发明名称
一种固体脂质纳米粒或脂质体及其制备方法

摘要
本发明提供了一种固体脂质纳米粒或脂质体，它是由至少含有活性药物、脂质类载体材料、
泡腾酸性材料和泡腾碱性材料在内的原料制备而成；所述脂质类载体材料为包封活性药物的材
料。本发明利用泡腾分散技术，成功制备得到了药物脂质微粒（固体脂质纳米粒或脂质体），该
方法制备工艺简便，质量可控，设备要求不高，易于实现产业化。本发明方法制备的脂质微粒可以
为固态和液态，质量稳定，粒径范围为 0.050 - 20 μm，可以制成各种固体与溶液型制剂，能满足
口服、静脉、吸入、经皮给药的临床用药要求。
1. 一种固体脂质纳米粒或脂质体，其特征在于：它是由至少含有活性药物、脂质类载体材料、泡腾酸性材料和泡腾碱性材料在内的原料制备而成；所述脂质类载体材料为包封活性药物的材料。

2. 根据权利要求1所述的固体脂质纳米粒或脂质体，其特征在于：所述原料的重量配比如下：

 活性药物：0.001-12份，脂质类载体材料：0.5-40份，泡腾酸性材料：1-25份，泡腾碱性材料：1-20份；

 进一步地，所述原料的重量配比如下：

 活性药物：1-10份，脂质类载体材料：10-25份，泡腾酸性材料：1-12份，泡腾碱性材料：1-8份。

3. 根据权利要求1或2所述的固体脂质纳米粒或脂质体，其特征在于：脂质类载体材料的重量为活性药物的1倍以上；进一步地，脂质类载体材料的重量为活性药物的3倍以上；更进一步地，脂质类载体材料的重量为活性药物的3～15倍。

4. 根据权利要求1～3任意一项所述的固体脂质纳米粒或脂质体，其特征在于：所述脂质类载体材料选自高熔点脂质或结构中同时含有亲水基团和疏水基团双分子层基础物质。

5. 根据权利要求1或4所述的固体脂质纳米粒或脂质体，其特征在于：所述脂质类载体材料选自饱和脂肪酸的甘油酯、二硬脂酸磷脂酰乙醇胺、硬脂酸、十二酸、氢化大豆卵磷脂、十三酸、十六酸、二肉豆蔻酰卵磷脂、蜂蜡、卵磷脂、鲸蜡、巴西棕榈蜡、豆磷脂、磷脂酰乙醇胺、合成磷脂酰丝氨酸、磷脂酰肌醇、神经酰胺磷脂、卵磷脂酰胆碱、二氢醇磷脂、聚乙二醇衍生化磷脂、胆固醇、胆固醇酯、胆固醇半琥珀酸酯，β－谷甾醇，胆固醇硬脂酸酯，胆固醇棕榈酸酯，聚乙二醇衍生化胆固醇中的一种或多于两种以上的混合物。

 进一步地，所述饱和脂肪酸选自硬脂酸、月桂酸、油酸、肉豆蔻酸、棕榈酸、山萮酸中的一种或多于两种以上的混合物。

 进一步地，所述聚乙二醇衍生化磷脂选自甲酰基聚乙二醇化二硬脂酸磷脂酰乙醇胺、聚乙二醇化二硬脂酸磷脂酰乙醇胺、配体修饰的聚乙二醇衍生化磷脂；其中，聚乙二醇的分子量为350～5000，配体选自叶酸、糖基、肽或蛋白质中的一种或多于两种以上的混合物；聚乙二醇衍生化胆固醇选自甲酰基聚乙二醇－胆固醇、聚乙二醇－胆固醇、配体修饰的聚乙二醇衍生化胆固醇；其中，其中，聚乙二醇的分子量为350～5000；配体选自叶酸、糖基、肽或蛋白质中的一种或多于两种以上的混合物。

6. 根据权利要求1-3任意一项所述制备方法，其特征在于：所述的泡腾碱性材料包括碳酸氢钠或碳酸钠中的一种或多于两种以上的混合物。

7. 根据权利要求1-3任意一项所述制备方法，其特征在于：所述的泡腾酸性材料选自任意对机体无害的有机酸或无机酸；所述泡腾酸性材料进一步为枸橼酸、酒石酸中的一种或多于两种以上的混合物。

8. 根据权利要求1-3任意一项所述的固体脂质纳米粒或脂质体，其特征在于：所述原料还包括稀释剂；进一步地，所述稀释剂的用量为10～80重量份；更进一步地，所述稀释剂的用量为15～30重量份；进一步地，所述的稀释剂包括甘露醇，葡萄糖，山梨醇，聚乙烯吡咯烷酮中的一种或者两种以上的混合物。
9. 根据权利要求 1-8 任意一项所述的固体脂质纳米粒或脂质体，其特征在于：所述原料中还包括表面活性剂、附加剂中一种或两种以上的组合物，所述附加剂选自抗氧剂、金属络合剂、稳定剂、抑菌剂、等渗调节剂中的一种或两种以上的组合物。

10. 根据权利要求 9 所述的固体脂质纳米粒或脂质体，其特征在于：所述表面活性剂的用量为 0～30 重量份，附加剂的用量为 0～8 重量份，两者不同时为 0；
进一步地，所述表面活性剂的用量为 0～10 重量份，更进一步为 0～6 重量份；
进一步地，附加剂的用量为 0～2 重量份，更进一步为 0～1 重量份。

11. 根据权利要求 9 所述的固体脂质纳米粒或脂质体，其特征在于：所述抗氧剂选自维生素 E、维生素 C、亚硫酸氢钠、亚硫酸钠、硫代硫酸钠、焦亚硫酸钠中的一种或两种以上的组合物；所述表面活性剂选为非离子表面活性剂；所述金属络合剂选自 EDTA 或其盐；所述稳定剂选自甘氨酸；所述抑菌剂选自三氯叔丁醇、苯甲醇、甲酚、氯甲酚、尼泊金类；所述等渗调节剂选自氯化钠、葡萄糖。
进一步地，所述非离子表面活性剂选自脂肪酸甘油酯系列，多元醇型系列，聚氧乙烯系列，聚氧乙烯-聚氧丙烯高聚物系列中的一种或两种以上的组合物，所述脂肪酸甘油酯系列选为单硬脂酸甘油酯，所述多元醇型系列选自蔗糖脂肪酸酯，脂肪酸山梨酯，聚山梨酯，所述聚氧乙烯系列选自聚氧乙烯脂肪酸酯，聚氧乙烯脂肪醇酯。

12. 一种固体脂质纳米粒或脂质体的制备方法，其特征在于：它是由至少含有活性药物、脂质类载体材料、泡腾酸性材料、泡腾碱性材料在内的原料制备而成，包括如下操作步骤：
（1）取活性药物、脂质类载体材料、泡腾酸性材料溶于有机溶剂中，得到溶液 I；取泡腾碱性材料溶于水中，得到溶液 II；
或者，取脂质类载体材料、泡腾酸性材料溶于有机溶剂中，得到溶液 I；取活性药物、泡腾碱性材料溶于水中，得到溶液 II；
（2）在溶液 II 搅拌条件下，加入溶液 I，待酸碱中和反应完成后，除去有机溶剂，即得含有固体脂质纳米粒或脂质体的混悬液；
或者，将含有固体脂质纳米粒或脂质体的混悬液，除去水分后，即得干燥的固体脂质纳米粒或脂质体。

13. 根据权利要求 12 所述制备方法，其特征在于：制备微米级的药物微粒，选择脂质类载体材料的用量为泡腾材料总和的 3 倍以上，进一步为 3.2～4.0 倍；制备纳米级的药物微粒，选择脂质类载体材料的用量低于泡腾材料总和的 3 倍，进一步为 0.5～2.4 倍。
说明书

一种固体脂质纳米粒或脂质体及其制备方法

技术领域
[0001] 本发明涉及一种固体脂质纳米粒或脂质体及其制备方法。

背景技术
[0002] 药物微粒分散系分为相分散系和胶体分散系，前者主要包括混悬剂、微囊、微球、乳剂等；后者主要包括纳米粒、固体脂质纳米粒、纳米囊、纳米胶束等。微粒分散系在药剂学中具有重要意义：（1）粒径小，表面积大，有助于提高难溶性药物的溶解度和溶解速度，从而提高生物利用度；（2）有利于提高药物在介质中的分散性；（3）药物被包裹在载体中，能一定程度改善其体内外稳定性；（4）不同粒径大小的微粒在体内具有一定的选择性分布，容易被网状内皮吞噬系统作用，富集在肝脾等器官，达到被动靶向效果；（5）利用抗体、配体修饰纳米粒，可以实现药物在体内的主动靶向作用；（6）药物被载体包裹，往往具有一定的药物控制释放特性。基于药物微粒载体的这些优势，已成为国内外医药研究者的高度关注，而且未来微粒给药系统的研究将带来更广阔的使用前景。

[0003] 目前，药物脂质微粒主要集中在固体脂质纳米球（solid lipid nanospheres）和脂质体（liposomes）（纳米粒和微粒）的研究。固体脂质纳米球具有物理稳定性好，药物泄露少，缓释性好的特点；又具毒性低，易于规模化生产的优势，因此是极具发展前途的新型药物递送载体。其制备方法主要有三种：

[0004] 熔融-匀质法（melt homogenization），是目前制备固体脂质纳米球最经典的方法，由棱等（陈英，李岩，蔡爽等）冬凌草甲素长循环固体脂质纳米粒的制备及对人胃癌 SGC-7901 细胞的抑制作用。中国医药导报. 2013, 10(17): 13-15) 采用熔融均质法制备冬凌草甲素长循环固体脂质纳米粒 (ORI-1LSLN)。先将高速分散均质机和纳米均质机控温（70 ± 2℃）待用。称取处方量单硬脂酸甘油酯、卵磷脂、PEG-2000—DSPE 和冬凌草甲素以适量乙醇溶解为有机相。将处方量 F68 溶于适量超纯水中控温 70℃，在高速分散均质机下缓慢将有机相注入水相，分散条件下 5000r/min, 3min。然后迅速冷却，过 0.22μm 滤膜，即得 ORI-1LSLN。实验表明研制的 ORI-1LSLN 呈类球形，平均粒径 112nm，Zeta 电位为 -31.6mV，包封率为 90.4%，载药量为 5.1%。体外释放结果表明，ORI-SLN 和 ORI-1LSLN 在释放初期并无显著区别，后期 ORI-SLN 释放较快，24h 基本释放完全，而 ORI-1LSLN 则需要 36h 才完全释放，表现了更好的缓释效果。ORI-1LSLN 对人胃癌 SGC-7901 细胞具有较强的毒性作用。

[0005] 冷却-匀质法（cold homogenization），将药物与脂质混合冷却，冷却后与液氮或固体二氧化碳一起研磨至粒径 <50μm，然后用表面活性剂溶液在低于脂质熔点 5-10℃的条件下高压匀质。此法适用于对热不稳定的药物和熔点低的脂质。杨勇等（杨勇，奉建芳，张慧，罗杰英）星状设计-效应面法优化螺旋固体脂质纳米粒制备工艺。中国中药杂志. 2006, 31(8): 650-653.) 称取处方量的硬脂酸甘油酯、山奈酸甘油酯、注射用大豆磷脂，在 (80±5)℃水浴下混匀，溶于适量无水乙醇后，除去溶剂，迅速移至 -20℃冰箱中冷冻 2h。取一定量的泊洛沙姆 188 分散于 4℃的注射用水中，形成均匀的水相，加入上述所得冻干固体，研磨至形成粒径 100μm 以下的微粒水分散体系，室温下用高压匀质机 (55MPa) 匀
化 5 次，迅速冷至室温，得硬脂固体脂质纳米粒 (Cs. SLN)。其结果 Cs. SLN 的平均粒径为 71.5nm，包封率为 92.45%，载药量为 5.26%。

[0006] 纳米乳法 (nanoemulsion method)，系先在熔融的高熔点脂质材料中加入磷脂、助乳化剂溶解后加入水中搅拌自发制成纳米乳或亚微乳，再倒入冰水中冷却即得纳米粒或亚微粒。磷脂分子亲脂性太强，为最大限度地降低界面张力，可加入短链醇或非离子型表面活性剂作为辅助乳化剂，这类乳化剂可插入到界面膜中，打破液晶态平衡并提高界面膜的柔韧性，该体系遇水后自发形成极细小的亚微乳，粒径一般 <140nm。叶思霞等（叶思霞，袁桂云，异维 A 酸固体脂质纳米粒的制备和稳定性考察，海峡药学，2010, 22(8):15-17。）取单硬脂酸甘油酯，吐温 20、聚乙二醇 400、表面活性剂 F127、对羟基苯甲酸乙酯、2，6-二叔丁基对甲酚，置 70℃水浴使其完全熔融形成溶液，然后在 200rpm 搅拌，70℃下加入异维 A 酸，继续搅拌直至形成澄清透明溶液，然后加入入 5ml/70℃的水，于 200rpm 搅拌 20min，形成稳定均一的纳米乳，将纳米乳滴入以 1000rpm 搅拌的 85ml，-2℃的 5%蔗糖水溶液中，搅拌 5min 后转速调至 200rpm 搅拌 3h，即得。其结果表明异维 A 酸固体脂质纳米粒的平均粒径为 53.23nm，包封率 >97%，25℃和 40℃避光贮存 6 个月，含量和包裹率均无明显变化。

[0007] 上述 3 种制备工艺存在几点不足：(1) 熔融 - 匀质法和冷却 - 匀质法均需要昂贵设备高压均质机，而且经过多次高压均质化，样品中难免会带入少许铁屑，影响样品稳定性；(2) 熔融 - 匀质法的缺点是大多数药物在高温下溶解度较高，随着温度下降，一部分过饱和的药物会重新分布于固体脂质纳米粒表面的磷脂层，另一部分在水相沉淀析出；(3) 冷却 - 匀质法则难以降低粒径，往往只能获得粒径较大的固体脂质纳米粒；(4) 纳米乳法而言，如果采用有机溶剂为辅助乳化剂，则迁移到外水相的药物在有机溶剂挥尽后会呈结晶析出，若使用胆酸盐或四丁醇酚为辅助乳化剂，制备结束后需透析除去，否则这些乳化剂在体内可能会导致溶血。

[0008] 脂质体 (liposomes) 是将药物包封于类脂质双分子层小囊形成的超微球形载体制剂，一般由磷脂和胆固醇构成。这种微粒具有双细胞结构，进入生物体内后改变被包封药物的体内分布，使药物主要被送到病灶的组织器官，避免了对正常细胞的作用。由于脂质体具有淋巴系统趋向性、被动靶向性、主动靶向性、物理化学靶向性等功能，从而达到提高药物的疗效，降低药物毒副作用的目的。迄今为止，是一种最有前景的靶向递送载体制型，属于组织器官靶向给药系统的一种新剂型，也被称为生物导弹。目前，脂质体包裹的抗癌药、新疫苗等已上市，如两性霉素脂质体、阿霉素脂质体、紫杉醇脂质体和顺铂脂质体等（李培军，脂质体的特性及临床治疗进展，中国现代药物应用，2014, 8(5):243-245。），但是，国内外脂质体的上市制剂产品迄今屈指可数，更多的是停留在实验室阶段，其主要原因是目前制备工艺存在几点不足：(1) 产业化程度不高，如传统薄膜水化法、逆相蒸发法制工艺规模化水平较低；(2) 稳定性差，尤其是脂质体混悬液在贮存期间易发生聚集、融合及药物泄露，同时，天然磷脂易氧化、水解，难以满足药物制剂稳定性的要求；(3) 有机残留，工艺中常采用的氯仿等毒性有机溶媒，产品中有机残留就是问题；(4) 如果得到粒径小的纳米脂质体，往往需要高压均质设备，多次高压均质化，样品中难免会带入少许铁屑，影响样品稳定性。

发明内容
说明书

0009 本发明的目的在于提供一种新型的固体脂质纳米粒或脂质体及制备方法。

0010 本发明提供了一种固体脂质纳米粒或脂质体，它是由至少含有活性药物、脂质类载体材料、泡腾酸性材料和泡腾碱性材料在内的原料制备而成；所述脂质类载体材料为包封活性药物的材料。

0011 本发明研究发现，只需要使用泡腾酸性和碱性成分混合后产生的二氧化碳冲力，促使脂质成分分散，获得均匀的药物脂质微粒。和泡腾剂一样，本发明中所使用的泡腾碱性材料包括碳酸氢钠或碳酸钠。泡腾酸性材料包括任意对机体无害的有机酸或者无机酸、例如枸橼酸、酒石酸中的一种或两种以上的混合物。所谓机体，是具有生命的个体的统称。

0012 进一步地，所述原料的重量配比如下：活性药物 0.001-12 份，脂质类载体材料：0.5-40 份，泡腾酸性材料：1-25 份，泡腾碱性材料：1-20 份。

0013 本发明提供的实施方式中，所述原料的重量配比如下：

0014 活性药物：1-10 份，脂质类载体材料：10-25 份，泡腾酸性材料：1-12 份，泡腾碱性材料：1-8 份。

0015 进一步地，脂质类载体材料的重量为活性药物的 1 倍以上。

0016 本发明研究发现，脂质类载体材料与药物的用量比例对包封率有一定影响；如实施例 1～5 中，脂质类载体材料用量与药物相同，包封率为 81～85%；实施例 6～11 中，脂质类载体材料用量为药物的 3～15 倍，包封率为 90～98%。实施例 12 中，包封率约为 46.2%。上述实施例中，实施例 1～11 中各药物均是脂溶性药物，而实施例 12 所用药物为水溶性药物。本领域公知，固体质料纳米粒或脂质体对脂溶性药物的包封效果较差，水溶性包封效果较差。为了保证较好的包封效果，本发明选择以脂溶性药物为对照，优选使用脂质类载体材料用量为药物的 3 倍以上，如本发明具体实施方式中，选用脂质类载体材料的重量为活性药物的 3～15 倍。

0017 本发明所述的活性药物包括具有治疗、预防或诊断功能的活性物质。用于制备脂质微粒的活性药物，可以是脂溶性成分，也可以是水溶性成分。但是，根据本领域的常识和本发明实际的包封效果而言，本发明可以优选活性药物为脂溶性药物。

0018 其中，所述脂质类载体材料，使用公知的固体脂质纳米粒或脂质体中的材料即可，如：对于固体脂质纳米粒而言，其载体材料为生理相容的高熔点脂质，有饱和脂肪酸的甘油酯、硬脂酸、癸酸、棕榈酸、甾体等（《药剂学》，崔福德，人民卫生出版社，2008 年第 6 版，416～417 页）；对于脂质体而言，双分子层基础物质是其载体材料的必需品，所述双分子层基础物质，其结构中同时含有亲水基团（如磷酸基团、含氮的碱基等）和疏水基团（如较长的烃链等），在被水完全包围时，极性基团面向两侧水相，而非极性基团彼此面对面缩合成板状双分子层，从而构成双分子膜，例如磷脂类，包括卵磷脂、脑磷脂、大豆磷脂、以及其他合成磷脂，如合成二棕榈酰-DL-α 磷脂酰胆碱、合成磷脂酰丝氨酸等（《药剂学》，崔福德，人民卫生出版社，2008 年第 6 版，422 页）。

0019 综合现有固体脂质纳米粒或脂质体中对载体材料的要求和选择，本发明可以选择使用如下种类的脂质类载体材料：饱和脂肪酸的甘油酯、二硬脂酰磷脂酰乙醇胺、硬脂醇、十二醇、氧化大豆卵磷脂、十三醇、十六醇、二油豆蔻酰卵磷脂、蜂蜡、卵磷脂、鲸蜡、巴西棕榈蜡、豆磷脂、磷脂酰乙醇胺、合成磷脂酰丝氨酸、磷脂酰乙醇胺、神经鞘磷脂、蛋磷脂酰胆碱、二氢胆石蜡、聚乙二醇衍生化磷脂、胆固醇、胆固醇乙酰酯、胆固醇半苛熔酸酯、β-谷甾
醇，胆固醇硬脂酸酯，胆固醇棕榈酸酯，聚乙二醇衍生化胆固醇中的一种或两种以上的混合物。上述形成的甘油酯，可以是单酯、双酯、三酯或者它们的混合物。

[0020] 另外，若制备脂质体，还可以在脂质类载体材料中加入流动性缓冲剂，它是嵌在双分子层基础物质形成的双分子膜中间，具有调节双分子膜流动性的作用，例如，当处于相变温度时，流动性缓冲剂可使膜减少有序排列，而增加流动性；高于相变温度时，可增加膜的有序排列而减少膜的流动性，流动性缓冲剂的加入可以提高双分子膜的稳定性和药物的包封率等。目前常用用于的流动性缓冲剂如胆固醇（《药剂学》，崔福德，人民卫生出版社，2008年第6版，422页）。虽然流动性缓冲剂可增强脂质体的稳定性和对药物的包封率，但是，它并非是制备脂质体的必需品。

[0021] 其中，所述饱和脂肪酸选自硬脂酸、月桂酸、油酸、肉豆蔻酸、棕榈酸、山嵛酸中的一种或两种以上的混合物。

[0022] 其中，所述聚乙二醇衍生化磷脂选自甲基类聚乙二醇衍化二硬脂酰磷脂酰乙醇胺、聚乙二醇衍化二硬脂酰磷脂酰乙醇胺、或配体修饰的聚乙二醇衍生化磷脂；其中，聚乙二醇的分子量为350～5000；配体选自叶酸、糖基、肽或蛋白质中的一种或两种以上的混合物。

[0023] 聚乙二醇衍生化胆固醇选自甲基类聚乙二醇-胆固醇、聚乙二醇-胆固醇、或配体修饰的聚乙二醇衍生化胆固醇；其中，其中，聚乙二醇的分子量为350～5000；配体选自叶酸、糖基、肽或蛋白质中的一种或两种以上的混合物。

[0024] 进一步地，所述原料还包括稀释剂。

[0025] 进一步地，所述稀释剂的用量为10～80重量份。

[0026] 本发明提供的具体实施方式中，所述稀释剂的用量为15～30重量份。

[0027] 其中，所述的稀释剂包括甘露醇、葡萄糖、山梨醇、聚乙烯吡咯烷酮中的一种或者两种以上的混合物。

[0028] 表面活性剂和添加剂并非是采用本发明方法成功制备脂质微粒的必选成分，如实施例3中就未使用表面活性剂和添加剂。

[0029] 若为了对本发明制备方法作进一步改善，可以在原料中加入表面活性剂、添加剂中一种或两种以上的组合物；所述添加剂选自抗氧剂、金属络合剂、稳定剂、抑菌剂、等渗调节剂中的一种或两种以上的组合物。

[0030] 所述表面活性剂的用量为0～30重量份，添加剂的用量为0～8重量份，两者不同时为0。

[0031] 本发明提供的具体实施方式中，所述表面活性剂的用量为0～10重量份，更进一步为0～6重量份。

[0032] 本发明提供的具体实施方式中，添加剂的用量为0～2重量份，更进一步为0～1重量份。

[0033] 其中，所述抗氧剂选自维生素E、维生素C、亚硫酸氢钠、亚硫酸钠、硫代硫酸钠、焦亚硫酸钠、中的一种或两种以上的组合物；所述表面活性剂为非离子表面活性剂；所述金属络合剂选自EDTA或其盐；所述稳定剂为甘氨酸；所述抑菌剂选自三氯叔丁醇、苯甲醇、甲酚、氯甲酚、尼泊金类；所述等渗调节剂选自氯化钠、葡萄糖。

[0034] 进一步地，所述非离子表面活性剂选自脂肪酸甘油酯类、多元醇类、聚氧乙烯类，聚氧乙烯-聚氧丙烯高聚物类中的一种或两种以上的组合物。
[0035] 更进一步地，所述脂肪酸甘油酯系列为单硬脂酸甘油酯；所述多元醇型系列选自
糖脂肪酸酯；脂肪酸山梨醇，聚山梨醇酯，所述聚氧乙烯系列选自聚氧乙烯脂肪酸酯，聚氧
乙烯脂肪醇醚。

[0036] 本发明还提供了一种固体脂质纳米粒或脂质体的制备方法，它是由至少包括活性
药物、脂质类载体材料、泡腾酸性材料、泡腾碱性材料在内的原料制备而成，活性药物为脂
溶性成分时，包括如下操作步骤：

[0037] 1. 取活性药物、脂质类载体材料、泡腾酸性材料溶于有机溶剂中，得到溶液 I ；
[0038] 2. 取泡腾碱性材料溶于水中，得到溶液 II ；
[0039] 3. 在溶液 II 搅拌条件下，加入溶液 I ，待酸碱中和反应完成后，除去有机溶剂，即
得含有固体脂质纳米粒或脂质体的混悬液；

[0040] 或者，将含有固体脂质纳米粒或脂质体的混悬液，除去水分后，即得干燥的固体脂
质纳米粒或脂质体。

[0041] 本发明还提供了一种固体脂质纳米粒或脂质体的制备方法，它是由至少包括活性
药物、脂质类载体材料、泡腾酸性材料、泡腾碱性材料在内的原料制备而成，活性药物为水
溶性成分时，包括如下操作步骤：

[0042] 1. 取脂质类载体材料、泡腾酸性材料溶于有机溶剂中，得到溶液 I ；
[0043] 2. 取活性药物、泡腾碱性材料溶于水中，得到溶液 II ；
[0044] 3. 在溶液 II 搅拌条件下，加入溶液 I ，待酸碱中和反应完成后，除去有机溶剂，即
得含有固体脂质纳米粒或脂质体的混悬液；

[0045] 或者，将含有固体脂质纳米粒或脂质体的混悬液，除去水分后，即得干燥的固体脂
质纳米粒或脂质体。

[0046] 本发明中，除去有机溶剂的方法可以使用目前制备脂质体或固体脂质纳米粒中常
用的方法，或者其他制备中常规方法，如减压蒸馏，加热蒸发，常温搅拌挥发等。

[0047] 本发明研究还发现，泡腾材料与脂质类载体材料的用量比值，对脂质微粒的粒径
有一定的影响，可能与泡腾材料产生的二氧化碳量有关。基于本发明现阶段的研究，可以
认为，制备微米级的药物微粒，选择脂质类载体材料的用量为泡腾材料总和的 3 倍以上，例如
3.2～4.0 倍，3.2～3.6 倍；制备纳米级的药物微粒，选择脂质类载体材料的用量低于泡腾
材料总和的 3 倍，例如 0.5～2.4 倍，0.9～2.4 倍。

[0048] 本发明利用泡腾分散技术，成功制备得到了药物脂质微粒（固体脂质纳米粒或脂
质体），该方法制备工艺简便，质量可控，设备要求不高，易于实现产业化。本发明方法制备
的脂质微粒可以为固态和液态，质量稳定，粒径范围为 0.050～20 μm，可以制成各种固
体和溶液型制剂，能满足口服、静脉、吸入、经皮给药的临床用药要求。

[0049] 本发明提供的药物脂质微粒载体（微米级和纳米级）的制备及其应用的特色与优
势：

[0050] 1. 产业化程度高：本发明提供的药物脂质微粒载体制备工艺简便，设备要求低，
不需要昂贵的高压均质机，质量可控，易于产业化。

[0051] 2. 药物脂质微粒载体直径可控：本发明创造性采用泡腾分散技术制备药物脂质
微粒载体（微米级和纳米级），研究发现，主要调整泡腾酸性和碱性成分与脂质材料的配
比，促使脂质成分不同的分散程度，最终就可以获得微米级和纳米级均匀的药物脂质微粒。
[0052] (3) 产品质量稳定：通过冷冻干燥、减压干燥、喷雾干燥等除去水分，可以获得固态的药物脂质微粒载体，产品稳定性大幅度提高。

[0053] (4) 具有缓释作用：本发明提供的药物脂质微粒载体能一定程度控制药物释放特性。

[0054] (5) 口服生物利用度提高：本发明提供的药物脂质微粒载体口服给药后，一方面药物粒子减小，与胃肠道接触表面积增大，溶解性提高；另一方面改善了药物的脂水分配性，从而显著提高难溶性药物的口服生物利用度。

[0055] (6) 静脉给药具有靶向性：普通药物脂质微粒载体静脉给药后，由于与状内皮吞噬作用，药物在肝脏等器官组织富集，达到被动靶向作用；另一方面，如果采用抗体、配体修饰上述微粒，具有主动靶向作用。

[0056] (7) 吸入给药效果好：本发明提供的药物脂质微粒载体吸入给药后，能显著提高药物在呼吸道和肺部的滞留。

[0057] (8) 经皮给药效果好：本发明提供的药物脂质微粒载体经皮给药后，能显著提高药物经皮透过率。

[0058] (9) 本发明提供的药物脂质微粒载体能显著提高药效，降低不良反应，是一种有发展前景的新型药物载体。

[0059] 显然，根据本发明的上述内容，按照本领域的普通技术知识和手段，在不脱离本发明上述基本技术思想前提下，还可以做出其他多种形式的修改、替换或变更。

[0060] 以下通过具体实施例的形式，对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实施例。凡基于本发明上述内容所实现的技术均属于本发明的范围。

附图说明

[0061] 图1 BA-LP粒径分布图
[0062] 图2 BA-LP透射电镜图
[0063] 图3 BA溶液与BA-LP的累积释放曲线
[0064] 图4 大鼠灌胃BA-CMC和BA-LP后的血药浓度药时曲线
[0065] 图5 兔注射BA-INJ和BA-LP后的血药浓度药时曲线
[0066] 图6 BA-INJ在兔体内的生物分布
[0067] 图7 BA-LP在兔体内的生物分布

具体实施方式

[0068] 实施例1 脂质体的制备
[0069] 组方配比
[0070] 黄芩苷：96mg
[0071] 吐温80：50mg
[0072] 枸橼酸：50
[0073] 氯化大豆卵磷脂：96mg
[0074] 碳酸氢钠：25mg
[0075] 甘露醇：250mg
[0076] 制备工艺的详细步骤如下：
[0077] （1）根据提供的配方称取黄岑苷、吐温 80、枸橼酸、氢化大豆卵磷脂，溶于乙醇中，无菌过滤，得到溶液 I；
[0078] （2）根据提供的配方称取碳酸氢钠、甘露醇，溶于水中，无菌过滤，得到溶液 II；
[0079] （3）在溶液 II 高速搅拌条件下，将溶液 I 加入其中，在 80℃以内机械搅拌挥去有机溶媒，得药物微粒混悬液 III（溶液态制剂）。
[0080] 或者将药物微粒混悬液 III，采用常温减压干燥处理，除去水分等等（固态制剂）。使用前，称取适量固体 IIII，采用注射用水溶解呈透明或半透明溶液即可。
[0081] 结果：固体 IIII 呈淡黄色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为 156±5.35nm，包封率为 82.7±0.59%。
[0082] 实施例 2 脂质体的制备
[0083] 组方配比
[0084] 黄岑苷：96mg
[0085] 吐温 80：50mg
[0086] 枸橼酸：50mg
[0087] 氢化大豆卵磷脂：96mg
[0088] 碳酸氢钠：25mg
[0089] 甘露醇：250mg
[0090] 制备工艺的详细步骤如下：
[0091] （1）根据提供的配方称取黄岑苷、吐温 80、枸橼酸、氢化大豆卵磷脂，溶于乙醇中，无菌过滤，得到溶液 I；
[0092] （2）根据提供的配方称取碳酸氢钠、甘露醇，溶于水中，无菌过滤，得到溶液 II；
[0093] （3）在溶液 II 高速搅拌条件下，将溶液 I 加入其中，在 80℃以内旋转蒸发除去有机溶媒，得药物微粒混悬液 III（溶液态制剂）。
[0094] 或者，将药物微粒混悬液 III，采用常温减压干燥处理，除去水分等等（固态制剂）。使用前，称取适量固体 IIII，采用注射用水溶解呈透明或半透明溶液即可。
[0095] 结果：固体 IIII 呈淡黄色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为 175±3.28nm，包封率为 81.2±0.55%。
[0096] 实施例 3 脂质体的制备
[0097] 组方配比
[0098] 黄岑苷：96mg
[0099] 枸橼酸：50mg
[0100] 氢化大豆卵磷脂：96mg
[0101] 碳酸氢钠：25mg
[0102] 甘露醇：250mg
[0103] 制备工艺的详细步骤如下：
[0104] （1）根据提供的配方称取黄岑苷、枸橼酸、氢化大豆卵磷脂，溶于乙醇中，无菌过滤，得到溶液 I；
(2) 根据提供的配方称取碳酸氢钠、甘露醇，溶于水中，无菌过滤，得到溶液Ⅰ；
(3) 在溶液Ⅰ高速搅拌条件下，将溶液Ⅰ加入其中，在80℃以内旋转蒸发除去有机溶媒，得药物微粒混悬液Ⅲ（溶液态制剂）。
或者，将药物微粒混悬液Ⅲ，采用常温减压干燥处理，除去水分等等（固态制剂）。
使用前，称取适量固体Ⅲ，采用注射用水溶解呈透明或半透明溶液即可。
结果：固体Ⅲ呈淡黄色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为185±6.35μm，包封率为83.5±1.065%。
实施例4 脂质体的制备
组方配比
黄芩苷：96mg
吐温80：50mg
枸橼酸：70mg
氢化大豆卵磷脂：96mg
碳酸氢钠：35mg
甘露醇：250mg
制备工艺的详细步骤如下：
（1）根据提供的配方称取黄芩苷、吐温80、枸橼酸、氢化大豆卵磷脂，溶于乙醇中，无菌过滤，得到溶液Ⅰ；
（2）根据提供的配方称取碳酸氢钠、甘露醇，溶于水中，无菌过滤，得到溶液Ⅱ；
（3）在溶液Ⅰ高速搅拌条件下，将溶液Ⅰ加入其中，在80℃以内旋转蒸发除去有机溶媒，得药物微粒混悬液Ⅲ（溶液态制剂）。
或者，将药物微粒混悬液Ⅲ，采用常温减压干燥处理，除去水分等等（固态制剂）。使用前，称取适量固体Ⅲ，采用注射用水溶解呈透明或半透明溶液即可。
结果：固体Ⅲ呈淡黄色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为77±0.95μm，包封率为85.7±0.89%。
实施例5 脂质体的制备
组方配比
黄芩苷：96mg
吐温80：50mg
枸橼酸：20mg
氢化大豆卵磷脂：96mg
碳酸氢钠：10mg
甘露醇：250mg
制备工艺的详细步骤如下：
（1）根据提供的配方称取黄芩苷、吐温80、枸橼酸、氢化大豆卵磷脂，溶于乙醇中，无菌过滤，得到溶液Ⅰ；
（2）根据提供的配方称取碳酸氢钠、甘露醇，溶于水中，无菌过滤，得到溶液Ⅱ；
（3）在溶液Ⅰ高速搅拌条件下，将溶液Ⅰ加入其中，在80℃以内旋转蒸发除去有机溶媒，得药物微粒混悬液Ⅲ（溶液态制剂）。
说明书写

[0135] 或者，将药物微粒混悬液 III，采用常温减压干燥处理，除去水分等等（固体制剂）。使用前，称取适量固体 IIII，采用注射用水溶解呈均匀混悬液即可。
[0136] 结果：固体 IIII 呈淡黄色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为 8077±35.95nm，包封率为 83.5±1.25%。
[0137] 实施例 6 固体脂质纳米粒的制备
[0138] 组方配比
[0139] 姜黄素：40mg
[0140] 油泊沙胺：60mg
[0141] 枸橡酸：90mg
[0142] 硬脂酸：200mg
[0143] 碳酸氢钠：60mg
[0144] 山梨醇：150mg
[0145] 维生素 E：5mg
[0146] 制备工艺的详细步骤如下：
[0147] （1）根据提供的配方称取姜黄素、泊洛沙胺、枸橡酸、硬脂酸、维生素 E，溶于乙醇和乙醚混合溶剂中，无菌过滤，得到溶液 I；
[0148] （2）根据提供的配方称取碳酸氢钠、山梨醇，溶于水中，无菌过滤，得到溶液 II；
[0149] （3）在溶液 II 高速搅拌条件下，将溶液 I 加入其中，搅拌除去有机溶媒，得药物微粒混悬液 III（溶液态制剂）。
[0150] 或者，将药物微粒混悬液 III，采用常温减压干燥处理，除去水分等等（固体制剂）。使用前，称取适量固体 IIII，采用注射用水溶解呈透明或半透明溶液即可。
[0151] 结果：固体 IIII 呈淡黄色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为 98±4.21nm，包封率为 98.7±0.65%。
[0152] 实施例 7 脂质体的制备
[0153] 组方配比
[0154] 紫杉醇：10mg
[0155] 吐温 80：10mg
[0156] 油石酸：90mg
[0157] 氢化大豆卵磷脂：100mg
[0158] 碳酸氢钠：50mg
[0159] 葡萄糖：300mg
[0160] 维生素 E：5mg
[0161] EDTA：2.5mg
[0162] 制备工艺的详细步骤如下：
[0163] （1）根据提供的配方称取紫杉醇、吐温 80、油石酸、氢化大豆卵磷脂、维生素 E，溶于乙醇和乙醚混合溶剂中，无菌过滤，得到溶液 I；
[0164] （2）根据提供的配方称取碳酸氢钠、甘露醇、EDTA，溶于水中，无菌过滤，得到溶液 II；
[0165] （3）在溶液 II 高速搅拌条件下，将溶液 I 加入其中，搅拌除去有机溶媒，得药物微
粒混悬液 III（溶液态制剂）。
[0166] 或者，将药物微粒混悬液 III，采用冷冻干燥处理，除去水分等等（固态制剂）。使用前，称取适量固体 III，采用注射用水溶解呈透明或半透明溶液即可。
[0167] 结果：固体 III 呈白色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为 129±6.21nm，包封率为 94.5±0.34%。
[0168] 实施例 8 脂质体的制备
[0169] 组方配比
[0170] 多烯紫杉醇 :10mg
[0171] 吐温 80 :10mg
[0172] 枸橼酸 :100mg
[0173] 氢化大豆卵磷脂 :120mg
[0174] 胆固醇 :60mg
[0175] 碳酸氢钠 :80mg
[0176] 甘露醇 :200mg
[0177] 制备工艺的详细步骤如下：
[0178] （1）根据提供的配方称取多烯紫杉醇，吐温 80，枸橼酸，氢化大豆卵磷脂，胆固醇，溶于乙醇中，无菌过滤，得到溶液 I；
[0179] （2）根据提供的配方称取碳酸氢钠，甘露醇，溶于水中，无菌过滤，得到溶液 II；
[0180] （3）在溶液 II 高速搅拌条件下，将溶液 I 加入其中，搅拌除去有机溶媒，得药物微粒混悬液 III（溶液态制剂）。
[0181] 或者，将药物微粒混悬液 III，采用常温减压干燥处理，除去水分等等（固态制剂）。使用前，称取适量固体 III，采用注射用水溶解呈半透明混悬液。
[0182] 结果：固体 III 呈白色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为 91±1.5nm，包封率为 96.6±0.80%。
[0183] 实施例 9 脂质体的制备
[0184] 组方配比
[0185] 多烯紫杉醇 :10mg
[0186] 吐温 80 :10mg
[0187] 枸橼酸 :20mg
[0188] 氢化大豆卵磷脂 :120mg
[0189] 胆固醇 :60mg
[0190] 碳酸氢钠 :10mg
[0191] 甘露醇 :200mg
[0192] 制备工艺的详细步骤如下：
[0193] （1）根据提供的配方称取多烯紫杉醇，吐温 80，枸橼酸，氢化大豆卵磷脂，胆固醇，溶于乙醇中，无菌过滤，得到溶液 I；
[0194] （2）根据提供的配方称取碳酸氢钠，甘露醇，溶于水中，无菌过滤，得到溶液 II；
[0195] （3）在溶液 II 高速搅拌条件下，将溶液 I 加入其中，搅拌除去有机溶媒，得药物微粒混悬液 III（溶液态制剂）。
或者，将药物微粒混悬液 III，采用温冷减压干燥处理，除去水分等（固体制剂）。使用前称取适量固体 IIII，采用注射用水溶解呈半透明溶液。

结果，固体 IIII 呈白色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为 8529±56.2nm，包封率为 91.6±0.70%。

实施例 10 固体脂质纳米粒的制备

组方配比

黄芩苷氨基酸衍生物：50mg
买泽（Myrij）：60mg
构橼酸：90mg
棕榈酸：150mg
碳酸氢钠：55mg
甘露醇：200mg

制备工艺的详细步骤如下：

（1）根据提供的配方称取黄芩苷氨基酸衍生物、买泽、构橼酸、棕榈酸，溶于乙醇中，无菌过滤，得到溶液 I；

（2）根据提供的配方称取碳酸氢钠、甘露醇，溶于水中，无菌过滤，得到溶液 II；

（3）在溶液 II 高速搅拌条件下，将溶液 I 加入其中，搅拌除去有机溶媒，得药物微粒混悬液 III （溶液制剂剂）。

或者，将药物微粒混悬液 IIII，采用温冷减压干燥处理，除去水分等（固体制剂）。使用前称取适量固体 IIII，采用注射用水溶解呈半透明溶液。

结果，固体 IIII 呈白色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径为 99±2.26nm，包封率为 90.6±0.45%。

实施例 11 固体脂质纳米粒的制备

组方配比

姜黄素酰衍生物：10mg
泊洛沙姆：20mg
酒石酸：100mg
胆甾醇半琥珀酸酯：150mg
碳酸氢钠：25mg
山梨醇：250mg
聚乙烯吡咯烷酮：5mg
亚硫酸氢钠：5mg
甘氨酸：5mg

制备工艺的详细步骤如下：

（1）根据提供的配方称取姜黄素酰衍生物、泊洛沙姆、酒石酸、胆甾醇半琥珀酸酯、聚乙烯吡咯烷酮、甘氨酸，溶于乙醇和乙醚混合溶剂中，无菌过滤，得到溶液 I；

（2）根据提供的配方称取碳酸氢钠、山梨醇、亚硫酸氢钠，溶于水中，无菌过滤，得到溶液 II；

（3）在溶液 II 高速搅拌条件下，将溶液 I 加入其中，搅拌除去有机溶媒，得药物微
粒混悬液 II (溶液态制剂)。

[0227] 或者，将药物微粒混悬液 III，采用常温减压干燥处理，除去水分等等 (固态制
剂)。使用前，抽取适量固体 III，采用注射用水溶解呈半透明溶液。

[0228] 结果：固体 III 呈白色粉末或细小颗粒，注射用水溶解后均匀性良好，平均粒径
为 95 ± 1.21 nm，包封率为 94.5 ± 0.50%。

[0229] 实施例 12 脂质体的制备

[0230] 组方配比

[0231] 氟尿嘧啶 : 80 mg

[0232] 枸橼酸 : 120 mg

[0233] 大豆卵磷脂 : 250 mg

[0234] 碳酸氢钠 : 80 mg

[0235] 山梨醇 : 200 mg

[0236] 甘氨酸 : 5 mg

[0237] 制备工艺的详细步骤如下;

[0238] (1) 根据提供的配方称取枸橼酸、大豆卵磷脂、甘氨酸，溶于乙醇和乙醚混合溶剂
中，无菌过滤，得到溶液 I；

[0239] (2) 根据提供的配方称取碳酸氢钠、山梨醇、氟尿嘧啶，溶于水中，无菌过滤，得到
溶液 II；

[0240] (3) 在溶液 II 高速搅拌条件下，将溶液 I 加入其中，搅拌除去有机溶媒，得药物微粒
混悬液 III (溶液态制剂)。

[0241] 或者，将药物微粒混悬液 III，采用常温减压干燥处理，除去水分等等 (固态制
剂)。使用前，抽取适量固体 III，采用注射用水溶解呈半透明溶液。

[0242] 结果：固体 III 呈白色粉末或细小颗粒，注射用水溶解后均匀性良好，
128 ± 0.95 nm，包封率为 46.2 ± 0.80%。

[0243] 小结：

[0244] 将实施例 1 ～ 12 进行比较发现：

[0245] (1) 实施例 4 和 5.8 和 9 对比，两组实施例中除泡腾材料的用量不同外，其他原辅
料的用量和种类完全相同，然后，实施例 4.8 所得药物微粒粒径依次约为 77 nm, 91 nm (纳
米级)，而实施例 5.9 所得药物微粒粒径依次约为 8077 nm, 8529 nm (微米级)。由此可见，通
控制泡腾材料的用量可以调节药物微粒粒径的大小。

[0246] (2) 本发明对药物微粒粒径大小和泡腾材料用量进行了进一步的研究，认为脂质
类载体材料和泡腾材料的用量比例是调节药物微粒粒径大小的关键因素，如实施例 1 ～ 4、
6 ～ 8, 10 ～ 13 中，脂质类载体材料的用量为泡腾材料总和的 0.9 ～ 2.4 倍，所得药物微粒
粒径约 77 ～ 329 nm；而实施例 5.9 中，脂质类载体材料的用量依次为泡腾材料总和的 3.2、
3.6 倍，所得药物微粒粒径约为 8 μm。由此可以得出以下推论：若需要制备微米级的药物微粒，
可以调整脂质类载体材料的用量为泡腾材料总和的 3 倍以上，例如 3.2 ～ 4.0 倍；若需
要制备纳米级的药物微粒，则可以调整脂质类载体材料的用量低于泡腾材料总和的 3 倍，
例如 0.5 ～ 2.4 倍。

[0247] (3) 目前制剂领域中公知地，脂质体或固体脂质纳米粒对水溶性药物的包封效果
较脂溶性差，本发明实施例 12 同样也验证了这一观点。

【0248】以下通过试验例具体说明本发明的有益效果。

【0249】试验例 1 本发明制备的药物脂质微粒的理化性质和体内药代动力学性质（以实施例 1 为例）：

【0250】1. 体外评价
【0251】[成品性状]
【0252】本品为淡黄色固体粉末含少许颗粒。
【0253】[水合分散性]
【0254】本品用注射用水或者葡萄糖注射液溶解，形成均匀性良好的透明或者半透明的淡黄色混悬液。
【0255】[粒径与形态]
【0256】采用马尔文激光粒度仪测定 BA-LP 粒径分布（BA-LP 是对实施例 1 产物的简称，BA 表示黄芩苷），结果见图 1；采用透射电镜观察 BA-LP 形态，结果见图 2。
【0257】由图 1 与图 2 可知，BA-LP 易于分散，粒径均匀，粒径分布为 156±5.35nm。
【0258】[包封率]
【0259】取 BA-LP 适量，按包封率测定要求，其包封率为 82.7±0.59%。
【0260】[体外释放度]
【0261】将制备的 BA-LP 包混悬液放入透析袋，用小杯法测定体外释放度，绘制累积释放曲线，结
【0262】图 3 可见，在 6h 左右，BA 溶液几乎完全释放，BA-LP 制剂释药仅为 59%。另外，
【0263】BA-LP 中药物的释放可以分为两个阶段，前期 2h 左右药物释放快，而后期释放相对较缓
【0264】慢，具有缓慢释药效果。由动力学模拟结果表明，BA 溶液与 BA-LP 的体外释药动力学更符
【0265】合 Weibull 分布方程。
【0266】2. 体内评价
【0267】2.1 大鼠口服 BA-LP 体内的药动学与生物分布研究
【0268】2.1.1 方法
【0269】(1) 大鼠体内的药动学实验
【0270】取大鼠 10 只，实验前禁食 12h，随机分为 2 组，分别灌胃给予 BA 羟基纤维素钠混
【0271】悬液（BA-CMC）与 BA-LP，给药量为 100mg/kg，然后于 0.083、0.25、0.5、1.0、1.5、2.0、3.0、
【0272】5.0、8.0、12.0 和 24.0h，采血约 0.3ml，离心分离血浆，按血浆样品的处理项下方法操作，用
【0273】HPLC 测定血浆中的 BA 浓度。
【0274】(2) 大鼠体内的生物分布实验
【0275】取大鼠 10 只，随机分 2 组（5 只 / 组），BA-CMC 和 BA-LP 组（100mg/kg）。分别于
【0276】给药后 30min 脱白处死，立即解剖大鼠，取出心、肝、脾、肺、肾、脑、胃组织，并用生理盐水洗
【0277】净，滤纸吸干，称定每一组织的质量，匀浆处理，按组织样品的处理方法操作，用 HPLC 测定
【0278】组织中的 BA 浓度。
【0279】(3) 血浆样品的处理
【0280】精密吸取血浆样品 0.1ml，置 1.5ml 离心管中，加入醋酸铵溶液 50μl 后振摇
【0281】1min，再加入 50μl 内标（80μg/ml）和 0.6ml 乙腈，漩涡振荡 3min，离心 10min（8000r/
min); 取上清液, 在 40℃下氮气吹干; 将残留物用 200 μl 初始流动相复溶, 然后离心
10min(8000r/min), 吸取上清液 20 μl 进样。

[0272] （4）组织样品的处理

[0273] 将取出的组织用 0.9%的生理盐水清洗, 滤纸吸干后称量, 然后放入玻璃匀浆器中
匀浆, 精密吸取组织匀浆样品 0.1ml 按照血浆样品的处理方式操作。2.1.2 结果

[0274] （1）药动学实验结果

[0275] 以 BA 约甲基纤维素钠混悬液 (BA-CMC) 为对照, 考察 BA-LP 经大鼠灌胃后的药动学行为, 结果见表 1、表 2 和图 4。

[0276] 表 1BA-CMC 及 BA-LP 在大鼠体内各个时间点的血药浓度 (x ± SD, n=5)

<table>
<thead>
<tr>
<th>时间(h)</th>
<th>黄芩苷及甲基纤维素钠组血药浓度 (μg/ml)</th>
<th>黄芩苷脂肪体组血药浓度 (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.083</td>
<td>0.86±0.28</td>
<td>2.48±0.75</td>
</tr>
<tr>
<td>0.25</td>
<td>1.25±0.32</td>
<td>3.38±0.51</td>
</tr>
<tr>
<td>0.5</td>
<td>1.15±0.25</td>
<td>3.52±1.04</td>
</tr>
<tr>
<td>1.0</td>
<td>0.74±0.18</td>
<td>3.17±0.93</td>
</tr>
<tr>
<td>1.5</td>
<td>0.71±0.12</td>
<td>3.35±1.06</td>
</tr>
<tr>
<td>2.0</td>
<td>0.66±0.21</td>
<td>3.12±0.97</td>
</tr>
<tr>
<td>3.0</td>
<td>0.95±0.33</td>
<td>2.71±1.02</td>
</tr>
<tr>
<td>5.0</td>
<td>0.62±0.13</td>
<td>2.18±0.69</td>
</tr>
<tr>
<td>8.0</td>
<td>0.55±0.23</td>
<td>1.58±0.88</td>
</tr>
<tr>
<td>12.0</td>
<td>0.41±0.11</td>
<td>1.36±0.45</td>
</tr>
<tr>
<td>24.0</td>
<td>0.36±0.25</td>
<td>0.63±0.15</td>
</tr>
</tbody>
</table>

[0277] 表 2BA-CMC 和 BA-LP 在大鼠体内药动学参数表

<table>
<thead>
<tr>
<th></th>
<th>黄芩苷及甲基纤维素钠组</th>
<th>黄芩苷脂肪体组</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC(0-t)</td>
<td>Mg/L*h</td>
<td>12.397</td>
</tr>
<tr>
<td>MRT(0-t)</td>
<td>H</td>
<td>9.775</td>
</tr>
<tr>
<td>t1/2z</td>
<td>H</td>
<td>24.833</td>
</tr>
<tr>
<td>Tmax</td>
<td>H</td>
<td>0.25</td>
</tr>
<tr>
<td>Vz</td>
<td>L/kg</td>
<td>142.088</td>
</tr>
<tr>
<td>CLz</td>
<td>L/h/kg</td>
<td>3.965</td>
</tr>
<tr>
<td>Cmax</td>
<td>Mg/L</td>
<td>1.25</td>
</tr>
</tbody>
</table>

[0280] 由表 1、表 2 和图 4 可见, 以 BA 约甲基纤维素钠混悬液 (BA-CMC) 为对照, BA-LP 经
大鼠灌胃后的药动学参数为:BA-CMC 和 BA-LP 的血药浓度 - 时间曲线下面积 AUC(0-t) 为
12.397 和 37.64mg/L*h, 平均滞留时间 MRT(0-t) 为 9.775 和 8.358h, 半衰期 t1/2 为 24.833
和 10.628h, 表观分布容积 Vz 为 142.088 和 32.446L/kg, 清除率 CLz 为 3.965 和 2.116L/h/ kg, 峰浓度 Cmax 为 1.25 和 3.52mg/L。

[0281] （2）生物分布实验结果

[0282] BA-CMC 和 BA-LP 经大鼠灌胃后进行体内生物分布考察, 结果见表 3。
表 3BA-CMC 及 BA-LP 灌胃 30min 后在大鼠体内各组织的分布（\(\bar{x} \pm SD\), n=5)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>黄芩苷羧甲基纤维素钠混悬液中药物浓度 ((\mu g/g))</th>
<th>黄芩苷脂质体组药物浓度 ((\mu g/g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>心</td>
<td>0.053 ± 0.028</td>
<td>0.068 ± 0.035</td>
</tr>
<tr>
<td>肝</td>
<td>0.217 ± 0.031</td>
<td>0.487 ± 0.134</td>
</tr>
<tr>
<td>肺</td>
<td>0.065 ± 0.022</td>
<td>0.152 ± 0.064</td>
</tr>
<tr>
<td>肾</td>
<td>0.219 ± 0.058</td>
<td>0.247 ± 0.047</td>
</tr>
<tr>
<td>脑</td>
<td>0.171 ± 0.069</td>
<td>0.352 ± 0.168</td>
</tr>
<tr>
<td>胃</td>
<td>0.056 ± 0.011</td>
<td>0.062 ± 0.049</td>
</tr>
<tr>
<td></td>
<td>0.075 ± 0.047</td>
<td>0.079 ± 0.052</td>
</tr>
</tbody>
</table>

由表 3 可见，给药 30min 后 BA-CMC 组，肾、肺浓度相对高，心和脑中浓度较低；
BA-LP 组在肝、脾、肺中的分布明显增加，其中肝、脾和肺中的浓度分别提高了 2.29 倍、2.33
倍和 1.25 倍。

2.2 家兔注射 BA-LP 体内的药动学与生物分布研究

2.2.1 方法

（1）兔体内的药动学实验

将 10 只兔随机分成两组，每公斤体重 10mg BA 的剂量从耳缘静脉给予 BA-LP，BA
注射液组 (BA-INJ) 则给与等剂量的 BA 注射液。给药后于 0.083、0.25、0.5、1.0、1.5、2.0、
4.0、6.0、8.0、12.0 和 24.0h，取血 1.5ml 分离血浆，按血浆样品处理项下操作，测定血浆中
BA 的浓度。

（2）兔体内的生物分布实验

选 2kg 左右的兔，随机分为 BA 注射液组 (BA-INJ) 给药组和 BA-LP 给药组，剂量为
10mg/kg。于给药后 30min、2h、6h、12h、24h 处死。取出心、肝、脾、肺、肾、脑、胃组织，并用生
理盐水洗浄，滤纸吸干，称定每一组织的质量，匀浆处理，按组织样品的处理项下方法操作，
用 HPLC 测定组织中的 BA 浓度。

（3）血浆样品的处理

精密吸取血浆样品 0.5ml，置 5ml 离心管中，加入醋酸铵溶液 250\(\mu l\) 后振摇
3min，再加入 50\(\mu l\) 内标 (80\(\mu g/ml\)) 和 3ml 乙腈，涡旋振荡 5min，离心 10min (10000r/
min)，取上清液在 40℃下氮气吹干。将残留物用 200\(\mu l\) 始初流动相涡旋溶解，然后离心
10min (10000r/min)，吸上清液 20\(\mu l\) 进样。

（4）组织样品的处理

将取出的组织用 0.9％的生理盐水清洗，滤纸吸干后称量，分别记录各组织重量，
然后放入玻璃匀浆器中匀浆，将匀浆液转移至离心管中。精密吸取离心管中的组织样品
0.5ml，按照血浆样品的处理方式操作。

2.2.2 结果

（1）药动学实验结果

以 BA-INJ 为对照，考察 BA-LP 经耳静脉给药后的药动学行为，结果见表 4、表 5 和
图 5。

表 4BA-INJ 及 BA-LP 在兔体内各个时间点的血药浓度（\(\bar{x} \pm SD\), n=5）
表 5BA-INJ 和 BA-LP 在兔体内药动学参数表

<table>
<thead>
<tr>
<th>Time(h)</th>
<th>黄芩苷注射液组血药浓度(μg/ml)</th>
<th>黄芩苷脂质体组血药浓度(μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.083</td>
<td>1.961±0.372</td>
<td>0.634±0.095</td>
</tr>
<tr>
<td>0.25</td>
<td>1.736±0.274</td>
<td>0.535±0.072</td>
</tr>
<tr>
<td>0.5</td>
<td>1.035±0.178</td>
<td>0.412±0.045</td>
</tr>
<tr>
<td>1.0</td>
<td>0.787±0.121</td>
<td>0.319±0.028</td>
</tr>
<tr>
<td>1.5</td>
<td>0.683±0.264</td>
<td>0.285±0.046</td>
</tr>
<tr>
<td>2.0</td>
<td>0.543±0.187</td>
<td>0.178±0.075</td>
</tr>
<tr>
<td>4.0</td>
<td>0.472±0.125</td>
<td>0.114±0.062</td>
</tr>
<tr>
<td>6.0</td>
<td>0.371±0.214</td>
<td>0.098±0.012</td>
</tr>
<tr>
<td>8.0</td>
<td>0.296±0.142</td>
<td>0.081±0.008</td>
</tr>
<tr>
<td>12.0</td>
<td>0.164±0.105</td>
<td>0.066±0.015</td>
</tr>
<tr>
<td>24.0</td>
<td>0.116±0.084</td>
<td>0.056±0.017</td>
</tr>
</tbody>
</table>

由表 4、表 5 和图 5 可见，以 BA 注射液（BA-INJ）为对照，BA-LP 经家兔耳缘静脉给药后的药动学参数为：BA-INJ 和 BA-LP 的血药浓度 - 时间曲线下面积 AUC(0- t) 为 6.915 和 2.373mg/L*h，平均滞留时间 MRT(0− t) 为 7.162 和 8.073h，半衰期 t1/2 为 5.911 和 11.624h，表观分布容积 Vz 为 11.754 和 57.599L/kg，消除率 Clz 为 1.378 和 3.434L/h/kg，峰浓度 Cmax 为 1.961 和 0.634mg/L。2) 生物分布实验结果

BA-INJ 和 BA-LP 经耳缘静脉给药后进行体内生物分布考察，结果见表 6 和表 7，图 6 和图 7。

表 6BA-INJ 在兔体内各组织的分布(x ± SD , n=5)
<table>
<thead>
<tr>
<th>Time(h)</th>
<th>0.25</th>
<th>2</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>t心</td>
<td>2.875±0.925</td>
<td>1.539±0.733</td>
<td>0.641±0.227</td>
<td>0.483±0.164</td>
<td>0.116±0.071</td>
</tr>
<tr>
<td>肝</td>
<td>4.482±1.352</td>
<td>2.153±1.431</td>
<td>1.494±0.884</td>
<td>1.266±0.768</td>
<td>0.427±0.179</td>
</tr>
<tr>
<td>脾</td>
<td>3.481±1.156</td>
<td>3.352±1.462</td>
<td>2.725±0.804</td>
<td>1.949±0.832</td>
<td>0.732±0.184</td>
</tr>
<tr>
<td>肺</td>
<td>5.627±2.833</td>
<td>2.585±1.128</td>
<td>1.339±1.077</td>
<td>0.961±0.575</td>
<td>0.776±0.299</td>
</tr>
<tr>
<td>肾</td>
<td>6.524±2.581</td>
<td>3.853±1.827</td>
<td>2.949±1.339</td>
<td>1.163±0.893</td>
<td>0.563±0.189</td>
</tr>
<tr>
<td>脑</td>
<td>1.629±0.736</td>
<td>0.826±0.291</td>
<td>0.448±0.172</td>
<td>0.381±0.096</td>
<td>0.177±0.126</td>
</tr>
<tr>
<td>胃</td>
<td>3.532±1.824</td>
<td>3.027±1.822</td>
<td>2.159±1.252</td>
<td>1.547±0.945</td>
<td>0.859±0.324</td>
</tr>
</tbody>
</table>

[0307] *The unit of drug concentration in tissue: μg/g*

[0308] 表7BA-LP在兔体内各组织的分布（x±SD，n=5）

[0309]

<table>
<thead>
<tr>
<th>Time(h)</th>
<th>0.25</th>
<th>2</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>t心</td>
<td>2.267±0.771</td>
<td>1.815±0.952</td>
<td>1.158±0.498</td>
<td>0.737±0.251</td>
<td>0.392±0.299</td>
</tr>
<tr>
<td>脾</td>
<td>1.598±0.835</td>
<td>4.648±1.803</td>
<td>3.939±1.452</td>
<td>3.315±1.587</td>
<td>0.864±0.358</td>
</tr>
<tr>
<td>肺</td>
<td>15.693±3.834</td>
<td>11.548±3.027</td>
<td>9.049±2.826</td>
<td>5.056±1.488</td>
<td>2.778±0.947</td>
</tr>
<tr>
<td>肾</td>
<td>3.427±1.417</td>
<td>4.754±2.055</td>
<td>3.038±1.842</td>
<td>2.748±1.169</td>
<td>0.762±0.191</td>
</tr>
<tr>
<td>脑</td>
<td>0.858±0.279</td>
<td>0.918±0.382</td>
<td>0.479±0.143</td>
<td>0.326±0.134</td>
<td>0.159±0.073</td>
</tr>
<tr>
<td>胃</td>
<td>1.424±0.635</td>
<td>1.897±0.801</td>
<td>1.748±0.992</td>
<td>1.637±0.762</td>
<td>0.728±0.257</td>
</tr>
</tbody>
</table>

[0310] *The unit of drug concentration in tissue: μg/g*

[0311] 由表6和表7，图6和图7可见，静脉给药30min后，BA-INJ组，各组织药物浓度大小为肾＞肺＞肝＞脾＞心＞脑；BA-LP组，在肺组织中分布较高，从5.627±2.833μg/g提高到15.693±3.834μg/g，其为肝组织，其余组织药物浓度比BA-INJ组低；静脉给药12h后，BA-INJ组药物体内消除快，而BA-LP组药物在各组织中消除相对缓慢，尤其是在肺中的分布仍最高，为BA-INJ的4.2倍。在24h内BA-LP在心脏、肾脏和脾脏等组织的药物分布与BA注射液相似，但是BA-LP在肝脏的药物浓度大于BA注射液组，在肝脏中的分布较注射液组更显著增加。这表明制得的脂质体起到了预期的作用，使得药物在其他组织的浓度减少而更多的分布在靶向器官。
Size Distribution by Intensity

图 1

图 2
图 3

图 4
图 7