(12) 发明专利申请

(10) 申请公布号 CN 102578121 A
(43) 申请公布日 2012.07.18

(21) 申请号 201110426805.9
(22) 申请日 2011.12.19
(71) 申请人 河南金田地农化有限责任公司
地址 475500 河南省开封市尉氏县工业园区
二环路南
(72) 发明人 谢瑞英 赵彦超 王战清 李现玲
王保香
(74) 专利代理机构 广西南宁明智专利商标代理有限责任公司 45106
代理人 黎明天

(51) Int. Cl.
A01N 43/12 (2006.01)
A01N 43/02 (2006.01)
A01N 47/24 (2006.01)
A01N 47/38 (2006.01)
A01N 47/34 (2006.01)

(54) 发明名称
一种含螺虫乙酯的农药杀虫杀螨组合物

(57) 摘要
本发明公开了一种含螺虫乙酯的农药杀虫杀螨组合物，组合物的有效成分为活性成分 A 螺虫乙酯与活性成分 B 进行复配。B 为多杀霉素、氟啶虫酰胺、氟虫腈、阿维菌素、克螨特、螺螨酯、螺虫乙酯中的任意一种。活性成分 A 螺虫乙酯和活性成分 B 的质量比为 100:1-1：50。该杀虫杀螨组合物可以产生比各活性成分单独使用时更高的杀虫效果，即复配之后有明显的协同增效作用，因此能实现减少农药使用量和使用次数，从而延缓或者克服害虫的抗性产生。
1. 一种含螺虫乙酯的农药杀虫杀螨组合物，其特征在于：采用活性成分(A)螺虫乙酯与活性成分(B)进行复配；活性成分(B)为多杀菌素、氟啶虫酰胺、氟氯虫腙、茚虫威、丁硫克百威、丙硫克百威、螺螨酯中的任意一种，其中活性成分(A)螺虫乙酯和活性成分(B)的质量比为100:1-1:50。

2. 根据权利要求1所述的杀虫杀螨组合物，其特征在于：活性成分(A)螺虫乙酯和活性成分(B)的质量比优选为40:1-1:40。

3. 根据权利要求1所述的杀虫杀螨组合物，其特征在于：还含有农药制剂中通常使用的助剂、溶剂、载体类辅助成分以做成各种适宜农业使用的剂型。

4. 根据权利要求3所述的杀虫杀螨组合物，其特征在于：所述助剂为分散剂NNO、十二烷基硫酸钠、乳化剂MF、木质素磺酸钠、聚乙烯甘油、农乳600#、脂肪醇聚氧乙烯醚、壬基酚聚氧乙烯醚、烷基酚聚氧乙烯醚磷酸酯、萘磺酸甲醛缩聚物、硫酸铵、浓乳500#中的一种或几种；所述溶剂为异丙醇、二甲基甲酰胺、二甲苯和乙酸乙酯中的一种或几种；所述载体为白炭黑、高岭土、轻质碳酸钙、陶土和水中的一种或几种。

5. 根据权利要求1或2所述的杀虫杀螨组合物，其特征在于：杀虫集合物可根据需要制备成常用的剂型，如乳剂、水乳剂、悬浮剂、湿性粉剂、水分散剂、微胶囊悬浮剂、微胶囊剂、可分散油悬浮剂、乳剂、超低容量剂、或干悬浮剂。

6. 根据权利要求1或2所述的杀虫杀螨组合物，其特征在于：可用于防治农业中多种作物上的多种害虫，所述的害虫包括鳞翅目、半翅目、鞘翅目、同翅目、半翅目、缨翅目、双翅目、直翅目害虫以及螨类害虫。

7. 根据权利要求6所述的杀虫杀螨组合物，其特征在于：所述害虫主要包括刺吸式及吮吸式口器害虫，如蚜虫类害虫、螨类害虫、蝽类害虫、飞虱类害虫、木虱类害虫、蚧类害虫、粉虱类害虫、螨类害虫、蓟马类害虫、蛾类害虫、蝶类害虫、或甲虫类害虫。
一种含螺虫乙酯的农药杀虫杀螨组合物

技术领域

[0001] 本发明涉及一种农药，尤其是一种含螺虫乙酯的农药增效杀虫杀螨组合物。

背景技术

[0002] 螺虫乙酯 (spirotetramat) 是拜耳公司研发的一个新型季酮酸类杀虫剂，其具有独特的作用特征，是迄今唯一具有双向内吸传导性能的现代杀虫剂。该化合物可以在整个植物体内向上向下移动，抵达叶面和树皮，从而防治如生菜和白菜内叶上，及果树皮上的害虫。这种独特的内吸性能可以保护新生茎、叶和根部，防止害虫的卵和幼虫生长。其另一个特点是持效期长，可提供长达 8 周的有效防治。

[0003] 在杀虫谱方面，螺虫乙酯具有高效广谱的特点，可有效防治各种刺吸式口器害虫，如蚜虫、蓟马、木虱、粉蚧、粉虱和介壳虫等。可应用的主要作物包括，棉花、大豆、柑橘、热带果树、坚果、葡萄、啤酒花、土豆和蔬菜等。研究表明其对主要害虫如瓢虫、食蚜蝇和寄生蜂具有良好的选择性。

[0004] 近年来，蚜虫、飞虱、粉虱、木虱、介壳虫等同翅目害虫，以及蓟马等缨翅目害虫、叶蝉、甲虫等危害猖獗，且越来越严重，已成为水稻、蔬菜、果树以及保护地种植结构中的重点防治对象。该类害虫由于其繁殖快，繁殖量大，世代重叠明显，对药剂的抗性产生很快，从而加大了防治难度。不同作用机理的杀虫剂复配是延缓和治理抗性的有效途径之一；同时，不同机理杀虫剂复配除了有效延缓和治理害虫抗性之外，还能有效降低用药量和用药成本，减少环境污染。

[0005] 目前针对螺虫乙酯的应用专利主要有：

中国专利：201010266911.1，发明名称：一种含有联苯肼酯和螺虫乙酯的杀虫杀螨组合物，该专利仅给出了螺虫乙酯与联苯肼酯两成分的复配专利，没有涉及到更多的成分复配情况。但是联苯肼酯主要用于应用与螨类害虫的防治上，因此该专利仅在两种成分对同翅目害虫及螨类害虫的防治上有一定的增效作用，而对其他类的害虫无明显增效作用。

中国专利：200910173091.8，发明名称：一种具有增效作用的杀虫组合物，这种专利组合物的有效成分为螺虫乙酯和另一杀虫活性成分（B），螺虫乙酯和B的质量比为40：1-1：80。本发明中杀虫活性成分B是指丁醚脲或氯螨脲中的一种。该专利仅固定了螺虫乙酯与丁醚脲和氯螨脲中的一种复配的专利，该专利针对的防治对象主要集中在同翅目害虫，小菜蛾、甜菜夜蛾以及部分螨类害虫上，对这些害虫有防治增效作用，而对这些害虫以外的其他害虫防治增效不明显，因此该专利的应用范围略窄。

中国专利：200910171881.7，发明名称：一种含有增效作用的杀虫组合物，这项专利组合物的有效成分为螺虫乙酯和唑虫酰胺，螺虫乙酯和唑虫酰胺的质量比为40：1-1：80。该专利主要包含了螺虫乙酯和唑虫酰胺的复配增效组成，该组合主要针对同一翅目害虫有比较好的增效作用，对其他类目的害虫防效不明显。

中国专利：200910173096.0，发明名称：一种具有增效作用的杀虫组合物，该项专利组合物的有效成分为螺虫乙酯和吡蚜酮，螺虫乙酯和吡蚜酮的质量比为40：1-1：80。
该专利仅包括了螺虫乙酯和吡蚜酮的复配组合物，使用的范围较窄，防治对象集中在对对翅目害虫的防治上面，对鳞翅目、鞘翅目等害虫没有明显的增效防治作用。

【0009】中国专利：200910173097.5，发明名称：一种具有增效作用的杀虫组合物，该组合物的有效成分为螺虫乙酯和另一活性成分（B），（B）为阿维菌素或甲氨基阿维菌素苯甲酸盐任意一种。该专利仅包括了螺虫乙酯和阿维菌素，螺虫乙酯和甲氨基阿维菌素这两种复配组合情况，主要增强了其在鳞翅目与对翅目害虫之间的协同防治作用，涉及的防治谱略窄，且不涉及螺虫乙酯与其他有效成分的复配专利情况。

【0010】中国专利：200910209737.3，发明名称：一种杀虫组合物，该项发明的组合物的有效成分为螺虫乙酯和联苯菊酯，螺虫乙酯和联苯菊酯的质量比为 40：1-1：80。该专利仅包括了螺虫乙酯与联苯菊酯的复配组合情况，主要在防治蚜虫、叶蝉等同翅目害虫上较好的增效作用，对其他类目的害虫防治增效作用不强。

【0011】中国专利：200910173094.1，发明名称：一种具有增效作用的农药组合物，该项发明的组合物有效成分为螺虫乙酯和一种新烟碱类杀虫剂，螺虫乙酯和新烟碱类杀虫剂的质量比为 60：1-1：80。该专利包括了螺虫乙酯与新烟碱类这一类杀虫剂的复配组合，新烟碱类杀虫剂为一类内吸性杀虫剂，主要针对同翅目害虫有理想的防效，该专利包括了螺虫乙酯与这一类杀虫剂的复配，其在对同翅目害虫的防效上有较强的增效作用，但是针对的防治谱较窄，且防治的范围类似。

【0012】中国专利：201010228086.5，发明名称：一种杀虫杀螨组合物，该项发明组合物的有效成分为螺虫乙酯和唑螨灵。该专利主要是以螺虫乙酯和唑螨灵为主要成分的组合物，其增强了组合物在同翅目害虫及螨类害虫的协同增效防治作用，但是只涉及到与唑螨灵一个成分的复配专利，在防治范围上有限制。

发明内容

【0013】本发明的目的在于提供一种对防止害虫害螨有明显的增效作用的杀虫杀螨农药组合物，不但可以降低有效成分的使用量，降低使用成本，还可以延缓害虫害螨抗性的产生，用于抗性害虫害螨的治理。

【0014】本发明所采用的技术方案如下：

本发明杀虫杀螨农药组合物，采用活性成分（A）螺虫乙酯与活性成分（B）进行复配，活性成分（B）为多杀霉素、氟虫腈、氟虫硅胺、氰氟虫腙、茚虫威、丁硫克百威、丙硫克百威、螺螨酯中的任意一种，其中活性成分（A）螺虫乙酯和活性成分（B）的质量比为 100：1-1：50。

【0015】活性成分（A）螺虫乙酯和活性成分（B）的质量比优选为 40：1-1：40。

【0016】活性成分A螺虫乙酯：化学名：4-（乙氧基羰基氧基）-8-甲氧基-3-（2,5-二甲苯基）-1-氨杂螺 [4,5] -癸-3-烯-2-酮

结构式：
本杀虫杀螨组合物，还含有农药制剂中通常使用的助剂、溶剂、载体类辅助成分以做成各种适合农业使用的剂型。

[0017]所述助剂为分散剂NO、十二烷基硫酸钠、分散剂MF、木质素磺酸钠、聚乙烯醇、乳化油600#、脂肪醇聚氧乙烯醚、季戊四醇聚氧乙烯醚、烷基酚聚氧乙烯醚磷酸酯、苯磺酸甲酯缩聚物、硫酸铵、浓乳500#中的一种或几种；所述溶剂为异丙醇、二甲基甲酰胺、二甲苯和乙酸乙酯中的一种或几种；所述载体为白炭黑、高岭土、轻质碳酸钙、陶土和水中的一种或几种。

[0018]本杀虫杀螨组合物，可根据需要制备成常用的剂型：乳剂、水乳剂、悬浮剂、可湿性粉剂、水分散粒剂、微囊悬浮剂、微胶囊粉剂、可分散油悬浮剂、乳剂、超低容量液剂、或干悬浮剂。

[0019]可用于防治农业中多种作物上的多种害虫，所述的害虫包括鳞翅目、半翅目、鞘翅目、同翅目、半翅目、缨翅目、双翅目、直翅目害虫以及螨类害虫。

[0020]所述害虫主要包括刺吸式及呗吸式口器害虫，如蚜虫类害虫、螨类害虫、蝉类害虫、飞虱类害虫、木虱类害虫、蚜虫类害虫、粉虱类害虫、蓟马类害虫、蛾类害虫、蝇类害虫、甲虫类害虫。

[0021]本发明可限制实际的农业使用加工成适宜的各种剂型，包括：乳剂、水乳剂、悬浮剂、可湿性粉剂、水分散剂、微囊悬浮剂、微胶囊粉剂、可分散油悬浮剂、乳剂、超低容量液剂、或干悬浮剂。

[0022]这些制剂中，除活性成分外，均含有表面活性剂，而且根据不同剂型还可以含有有机溶剂或助溶剂、载体（填料）或水等稀释剂。必要时加入抗冻剂、增稠剂、稳定剂、消泡剂、崩解剂等其他功能性助剂。

[0023]制备方法为常规农药的各种剂型的制备方法。如图1。

[0024]本品由有效成分、助剂、溶剂三部分组成，将原药、润湿剂、分散剂、抗凝剂、溶剂等组分在混合釜中混合，然后将混合物抽入砂磨机中进行砂磨，待有效成分被砂磨至粒径为5μm左右后，再次插入混合器进行混合。本专利中加入的润湿剂、分散剂、消泡剂、抗凝剂等保持制剂在高温、低温下的稳定，有助于储藏、运输，保证药效。

[0025]本发明所加入的各种润湿剂、助剂、溶剂等均为市场销售产品，农药生产常用辅剂。

[0026]本发明具有如下优点：

1.可有效防治农业上的多种害虫害螨，尤其对蚜虫、飞虱、粉虱、木虱、蓟马、叶蝉、甲虫、介壳虫、红蜘蛛等效果优异。

2.该杀虫杀螨组合物可以产生比各活性成分单独使用时更高的杀虫效果，即复配之后有明显的协同增效作用，因此能实现减少农药使用量和使用次数及使用成本，同时提
高了药剂对环境的安全性。
[0028] 3、明显延缓害虫害螨的抗性产生，并对抗性害虫害螨进行有效治理。

附图说明
[0029] 图1为制备本发明农药组合物悬浮剂的基本流程图。

具体实施方式
[0030] 下面通过实施例对本发明作进一步说明。应该理解的是，本发明实施例所述制备方法仅仅是用于说明本发明，而不是对本发明的限制。在本发明的构思前提下对本发明制备方法的简单改进都属于本发明要求保护的范围。
[0031] 在制备实施例中，我们介绍组合物的详细比例，在生物活性实施例中，我们详细介绍组合物突出的生物活性。首先介绍杀虫防病毒组合物的制备。
[0032] 下面结合实例对本发明做进一步详细说明。但不限于此。
[0033] 实施例1 41%螺虫乙酯·多杀霉素悬浮剂（40:1）
抽出搅拌罐中445克去离子水，将40克木质素磺酸钠、20克十二烷基硫酸钠和5克甲醛、50克乙二醇、抽出搅拌罐中，然后边搅拌将400克螺虫乙酯、10克多杀霉素、30克壳聚糖，按照顺序投入剪切罐中，剪切30分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制40度以下，细度过325目筛，即得41%螺虫乙酯·多杀霉素悬浮剂。
[0034] 实施例2 21%螺虫乙酯·氟啶虫酰胺悬浮剂（20:1）
抽出搅拌罐中660克去离子水，将40克分散剂NNO、40克扩散剂MF、20克十二烷基硫酸钠和5克甲醛、20克乙二醇、抽出搅拌罐中，然后边搅拌将200克螺虫乙酯、10克氟啶虫酰胺、5克高岭土，按照顺序投入剪切罐中，剪切30分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制40度以下，细度过325目筛，即得21%螺虫乙酯·氟啶虫酰胺悬浮剂。
[0035] 实施例3 10.1%螺虫乙酯·茚虫威悬浮剂（100:1）
抽出搅拌罐中754克去离子水，将40克SOPA270、20克K12和5克甲醛、50克乙二醇，抽出搅拌罐中，然后边搅拌将100克螺虫乙酯、1克茚虫威、30克壳聚糖，按照顺序投入剪切罐中，剪切30分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制40度以下，细度过325目筛，即得10.1%螺虫乙酯·茚虫威悬浮剂。
[0036] 实施例4 30%螺虫乙酯·茚虫威悬浮剂（1:1）
抽出搅拌罐中529克去离子水，将60克烷基酚聚氧乙烯醚磷酸酯、40克扩散剂MF、20克丙基酚聚氧乙烯醚和10克卡松防腐剂、40克乙二醇，抽出搅拌罐中，然后边搅拌将150克螺虫乙酯、150克茚虫威、5克陶土，按照顺序投入剪切罐中，剪切30分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制40度以下，细度过325目筛，即得30%螺虫乙酯·茚虫威悬浮剂。
[0037] 实施例5 55%螺虫乙酯·丁硫克百威悬浮剂（1:10）
抽出搅拌罐中275克去离子水，将60克乳油600#、40克扩散剂MF、20克脂肪醇聚氧乙烯醚和5克卡松防腐剂、40克乙二醇，抽出搅拌罐中，然后边搅拌将50克螺虫乙酯、500克丁硫克百威、10克聚乙烯醇，按照顺序投入剪切罐中，剪切30分钟使物料混合均匀。打开
循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度过 325 目筛，即得 55% 螺虫乙酯・丁硫克百威悬浮剂。

实施例 6 21% 螺虫乙酯・螺螨酯悬浮剂（1 : 20）

抽出搅拌罐中 625 克去离子水，将 50 克木质素磺酸钠、40 克扩散剂 MF 、20 克脂肪醇聚氧乙烯醚和 5 克卡松防腐剂、40 克硫酸铵、抽出搅拌罐中，然后边搅拌将 10 克螺虫乙酯、200 克螺螨酯、10 克聚乙醇油、按照顺序投入剪切罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度过 325 目筛，即得 21% 螺虫乙酯・螺螨酯悬浮剂。

实施例 7 41% 螺虫乙酯・丙硫克百威悬浮剂（1 : 40）

抽出搅拌罐中 425 克去离子水，将 50 克浓乳 600% 、40 克扩散剂 MF 、20 克脂肪醇聚氧乙烯醚和 5 克卡松防腐剂、40 克乙二醇油、抽出搅拌罐中，然后边搅拌将 10 克螺虫乙酯、400 克丙硫克百威、10 克聚乙醇油、按照顺序投入剪切罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度过 325 目筛，即得 41% 螺虫乙酯・丙硫克百威悬浮剂。

实施例 8 5.5% 螺虫乙酯・丙硫克百威乳剂（1 : 10）

将螺虫乙酯 5 克，丙硫克百威 50 克，BY125 20 克，浓乳 500% 45 克，浓乳 601% 75 克混合均匀，边搅拌边加入环氧氯丙烷 30 克，乙二醇 40 克，去离子水 735 克。搅拌 30 分钟即可得 5.5% 螺虫乙酯・丙硫克百威乳剂。

实施例 9 10.5% 螺虫乙酯・丁硫克百威乳剂（1 : 20）

将螺虫乙酯 5 克、丁硫克百威 100 克溶解于 150 克二甲苯和 20 克环已酮的混合液中，加入 BY140 30 克，601P 30 克，开动剪切机，边剪切边加入环氧大豆油 50 克，乙二醇 50 克，去离子水 565 克。高速剪切 30 分钟即可得 10.5% 螺虫乙酯・丁硫克百威乳剂。

实施例 11 14.4% 螺虫乙酯・多杀霉素悬浮剂（1 : 35）

抽出搅拌罐中 646 克去离子水，将 50 克 SOPA270、20 克十二烷基硫酸钠和 50 克乙二醇油、抽出搅拌罐中，然后边搅拌将 4 克螺虫乙酯，140 克多杀霉素，30 克白炭黑，按照顺序投入剪切罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度过 325 目筛，即得 20.4% 螺虫乙酯・多杀霉素悬浮剂。

实施例 11 25% 螺虫乙酯・氟氯氰菊酯可湿性粉剂（1 : 1）

将氟氯氰菊酯 100 克，螺虫乙酯 150 克，MF 60 克，萘磺酸甲基酯缩合物 40 克，K12 50 克，白炭黑 50 克，高岭土 550 克，搅拌均匀，采用气流粉碎法加工，即可得 25% 螺虫乙酯・氟氯氰菊酯可湿性粉剂。

实施例 12 30% 螺虫乙酯・氟啶虫酰胺水分散粒剂（1 : 1）

将氟啶虫酰胺 150 克，螺虫乙酯 150 克，白炭黑 150 克，NNO 50 克，K12 40 克，轻质钛酸钙 100 克，硫酸铵 360 克，混合均匀后进气流粉碎，在混合机中，喷入捏合剂去离子水约 180 克，调整挤压设备，进行挤压造粒，在 50 ～ 80°C 条件下烘干至水分合格，即可得 30% 螺虫乙酯・氟啶虫酰胺水分散粒剂。

实施例 13 20% 螺虫乙酯・螺螨酯微囊悬浮剂（3 : 1）

将螺虫乙酯 150 克，螺螨酯 50 克，溶解于 100 克二甲苯和 50 克乙酸乙酯组成的混合溶液中，再抽入壬基酚聚氧乙烯醚磷酸酯 30 克，烷基芳基聚氧丙烯聚氧乙烯醚 30 克，在高剪
切釜中高速剪切 30 分钟，加入 200 克脲醛树脂预聚体，2000 转 / 分搅拌下升温固化 60 分钟，之后加入 308 克去离子水，60 克 NNO 分散剂，22 克白炭黑，搅拌均匀即可得 20% 螺虫乙酯・螺螨酯悬浮剂。

【0046】 实施例 14 25% 螺虫乙酯・丁硫克百威微胶囊粉剂（1:5:1）

将螺虫乙酯 150 克，丁硫克百威 100 克，溶解于 100 克二甲基甲酰胺和 100 克氯苯组成的混合溶液中，再加入壬基酚聚氧乙烯醚磷酸酯 40 克，50 克甲基-2-异氰酸酯，烷基芳基聚氧丙烯聚氧乙烯醚 30 克，2000 转 / 分搅拌下缓慢加入 30 克乙二胺，搅拌 2 小时，之后加入 500 克去离子水，60 克 NNO 分散剂，40 克白炭黑，300 克硫酸铵，喷雾造粒烘干整形将水分蒸干，即可得 25% 螺虫乙酯・丁硫克百威微胶囊粉剂。

【0047】 实施例 15 35% 螺虫乙酯・氟氯虫胺可分散油悬浮剂（1:2:5）

抽出搅拌罐中 490 克去油酸甲酯，将 40 克 SOPA270、40 克蓖麻油聚氧乙烯醚和 50 克十二烷基苯磺酸钙，抽出搅拌罐中，然后边搅拌将 100 克螺虫乙酯，250 克氟氯虫胺、30 克有机膨润土、按照顺序加入切剪罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度过 325 目筛，即得 35% 螺虫乙酯・氟氯虫胺可分散油悬浮剂。

【0048】 实施例 16 11% 螺虫乙酯・茚虫威可分散油悬浮剂（10:1）

抽出搅拌罐中 719 克去油酸甲酯，将 20 克 SOPA270、80 克蓖麻油聚氧乙烯醚和 50 克浓乳 500#，抽出搅拌罐中，然后边搅拌将 100 克螺虫乙酯，10 克茚虫威，30 克异丙醇，按照顺序加入切剪罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度过 325 目筛，即得 11% 螺虫乙酯・茚虫威组合物可分散油悬浮剂。

【0049】 实施例 17 50% 螺虫乙酯・丁硫克百威乳剂（10:40）

抽出搅拌罐中 360 克去离子水，将 30 克 SOPA270 和 40 克乙二醇，抽出搅拌罐中，然后边搅拌将 100 克螺虫乙酯，10 克硅酸镁铝，按照顺序加入切剪罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度过 325 目筛，然后抽出 400 克丁硫克百威，60 克蓖麻油聚氧乙烯醚，高速剪切 30 分钟，即得 50% 螺虫乙酯・丁硫克百威乳剂。

【0050】 实施例 18 10.5% 螺虫乙酯・丙硫克百威超低容量液剂（1:20）

以成品超低容量液剂为重量 1000 克计算，丙硫克百威 100 克，螺虫乙酯 5 克，N- 甲基吡咯烷酮 50 克，十二烷基苯磺酸钠 55 克，二甲苯溶剂补足至 1000 克，搅拌 30 分钟，至完全透明，检测合格后即为 10.5% 螺虫乙酯・丙硫克百威超低容量液剂。

【0051】 实施例 19 60% 螺虫乙酯・氟氯虫胺干悬浮剂（10:50）

将螺虫乙酯 100 克，氟氯虫胺 500 克，烷基芳基聚氧丙烯聚氧乙烯醚 30 克，壬基酚聚氧乙烯醚磷酸酯 40 克，分散剂 NNO 60 克，加入混合溶液中，再抽入去离子水 600 克，搅拌均匀，然后用高速剪切机进行粗粉碎，再进入二级砂磨机细磨，磨细后加入白炭黑 50 克，硫酸铵 220 克后进入压力喷雾干燥塔干燥或造粒，制成粉状或微粒状固体。检测合格后即为 60% 螺虫乙酯・氟氯虫胺干悬浮剂。使用时入水后与悬浮剂效果相同，贮存稳定性又优于悬浮剂。

【0052】 大田试验实施例

1. 5.5% 螺虫乙酯・丙硫克百威乳剂对棉蚜田间试验
地点：山东济宁 时间：2011年7月

表1 5.5%螺虫乙酯・丙硫克百威乳剂对棉蚜的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后1天防效(%)</th>
<th>药后2天防效(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240g/L螺虫乙酯SC</td>
<td>50mg/kg</td>
<td>72.5</td>
<td>74.3</td>
</tr>
<tr>
<td>20%丙硫克百威EC</td>
<td>266mg/kg</td>
<td>80.2</td>
<td>84.7</td>
</tr>
<tr>
<td>5.5%螺虫乙酯・丙硫克百威乳剂</td>
<td>150mg/kg</td>
<td>88.5</td>
<td>91.2</td>
</tr>
<tr>
<td>3.5%螺虫乙酯・丙硫克百威乳剂</td>
<td>200mg/kg</td>
<td>93.4</td>
<td>97.4</td>
</tr>
</tbody>
</table>

由上表可以看出，5.5%螺虫乙酯・丙硫克百威乳剂对棉蚜的防效有明显的提高，从而说明螺虫乙酯和丙硫克百威该两种成分复配后对棉蚜的防治有明显的增效作用。

[0053] 2、10.5%螺虫乙酯・丁硫克百威水乳剂对苹果蚜虫田间试验

地点：山东烟台 时间：2011年8月

表2 10.5%螺虫乙酯・丁硫克百威水乳剂对苹果蚜虫的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后1天防效(%)</th>
<th>药后3天防效(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240g/L螺虫乙酯SC</td>
<td>50mg/kg</td>
<td>82.5</td>
<td>85.7</td>
</tr>
<tr>
<td>20%丁硫克百威EC</td>
<td>80mg/kg</td>
<td>79.2</td>
<td>82.5</td>
</tr>
<tr>
<td>10.5%螺虫乙酯・丁硫克百威水乳剂</td>
<td>80mg/kg</td>
<td>89.3</td>
<td>95.5</td>
</tr>
<tr>
<td>10.5%螺虫乙酯・丁硫克百威水乳剂</td>
<td>70mg/kg</td>
<td>96.9</td>
<td>97.2</td>
</tr>
</tbody>
</table>

由上表可以看出，10.5%螺虫乙酯・丁硫克百威水乳剂对苹果蚜虫的防效较单剂使用时明显防效要高，说明螺虫乙酯和丁硫克百威该两种成分复配后对苹果蚜虫的防治有明显的增效作用。

[0054] 3、螺虫乙酯・氯氟氰虫酯复配物对稻飞虱的田间试验

地点：江苏徐州 时间：2011年9月

表3 10.1%螺虫乙酯・溴氰虫胺悬浮剂对稻飞虱的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后1天防效(%)</th>
<th>药后2天防效(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%氯氟氰虫胺悬浮剂</td>
<td>4g/亩</td>
<td>75.6</td>
<td>77.4</td>
</tr>
<tr>
<td>200g/L螺虫乙酯悬浮剂</td>
<td>6g/亩</td>
<td>86.3</td>
<td>89.2</td>
</tr>
<tr>
<td>10.1%螺虫乙酯・氯氟氰虫胺悬浮剂</td>
<td>4g/亩</td>
<td>89.7</td>
<td>92.5</td>
</tr>
<tr>
<td>10.1%螺虫乙酯・氯氟氰虫胺悬浮剂</td>
<td>5g/亩</td>
<td>94.2</td>
<td>97.6</td>
</tr>
</tbody>
</table>

由上表可见，螺虫乙酯和氯氟氰虫胺复配之后对稻飞虱的防治效果明显提高，其防效下其使用量大大降低，因此螺虫乙酯和氯氟氰虫胺两成分复配之后对稻飞虱防治有明显的增效作用，有利于降低药剂使用量和提高防效。

[0055] 4、螺虫乙酯・多杀霉素组合物对茄子蓟马室内毒力测定

地点：山东寿光 时间：2011年7月

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后1天防效(%)</th>
<th>药后2天防效(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25克/升多杀霉素悬浮剂</td>
<td>3g/亩</td>
<td>84.2</td>
<td>87.5</td>
</tr>
<tr>
<td>240g/L螺虫乙酯悬浮剂</td>
<td>5g/亩</td>
<td>85.6</td>
<td>87.2</td>
</tr>
<tr>
<td>20.4%螺虫乙酯・多杀霉素悬浮剂</td>
<td>3g/亩</td>
<td>91.7</td>
<td>93.6</td>
</tr>
<tr>
<td>20.4%螺虫乙酯・多杀霉素悬浮剂</td>
<td>4g/亩</td>
<td>96.1</td>
<td>97.2</td>
</tr>
</tbody>
</table>

由上表可以看出，螺虫乙酯与多杀霉素复配物对茄子蓟马的防效明显提高，且用量也较两个单剂均有减少，说明该两种成分复配对茄子蓟马的防治效果有明显的增效作用，同时还能延缓和治理蓟马的抗性问题。

[0056] 5、25%螺虫乙酯・氯啶虫酰胺组合物对黄瓜蚜虫的田间试验

地点：河南开封 时间：2011年6月
<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后 1 天防效 (%)</th>
<th>药后 2 天防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% 氟啶虫酰胺乳油</td>
<td>5g/亩</td>
<td>87.4</td>
<td>88.5</td>
</tr>
<tr>
<td>240g/L 氟啶虫酰胺悬浮剂</td>
<td>5g/亩</td>
<td>86.2</td>
<td>88.9</td>
</tr>
<tr>
<td>25% 氟啶虫酰胺悬浮剂</td>
<td>4g/亩</td>
<td>89.8</td>
<td>92.5</td>
</tr>
<tr>
<td>25% 氟啶虫酰胺悬浮剂</td>
<td>5g/亩</td>
<td>97.3</td>
<td>98.7</td>
</tr>
</tbody>
</table>

由上表可以看出，氟啶虫酰胺和螺虫乙酯两成分的单剂和与两者的组合物同等剂量使用下其防效较组合物的防治效果明显低，甚至组合物在使用剂量更少的情况下其防治效果仍较单剂的防效要高，说明螺虫乙酯和氟啶虫酰胺该两种成分复配后对黄瓜蚜虫防治具有明显的增效作用。

6、螺虫乙酯・丁硫克百威组合物对甜瓜蚜田间试验
地点：山东寿光 时间：2010 年 11 月

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后 1 天防效 (%)</th>
<th>药后 2 天防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% 丁硫克百威乳油</td>
<td>8g/亩</td>
<td>80.4</td>
<td>85.5</td>
</tr>
<tr>
<td>240g/L 螺虫乙酯悬浮剂</td>
<td>6g/亩</td>
<td>86.2</td>
<td>89.7</td>
</tr>
<tr>
<td>25% 螺虫乙酯・丁硫克百威微囊悬浮剂</td>
<td>5g/亩</td>
<td>89.8</td>
<td>92.5</td>
</tr>
<tr>
<td>30% 螺虫乙酯・丁硫克百威微囊悬浮剂</td>
<td>6g/亩</td>
<td>97.3</td>
<td>98.7</td>
</tr>
</tbody>
</table>

由上表可见，螺虫乙酯和丁硫克百威复配后其防效明显增强，药后 1 天和药后两天的防效均明显高于各单剂使用的防效，其对甜瓜蚜的防治有明显的增效作用。

7、螺虫乙酯・丙硫克百威组合物对水稻田间试验
地点：山东临海 时间：2011 年 7 月

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后 1 天防效 (%)</th>
<th>药后 7 天防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% 丙硫克百威悬浮剂</td>
<td>10g/亩</td>
<td>88.7</td>
<td>80.5</td>
</tr>
<tr>
<td>240g/L 螺虫乙酯悬浮剂</td>
<td>6g/亩</td>
<td>87.4</td>
<td>78.7</td>
</tr>
<tr>
<td>41% 螺虫乙酯・丙硫克百威悬浮剂</td>
<td>5g/亩</td>
<td>90.1</td>
<td>90.4</td>
</tr>
<tr>
<td>41% 螺虫乙酯・丙硫克百威悬浮剂</td>
<td>6g/亩</td>
<td>96.5</td>
<td>97.2</td>
</tr>
</tbody>
</table>

由上表可知，螺虫乙酯和丙硫克百威复配后不仅对水稻的防效有明显的提高，且做成悬浮剂后，明显提高了其持效期，在药后 7 天其防效仍很高，而单剂的防效均有所下降，说明该两种活性成分复配具有明显增效作用。

8、螺虫乙酯・氟啶虫酰胺组合物对节瓜蚜马的田间试验
地点：山东寿光 时间：2011 年 7 月

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后 1 天防效 (%)</th>
<th>药后 3 天防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% 氟啶虫酰胺乳油</td>
<td>10g/亩</td>
<td>83.5</td>
<td>84.2</td>
</tr>
<tr>
<td>240g/L 螺虫乙酯悬浮剂</td>
<td>6g/亩</td>
<td>86.8</td>
<td>88.3</td>
</tr>
<tr>
<td>30% 螺虫乙酯・氟啶虫酰胺水分散粒剂</td>
<td>5g/亩</td>
<td>89.4</td>
<td>92.6</td>
</tr>
<tr>
<td>30% 螺虫乙酯・氯氟虫酰胺水分散粒剂</td>
<td>6g/亩</td>
<td>93.7</td>
<td>97.5</td>
</tr>
</tbody>
</table>

从以上试验可以看出，螺虫乙酯和氟啶虫酰胺组合物对节瓜蚜马的防效理想，较低使用量下即可得到理想的防治效果，且单剂防效都理想，因此说明该两种成分复配具有明显的增效。

9、螺虫乙酯・氟啶虫酰胺组合物对菜青虫大田试验
地点：河南开封 时间：2011 年 5 月

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后 1 天防效 (%)</th>
<th>药后 2 天防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% 氟啶虫酰胺悬浮剂</td>
<td>18g/亩</td>
<td>76.8</td>
<td>86.6</td>
</tr>
<tr>
<td>200g/L 螺虫乙酯悬浮剂</td>
<td>8g/亩</td>
<td>73.6</td>
<td>82.7</td>
</tr>
</tbody>
</table>
35% 螺虫乙酯・氟氯虫胺可分散油悬浮剂 10g/亩 81.3 88.6
35% 螺虫乙酯・氟氯虫胺可分散油悬浮剂 15g/亩 84.7 91.5

由本实验可见，螺虫乙酯和氟氯虫胺两活性成分复配后对菜青虫的防效比各成分单剂的防效均高，且很大程度上加大了药剂的持效期，复配施药后第 15 天仍保持理想的防治效果，因此该两种成分组合不但大大提高了防效，还延长了其持效期。

[0061] 10. 螺虫乙酯・茚虫威组合物对叶蝉田间试验
地点：河南信阳 时间：2011 年 7 月

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后 1 天防效%</th>
<th>药后 3 天防效%</th>
</tr>
</thead>
<tbody>
<tr>
<td>15% 茚虫威悬浮剂</td>
<td>15g/亩</td>
<td>73.7</td>
<td>76.3</td>
</tr>
<tr>
<td>200g/L 螺虫乙酯悬浮剂</td>
<td>7g/亩</td>
<td>80.2</td>
<td>83.5</td>
</tr>
<tr>
<td>35% 螺虫乙酯・茚虫威可分散油悬浮剂</td>
<td>10g/亩</td>
<td>82.5</td>
<td>87.9</td>
</tr>
<tr>
<td>35% 螺虫乙酯・茚虫威可分散油悬浮剂</td>
<td>15g/亩</td>
<td>85.3</td>
<td>90.4</td>
</tr>
</tbody>
</table>

由上表可见，螺虫乙酯和茚虫威两成分复配后，明显提高了其对叶蝉的防治效果，其在药后 1 天和药后 3 天都表现出了更好的防效，且同时降低了两者的使用量，说明该两种成分复配也是有明显的增效作用。

[0062] 11. 40% 螺虫乙酯・螺螨酯悬浮剂对柑橘红蜘蛛的田间试验（15+25）
地点：广西桂林 时间：2011 年 8 月

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分使用量</th>
<th>药后 2 天防效%</th>
<th>药后 7 天防效%</th>
</tr>
</thead>
<tbody>
<tr>
<td>240g/L 螺螨酯悬浮剂</td>
<td>50mg/kg</td>
<td>82.6</td>
<td>76.2</td>
</tr>
<tr>
<td>200g/L 螺虫乙酯悬浮剂</td>
<td>40mg/kg</td>
<td>85.3</td>
<td>85.7</td>
</tr>
<tr>
<td>40% 螺虫乙酯・螺螨酯悬浮剂</td>
<td>40mg/kg</td>
<td>86.8</td>
<td>87.2</td>
</tr>
<tr>
<td>40% 螺虫乙酯・螺螨酯悬浮剂</td>
<td>50mg/kg</td>
<td>89.5</td>
<td>91.7</td>
</tr>
</tbody>
</table>

由如上所示试验结果来看，螺螨酯单独使用时其前期防效和后期持效期都较螺虫乙酯差，尤其不能保证其后期的持效性问题，但是两者复配之后明显增强了其对红蜘蛛的防治效果，且保持理想的持效性，并在药后 7 天时仍保持着上升趋势的防治效果，由此可见，螺螨酯和螺虫乙酯复配后对红蜘蛛的防治有明显的协同增效作用。

[0063] 室内毒力测定实施例

1. 螺虫乙酯和氟氯虫胺不同比配比联合毒力测试
 1.1 供试药剂
 96% 螺虫乙酯原药、96% 氟氯虫胺原药、螺虫乙酯与氟氯虫胺不同比例混配制剂
 1.2 供试虫源
 苹果蚜虫
 1.3 单剂测定方法

采用浸虫法将两个原药都用少量丙酮溶解，再用 0.1% 的吐温水容易稀释成等差的 5 个浓度的溶液，稀释在烧杯里以备用，并以清水作为对照。将大小一致的三代甘蓝蚜虫成虫在浸虫笼的药液中浸渍 5s，吸去多余药液之后将其置于 9cm 的培养皿中，皿中放有新鲜甘蓝叶片覆盖。每浓度处理 10 头，重复 4 次，设空白对照。于 27 度光照培养箱中保持 24h 后检查死亡率，用拨针轻触虫体无反应者为死亡。死亡率用 Abbott 供试校正，再根据浓度对数 - 死亡率几率值分析法，求出毒力回归方程和致死率。

[0064] 1.4 不同配比的联合毒力测定方法

根据单剂的毒力测定结果，按有效成分质量比螺虫乙酯：氟氯虫胺分别为 16:1, 8:1,
1:1.8:1:16 的配比进行混配。采用上述 1.3 方法进行独立测定，计算 LC50，并按孙云沛法计算共毒系数（CTC）。共毒系数计算公式如下：

$$ATI = \frac{S}{M} \times 100$$ \hspace{1cm} (1)

式中：ATI——混剂实测毒力指数；
S——标准杀虫剂的 LC50，单位为毫克每升（mg/L）；
M——混剂的 LC50，单位为毫克每升（mg/L）。

[0065] 根据下列公式计算混剂理论毒力指数

$$TTI = TI_A \times P_A + TI_B \times P_B$$ \hspace{1cm} (2)

式中：TTI——混剂理论毒力指数；
TI_A——A 药剂毒力指数；
P_A——A 药剂在混剂中的百分含量，单位为百分率（%）；
TI_B——B 药剂毒力指数；
P_B——B 药剂在混剂中的百分含量，单位为百分率（%）。

[0066] 根据下列公式计算混剂的共毒系数

$$CTC = \frac{ATI}{TTI} \times 100$$ \hspace{1cm} (3)

式中：CTC——共毒系数；
ATI——混剂实测毒力指数；
TTI——混剂理论毒力指数。

[0067] 复配剂的共毒系数（CTC）≥ 120 表现为增效作用；CTC ≤ 80 表现为拮抗作用；80 < CTC < 120 表现为相加作用。

[0068] 2.1 毒力测定结果
说明 书

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>配比</th>
<th>回归方程</th>
<th>LC50 (ug/mL)</th>
<th>共毒系数 (CTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>螺虫乙酯</td>
<td>一</td>
<td>Y=2.2758X+2.3982</td>
<td>14.2111</td>
<td>一</td>
</tr>
<tr>
<td>氟氯虫胺</td>
<td>一</td>
<td>Y=2.1873X+2.1346</td>
<td>23.0133</td>
<td>一</td>
</tr>
<tr>
<td>螺虫乙酯：氟氯虫胺 16:1</td>
<td></td>
<td>Y=2.2483X+2.2547</td>
<td>20.7348</td>
<td>182</td>
</tr>
<tr>
<td>螺虫乙酯：氟氯虫胺 8:1</td>
<td></td>
<td>Y=2.1942X+2.2105</td>
<td>21.7329</td>
<td>164</td>
</tr>
<tr>
<td>螺虫乙酯：氟氯虫胺 1:1</td>
<td></td>
<td>Y=2.0937X+2.1584</td>
<td>20.1346</td>
<td>140</td>
</tr>
<tr>
<td>螺虫乙酯：氟氯虫胺 1:8</td>
<td></td>
<td>Y=2.2625X+2.0184</td>
<td>22.8371</td>
<td>134</td>
</tr>
<tr>
<td>螺虫乙酯：氟氯虫胺 1:16</td>
<td></td>
<td>Y=2.3461X+2.1573</td>
<td>21.4289</td>
<td>129</td>
</tr>
</tbody>
</table>

由上表可以看出，螺虫乙酯和氟氯虫胺两个成分复配之后再各配比下其共毒系数都大于 120，说明该两种成分复配有明显的增效作用，螺虫乙酯和氟氯虫胺混配具有很强的合理性和可行性，都值得进一步进行大田推广。

1. 采用喷雾法。用毛笔选取生理状态一致的试虫不少于 10 头放入培养皿中，再将培养皿置于 Potter 喷雾塔盘底进行定期喷雾，喷药量为 1ml，药液浓度 1ml 后取出试虫进行饲养。每处理 3 次重复，均设空白对照。处理 96 小时后检查试虫死亡情况。

2. 实验结果
由上表可以看出螺虫乙酯和多杀霉素复配的各个比例其共毒系数均高于 120，说明该两种成分复配之后对黄瓜白粉虱的防效有很明显的提高，由此可见，该两种成分复配具有较明显的增效作用，具有较好的应用前景。

【0071】 3. 螺虫乙酯和多杀霉素对稻纵卷叶螟室内毒力测定

3.1 试验方法

采用先浸叶后接虫的方法，将未接触任何药剂的大小一致的新鲜水稻叶在配置好的药液中浸浸 5s 后取出，自然晾干，放入养虫盒中，然后接上供试 3 年龄纵卷叶螟幼虫，在 25 度条件下饲养，每处理 3 次重复，每重复用试虫 20 头，同时设置空白对照，72h 后检查死虫数，计算死亡率和校正死亡率，求出回归方程，计算 LC50 和共毒系数。

【0072】 3.2 试验结果
由上表可见，在螺虫乙酯和茚虫威的不同比例中，其共毒系数均大于 10，表现了一定的增效作用，其中以螺虫乙酯：茚虫威为 1:4 的时候其增效作用最明显，除了 1:1 仅有一定的增效作用之外，其他几个比例也都表现出比较强的增效作用。

【0073】 4. 螺虫乙酯和螺螨酯对柑橘全爪螨的室内毒力试验

 4.1 试验方法

 采用玻片浸渍法。选取个体大小一致的雌若螨，用毛笔将试验背面黏与贴有双面胶的载玻片上。将黏有试验的载玻片浸入配置好的药液中 5s，每个处理 4 个重复，取出斜放于磁盘边缘干燥后，放入载玻片盒内，不加盖放入 25 度，70%-80% 湿度的光照培养皿中，每天光照 10 小时，24 小时间旋转检查死活螨数。计算死亡率和校正死亡率，求出毒力回归方程和 LC50，并计算共毒系数。

【0074】 4.2 试验结果
<table>
<thead>
<tr>
<th>供试药剂</th>
<th>配比</th>
<th>回归方程</th>
<th>LC30</th>
<th>共毒系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>螺虫乙酯</td>
<td>—</td>
<td>$Y=2.1342X+3.5702$</td>
<td>7.4265</td>
<td>—</td>
</tr>
<tr>
<td>螺虫酯</td>
<td>—</td>
<td>$Y=1.7269X+3.0318$</td>
<td>10.3383</td>
<td>—</td>
</tr>
<tr>
<td>螺虫乙酯:螺虫酯</td>
<td>27:1</td>
<td>$Y=1.5928X+3.3719$</td>
<td>7.4928</td>
<td>136</td>
</tr>
<tr>
<td>螺虫乙酯:螺虫酯</td>
<td>9:1</td>
<td>$Y=1.7228X+3.4618$</td>
<td>8.7164</td>
<td>149</td>
</tr>
<tr>
<td>螺虫乙酯:螺虫酯</td>
<td>3:1</td>
<td>$Y=1.8761X+3.5157$</td>
<td>8.5715</td>
<td>163</td>
</tr>
<tr>
<td>螺虫乙酯:螺虫酯</td>
<td>1:1</td>
<td>$Y=1.5927X+3.3918$</td>
<td>7.3837</td>
<td>182</td>
</tr>
<tr>
<td>螺虫乙酯:螺虫酯</td>
<td>1:3</td>
<td>$Y=1.9365X+3.3715$</td>
<td>8.6983</td>
<td>159</td>
</tr>
</tbody>
</table>

由上表可见，在供试的螺虫乙酯和螺虫酯复配的几个比例中，其室内对柑橘全爪螨的毒力实验结果显示其共毒系数均高于120，尤其在螺虫乙酯:螺虫酯为1:1的时候其共毒系数最高，说明该两种成分复配后具有明显的增效作用，尤其以1:1比例的时候其增效作用最明显。

5. 螺虫乙酯和氯虫毒胺对稻飞虱的室内毒力防效试验

5.1 试验方法

采用稻茎浸渍法，挖掘健壮一致的孕穗中期稻株，洗净，剪成15cm长的连根稻茎，于阴凉处晾至表面无水痕，备用。根据预备试验结果，将原药配成10%乳油，用水稀释成不同浓度，以清水为对照，将备好的稻茎分别置于不同浓度的药液中浸泡30s，取出后稍晾干，以清水浸湿的脱脂棉包住根部，放入试管（高180mm、直径18mm），挑选标准一致的3龄若虫，放入试管内，每管20头。上端用湿纱布封口，每个浓度重复3次，共60头。接虫后的试管放入温度为26度、相对湿度为70%的养虫室中，48h后检查死活虫数，计算死亡率，并以对照的死亡率进行校正，然后用几率值分析法求毒力回归方程，致死中浓和相关系数。

5.2 试验结果
由上表可见，螺虫乙酯和氯啶虫酰胺复配的各比例对稻飞虱的防效较单剂均有所提高，其各混合比例药液的共毒系数均高于 120，其中以螺虫乙酯·氯啶虫酰胺为 2:1 的比例时其共毒系数最高为 173，因此该两种成分复配具有较强的优势，具有推广价值。

6. 螺虫乙酯和丁硫克百威混配对甘蓝蚜虫的室内毒力试验

6.1 试验方法

采用叶龄喷雾法，选取生长一致的甘蓝叶片，用直径 18mm 的打孔器做成叶龄，每皿 3 个叶龄，每叶龄 10-15 头甘蓝蚜虫，每处理重复 4 次，并设空白对照。于 72h 检查死虫数，计算死亡率和校正死亡率，求毒力回归方程和共毒系数。

6.2 试验结果
由上述试验结果可以看出，螺虫乙酯和丙硫克百威两者按照不同比例混配之后，其对甘蔗螟虫的防效较各种单剂的防效均有所提高，根据其各自的致死中浓度得出的共毒系数来看，各混配比例的共毒系数均高于 120，除螺虫乙酯：丙硫克百威为 20:1 的比例时其共毒系数为 124，其增效作用不显著之外，其他的混配比例都表现出了比较明显的增效作用。

7. 螺虫乙酯和丙硫克百威混配对马铃薯甲虫的室内毒力实验

7.1 试验方法

采用植株叶片浸渍接虫法。选取马铃薯叶片在供试药液中浸渍 10s 后取出晾干，放入直径为 9cm 玻璃培养皿中，设置 5 个重复，然后每皿接虫马铃薯甲虫 3 龄虫 10 头。每处理完毕后置于观察室内，48h 后检查并记录死活虫数，计算死亡率，求出回归方程，计算 LC50 和共毒系数。

7.2 试验结果

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>比例</th>
<th>回归方程</th>
<th>LC50</th>
<th>共毒系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>螺虫乙酯</td>
<td>1:1</td>
<td>$Y = 1.6837X + 3.2751$</td>
<td>12.5918</td>
<td>——</td>
</tr>
<tr>
<td>丙硫克百威</td>
<td>——</td>
<td>$Y = 2.4827X + 2.4817$</td>
<td>4.2971</td>
<td>——</td>
</tr>
<tr>
<td>螺虫乙酯：丙硫克百威</td>
<td>32:1</td>
<td>$Y = 2.5239X + 2.5824$</td>
<td>12.0381</td>
<td>122</td>
</tr>
<tr>
<td>螺虫乙酯：丙硫克百威</td>
<td>16:1</td>
<td>$Y = 2.4729X + 2.6235$</td>
<td>10.5719</td>
<td>134</td>
</tr>
<tr>
<td>螺虫乙酯：丙硫克百威</td>
<td>8:1</td>
<td>$Y = 2.0518X + 2.3814$</td>
<td>11.4871</td>
<td>129</td>
</tr>
<tr>
<td>螺虫乙酯：丙硫克百威</td>
<td>4:1</td>
<td>$Y = 1.9461X + 2.4816$</td>
<td>9.4151</td>
<td>142</td>
</tr>
<tr>
<td>螺虫乙酯：丙硫克百威</td>
<td>1:1</td>
<td>$Y = 2.0175X + 2.4717$</td>
<td>6.3956</td>
<td>169</td>
</tr>
</tbody>
</table>

由上述试验结果可以看出，螺虫乙酯和丙硫克百威混配后对马铃薯甲虫的防效较单剂均有所提高，其各混配比例的共毒系数均高于 120，其中螺虫乙酯：丙硫克百威为 32:1 时其共毒系数仅为 122，增效不明显，其他的配比共毒系数均明显高于 120，说明该两种成分复配具有较强的增效作用。
图 1