard drive array is reduced.

US 2006/0112222 A1

0234. The Cluster Manager allocates cluster from the set
of Data Zones. A linked list is used to keep track of free
clusters in a Zone. However, the free cluster information is
stored as a bit map (32 KB per Zone) on disk. The linked list
is constructed dynamically from the bitmap. Initially, a
linked list of a certain number of free clusters is created in
memory. When clusters are allocated, the list shrinks. At a
predetermined low-water mark, new linked list nodes rep
resenting free clusters are extracted from the bitmap on disk.
In this way, the bitmap does not need to be parsed in order
to find a free cluster for allocation.

0235. In this exemplary embodiment, the hash table is a
64K table of records (indexed by the lower 16 bits of the
hash) and has the following format:

Value?
Size in Walid

Offset bits Name Range Description

O 160 sha1Hash The complete SHA1 hash digest
16 refcount Number of instances of this

hash; what do we do if we get
beyond 16 bits?

18 Cluster Cluster offset within Zone
offset

14 Zone # Zone# containing this cluster
8 Snapshot One bit per Snapshot instance to

indicate that this cluster entry is
used by that Snapshot. This
model Supports 8 Snapshots
(possible only 7)

0236 A cluster of all Zeros may be fairly common, so the
all-Zeros case may be treated as a special case, for example,
Such that it can never be deleted (so wrapping the count
would not be a problem).
0237. A linked list of free hash record is used when the
multiple hashes have the same least significant hash, or
when two hash entries point to different data clusters. In
either case, a free hash record will be taken from the list, and
linked via the pNextFlash pointer.
0238. The hash manager will tidy up entries added to the
hash table, and will combine identical clusters on the disk.
As new hash records are added to the hash table, a message
will be posted to the hash manager. This will be done
automatically by the hash manager. As a background activ
ity, the hash manager will process entries on its queue. It will
compare the full hash value to see if it matches any existing
hash records. If it does, it will also compare the complete
cluster data. If the clusters match, the new hash record can
be discarded back to the free queue, the hash record count
will be incremented, and the duplicate cluster will be
returned to the cluster free queue. The hash manager must
take care to propagate the Snapshot bit forward when com
bining records.

0239 A Cluster Access Table (CAT) contains indirect
pointers. The pointers point to data clusters (with Obeing the
first data cluster) within Zones. One CAT entry references a
single data cluster (tentatively 4 KB in size). CATs are used
(in conjunction with hashing) in order to reduce the disk
usage requirements when there is a lot of repetitive data. A
single CAT always represents a contiguous block of storage.
CATs are contained within non-data Zones. Each CAT entry

May 25, 2006

is 48-bits. The following table shows how each entry is laid
out (assuming each data Zone contains 1 GB of data):

Bits O-17 Bits 18-31 Bits 32–47 Bits 48–63.

Offset of data Zone# containing Hash key Reserved.
cluster within Zone data Candidates

include garbage
collector write
bit; Snapshot bits;
Snapshot table
hash key

0240. It is desirable for the CAT to fit into 64 bits, but this
is not a necessity. The CAT table for a 2TB array is currently
~4 GB in size. Each CAT entry points to a Zone which
contains the data and the number of the Zone.

0241 FIG. 14 shows how the CAT is used to access a
data clusters in a Zone. Redundant data is referenced by
more than one entry in the CAT. Two logical clusters contain
the same data, so their CAT entries are pointed to the same
physical cluster.

0242. The Hash Key entry contains the 16-bit extract of
the 160-bit SHA1 hash value of the entire cluster. This entry
is used to update the hash table during a write operation.
0243 There are enough bits in each entry in the CAT to
reference 16TB of data. However, if every data cluster is
different from another (in terms of contents), then just over
3 Zones worth of CAT entries are required to reference 2TB
of data (each Zone is 1 GB in size, and hence can store 1
GB/size of CAT entry entries. Assuming 6 byte CAT entries,
that is 178956970 CAT entries/Zone, i.e. the table references
around 682 GB/Zone if each cluster is 4K).
0244. A Host Logical Sector Translation Table is used to
translate a Host Logical Sector Address into a Zone number.
The portion of the CAT that corresponds to the Host Logical
Sector Address will reside in this Zone. Note that each CAT
entry represents a cluster size of 4096 bytes. This is eight
512 byte sectors. The following shows a representation of
the host logical sector translation table:

End Host Zone ii of
Start Host Logical Sector Address Logical Sector Address CAT

0 (cluster #0) 1431655,759
(cluster #178956969)

1431655760 (cluster #178956970)

0245 Zones can be pre-allocated to hold the entire CAT.
Alternatively, Zones can be allocated for the CAT as more
entries to the CAT are required. Since the CAT maps the 2TB
virtual disk to the host sector address space, it is likely that
a large part of the CAT will be referenced during hard disk
partitioning or formatting by the host. Because of this, the
Zones may be pre-allocated.

0246 The CAT is a large 1 GB/Zone table. The working
set of clusters being used will be a sparse set from this large
table. For performance reasons, active entries (probably
temporally) may be cached in processor memory rather than

US 2006/0112222 A1

always reading them from the disk. There are at least two
options for populating the cache—individual entries from
the CAT, or whole clusters from the CAT.

0247. Because the write-in-progress is combined with the
CAT cache table, it is necessary to ensure that all outstanding
writes remain in the cache. Therefore, the cache needs to be
at least as large at the maximum number of outstanding write
requests.

0248 Entries in the cache will be a cluster size (ie. 4K).
There is a need to know whether there is a write-in-progress
in operation on a cluster. This indication can be stored as a
flag in the cache entry for the cluster. The following table
shows the format of a CAT cache entry:

BitS 0-17 Bits 18-31 Bits 32–47 Bit 48–63

Offset of data Zone# containing Hash key Bit 48: Write-in
cluster within Zone data progress

Bit 49: Dirty

0249. The write-in-progress flag in the cache entry has
two implications. First, it indicates that a write is in progress,
and any reads (or additional writes) on this cluster must be
held off until the write has completed. Secondly, this entry
in the cache must not be flushed while the bit is set. This is
partly to protect the state of the bit, and also to reflect the fact
that this cluster is currently in use. In addition, this means
that the size of the cache must be at least as large as the
number of outstanding write operations.
0250 One advantage of storing the write-in-progress
indicator in the cache entry for the cluster is that it reflects
the fact that the operation is current, saves having another
table, and it saves an additional hashed-based lookup, or
table walk to check this bit too. The cache can be a
write-delayed cache. It is only necessary to write a cache
entry back to disk when the write operation has completed,
although it might be beneficial to have it written back earlier.
A hash function or other mechanism could be used to
increase the number of outstanding write entries that can be
hashed.

0251 An alternate approach is to cache whole clusters of
the CAT (i.e., 4K entry of entries). This would generally help
performance if there is good spatial locality of access. Care
needs to be taken because CAT entries are 48 bits wide, so
there will not be a whole number of entries in the cache. The
following table shows an example of a clustered CAT cache
entry:

2 words 2 words 2 words 2 words

CAT entry 1 CAT Entry 2
(partial entry of
last 2 words)

CAT Entry 3 CAT Entry 4
CAT entry 4 CAT entry 5
CAT Entry 5 CAT Entry 6

CAT Entry 682 CAT Entry 683
(partial entry of first 2

words)

May 25, 2006

-continued

2 words 2 words 2 words 2 words

Write-in-progress bit array 682 bits: bits 0–255
Write-in-progress bit array bits 256-511

Write-in-progress bit array 512–682 + spare bits Dirty
count

Reserved

0252) The table size would be 4096+96 (4.192 bytes).
Assuming it is necessary to have a cache size of 250 entries,
the cache would occupy approximately 1 MB.
0253) It is possible to calculate whether the first and last
entry is incomplete or not by appropriate masking of the
logical CAT entry address. The caching lookup routine
should do this prior to loading an entry and should load the
required CAT cluster.
0254 When the host sends a sector (or cluster) read
request, it sends over the logical sector address. The logical
sector address is used as an offset into the CAT in order to
obtain the offset of the cluster in the Zone that contains the
actual data that is requested by the host. The result is a Zone
number and an offset into that Zone. That information is
passed to the Layer 2 software, which then extracts the raw
cluster(s) from the drive(s).
0255 In order to deal with clusters that have never been
written to by the host, all CAT entries are initialized to point
to a "Default’ cluster which contain all Zeros.

0256 The journal manager is a bi-level write journaling
system. An aim of the system is to ensure that write requests
can be accepted from the host and quickly indicate back to
the host that the data has been accepted while ensuring its
integrity. In addition, the system needs to ensure that there
will be no corruption or loss of any block level data or
system metadata (e.g., CAT and Hash table entries) in the
event of a system reset during any disk write.
0257 The J1 journal manager caches all write requests
from the hosts to disk as quickly as possible. Once the write
has successfully completed (i.e., the data has been accepted
by the array), the host can be signaled to indicate that the
operation has completed. The journal entry allows recovery
of write requests when recovering from a failure. Journal
records consist of the data to be written to disk, and the
meta-data associated with the write transaction.

0258. In order to reduce disk read/writes, the data asso
ciated with the write will be written to free clusters. This will
automatically mirror the data. Free clusters will be taken
from the free cluster list. Once the data is written, the free
cluster list must be written back to disk.

0259. A journal record will be written to a journal queue
on a non-mirrored Zone. Each record will be a sector in size,
and aligned to a sector boundary in order to reduce the risk
that a failure during a journal write would corrupt a previous
journal entry. Journal entries will contain a unique, incre
menting sequence count at the end of the record so that the
end of a queue can easily be identified.
0260 Journal write operations will happen synchro
nously within a host queue processing thread. Journal writes
must be ordered as they are written to disk, so only one
thread may write to the journal as any time. The address of
the journal entry in the J1 table can be used as a unique
identifier so that the J1 journal entry can be correlated with

US 2006/0112222 A1

entries in the J2journal. Once the journal entry is written, a
transaction completion notification will be posted to the host
completion queue. Now the write operation can be executed.
It is important to ensure that any Subsequent reads to a
cluster before the journal write has completed are delayed.

0261) The following table shows the format of the J2
journal record:

Size in bits Name Details

32 LBA Logical Block Address
14 Zone Zone # of associated cluster
18 Offset Cluster offset of associated

cluster
16 Size Size of data
16 SequenceNumber An incrementing sequence

number so we can easily
find the end of the queue

0262 Each journal record will be aligned to a sector
boundary. A journal record might contain an array of Zone/
offset/size tuples.

0263 FIG. 15 shows a journal table update in accordance
with an exemplary embodiment of the present invention.
Specifically, when a host write request is received, the
journal table is updated, one or more clusters are allocated,
and data is written to the cluster(s).
0264. Host journal requests are processed. These cause
clusters to be written, and also cause updates to meta-data
structure which must be shadowed back to disk (for
example, the CAT table). It is important to ensure that these
meta-data structures are correctly written back to disk even
if a system reset occurs. A low level disk I/O write (J2)
journal will be used for this.
0265. In order to process a host interface journal entry,
the appropriate manipulation of meta-data structures should
be determined. The changes should occur in memory and a
record of changes to various disk blocks be generated. This
record contains the actual changes on disk that should be
made. Each data structure that is updated is registered with
the J2 journal manager. This record should be recorded to a
disk based journal, and stamped with an identifier. Where the
record is connected with a J1 journal entry, the identifiers
should be linked. Once the record is stored, the changes to
disk can be made (or can be done via a background task).
0266 The J2 journal exists logically at layer3. It is used
to journal meta-data updates that would involve writes
through the Zone manager. When playback of a journal entry
occurs, it will use Zone manager methods. The journal itself
can be stored in a specialized region. Given the short
lifespan of journal entries, they will not be mirrored. Not all
meta-data updates need to go through the J2 journal, par
ticularly if updates to structures are atomic. The region
manager structure may not use the J2 journal. It would be
possible to detect inconsistencies in the region manager
bitmap, for example, with an integrity checking background
thread.

0267 A simple approach for the J2 journal is to contain
a single record. As soon as the record is committed to disk,
it is replayed, updating the structures on disk. It is possible
to have multiple J2 records and to have a background task
committing updating records on disks. In this case, close

May 25, 2006

attention will need to be paid to the interaction between the
journal and any caching algorithms associated with the
various data structures.

0268. The initial approach will run the journal entry as
Soon as it has been committed to disk. In principle there
could be multiple concurrent users of the J2, but the J2
journal may be locked to one user at a time. Even in this
case, journal entries should be committed as soon as they
have been submitted.

0269. It is important to ensure that the meta-data struc
tures are repaired before any higher level journal activity
occurs. On System reboot, the J2journal is analyzed, and any
records will be replayed. If a journal entry is correlated with
a J1 journal entry, the J1 entry will be marked as completed,
and can be removed. Once all J2 journal entries have been
completed, the meta-data is in a reliable state and any
remaining J1 journal entries can be processed.
0270. The J2journal record includes the following infor
mation:

0271) Number of operations
0272 Each operation contains:

0273 J1 record indicator
0274 Zone/Data offset to write to
0275 Data to write
0276 Size of data
0277

0278 Journal record identifier
0279) End Marker
0280 This scheme could operate similarly to the J1
journal Scheme, for example, with a sequence number to
identify the end of a J2journal entry and placing J2journal
entries on sector boundaries.

0281) If the J1 data pointer indicator is set, then this
specific operation would point to a J1 journal record. The
host supplied write data would not have to be copied into our
journal entry. The operation array should be able to be
defined as a fixed size as the maximum number of operations
in a journal record is expected to be well understood.
0282. In order to permit recovery from corruption of a
sector during a low level write operation (e.g., due to a loss
of power), the J2 journal could store the whole sector that
was written so that the sector could be re-written from this
information if necessary. Alternatively or additionally, a
CRC calculated for each modified sector could be stored in
the J2 record and compared with a CRC computed from the
sector on disk (e.g., by the Zone manager) in order to
determine whether a replay of the write operation is
required.
0283 The different journals can be stored in different
locations, so there will be an interface layer provided to
write journal records to backing store. The location should
be non-volatile. Two candidates are hard disk and NVRAM.
If the J1 journal is stored to hard disk, it will be stored in a
J1 journal non-mirrored Zone. The J1 journal is a candidate
for storing in NVRAM. The J2 journal should be stored on
disk, although it can be stored in a specialized region (i.e.,
not redundant, as it has a short lifespan). An advantage of
storing the J2journal on disk is that, if there is a system reset
during an internal data structure update, the data structures

Offset into data cluster

US 2006/0112222 A1

can be returned to a consistent state (even if the unit is left
un-powered for a long period of time).

0284. The Zones Manager (ZM) allocates Zones that are
needed by higher level software. Requests to the ZM
include:

0285 a. Allocate Zone
0286 b. De-allocate/Free Zone
0287 c. Control data read/write pass through to L1 (?)
0288 d. Read/Write cluster in a Zone (given the offset of
the cluster and the Zone number)
0289. The ZM manages the redundancy mechanisms (as
a function of the number of drives and their relative sizes)
and handles mirroring, striping, and other redundancy
schemes for data reads/writes.

0290 When the ZM needs to allocate a Zone, it will
request an allocation of 2 or more sets of Regions. For
example, a Zone may be allocated for 1 GB of data. The
Regions that make up this Zone will be able to contain 1 GB
of data including redundancy data. For a mirroring mecha
nism, the Zone will be made up of 2 sets of Regions of 1 GB
each. Another example, a 3-disk striping mechanism utilize
3 sets of Regions of 4 GB each.
0291. The ZMuses the ZR translation table (6) to find out
the location (drive number and start Region number) of each
set of Regions that makes up the Zone. Assuming a "/12 GB
Region size, a maximum of 24 Regions will be needed. 24
Regions make up 2x1 GB Zones. So the ZR translation table
contains 24 columns that provide drive/region data.
0292. The ZM works generally as follows:
0293 a. In the case of SDM (single drive mirroring), 24
columns are used. The drive numbers are the same in all
columns. Each entry corresponds to a physical Region on a
physical drive that makes up the Zone. The first 12 entries
point to Regions that contain one copy of the data. The last
12 entries point to the Regions containing the second copy
of the data.

0294 b. The case of DDM (dual drive mirroring) is the
same as SDM except that the drive number on the first 12
entries is different from that in the last 12 entries.

0295 c. In the case of striping, three or more columns
may be used. For example, if striping is used across three
drives, six Regions may be needed from three different
drives (i.e., 18 entries are used), with the first six entries
containing the same drive number, the next six entries
containing another drive number, and the following six
entries containing a third drive number; the unused entries
are Zeroed.

0296. The following table shows a representation of the
Zone region translation table:

Size
of

Size each Drive? Drive? Drive? Drive?
of Re- Us- Region Region Region Region

Zone# Zone gion age (1) (2) ... (23) (24)

O 1 GB 1/12 SDM 0, 2000 0, 1000 ... 0, 10 0, 2000
1 1 GB 1/12 DDM 0, 8000 0, 3000 ... 1, 2000 1, 10

May 25, 2006

-continued

Size
of

Size each Drive? Drive? Drive? Drive?
of Re- Us- Region Region Region Region

Zone# Zone gion age (1) (2) ... (23) (24)

2 1 GB 1/12 SD3 3, 4000 3, 3000 4, 2000 4, 1000

N Free

0297 When a read/write request comes in, the ZM is
provided with the Zone number and an offset into that Zone.
The ZM looks in the ZR translation table to figure out the
redundancy mechanism for that Zone and uses the offset to
calculate which Drive/Region contains the sector that must
be read/written. The Drive/Region information is then pro
vided to the L1 layer to do the actual read/write. An
additional possible entry in the Usage column is “Free'.
“Free' indicates that the Zone is defined but currently not
used.

0298 The cluster manager allocates and de-allocates
clusters within the set of data Zones.

0299 The Layout Manager provides run-time re-layout
of the Zones vis-a-vis their Regions. This may occur as a
result of disk insertion/removal or failure.

0300. The Layer 1 (L1) software knows about physical
drives and physical sectors. Among other things, the L1
software allocates Regions from physical drives for use by
the Zones Manager. In this exemplary embodiment, each
Region has a size of /12 GB (i.e., 174763 sectors) for a
four-drive array system. A system with a larger maximum
number of drives (8, 12 or 16) will have a different Region
S17C.

0301 In order to create a Zone containing 1 GB of data
with SD3 (striping over three drives; two data plus parity),
we would end up using six Regions each in three drives
(6x/2=% GB per drive).
0302) The use of this Region scheme allows us to provide
better utilization of disk space when Zones get moved
around or reconfigured e.g., from mirroring to striping. The
L1 Software keeps track of available space on the physical
drives with a bitmap of Regions. Each drive has one bitmap.
Each Region is represented by two bits in the bitmap in order
to track if the Region is free, used, or bad. When the L2
software (ZM) needs to create a Zone, it gets a set of
Regions from the L1 layer. The Regions that make up a Zone
are not contiguous within a disk.
0303 Requests to L1 include:
0304
Regions)
0305 b. Control data read/write (tables, data structures,
DIC etc)
0306 c. Allocate physical space for a Region (actual
physical sectors within 1 drive)
0307 d. De-allocate Region
0308 e. Raw read/write to physical clusters within a
physical drive

a. Data read/write (to a cluster within a group of

0309 f. Copy data from one Region to another
0310 g. Mark region as bad.

US 2006/0112222 A1
16

0311. The free region bitmap may be large, and therefore
searches to find the free entry (worst case is that no entries
are free) may be slow. In order to improve performance, part
of the bitmap can be preloaded into memory, and a linked list
of free regions can be stored in memory. There is a list for
each active Zone. If a low water mark on the list is reached,
more free entries can be read from the disk as a background
activity.

0312 The Disk Manager operates at layer 0. As shown in
the following table, there are two sub-layers, specifically an
abstraction layer and the device drivers that communicate
with the physical storage array.

Layer Oa: Abstraction
Layer Ob: OS interface to device drivers and device drivers
Physical Storage Array Hardware

0313 The Device Drivers layer may also contain several
layers. For example, for a storage array using USB drives,
there is an ATA or SCSI stack on top of the USB transport

May 25, 2006

layer. The abstraction layer provides basic read/write func
tions that are independent of the kinds of drives used in the
Storage array.

0314. One or more disk access queues may be used to
queue disk access requests. Disk access rates will be one of
the key performance bottlenecks in our system. We will want
to ensure that the disk interface is kept as busy as possible
at all times so as to reduce general system latency and
improve performance. Requests to the disk interface should
have an asynchronous interface, with a callback handler to
complete the operation when the disk operation has finished.
Completion of one disk request will automatically initiate
the next request on the queue. There may be one queue per
drive or one queue for all drives.

0315 Layer 1 will reference drives as logical drive
numbers. Layer 0 will translate logical drive numbers to
physical drive references (e.g., ?clev/sda or file device num
ber as a result of an open () call). For flexibility (expansion
via USB), there should be a queue for each logical drive.

0316 The following are some exemplary object defini
tions and data flows:

MSG object : incoming from host
Lba
Length
LUN
Data

REPLY object : Outgoing to host
Status
Host
Length
Data

Data Read
Data read flow:
rc=lockm.islocked (MSG)
rc = catm.read(MSG, REPLY)

status = Zonem.read (Zone, offset, length, buffer)
regionm.read (logical disk, region number, region offset, length,buffer)

Data Write
diskm.read (logical disk.offset, length,buffer)

Data write flow:
diskutildaemon.spaceavailable()
journalm...write(MSG)

lockm.lock(msg)
Zonem.write(journal Zone, offset, length, buffer)

regionm.write

regionm.write

- journal entry
diskm.write

- end marker
diskm.write

catm.write(MSG)
catm.readcluster(Iba,offset.length,buffer) - if need to merge sector into cluster

- merge
“if(Iba already allocated)

catm.readhashkey(ba)
hashm. lookup(hashkey,Zone.offset)
“if(refcount==1)

hashentry.getrefcount()
hashm.remove(hashentry)
hasm.add(shal,Zone.offset)
Zonem.write(Zone.offset.length,buffer)

“else'
- write data

hashentry.removeref.)
clusterm.allocate(Zone.offset) - allocate new cluster

Zonem.createZone(Zone)
regionm.unused regions(logical disk)

regionm.allocate(logical disk, number regions, region list)
Zonem.write(...)

hashm.add(...)
- write data

- add new entry to hash table

US 2006/0112222 A1

-continued

endilf
hashdaemon.add(Iba,shal)
catm.writehashkey(Ibahashkey)

“else'
catm.update(Ibazone.offset,hashkey)
endilf

journalm.complete(MSG)
lockm.unlock(MSG)

- update riv cursors

- add to hash daemon Q

0317. The following is a description of physical disk
layout. As discussed above, each disk is divided into
Regions of fixed size. In this exemplary embodiment, each
Region has a size of /12 GB (i.e., 174763 sectors) for a
four-drive array system. A system with a larger maximum
number of drives (8, 12 or 16) will have a different Region
size. Initially, Region numbers 0 and 1 are reserved for use
by the Regions Manager and are not used for allocation.
Region number 1 is a mirror of Region number 0. All
internal data used by the Regions Manager for a given hard
disk is stored in Region numbers 0 and 1 of this hard disk.
This information is not duplicated (or mirrored) to other
drives. If there are errors in either Region 0 or 1, other

17

- copy new hash key to CAT

- update CAT with new entry

May 25, 2006

Regions can be allocated to hold the data. The Disk Infor
mation Structure points to these Regions.

0318. Each disk will contain a DIS that identifies the disk,
the disk set to which it belongs, and the layout information
for the disk. The first sector on the hard disk is reserved. The
DIS is stored in the first non-bad cluster after the first sector.
The DIS is contained in 1 KB worth of data. There are two
copies of the DIS. The copies of the DIS will be stored on
the disk to which it belongs. In addition, every disk in the
system will contain a copy of all the DISs of the disks in the
system. The following table shows the DIS format:

Value?Walid
Offset Size Name Range Description

O 32 bytes disstartSigniture DISC dentifies the cluster as
INFORMATION being a possible disc
CLUSTER information cluster.
START Cluster must be CRCd to

WORD16 disVersion
check that it is valid.
dentifies the structure
version. This value is
only changed when a
material change is made
o the structure layout or
content meaning that
makes it incompatible
with previous versions of
he Firmware.

Binary non-zero
number

WORD16 disClusterSize Binary non-zero The number of 512 byte
number Sectors that make a

cluster on this disc.
WORD32 disCRC CRC-32 CRC of the DIS

Structure.

WORD32 dissize' Size of DIS cluster (in
bytes)

WORD32 disDiskSet The disk set this disk
belongs to

WORD32 disDriveNumber O to 15 The drive number within
the disk set

WORD32 dissystemUUID UUID of the box this
disk belongs to

WORD64 disDiskSize Size of the disk in
number of sectors

WORD32 disRegionSize Size of Regions in
number of sectors

WORD64 disRegionsStart Sector offset to the start
of the first Region on the
disk

WORD64 disCopyOffset Sector offset to where the
copy of this DIS is
stored. The
discopyOffset of each
DIS reference each other

US 2006/0112222 A1 May 25, 2006
18

-continued

Value?Walid
Offset Size Name Range Description

WORD64 disDISBackup Sector offset to the table
containing the copies of
the DISs of all the disks

WORD32 disDISBackupSize Number of DISS in the
DIS Backup section

WORD32 disRISORegion Region number of where
first copy of the RIS is
stored

WORD32 disRISOOffset Number of sectors offset

within the Region to the
sector where the Regions
information Structure is
ocated

WORD32 disRIS1 Region For the copy of the RIS
WORD32 disRIS1 Offset For the copy of the RIS
WORD32 disZISORegion Region number of

Region where the Zones
information Structure is
ocated. This is ONLY
used if there is a ZTR on

his disk. Otherwise, it is
ZCO.

WORD32 disz.ISOOffset Offset to the ZIS within
he region

WORD32 disZIS1 Region Region number of
Region where a copy of
he ZIS is located. This is
ONLY used in a single
drive system. In other
cases, this entry is 0.

WORD32 disz.IS1Offset Offset to the ZIS within
the region

0319 Regions Manager stores its internal data in a 0320 The Zones information structure provides informa
regions information structure. The following table shows the tion on where the Zones Manager can find the Zones Table.
regions information structure format. The following shows the Zones information structure format:

Value?Walid
Offset Size Name Range Description

O WORD64 ris.Signature Indicates that this is a RIS
WORD32 ris.Size Size of this structure (bytes)
WORD32 risChecksum Checksum

WORD32 risVersion Version of this table (and
bitmap)

WORD32 risDrive Logical Drive number
WORD64 risStartSector Absolute start sector (in disk)

of Regions utilization bitmap
WORD32 risSector0ffset Sector offset of Regions

utilization bitmap within the
current Region

WORD32 ris.SizeBitmap Size of bitmap (in bits?)
WORD64 risNumberRegions Number of regions on this

disk (also implies size of
bitmap)

US 2006/0112222 A1

Offset Size

O
8

12
16

22

24

28

WO
WO
WO
WO

D64
D32
D32
D32

WO D16

WORD16

WORD32

WORD32

WORD32

WORD32

Name

Zissignature
Zissize
ZisChecksum
ZisVersion

Zisflags

ZiSOtherDrive

ZisNumberRegions

ZisstartOffset

ZisNumberofazones

ziszoneSize

Value?Walid
Range

19

Description

Indisates that this is a ZIS
Size of this structure (bytes)
Checksum
Version of this table (an
bitmap)
Bit 0 = 1 if this disk is used to
contain the Zones info
Bits 14–15: redundancy type
(either SDM or DDM only)
Logical drive number of the
drive that contains the other
copy of the Zones Table.
Number of Regions used to
contain each copy of the Zones
Table. Equal to the number of
Zones Table Nodes.
Byte offset pointing to start of
linked list of Regions that are
used to contain the Zones
Table. Each entry in the linked
list is called Zones Table
Node'
Number of Zones (entries in
Zones Table) in the system
Size of Zones in bytes

May 25, 2006

0321) High level information Zones contain the Zone
tables and other tables used by the high level managers.
These will be protected using mirroring.

0322 The following table shows the Zones table node
format:

Size Name Description

WORD32 ztNextEntry Pointer to next entry
in linked list

WORD32 ztCount Count of this entry
WORD64 ZtRegion Region number

0323 The following is a description of layout of Zones
information. The linked list of Zones Table Nodes is placed
after the ZIS in the following manner:

Zones Information Structure

First Zones Table Node (16bytes)

Last Zones Table Node (16 bytes)

0324. This information is stored in the Zones Table
Region.
0325 FIG. 16 shows the drive layout in accordance with
an exemplary embodiment of the invention. The first two
regions are copies of one another. A third (optional) Zones
Table Region contains the Zone Tables. In a system with
more than one drive, only two of the drives contain a ZTR.
In a system with only one drive, two Regions are used to
hold the two (mirrored) copies of the ZTR. The DIS contains
information on the location of the RIS and the ZIS. Note that
the first copy of the RIS does not have to be in Region 0
(e.g., could be located in a different Region if Region 0
contains bad sectors).
0326. The Zones Manager needs to load the Zones Tables
on system start up. To do that, it extracts the Region number
and offset from the DISs. This will point to the start of the
ZIS.

0327 Certain modules (e.g., the CAT Manager) store
their control structures and data tables in Zones. All control
structures for modules in Layer 3 and higher are referenced
from structures that are stored in Zone 0. This means, for
example, that the actual CAT (Cluster Allocation Tables)
locations are referenced from the data structures stored in
Zone 0.

0328. The following table shows the Zone 0 information
table format:

Value?Walid
Offset Size Name Range Description

O WORD64 zitSignature Indisates that this is a ZIT
WORD32 zitSize Size of this structure (bytes)
WORD32 zitChecksum Checksum of this structure
WORD32 zitVersion Version of this structure

US 2006/0112222 A1
20

-continued

Value?Walid
Offset Size Name Range Description

WORD32 ZitCATLStartOffset Byte offset (within this
Zone) of start of CAT linked
ist

WORD32 zitCATSize Number of nodes in CAT
inked list. Equal to number
of Zones containing the CAT

WORD64 ZitCATAddressable The max LBA Supported by
he CAT. Effectively the size

May 25, 2006

of the CAT
WORD32 zitETStartOffset

inked list
WORD32 ZitHTNumberNodes

Table linked list
WORD64 ZitETSize

bytes

0329. The CAT linked list is a linked list of nodes
describing the Zones that contain the CAT. The following
table shows the CAT Linked List node format:

Size Name Description

WORD32 catllNextEntry Pointer to next entry
in linked list
Count of this entry
Zone number
containing this
portion of the CAT

WORD16 catIICount
WORD16 catIIZone

0330. The hash table linked list is a linked list of nodes
that describe the Zones which hold the Hash Table. The
following table shows the Hash Table Linked List node
format:

Size Name Description

WORD32 htl|NextEntry Pointer to next entry
in linked list

WORD16 htlCount Count of this entry
WORD16 htZone Zone number

containing this
portion of the hash
table

0331 FIG. 17 demonstrates the layout of Zone 0 and
how other Zones are referenced, in accordance with an
exemplary embodiment of the invention.

0332. As discussed above, a Redundant set is a set of
sectors/clusters that provides redundancy for a set of data.
Backing up a Region involves copying the contents of a
Region to another Region.

0333. In the case of a data read error, the lower level
software (Disk Manager or Device Driver) retries the read
request two additional times after an initial failed attempt.
The failure status is passed back up to the Zones Manager.
The Zones Manager then attempts to reconstruct the data
that is requested (by the read) from the redundant clusters in

Byte (within this Zone) of
he start of the Hash Table

Number of nodes in Hash

Size of Hash Table data in

the disk array. The redundant data can be either a mirrored
cluster (for SDM, DDM) or a set of clusters including parity
(for a striped implementation). The reconstructed data is
then passed up back to the host. If the ZM is unable to
reconstruct the data, then a read error is passed up back to
the host. The Zones Manager sends an Error Notification
Packet to the Error Manager. FIG. 18 demonstrates read
error handling in accordance with an exemplary embodi
ment of the invention.

0334. In the case of a data write error, the lower level
software (Disk Manager or Device Driver) retries the write
request two additional times after an initial failed attempt.
The failure status is passed back up to the Zones Manager.
The Zones Manager sends an Error Notification Packet to
the Error Manager.
0335). When a data write is performed at this level, the
redundancy information is also written to disk. As a result,
as long as only one cluster has a write error, a Subsequent
read will be able to reconstruct the data. If there are multiple
disk errors and redundancy information cannot be read or
written, then there are at least two possible approaches:
0336 a. Return a write error status to the host. Back up

all the Regions associated with the redundant set to newly
allocated Regions that do not contain bad sectors.
0337 b. Hold off the write. Back up all the Regions
associated with the redundant set to newly allocated Regions
that do not contain bad sectors. Subsequently, do the write
on the appropriate cluster in the newly allocated Regions
(along with all redundancy parts e.g., parity etc.). A separate
write queue would be used to contain the writes that have
been held off.

0338 Approach (a) is problematic because a write status
would likely have already been sent to the host as a result of
a successful write of the Journal, so the host may not know
that there has been an error. An alternative is to report a
failure with a read, but allow a write. A bit in the CAT could
be used to track that the particular LBA should return a bad
read.

0339 FIG. 19 demonstrates write error handling in
accordance with an exemplary embodiment of the invention.
0340. The Error Manager (EM) checks the cluster to see
if it is really bad. If so, the entire region is considered bad.

US 2006/0112222 A1

The contents of the Region are copied over to a newly
allocated Region on the same disk. The current Region is
then marked BAD. While copying over the Region, the Error
Manager will reconstruct data where necessary when it
encounters bad sectors. FIG. 20 is a logic flow diagram
demonstrating backup of a bad Region by the Error Manager
in accordance with an exemplary embodiment of the inven
tion.

0341) If there is a data read error and the Error Manager
is unable to reconstruct the data for a given cluster (e.g., as
a result of read errors across the redundant set) then Zeros
will be used in place of the data that cannot be reconstructed.
In this case, other Regions (from the same Redundant Set)
that contain bad sectors will also have to be backed up.
Again, Zeros will be used in place of the data that cannot be
reconstructed.

0342. Once a copy of the redundant set is made, the EM
disables access to the clusters corresponding to this part of
the Zone. It then updates the Zones Table to point to the
newly allocated Regions. Subsequently, accesses to the
clusters are re-enabled.

0343. This exemplary embodiment is designed to support
eight Snapshots (which allows use of one byte to indicate
whether hash/cluster entries are used by a particular Snap
shot instance). There are two tables involved with snapshots:
0344) 1. A per-snapshot CAT table will need to exist to
capture the relationship between logical sector addresses and
the cluster on the disk that contains the data for that LSA.
Ultimately the per-snapshot CAT must be a copy of the CAT
at the moment the Snapshot was taken.
0345 2. The system hash table, which maps between
hash values and a data cluster. The hash function returns the
same results regardless of which Snapshot instance is being
used, and as a result is common across all Snapshots. As a
result, this table must understand whether a unique cluster is
being used by any Snapshots. A hash cluster entry can not be
freed, or replaced with new data unless there are no Snap
shots using the hash entry.
0346) There will always be a snapshot that is current and
being added to. When a hash entry is created or updated, we
will need to apply the current snapshot number to that hash
entry. When a Snapshot is made, the current Snapshot num
ber will be incremented.

0347 Clusters/hash entries that are not longer required by
any Snapshots are freed by walking through the hash table
and find any hash entries with the retiring Snapshot bit set
and clearing that bit. If the snapshot byte is now zero, the
hash entry can be removed from the table and the cluster can
be freed.

0348. To prevent collisions with any new entries being
added to the hash tree (because the new snapshot number is
the same as the retiring Snapshot number), only allow 7
snapshots may be permitted to be taken, with the final
(eighth) snapshot the one that is being retired. The hash table
can be walked as a background activity.
0349. In order to create a snapshot, a second CAT Zone
could be written whenever the main CAT is being updated.
These updates could be queued and the shadow CAT could
be updated as another task. In order to Snapshot, the shadow
CAT becomes the snapshot CAT.

May 25, 2006

0350 Once the snapshot is done, a background process
can be kicked off to copy this Snapshot table to a new Zone
become the new Snapshot CAT. A queue could be used so
that the shadow CAT queue is not processed until the copy
of the CAT had completed. If a failure were to occur before
updating the shadow CAT (in which case entries in the queue
may be lost), re-shadow from the primary CAT table could
be performed before the array is brought online.
0351 Alternatively, when a snapshot is required, a col
lection of “deltas' plus the initial CAT copy could make up
the Snapshot. A background task could then reconstitute a
full snapshot CAT from this info. This would require little or
no downtime to do the Snapshot. In the meantime, another
set of deltas could be collected for the following snapshot.
0352. As discussed above, a so-called "garbage collec
tor” may be used to free up clusters which are no longer used
by the host file system (e.g., when a file is deleted). Gen
erally speaking, garbage collection works by finding free
blocks, computing their host LSAS, and locating their CAT
entries based on the LSAs. If there is no CAT entry for a
particular LSA, then the cluster is already free. If, however,
the CAT entry is located, the reference count is decremented,
and the cluster is freed if the count hits zero.

0353. One issue with garbage collection is that it may be
difficult to distinguish a block that the host filesystem has in
use from one that it has previously used and at Some point
marked free. When the host filesystem writes a block, the
storage system allocates a cluster for the data as well as a
CAT entry to describe it. From that point on, the cluster will
generally appear to be in use, even if the host filesystem
subsequently ceases to use its block (i.e., the cluster will still
be in use with a valid CAT entry).
0354 For example, certain host filesystems use a bitmap
to track its used disk blocks. Initially, the bitmap will
indicate all blocks are free, for example, by having all bits
clear. As the filesystem is used, the host filesystem will
allocate blocks through use of its free block bitmap. The
storage system will associate physical storage with these
filesystem allocations by allocating clusters and CAT entries
as outlined earlier. When the host filesystem releases some
blocks back to its free pool, it simply needs to clear the
corresponding bits in its free block bitmap. On the storage
system, this will generally be manifested as a write to a
cluster that happens to contain part of the hosts free block
bitmap, likely with no I/O to the actual cluster being freed
itself (although there might be I/O to the freed cluster, for
example, if the host filesystem were running in some
enhanced security mode, in which case it would likely write
Zeros or a crypto strong hash of random data to the cluster
in order to reduce the chance that Stale cluster contents can
be read by an attacker). Furthermore, there is no guarantee
that the host filesystem will reuse blocks that it has previ
ously freed when satisfying new allocation requests. Thus, if
the host filesystem continues to allocate what from the
storage system's point of view are new, i.e. previously
unused, blocks then the storage system will quickly run out
of free clusters, subject to whatever space can be reclaimed
via compression. For example, assuming a filesystem block
is 4k, if the hostallocates filesystem blocks 100 through 500,
subsequently frees blocks 300 through 500, and then allo
cates blocks 1000 through 1100, the total filesystem usage
will be 300 blocks, and yet the array will have 500 clusters
1. SC.

US 2006/0112222 A1

0355. In an exemplary embodiment of the present inven
tion, the storage system may detect the release of host
filesystem disk resources by accessing the host filesystem
layout, parsing its free block bitmaps, and using that infor
mation to identify clusters that are no longer being used by
the filesystem. In order for the storage system to be able to
identify unused clusters in this way, the storage system must
be able to locate and understand the free block bitmaps of
the filesystem. Thus, the storage system will generally
support a predetermined set of filesystems for which it
“understands' the inner working sufficiently to locate and
utilize the free block bitmaps. For unsupported filesystems,
the storage system would likely be unable to perform
garbage collection and should therefore only advertise the
real physical size of the array in order to avoid being
overcommitted.

0356. In order to determine the filesystem type (e.g.,
NTFS, FAT, ReiserFS, ext3), the filesystem's superblock (or
an equivalent structure) needs to be located. To find the
superblock, the partition table will be parsed in an attempt
to locate the OS partition. Assuming the OS partition is
located, the OS partition will be parsed in an attempt to
locate the superblock and thereby identify the filesystem
type. Once the filesystem type is known, the layout can be
parsed to find the free block bitmaps.

0357. In order to facilitate searching for free blocks,
historical data of the host filesystem bitmap can be kept, for
example, by making a copy of the free block bitmap that can
be stored in a private, non-redundant Zone and performing
searches using the copy. Given the size of the bitmap.
information may be kept for a relatively small number of
clusters at a time rather than for the whole bitmap. When a
garbage collection is performed, the current free block
bitmap can be compared, cluster-by-cluster, with the his
torical copy. Any bitmap entries transitioning from allocated
to free can be identified, allowing the Scavenging operation
to be accurately directed to clusters that are good candidates
for reclamation. As each bitmap cluster is processed, the
historical copy can be replaced with the current copy to
maintain a rolling history of bitmap operations. Over time
the copy of the free block bitmap will become a patchwork
of temporally disjoint clusters, but since the current copy
will always be used to locate free entries, this does not cause
any problems.

0358 Under certain conditions, there could be a race
condition regarding the free block bitmap, for example, if
the host filesystem allocates disk blocks using its free block
bitmap, then writes its data blocks, then flushes the modified
bitmap back to disk. In such a case, the garbage collector
might free a cluster even though the filesystem is using the
cluster. This could lead to filesystem corruption. The storage
system should be implemented to avoid or handle Such a
condition.

0359 Because garbage collection can be a fairly expen
sive operation, and since even lightweight scavenging will
consume back-end I/O bandwidth, garbage collection should
not be overused. The garbage collector should be able to run
in several modes ranging from a light background lazy
Scavenge to an aggressive heavyweight or even high priority
Scavenge. For example, the garbage collector could be run
lightly when 30% of space is used or once per week at a
minimum, run slightly more heavily when 50% of space is

22
May 25, 2006

used, and run at a full high-priority scavenge when 90% or
more of disk space is used. The aggressiveness of the
garbage collector could be controlled by limiting it to a
target number of clusters to reclaim and perhaps a maximum
permissible I/O count for each collection run. For example,
the garbage collector could be configured to reclaim 1 GB
using no more than 10,000 I/Os. Failure to achieve the
reclaim request could be used as feedback to the collector to
operate more aggressively next time it is run. There may also
be a "reclaim everything’ mode that gives the garbage
collector permission to parse the entire host filesystem free
block bitmap and reclaim all blocks that it possibly can. This
might be done as a last ditch attempt to reclaim clusters
when the array is (almost) completely full. The garbage
collector may be run periodically to apply its rules and may
or may not decide to perform a scavenge operation. The
Scavenge operation should also be able to be explicitly
requested from another module, for example the region
manager when it is struggling to find clusters to build a
region.

0360 The garbage collection function can be tied into the
status indicator mechanism. For example, at Some point, the
storage system might be in a 'red' condition, although an
ongoing garbage collection operation might free up enough
space to erase the “red condition. Additional indicator
states could be employed to show related status information
(e.g., the red indicator light might be made to blink to
indicate that a garbage collection operation is ongoing).
0361 FIG. 21 is a schematic block diagram showing the
relevant components of a storage array in accordance with
an exemplary embodiment of the present invention. Among
other things, the storage array includes a chassis 2502 over
which a storage manager 2504 communicates with a plu
rality of storage devices 2508-2508, which are coupled to
the chassis respectively through a plurality of slots 2506
2506. Each slot 2506-2506 may be associated with one
or more indicators 2507-2507. Among other things, the
storage manager 2504 typically includes various hardware
and Software components for implementing the functionality
described above. Hardware components typically include a
memory for storing Such things as program code, data
structures, and data as well as a microprocessor System for
executing the program code.
Virtual Hot Spare
0362. As discussed above, in many storage systems, a hot
spare storage device will be maintained in a ready state so
that it can be brought online quickly in the event another
storage device fails. In certain embodiments of the present
invention, rather than maintaining a physically separate hot
spare, a virtual hot spare is created from unused storage
capacity across a plurality of storage devices. Unlike a
physical hot spare, this unused storage capacity is available
if and when a storage device fails for storage of data
recovered from the remaining storage device(s).
0363 The virtual hot spare feature requires that enough
space be available on the array to ensure that data can be
re-laid out redundantly in the event of a disk failure. Thus,
on an ongoing basis, the storage system typically determines
the amount of unused storage capacity that would be
required for implementation of a virtual hot spare (e.g.,
based on the number of storage devices, the capacities of the
various storage devices, the amount of data stored, and the

US 2006/0112222 A1

manner in which the data is stored) and generates a signal if
additional storage capacity is needed for a virtual hot spare
(e.g., using green/yellow/red lights to indicate status and
slot, Substantially as described above). As Zones are allo
cated, a record is kept of how many regions are required to
re-layout that Zone on a per disk basis. The following table
demonstrates a virtual hot spare with four drives used:

Stored

Zone Type On Disks Comments Disk O Disk 1

2 DualDrive 0, 1 Reconstruct on disk 12 12
Mirror 2 or 3 if 0 or 1 fails

3 DualDrive 0, 3 Reconstruct on disk 12 O
Mirror 1 or 2 if 1 or 2 fails

5 Triple Drive 1, 2, 3 Reconstruct on disk O 6
Stripe O if 1, 2, or 3 fails

10 Four Drive 0, 1, 2, 3 Convert to triple 2, 2, 2 2, 2, 2
Stripe drive strip across

other three disks

0364 The following table demonstrates a virtual hot
spare with three drives used:

Regions required if
disk fails

Stored Disk
Zone Type On Disks Comments Disk O Disk 1 2

2 DualDrive 0, 1 Reconstruct 12 12 O
Mirror on disk 3

3 DualDrive 0, 3 Reconstruct 12 O 12
Mirror on disk 1

5 Triple Drive 1, 2, 3 Convert to 6, 6 6, 6 6, 6
Stripe dual drive

mirror

0365. In this exemplary embodiment, virtual hot spare is
not available on an array with only 1 or 2 drives. Based on
the information for each Zone and the number of disks in the
array, the array determines a re-layout scenario for each
possible disk failure and ensure that enough space is avail
able on each drive for each scenario. The information
generated can be fed back into the re-layout engine and the
Zone manager so that the data can be correctly balanced
between the data storage and the hot spare feature. Note that
the hot spare feature requires enough spare working space
regions on top of those calculated from the Zone layout data
so that re-layout can occur.
0366 FIG. 22 is a logic flow diagram showing exem
plary logic for managing a virtual hot spare in accordance
with an exemplary embodiment of the present invention. In
block 2102, the logic determines a re-layout scenario for
each possible disk failure. In block 2104, the logic deter
mines the amount of space needed on each drive for re
layout of data redundantly in a worst case scenario. In block
2106, the logic determines the amount of spare working
space regions needed for re-layout of data redundantly in a
worst case scenario. In block 2108, the logic determines the
total amount of space needed on each drive in order to
permit re-layout of data redundantly in a worst case scenario

23
May 25, 2006

(essentially the sum of the amount of space needed for
re-layout and the amount of spare working space regions
needed). In block 2110, the logic determines whether the
storage system contains an adequate amount of available
storage. If there is an adequate amount of available storage
(YES in block 2112), then the logic iteration terminates in
block 2199. If, however, there is an inadequate amount of

Regions required if disk fails

Disk 2 Disk 3

O O

O 12

6 6

2, 2, 2 2, 2, 2

available storage (NO in block 2112), then the logic deter
mines which drive/slot requires upgrade, in block 2114.
Then, in block 2116, the logic signals that additional storage
space is needed and indicates which drive/slot requires
upgrade. The logic iteration terminates in block 2199.
0367 FIG. 23 is a logic flow diagram showing exem
plary logic for determining a re-layout scenario for each
possible disk failure, as in block 2102 of FIG. 22, in
accordance with an exemplary embodiment of the present
invention. In block 2202, the logic allocates a Zone. Then, in
block 2204, the logic determines how many regions are
required to re-layout that Zone on a per-disk basis. The logic
iteration terminates in block 2299.

0368 FIG. 24 is a logic flow diagram showing exem
plary logic for invoking the virtual hot spare functionality in
accordance with an exemplary embodiment of the present
invention. In block 2302, the logic maintains a sufficient
amount of available storage to permit re-layout of data
redundantly in the event of a worst case scenario. Upon
determining loss of a drive (e.g., removal or failure), in
block 2304, the logic automatically reconfigures the one or
more remaining drives to restore fault tolerance for the data,
in block 2306. The logic iteration terminates in block 2399.
0369 FIG. 25 is a logic flow diagram showing exem
plary logic for automatically reconfiguring the one or more
remaining drives to restore fault tolerance for the data, as in
block 2306 of FIG. 24, in accordance with an exemplary
embodiment of the present invention. In block 2402, the
logic may convert a first striped pattern across four or more
storage devices to a second striped pattern across three or
more remaining storage devices. In block 2404, the logic
may convert a striped pattern across three storage devices to
a mirrored pattern across two remaining storage devices. Of
course, the logic may convert patterns in other ways in order
to re-layout the data redundantly following loss of a drive.
The logic iteration terminates in block 2499.
0370. With reference again to FIG. 21, the storage man
ager 2504 typically includes appropriate components and
logic for implementing the virtual hot spare functionality as
described above.

US 2006/0112222 A1

Dynamic Upgrade

0371 The logic described above for handling dynamic
expansion and contraction of storage can be extended to
provide a dynamically upgradeable storage system in which
storage devices can be replaced with a larger storage devices
as needed, and existing data is automatically reconfigured
across the storage devices in Such a way that redundancy is
maintained or enhanced and the additional storage space
provided by the larger storage devices will be included in the
pool of available storage space across the plurality of storage
devices. Thus, when a smaller storage device is replaced by
a larger storage device, the additional storage space can be
used to improve redundancy for already stored data as well
as to store additional data. Whenever more storage space is
needed, an appropriate signal is provided to the user (e.g.,
using green/yellow/red lights Substantially as described
above), and the user can simply remove a storage device and
replace it with a larger storage device.

0372 FIG. 26 is a logic flow diagram showing exem
plary logic for upgrading a storage device, in accordance
with an exemplary embodiment of the present invention. In
block 2602, the logic stores data on a first storage device in
a manner that the data stored thereon appears redundantly on
other storage devices. In block 2604, the logic detects
replacement of the first storage device with a replacement
device having greater storage capacity than the first storage
device. In block 2606, the logic automatically reproduces
the data that was stored on the first device onto the replace
ment device using the data stored redundantly on other
devices. In block 2608, the logic makes the additional
storage space on the replacement device available for storing
new data redundantly. In block 2610, the logic may store
new data redundantly within the additional storage space on
the replacement device if no other device has a sufficient
amount of available storage capacity to provide redundancy
for the new data. In block 2612, the logic may store new data
redundantly across multiple storage devices if at least one
other device has a sufficient amount of available storage
capacity to provide redundancy for the new data.

0373 With reference again to FIG. 21, the storage man
ager 2504 typically includes appropriate components and
logic for implementing the dynamic upgrade functionality as
described above.

Miscellaneous

0374 Embodiments of the present invention may be
employed to provide storage capacity to a host computer,
e.g., using a peripheral connect protocol in the manner
described in my U.S. Provisional Patent Application No.
60/625,495, which was filed on Nov. 5, 2004 in the name of
Geoffrey S. Barrall, and is hereby incorporated herein by
reference in its entirety.
0375. It should be noted that a hash algorithm may not
produce hash values that are strictly unique. Thus, is it
conceivable for the hash algorithm to generate the same hash
value for two chunks of data having non-identical content.
The hash function (which generally incorporates the hash
algorithm) typically includes a mechanism for confirming
uniqueness. For example, in an exemplary embodiment of
the invention as described above, if the hash value for one
chunk is different than the hash value of another chunk, then
the content of those chunks are considered to be non

24
May 25, 2006

identical. If, however, the hash value for one chunk is the
same as the hash value of another chunk, then the hash
function might compare the contents of the two chunks or
utilize some other mechanism (e.g., a different hash func
tion) to determine whether the contents are identical or
non-identical.

0376. It should be noted that the logic flow diagrams are
used herein to demonstrate various aspects of the invention,
and should not be construed to limit the present invention to
any particular logic flow or logic implementation. The
described logic may be partitioned into different logic blocks
(e.g., programs, modules, functions, or Subroutines) without
changing the overall results or otherwise departing from the
true scope of the invention. Often times, logic elements may
be added, modified, omitted, performed in a different order,
or implemented using different logic constructs (e.g., logic
gates, looping primitives, conditional logic, and other logic
constructs) without changing the overall results or otherwise
departing from the true scope of the invention.

0377 The present invention may be embodied in many
different forms, including, but in no way limited to, com
puter program logic for use with a processor (e.g., a micro
processor, microcontroller, digital signal processor, or gen
eral purpose computer), programmable logic for use with a
programmable logic device (e.g., a Field Programmable
Gate Array (FPGA) or other PLD), discrete components,
integrated circuitry (e.g., an Application Specific Integrated
Circuit (ASIC)), or any other means including any combi
nation thereof.

0378 Computer program logic implementing all or part
of the functionality previously described herein may be
embodied in various forms, including, but in no way limited
to, a source code form, a computer executable form, and
various intermediate forms (e.g., forms generated by an
assembler, compiler, linker, or locator). Source code may
include a series of computer program instructions imple
mented in any of Various programming languages (e.g., an
object code, an assembly language, or a high-level language
such as Fortran, C, C++, JAVA, or HTML) for use with
various operating systems or operating environments. The
Source code may define and use various data structures and
communication messages. The Source code may be in a
computer executable form (e.g., via an interpreter), or the
Source code may be converted (e.g., via a translator, assem
bler, or compiler) into a computer executable form.

0379 The computer program may be fixed in any form
(e.g., source code form, computer executable form, or an
intermediate form) either permanently or transitorily in a
tangible storage medium, Such as a semiconductor memory
device (e.g., a RAM, ROM, PROM, EEPROM, or Flash
Programmable RAM), a magnetic memory device (e.g., a
diskette or fixed disk), an optical memory device (e.g., a
CD-ROM), a PC card (e.g., PCMCIA card), or other
memory device. The computer program may be fixed in any
form in a signal that is transmittable to a computer using any
of various communication technologies, including, but in no
way limited to, analog technologies, digital technologies,
optical technologies, wireless technologies (e.g., Bluetooth),
networking technologies, and internetworking technologies.
The computer program may be distributed in any form as a
removable storage medium with accompanying printed or
electronic documentation (e.g., shrink wrapped software),

US 2006/0112222 A1

preloaded with a computer system (e.g., on system ROM or
fixed disk), or distributed from a server or electronic bulletin
board over the communication system (e.g., the Internet or
World Wide Web).
0380 Hardware logic (including programmable logic for
use with a programmable logic device) implementing all or
part of the functionality previously described herein may be
designed using traditional manual methods, or may be
designed, captured, simulated, or documented electronically
using various tools, such as Computer Aided Design (CAD),
a hardware description language (e.g., VHDL or AHDL), or
a PLD programming language (e.g., PALASM. ABEL, or
CUPL).
0381 Programmable logic may be fixed either perma
nently or transitorily in a tangible storage medium, Such as
a semiconductor memory device (e.g., a RAM, ROM,
PROM, EEPROM, or Flash-Programmable RAM), a mag
netic memory device (e.g., a diskette or fixed disk), an
optical memory device (e.g., a CD-ROM), or other memory
device. The programmable logic may be fixed in a signal that
is transmittable to a computer using any of various commu
nication technologies, including, but in no way limited to,
analog technologies, digital technologies, optical technolo
gies, wireless technologies (e.g., Bluetooth), networking
technologies, and internetworking technologies. The pro
grammable logic may be distributed as a removable storage
medium with accompanying printed or electronic documen
tation (e.g., shrink wrapped software), preloaded with a
computer system (e.g., on system ROM or fixed disk), or
distributed from a server or electronic bulletin board over
the communication system (e.g., the Internet or World Wide
Web).
0382. This application is related to the following U.S.
Patent Applications, which are being filed on even date
herewith and are hereby incorporated herein by reference in
their entireties:

0383 Attorney Docket No. 2950/104 entitled Dynami
cally Upgradeable Fault-Tolerant Storage System Permitting
Variously Sized Storage Devices and Method;
0384 Attorney Docket No. 2950/105 entitled Dynami
cally Expandable and Contractible Fault-Tolerant Storage
System With Virtual Hot Spare; and
0385 Attorney Docket No. 2950/107 entitled Storage
System Condition Indicator and Method.
0386 The present invention may be embodied in other
specific forms without departing from the true scope of the
invention. The described embodiments are to be considered
in all respects only as illustrative and not restrictive.

What is claimed is:
1. A method of storing data in a set of storage devices, the

set having at least one storage device, the method compris
ing:

automatically determining a mixture of redundancy
Schemes, from among a plurality of redundancy
Schemes, for storing the data in the set of storage
devices in order to provide fault tolerance and, when
the set of storage devices happens to include a plurality
of devices of different storage capacities, enhanced
storage efficiency; and

May 25, 2006

storing the data in the set of storage devices using the
mixture of redundancy schemes.

2. A method according to claim 1, further comprising:
automatically reconfiguring data previously stored on a

first arrangement of storage devices using a first redun
dancy scheme to being stored using one of (a) a second
redundancy scheme on the same arrangement of stor
age devices, (b) a second redundancy scheme on a
different arrangement of storage devices, and (c) the
same redundancy Scheme on a different arrangement of
storage devices for accommodating without data loss at
least one of expansion of capacity by the addition of
another storage device to the set and contraction of
capacity by the removal of a storage device from the
Set.

3. A method of storing data in a set of storage devices in
a manner permitting dynamic expansion and contraction of
the set, the set having at least one storage device, the method
comprising:

storing data on the set of storage devices using a first
redundancy scheme; and

upon a change in the composition of the set of storage
devices, automatically reconfiguring the data on the set
of storage devices using one of (a) a second redundancy
Scheme on the same arrangement of storage devices, (b)
a second redundancy scheme on a different arrange
ment of storage devices, and (c) the same redundancy
scheme on a different arrangement of storage devices.

4. A method according to any of claims 1, 2, or 3, wherein
the redundancy schemes are selected from the group includ
ing mirroring, striping with parity, RAID6, dual parity,
diagonal Parity, Low Density Parity Check codes, and turbo
codes.

5. A method according to any of claims 2 or 3, wherein
reconfiguring the data comprises:

converting a mirrored pattern across two storage devices
to a mirrored pattern on a single storage device.

6. A method according to any of claims 2 or 3, wherein
reconfiguring the data comprises:

converting a mirrored pattern across a first pair of storage
devices to a mirrored pattern across a second pair of
storage devices.

7. A method according to any of claims 2 or 3, wherein
reconfiguring the data comprises:

converting a striped pattern across three storage devices to
a mirrored pattern across two storage devices.

8. A method according to any of claims 2 or 3, wherein
reconfiguring the data comprises:

converting a first striped pattern across a first plurality of
storage devices to a second striped pattern across a
second plurality of storage devices.

9. A method according to any of claims 2 or 3, wherein
reconfiguring the data comprises:

converting a mirrored pattern across one storage device to
a mirrored pattern across two storage devices.

10. A method according to any of claims 2 or 3, wherein
reconfiguring the data comprises:

converting a mirrored pattern on one storage device to a
mirrored pattern on another storage device.

US 2006/0112222 A1

11. A method according to any of claims 2 or 3, wherein
reconfiguring the data comprises:

converting a mirrored pattern across two storage devices
to striped pattern across three storage devices.

12. A method according to any of claims 2 or 3, wherein
reconfiguring the data comprises:

converting a first striped pattern across a first plurality of
storage devices to a second striped pattern across a
second plurality of storage devices including a storage
device added to the set.

13. A method according to any of claims 1, 2, or 3, further
comprising:

parsing an object into chunks, each chunk having particu
lar content; and

storing in the storage system only chunks having unique
COntent.

14. A method according to claim 13, wherein storing only
chunks having unique content comprises:

storing in the storage system only chunks identified as
having unique content based on a predetermined hash
function.

15. A method according to claim 14, wherein storing only
chunks identified as being unique based upon a predeter
mined hash function comprises:

computing a hash number for each chunk, and
storing in the storage system a unique identifier for the

object linked to hash numbers for the stored chunks and
location information therefor.

16. A method according to any of claims 15, wherein
storing a unique identifier for the object includes using an
object table that lists the unique identifier for the object and
the hash numbers for the stored chunks.

17. A method according to any of claims 15, wherein
storing location information includes storing in a chunk
table a listing for each chunk stored therein including a
representation of its physical location in the storage system.

18. A method according any of claims 13, further com
prising:

translating objects stored in the storage system into a
representation of at least one of a single storage device
and a file system and an object storage system.

19. A method according to any of claims 13, further
comprising:

managing physical allocation of storage of chunks in the
storage system so as to provide fault-tolerant storage,
even when the storage system may include storage
devices of varying capacity.

20. A method according to any of claims 15, further
comprising:

upon retrieving a particular chunk from the storage sys
tem, verifying the contents of the retrieved chunk based
on the stored hash number for the chunk.

21. A method according to claim 20, wherein verifying the
contents of the retrieved chunk based on the stored hash
number for the chunk comprises:

computing a hash number for the retrieved chunk; and
comparing the computed hash number with the corre

sponding stored hash number for the chunk.

26
May 25, 2006

22. A method of storing data in a set of storage devices,
the method comprising:

storing data on the set of storage devices using at least one
redundancy scheme:

detecting removal of a storage device from the set;
reconfiguring a portion of the data from the removed

storage device using the remaining storage devices;
detecting reinsertion of the removed storage device into

the set;
freeing regions of the reinserted storage device corre

sponding to said portion; and
refreshing any remaining regions of the reinserted storage

device that may have been modified between removal
and reinsertion.

23. A system for storing data, the system comprising:
a set of storage devices, the set having at least one storage

device; and
a storage manager for storing the data in the set of storage

devices using a mixture of redundancy schemes, the
storage manager automatically determining the mixture
of redundancy schemes, from among a plurality of
redundancy schemes, for storing the data in the set of
storage devices in order to provide fault tolerance and,
when the set of storage devices happens to include a
plurality of devices of different storage capacities,
enhanced storage efficiency.

24. A system according to claim 23, wherein the storage
manager automatically reconfigures data previously stored
on a first arrangement of storage devices using a first
redundancy scheme to being stored using one of (a) a second
redundancy scheme on the same arrangement of storage
devices, (b) a second redundancy scheme on a different
arrangement of storage devices, and (c) the same redun
dancy scheme on a different arrangement of storage devices
for accommodating without data loss at least one of expan
sion of capacity by the addition of another storage device to
the set, and the contraction of capacity by the removal of a
storage device from the set.

25. A system for storing data, the system comprising:
a set of storage devices, the set having at least one storage

device; and
a storage manager for storing the data in the set of storage

devices, the storage manager storing data on the set of
storage devices using a first redundancy scheme and,
upon a change in the composition of the set of storage
devices, automatically reconfiguring the data on the set
of storage devices using one of (a) a second redundancy
Scheme on the same arrangement of storage devices, (b)
a second redundancy scheme on a different arrange
ment of storage devices, and (c) the same redundancy
Scheme on a different arrangement of storage devices.

26. A system according to any of claims 23, 24, or 25,
wherein the redundancy schemes are selected from the
group including mirroring, striping with parity, RAID6, dual
parity, diagonal Parity, Low Density Parity Check codes, and
turbo codes.

27. A system according to any of claims 24 or 25, wherein
the storage manager converts a mirrored pattern across two
storage devices to a mirrored pattern on a single storage
device.

US 2006/0112222 A1

28. A system according to any of claims 24 or 25, wherein
the storage manager converts a mirrored pattern across a first
pair of storage devices to a mirrored pattern across a second
pair of Storage devices.

29. A system according to any of claims 24 or 25, wherein
the storage manager converts a striped pattern across three
storage devices to a mirrored pattern across two storage
devices.

30. A system according to any of claims 24 or 25, wherein
the storage manager converts a first striped pattern across a
first plurality of storage devices to a second striped pattern
across a second plurality of storage devices.

31. A system according to any of claims 24 or 25, wherein
the storage manager converts a mirrored pattern across one
storage device to a mirrored pattern across two storage
devices.

32. A system according to any of claims 24 or 25, wherein
the storage manager converts a mirrored pattern on one
storage device to a mirrored pattern on another storage
device.

33. A system according to any of claims 24 or 25, wherein
the storage manager converts a mirrored pattern across two
storage devices to striped pattern across three storage
devices.

34. A system according to any of claims 24 or 25, wherein
the storage manager converts a first striped pattern across a
first plurality of storage devices to a second striped pattern
across a second plurality of storage devices including a
storage device added to the set.

35. A system according to any of claims 23, 24, or 25,
further comprising:

a chunk parser, for parsing an object into chunks, each
chunk having particular content, wherein the storage
manager stores in the set of storage devices only
chunks having unique content.

36. A system according to claim 35, further comprising:
a hash code generator for generating a hash number for

each chunk, the hash code generator and the physical
storage manager in communication with an object table
store and a chunk table store so that the object table lists
a unique identifier for the object linked to hash numbers
for the stored chunks and the chunk table lists for each
chunk stored therein a representation of its physical
location in the set of storage devices.

37. A system according to claim 35, further comprising:
a fault tolerant manager, in communication with the

storage manager, for managing physical allocation of
storage of chunks in the set of Storage devices so as to

27
May 25, 2006

provide fault-tolerant storage, even when the set of
storage devices may include storage devices of varying
capacity.

38. A system according any of claims 36, wherein, upon
retrieving a particular chunk from the set of storage devices,
the physical storage manager verifies the contents of the
retrieved chunk based on the stored hash number for the
chunk.

39. A system according to claim 38, wherein the physical
storage manager computes a hash number for the retrieved
chunk and compares the computed hash number with the
corresponding stored hash number for the chunk.

40. A method for freeing unused storage blocks in a
storage system, the method comprising:

identifying a free block;
determining a logical sector address for the free block;
identifying a cluster access table entry for the free block

based on the logical sector address;
decrementing a reference count associated with the cluster

access table entry; and
freeing the block if the decremented reference count is
ZO.

41. A method according to claim 40, wherein identifying
a free block comprises:

identifying a free block bitmap associated with the host
filesystem; and

parsing the free block bitmap to identify clusters that are
no longer being used by the filesystem.

42. A method according to claim 41, wherein identifying
the free block bitmap associated with the host filesystem
comprises:

maintaining a partition table;
parsing the partition table to locate an operating system

partition;
parsing the operating system partition to locate a Super

block; and
identifying the host filesystem based on the superblock.
43. A method according to claim 41, further comprising:
making a working copy of the free block bitmap, wherein

the working copy of the free block bitmap is parsed to
identify clusters that are no longer being used by the
filesystem.

