WO 2004/042639 A1 ||| 080 00 000 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
21 May 2004 (21.05.2004)

AT O YO

(10) International Publication Number

WO 2004/042639 A1l

(51) International Patent Classification’: GOGF 009/00
(21) International Application Number:
PCT/AU2003/001474

(22) International Filing Date:

6 November 2003 (06.11.2003)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

2002952510 6 November 2002 (06.11.2002) AU
60/424,359 8 November 2002 (08.11.2002) US
2003901926 22 April 2003 (22.04.2003) AU

(71) Applicant (for all designated States except US): CODE
VALLEY PTY LIMITED [AU/AU]; A.C.N. 093 129 894,
Suite 3, Floor 4, 75 Denham Street, Townsville, Queens-
land 4810 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LOVISA, Noel,
William [AU/AU]; 2 Dianella Court, Annandale,
Townsville, Queensland 4814 (AU). LAWREY, Eric,

Phillip [AU/AU]; 75 River Park Drive,
Townsville, Queensland 4814 (AU).

Annandale,

(74) Agents: COWLE, Anthony, John et al.; Level 10, 10

Barrack Street, Sydney, New South Wales 2000 (AU).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ,LC,LK,LR,LS,LT, LU, LV,MA, MD, MG, MK, MN,
MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU,
SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: CODE GENERATION

(57) Abstract: The present invention provides a method of generating computer

Determine the
requirements for the
computer executable

code to be created

100

| 4

Select a number of
components

110

A

Define a combination of
the selected
components

120

Implement the services
defined by the
component combination

130

executable code using components, each of which corresponds to a respective data
manipulation service, typically implemented by a respective entity. The method
includes defining a combination of components corresponding to a sequence of
data manipulations. The data manipulations are then performed, which can be
achieved by requesting the provision of each service from the respective entities in
accordance with the defined component combination, thereby causing computer
executable code to be generated.

WO 2004/042639 A1 [N N0 A08OH0 T 00000 00 00000 AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

CODE GENERATION

Background of the Invention
The present invention relates to a method and apparatus for generating computer executable code, and in
particular, to generating computer executable code using components, each of which corresponds to a

respective service for manipulating data.

Description of the Prior Art
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment

or any form of suggestion that the prior art forms part of the common general knowledge.

It is clear that software is developed in a competitive environment but history has detailed a flat
productivity curve over the last thirty years. Any gains are insignificant compared to what has been
achieved in other industries over the same period. This disparity is unique to the software industry and is

a direct result of how software is constructed.

The majority of computer software is constructed through a manual process, utilising programmers to
generate code for respective applications software projects. Each software application will generally be
created using one or more programmers, to create the software application on a case-by-case basis, with

little or no code reuse.

One of the reasons behind this is that typically only a limited number of entities (typically one company),
which will invest in the development of any one software application. As a result, entities are generally
unwilling to invest more than necessary in the development of software code. This means that once a
functioning application is developed, liitle money and effort is invested in optimising the code forming the

application.

Other reasons include:

e Initially favouring an in-house model of development over a more difficult distributed model, which
thereby required increased generalisation of limited resources.

e Introduction of the Library/Linker, which established standard routines for performing predetermined
functions, thereby reducihg competitiveness and optimisation; and

e The prevailing view of the very nature of software production, which requires customers to accept

limits imposed on them by the programmers.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

As a result of this, programmers have to be generalists that are capable of programming software to
perform a wide range of functionality, allowing them to compete in the market place as it stands. Thus, it
will be appreciated that in the current software programming environment, there is little call for a
programmer that is very good at only one very minor programming task, when generalists are available

that can adequately code entire programs.

This lack of specialisation leads to a number of problems in the field of software creation, including for
example:

e Bugs or mistakes — high levels of software defects;

e Software bloating — significantly increasing size of executable code;

e Complexity limits - growing software complexity threatens the ability of systems to be effectively

maintained in a stable state; and,
e Low barrier to entry.
e Unpredictability — there is an inability to predict development costs, schedules, performance or

resource usage

e Productivity — there have been no significant gains in developer productivity in the past decade

Bugs and mistakes arise, to a large extent, due to the large amounts of code each programmer must write.
This has a number of problems such as limiting the amount of time the programmer can physically spend
writing the code and increasing the number of variables the programmer must consider. Bugs are an
extensive problem within the current software programming techniques. The result of this is additional
time has been spent in correcting bugs and mistakes that arise, through the use of software patches, or

upgrades, as well as correcting other after effects, such as damage caused by viruses, or the like.

Software bloating is another effect associated with the lack of specialisation within the programming field.
As with any generalist, refining a product comes at the expense of productivity. In particular, a
programmer may be able to construct a functioning program relatively quickly. However, optimising the
code to minimise the code quantity, whilst improving operation can take a long time for only minimal
improvements. The programmer's skill at optimising would generally also be rudimentary given the
individual's knowledge is spread over many fields and similarly the coder gets paid by getting the product
on the market. The result is a requirement for more powerful machines to handle the unnecessary size and

complexity of modern software.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

The complexity limit arises due to the fact that as the level of complexity rises, it becomes impossible for
one person to understand all aspects of a particular software development effort. Most industries that have

become highly specialised can field large complex projects whereas software development has not

‘reached, let alone attained, any degree of specialisation.

In general, any industry has a barrier to entry that is proportional to its maturity. Well-developed
industries like semiconductors have considerable barriers that even nations baulk at tackling. A feature of
industrialisation is the large amounts of capital that are required to set up a business. However, in the case
of mbre basic industries, such as craft industries, it is possible for anyone to enter the industry with
dedication and a modest outlay, and achieve best practice. This is an indication that the software industry

is undeveloped, as it has a minimal barrier to entry.

A number of subtle IT industry quirks have also contributed to this crisis:
¢ Dysfunctional IP protection for software developers
¢ Continued use of x86 architecture in the face of superior technologies
¢ Customer acceptance of software errors or flaws '
e Increasing implementation complexity in attempts to deal with the software crisis (including reuse

of code from code libraries, seeking compatibility with the shortfalls of legacy operating systems)

The effects of these problems are endemic within the software field. Studies have shown that “for every
six, new, large-scale software systems that are put into operation, two others are cancelled. Indeed so
severe is this software crisis that three quarters of large-scale systems commissioned are operating

failures”, either they do not function as intended or they are not used at all.

A committee consisting of over 50 top programmers, computer scientists and industry leaders first
addressed this problem at the 1968 NATO Science Meeting. This Committee was given the task of

finding a way out of the "software crisis".

A number of attempts have been made to solve the problems, including:

e Development of 3rd, 4th and 5th Generation Languages, which seek to abstract the programmer away
from machine code, are responsible for some of the early successes in productivity. So successful was
the early productivity increases that languages continue today as the main thrust in the quest for

productivity improvement.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-4 -

e Object Oriented Programming, a new type of abstraction encapsulating data with code used to process

that data, is achieving limited success mainly through controlling complexity.

" o Computer Aided Software Engineering (CASE), which seeks to assist in managing the complexity of

large software development.

e Code Reuse, which is an effort to reuse previous intellectual endeavour.

e Formal Methods, which use mathematical proofs to verify correctness and to acutely address the large
numbers of defects and bugs synonymous with software development.

e Decompilers that extract intellectual content from historical code.
Despite these initiatives however, little headway is being made in improving software production.

In particular, there remains little specialisation within the industry, with the majority of software
applications being generated on a case by case baéis, by a limited number of programmers. Accordingly,
methods like 3rd, 4th, 5th GLs, OOP, CASE, Formal Methods, Decompilers and countless others do not
address the problem but only the symptoms.

It can therefore be seen that thirty years after the NATO conference only minimal progress if any has been
made, and “the vast majority of computer code is still hand-crafted from raw programming languages by

artisans using techniques they neither measure nor are able to repeat consistently”.

In circumstances where code reuse is attempted, this is generally achieved by making the code context
independent so that the code may be deployed in any operating environment, and in any set’ of
circumstances. This leads to a significant number of problems and in particular results in the code
requiring a large number of commands and operations that are redundant in most cases. In addition to
this, the formation of context independent code prevents, or at least substantially hampers the ability of

code generators to protect their code through the use of suitable IP Protection.

One example of an existing system which attempts to overcome the problems outlined above is described
in US-6,405,361 which provides a method, apparatus and computer program product for automatically
generating state based computer programs. The system operates by utilising a plurality of components
which communicate with each other to generate a program based on interactions between sequence
descriptions. In this example, all sequence descriptions are determined, normalised and used to determine
a state based specification of the component. The state based program for the component is determined

from the specification allowing the program to be generated.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

However, this system addresses only one specific scenario of computer program generation and in
particular only relates to state based systems. Furthermore, the system operates by taking individual state

diagrams describing a communications system and transforming these diagrams into a state diagram and

~ then into code. Accordingly, the effect of this is that the system operates to translate a diagram into code.

The system does not allow general applications software to be developed and uses context independent

code, resulting in many of the problems previously outlined.

EP-1,211,598 describes a method for generating executable code by translating high level code into
instructions for one of a plurality of target processors. The system operates by selecting one or more
predefined program code modules from a plurality of available modules in accordance with desired
program characteristics. The program code for translating the high level code into instructions is then

used to form the program code.

Thus the system allows for the generation of virtual Java for a variety of hardware platforfns. The core of
a system is the use of a module chooser which simply chooses available modules which are then combined

before being compiled and assembled in the normal way.

This document therefore relates to a way of selecting code portions and then combining these to form the
resulting code. This therefore requires that the code is initially written by programmers in the normal way
and then simply cut and pasted together to form the final code. This is therefore only relevant in specific
circumstances and prior to operation requires the formation of suitable source code portions. This

therefore relies on context independent code and suffers from many of the disadvantages outlined above.

In 1999, Associate Professor Clemens Szyperski from the Faculty of Information Technology at
Queensland University of Technology, Brisbane, Australia has published a book “Component Software”,
which set out some desirable features that would be useful in achieving industrialisation of computer
software. However, this did not propose any implementable solution to overcoming the problems outlined

above.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

Summary of the Present Invention
In a first broad form the present invention provides a method of generating code using components, each
component corresponding to a respective data manipulation service, the method including:

a) Determining a combination of components that defines the code; and,

b) Implementing the component combination to thereby perform the defined sequence of data

manipulations, such that the computer executable code is generated.

Typically at least some of the components include one or more ports for receiving and/or outputting data

to be manipulated.

Each port preferably has an associated agent adapted to control transfer of data to and from the

component.

The method including having the component:
a) Receive data including a number of data portions;
b) Manipulate the data by:
i) Adding data portions into the sequence at a predetermined location;
i) Moving data portions from a first location to a second location within the sequence;
iii) Removing data portions from the sequence; and,

iv) Modifying data portions in the sequence.

Typically at least a portion of the method is performed using a processing system including a store, the

method including storing one or more of the data portions in the store.

Some of the components may be formed from a number of combined sub-components, the sub-

components also being components.

One or more of the services may be performed using at least one of:
a) Manual manipulation of the dafa by an individual;
b) Computer executable code adapted to be executed by a processing system, to thereby manipulate
of the data automatically; and,

¢) Combinations of sub-components.

The method can be performed using one or more processing systems.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

In this case, the method preferably includes causing a first processing system to:
a) Select a number of components in response to input commands received from a user;
b) Define the component combination using the selected components; and,
c) Cause the component combination to be implemented such that the defined sequence of data

manipulations is performed.

If at least some of the components include one or more ports, the method preferably includes causing the
processing system to:

a) Provide an indication of the ports of each selected component to the user; and,

b) Interconnect selected ones of the ports in response to input commands from the user to thereby

define the component combination.

The method usually includes causing a second processing system to:
a) Determine details of a number of components;

b) Provide at least an indication of the details to the user via the first processing system.

In this case, the method can include causing the processing system to:
a) Select respective ones of the componénts in response to input commands from the user; and,

b) Provide the details of the selected components to the user via the first processing system.

The details are typically in the form of component specifications, the processing system including:
a) A store for storing the component specifications including at least one of:
i) Anindication of the manipulation service;
ii) A graphical representation of the component; and,
iii) Port specifications defining the operation of the agents associated with each port; and,
b) A processor, the method typically including causing the processor to:
i) Obtain one or more component specifications from the store; and,

ii) Provide the component specifications to the user via the first processing system.

The method may include causing the first processing system to:
a) Generate a graphical representation of the one or more selected components; and,
b) Manipulate the graphical representation in response to input commands received from a user to

thereby define the component combination.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

The first processing system can be coupled to one or more component processing systems via a
communications network, each component processing system being adapted to implement one or more
respective components, in which case the method preferably includes:
a) Generating an service request for each component in the component combination; and,
b) Transferring the service request to each entity via the communications network, each entity being
adapted to respond to the service request to implement the data manipulation embodied by the

respective component.

The method typically includes:
a) Determining any data required by the components; and,

b) Providing the data in the service request.

Each service request may include an indication of the interconnections for each of the ports of the

respective component.

The method can include causing each component processing system to:
a) Implement one or more respective component instances in accordance with the received service
request; and,
b) Cause each component instance to:
i) Interact with other components in accordance with the interconnections defined n the service
request; and,

ii) Perform any required data manipulations.

The method may include causing each component processing system to:
a) Implement a respective agent associated with each port; and,
b) Cause each agent to cooperate with an agent of another component in accordance with the defined

interconnections, to thereby allow data to be transferred between the ports.

The method preferably includes causing the second processing system to:
a) Determine performance information, the performance information being representative of one or
more criteria regarding the implementation of the components;
b) Provide the performance information to a user, the user selecting the components in accordance

with the performance information.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

The performance information generally includes at least one of:
a) An indication of the entity implementing the component;
b) An indication of the geographical location of the entity;
¢) An indication of the duration for implementing the component;
d) An indication of a cost associated with implementing the respective component; and,

€) A rating, the rating being indicative of the success of the component.

The method preferably includes:
a) Providing a number of different components for performing equivalent services, the different
components being provided by different entities; and,

b) Inducing competition between the entities to thereby drive improvement of the components.
The method typically includes generating revenue by charging a cost for the use of each component.

The method typically includes:
a) Providing at least some of the revenue to a respective entity implementing the component; and,

b) Having the operator of the second processing system retain at least some of the revenue.
The method typically includes causing the generated code to be context dependent.

In this case, the method typically includes causing at least some of the components to:
a) Determine a context for the executable code; and for the processing system; and,
b) Perform the data manipulation service in accordance with the determined context such that the

performed data manipulation is dependent on the context.

The processing system typically includes at least a memory, stack and registers, the context including at
least one of:

a) The state of at least one of the registers, stack and memory;

b) Other components in the defined component combination; and,

¢) Random factors.

The method generally includes making the data manipulation context dependent by at least one of:
a) Dithering;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-10 -

b) Meshing; and,
¢) Obscuring.

In a second broad form the present invention provides apparatus for generating computer executable code
using components, each component corresponding to a respective service for manipulating data in a
predetermined manner, the apparatus including one or more processing systems adapted to:

a) Define a combination of components corresponding to a sequence of data manipulations; and,

b) Implement the component combination to thereby perform the defined sequence of data

manipulations, such that the computer executable code is generated.

The apparatus preferably includes:
a) One or more component processing systems, each component processing system being adapted to
implement a respective component; and,
b) A first processing system, the first processing system being adapted to:
i) Define the component combination in accordance with input commands received from a user;
and,
il) Determine the component processing systems implementing the respective components; and
iii) Transfer service requests to each of the determined component processing systems.
The component processing system can be adapted to:
a) Receive the service request;
b) Generate a respective component instance; and,

c) Perform the service using the respective component instance.

The apparatus typically includes a second processing system adapted to store details of available

components.

In this case, the second processing system can be adapted to obtain the details of a component from a

respective component processing system.

The first processing system may be adapted to cooperate with the second processing system to thereby
allow a user to:
a) Select one or more of the available components; and

b) Define the component combination.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-11 -

Preferably the apparatus is adapted to perform the method of any one of the first broad form of the

invention.

In a third broad form the present invention provides a computer program product for generating computer
executable code using components, each component corresponding to a respective service for
manipulating data in a predetermined manner, the computer program product including computer
executable code which when executed on a suitable processing system causes the processing system to

perform the method of the first broad form of the invention.

In a fourth broad form the present invention provides a method of allowing users to manipulate data, the
method including using one or more processing systems to:
a) Store details of a number of components, each component representing a respective data
manipulation service implemented by a respective entity; and,
b) Provide details of selected components to users, thereby allowing the users to define a component

combination defining a sequence of data manipulation services for manipulating the data.

In a fifth broad form the present invention provides a method of providing a component embodying a data
manipulation service using a processing system, the method including;:
a) Determining a data manipulation service to be performed;
b) Determining a method of performing the data manipulation service; and,
c) Generating a component specification defining the data manipulation service, the component
specification including ports specifications representing ports used for receiving or outputting

data.

In a sixth broad form the present invention provides a method of providing a service embodied in a
component using a processing system, the method including causing the processing system to:

a) Receive a service request;

b) Generate a respective component instance in response to the received service request;

¢) Receive data to be manipulated;

d) Manipulate the data using the respective component instance; and,

€) Supply the manipulated data to an output.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-12-

In a seventh broad form the present invention provides a method of manipulating data by implementing a
defined combination of components, each component corresponding to a respective service for
manipulating data, the method including:
a) Determining from the component combination:
i) The components to be implemented;
ii) Connections between ports of respective ones of the components;
b) Any data required by the components;
¢) For each component:
d) Generate a service request, requesting the provision of the respective service;
e) Transfer the service request to an entity implementing the respective component, the entity being
responsive to the service request to perform the respective service thereby allowing the data

manipulations to be performed.

In an eighth broad form the present invention provides a method of defining a component combination
using a processing system, each component representing a respective service for manipulating data, the
method including:
a) Selecting one or more components to be combined; and,
b) Causing the processing system to:
1) Generate a graphical representation of each selected component on a display; and,
ii) Manipulate the graphical representation to define connections between ports of the

components.

In a ninth broad form the present invention provides a method of performing context dependent data
manipulations, the method including:

a) Determining a number of techniques for performing a desired data manipulation;

b) Defining a component embodying each of the determined techniques; and,

¢) In use, performing a selected one of the techniques in accordance with the context, such that the

resulting manipulated data is dependent on the context.

In a tenth broad form the present invention provides a method of implementing an agent for use in
component based data manipulation, the method including:
a) Receiving an agent indication;

b) Generating an agent; and,

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-13 -

c) Causing the agent to establish a connection with another agent in accordance with the agent

indication.

In an eleventh broad form the present invention provides a method of providing a dynamic component for
providing data manipulation services, the method including:

a) Determining a service to be performed;

b) Determining at least two methods of performing the service;

¢) Determining a method of selecting one of the methods in accordance with received data; and,

d) Generating a component specification defining a component embodying the data manipulation

service.

In a twelfth broad form the present invention provides a method of providing a service embodied in a
dynamic component using a processing system, the method including causing the processing system to:
a) Receive a service request;
b) Generate a respective component instance in response to the received service request;
c) Receive data to be manipulated;
d) Select a method of manipulating the data in accordance with the received data;
e) Manipulate the data using the respective component instance; and,

f) Supply the manipulated data to an output.

In a thirteenth broad form the present invention provides a method of providing connections for a number
of agents between two respective components in a component based data manipulation scheme, the
method including:
a) Providing a bundling sub-component in each component; and,
b) Defining a connection between:
i) First agents of the bundling sub-component and respective agents of the respective
component; and,

ii)) A second agent of each bundling sub-component.

In a fourteenth broad form the present invention provides a method of constructing code using a root
processing system and a number of component processing systems, each component processing system
being adapted to implement a respective component defined in a schematic, the method including:

a) Causing the root processing system to generate an agent including a payload;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-14 -

b) Transferring the agent to a number of components in sequence from a last component to a first
component;

¢) Causing the first component to interact with the agent to provide data in the payload;

d) Transferring the agent from the first component to the next component;

€) Causing the next component to interact with the agent to provide data in the payload,

f) Repeating steps (d) and (e) until the last component has interacted with the payload; and,

g) Transferring the agent to the root processing system, to thereby provide code.

In a fifteenth broad form the present invention provides a method of allowing users to manipulate data, the
method including;:
a) Providing details of a number of components, each component representing a respective data
manipulation service implemented by a respective entity;
b) Allowing users to define a component combination defining a sequence of data manipulation
services; and,
c) Causing the data manipulation services to be performed in accordance with the defined

combination.

The present invention also provides apparatus and a computer program product for performing the broad

forms of the invention.

Brief Description of the Drawings

An example of the present invention will now be described with reference to the accompanying drawings,

in which: -

Figure 1 is a flow diagram outlining an example of the production of software in accordance with the
present invention;

Figure 2 is a schematic diagram of an example of a processing system for generating computer executable
code;

Figures 3A and 3B are a flow diagram of an example of the method of creating computer executable code
using the processing system of Figure 2;

Figure 4 is a schematic diagram of an example of a web based system for generating computer executable
code;

Figure 5 is a schematic diagram of an example of an end station of Figure 4;

Figure 6 is a schematic diagram of an example of an entity processing system of Figure 4;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474
-15-

Figure 7 is a flow diagram of an example of the method of having an entity provide a component to the
base station of Figure 4;

Figure 8 is a schematic diagram of an example of a component properties dialog box;

Figure 9 is a schematic diagram of an example of an output properties dialog box;

Figures 10A to 10E are a flow diagram of an example of the method of creating computer executable code
using the system of Figure 4;

Figure 11 is an example of a schematic representation that is presented to the user;

Figure 12 is an example of a component representation that is presented to the user;

Figure 13 is an example of the schematic representation of Figure 11 modified to include interconnections;
Figure 14 is an example of a schematic representation of the internal structure of the component of Figure
12;

Figure 15 is a schematic diagram of an example of a schematic representation for two interconnected
components;

Figure 16 is a schematic diagram demonstrating the operation of the agents of Figure 15;

Figure 17A is a schematic diagram demonstrating the operation of the component server;

Figure 17B is a schematic diagram demonstrating the operation of the component server of Figure 17A to
present components to the base station of Figure 5;

Figure 17C is a schematic diagram demonstrating the operation of the component server of Figure 17A to
present agents to other components;

Figures 18A to 18E are schematic diagrams of a first example demonstrating the operation of hand off of
agents;

Figure 19 is a schematic diagram of a second example demqnstrating the operation of hand off of agents;
Figures 20A and 20B are schematic diagrams demonstrating the operation of agent bundles;

Figure 21 is a schematic diagram demonstrating the operation of a sequence of agent bundles;

Figure 22 is a schematic diagram demonstrating the operation of a debundle component;

Figure 23 is a schematic diagram demonstrating the operation of bundle manipulation;

Figure 24A is a schematic example of a hierarchical bundle;

Figure 24B is a component schematic of an example of a component adapted to modify the payload of the
agent A; shown in Figure 24A;

Figure 24C is the component schematic of an example of a component adapted to modify the payload of
the agents A, A, shown in Figure 24A;

Figures 25A to 25E are a schematic example of the process of handing-off an agent bundle;

Figures 26A to 26G are examples of the use of chaining;

Figure 27 is a schematic of an example of a component adapted to provide one-to-many interconnections

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 16 -

to other components;

Figures 28A to 28C are a schematic example of the process of staged construction;

Figures 29A and 29B are examples of component schematics highlighting the operation of dithering; and,.
Figures 30A and 30B are examples of component schematics highlighting the operation of meshing.
Figures 31A to 31V are examples of primitive component schematics;

Figure 32A is an example of a component representation of an "Add1" componeht;

Figure 32B is an example of an internal schematic of the "Add1" component of Figure 32A,;

Figure 32C is an example of a test schematic using the "Add1" component of Figure 32A;

Figure 33 is an example of a component representation of an "Add2" component;

Figure 34A is an example of a component representation of an "Add3" component;

Figure 34B is an example of an internal schematic of the "Add3" component of Figure 34A;

Figure 35A is an example of a component representation of an "Add5" component;

Figure 35B is an example of an internal schematic of the "Add5" component of Figure 35A;

Figure 36A is an example of a component representation of a "Put Pixel" component;

Figure 36B is an example of an internal schematic of the "Put Pixel" component of Figure 35A; and,
Figure 36C is an example of a test schematic using the "put Pixel" component of Figure 35A.

Figure 37A to 37D are examples of internal schematics of an assign component; and,

Figures 38A and 38B are examples of a root schematic for implementing “Hello World” and a double
print “Hello World” examples.

Detailed Description of the Preferred Embodiments
A number of examples of systems for combining formalised data manipulation services to allow code to

be constructed at the byte level will now be described.

In particular, the systems utilise specific and ultimately highly specialised data manipulation services that
are embodied as components. In general each component is adapted to receive and output data via one or

more respective ports.

Combining these components in an appropriate fashion allows bytes to be inserted into a file which when
completed represents code for use with a processing system. In general, the file is a binary file such that
when completed it represents executable code. The resulting executable code can therefore represent
applications software or the like. However, other forms of code can be generated such as source code,

object code or linked code. This allows middleware applications such as Java applications to be

10 ~

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-17 -

generated. This allows computer executable code to be formed without the requirement for source codes,

compilers, or the like.

The manner in which this is achieved will now be described in more detail.

An example of the process for producing computer executable code will now be described in outline with

reference to Figure 1.

As shown, the first step is to determine the requirements for the computer executable code to be created at
step 100. This is achieved by considering the functionality that needs to be implemented by the resulting

computer executable code, as will be explained in more detail below.

Once the desired functionality has been determined, a number of components are selected that when
combined in an appropriate manner will allow executable code having this functionality to be created. In
this regard, each component embodies a respective service for manipulating data, and combining
components in a suitable sequence therefore allows computer executable code to be produced. Thus, for
example, the services can include processes such as the modification, removal, movement or creation of
data. This allows each component to contribute in some way to the formation of the computer executable
code. The services may be performed automatically through the use of computer executable code, or the
like. Alternatively the services may be performed manually, or through combination of manual and

automatic implementation.

The level of complexity of the component services will vary as will be explained in more detail below.
Thus, for example, simple components may operate to erect one or more bytes in a binary file, which are
then, used in forming CPU instructions, whereas more complex components may operate to erect several

CPU instructions simultaneously.

~In order to achieve this, each component is adapted to receive data via one or more ports as acting as

respective inputs, and then perform manipulations of the data as required. Similarly, the majority of
components will also include one or more ports adapted to act as outputs for allowing manipulated data, or
other information to be output. The ports will generally be referred to as inputs and outputs for ease of
description, although it will be appreciated that generally ports are bi-directional, and are adapted to

transfer data to or receive data from a respective port on another component.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-18 -

In use, the components interact with each other by transferring data therebetween. Thus, for example, the
output of one component may be connected to the input of another component, to allow two services to be
performed in sequence. Combining appropriate ones of the more basic level components in a hierarchical
structure can also be used to allow more complicated services to be impiemented as a collection of more

basic services.
Some examples of components are set out below and in Appendix A.

Accordingly, at step 120, a combination of the selected components is defined which will allow the
computer executable code to be created. In particular, this specifies how the components should be
interconnected via the ports, such that when the services provided by the components are implemented at

step 130, the interaction results in the generation of the desired computer executable code.

It will be appreciated that the implementation of this technique can be achieved in a number of ways.
However, in its broadest form, this process can be performed using a single processing system an example

of which is shown in Figure 2.

In particular, the processing system 10 generally includes at least a processor 20, a memory 21, and an
input device 22, such as a keyboard, an output device 23, such as a display, coupled together via a bus 24
as shown. An external interface may also be provided as shown at 25, for coupling the processing system

to a store, such as a database 11.

In use, the processing system is adapted to allow details of available components to be stored in the
database 11. A user can then define a combination of selected components using the input and output
devices 22, 23, allowing the processing system 10 to generate the computer executable code. From tflis, it
will be appreciated that the processing system 10 may be any form of processing system such as a

computer, a laptop, server, specialised hardware, or the like.

The manner in which the processing system 10 may be used to generate computer executable code will

now be described with reference to Figures 3A and 3B.

In particular, this example describes a situation in which a number of automated components are provided
in the database 11. Accordingly, the components may be implemented automatically without manual

intervention in order to perform the required services, thereby allowing a user to generate computer

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-19-

executable code using the processing system 10 alone.

In order to achieve this, the user determines requirements for the computer executable code to be created
at step 200. At step 210 the user provides a component request to the processing system 10. The request
may be in any form and will typically result in details of the available components stored in the database

11 being provided to the user.

Tn one example, details of the components are stored in the form of component specifications, which
indicate at least the service embodied by the respective component. The component specifications may
also include input and output specifications providing details of the type and/or form of data that the ports
are adapted to receive/provide. The component specifications may be any one of a number of forms
depending on the implementation of the system, and therefore may be provided as, or at least include a

graphical representation, text data, operational parameters or the like.

At step 220, the processing system 10 accesses the component specifications stored in the database 11,
and uses these to provide an indication of one or more of the components to the user at step 230,
depending on the nature of the request. Thus, for example, the request may specify that only details of
components providing respective types of service are provided. Thus, the user can specify one or more
services to be performed in the request, with the processing system 10 responding to only provide details
of those components able to complete all or part of the specified services. The indication may be in any
one of a number of forms depending on the implementation, and may include graphical or textual
representations, or the like. It will therefore be appreciated that the indication may be all or part of the

specification itself.

The user uses the provided instructions to select appropriate ones of the components and provide a
corresponding component selection to the processing system 10 at step 240, thereby indicating the one or

more selected components.

The processing system 10 uses this information to generate a component indication at step 250. This may
be in a graphical form or may be in the form of a list specifying the components selected, and can

optionally be presented to the user on the display 23, or the like.

At step 260 the user determines at least two of the selected components to be connected. It will be

appreciated that in order to perform the connection, it is important that the format and/or type of data

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-20 -

handled by the respective components to be connected is compatible.

Thus, for example, if the output of a first component is coupled to the input of a second component, then it
is important that the service of the second component is able to operate on the data output by the first
component. This process may be performed manually by observation of the input and output
specifications, or alternatively may be performed with the assistance of agents, as will be explained in

more detail below.

The user then provides a connection indication representing the desired connections to the processing
system 10 at step 270. This may be achieved by providing details of each input and output of the two
different components to be connected, however alternatively the mechanisms may also be used such as

manipulation of graphical representations or the like.

In any event, at step 280 the processing system 10 operates to interconnect the components in accordance

with the connection indication.

At step 290 the user determines if more connections are required and if so returns to step 270 to define
further connections. If not, the process moves on to step 300 at which point the user determines if
additional components are to be selected. If so, the process returns to step 210, allowing steps 210 to 290
to be repeated.

Otherwise, the user optionally reviews the defined component interactions to determine if the executable
code is to be constructed at step 310. In particular, this is generally performed to assess the expected
performance of the code, the construction time, to determine if the code can be constructed by the
specified component combination, or the like. Other factors that may be assessed include the expected

cost, which may be relevant if the user has to pay a fee for the implementation of each component.

If it is determined that the specified component interactions are not acceptable for any reason and that the
code is not to be built at step 320, then the process ends at step 330. It will be appreciated that as an
alternative option, the user may return to any previous step in the process and revise the specified
component interactions, for example through the removal, modification or addition of components, or

component interactions.

Otherwise the user causes the services defined by the interconnected components to be performed at step

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-21 -

340.

The manner in which the services embodied in the components are implemented will vary depending on
the respective component form. As described above, in this example, each of the components is formed
from computer executable code stored in the store. Accordingly, when a component is to be executed an
instance of the code can be downloaded on to the processing system 10 and executed in the normal

manner.

Accordingly, each service embodied in the components will be implemented so as to manipulate data
stored either in the memory 21, or the database 11, or received from another component, in accordance

with the specified interconnections.

Thus, for example, initial data may be supplied to the input of a first component, which then operates to
manipulate the data in accordance with the embodied service. When this has been completed, the
manipulated data is provided at the first component output. The data will then be transferred to the input

of a second component, allowing the service defined by the second component to be performed.

A similar process will occur for components having multiple inputs and/or outputs.

In the above example, each service is implemented using executable code. This should be distinguished
from previous prior art system utilising so called "components”, in which each "componen " is a fragment
of source or object code. In these systems, the fragments of source code are combined before being
compiled or linked. This must be contrasted to the current system in which components embody data

manipulation services, which in one example may be implemented by executable code.

Tt will be appreciated that variations may arise for different implementations. Thus, for example, the
components may not all be implemented by the processing system 10 itself, and instead may be

implemented remotely on other processing systems, as will be explained in a further example below.

Similarly the components may not all be performed automatically, and may require the user to provide
inputs, transfer data, and perform some data manipulation. This can either be intentional arising as a
result of the manner in which the service associated with the component is implemented. Alternatively,
manual intervention can be unintentional, if for example a fault occurs in the implementation that requires

user input to resolve an issue, such as the requirement to transfer incompatible data formats between

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

=22 -
components.

In the current example, once all the services embodied in the respective components, are completed the
computer executable code will have been generated in the memory 21. Once generated, the code can be

output to the user, allowing the code to be implemented on other processing systems, in the normal way.

It will be appreciated that this is feasible because the components interact both horizontally and vertically
in a hierarchical fashion. Accordingly, complicated services can be performed easily by combining

simple components in an appropriate manmner.

Accordingly, it will be appreciated that through the creation of basic components, which are then
combined in appropriate manners, complicated data manipulations can be performed, in turn allowing

computer executable code having a complex functionality to be developed.

It will be appreciated that the process described above with respect to the processing system 10 may be
implemented using a number of different architectures. Thus, for example, the system can be
implemented using a distributed web based system, or the like, with user accessing facilities provided by a

central processing system 10 via the Internet, or another communications network.
An example of this will now be described in more detail with respect to Figure 4.

In particular, in this example, one or more central processing systems 10 (two shown in this example for
clarity purposes only) are provided at a base station 1, which is coupled via a communications network,

such as the Internet 2, and/or a number of local area networks (LANSs) 4, to a number of end stations 3.

In use, the components may be provided at, and implemented by, the processing system 10, as described
above. Alternatively, the componenté may be provided by one or more respective entities, each of which
operates one or more respective entity stations 5, which are also coupled to the Internet 2, and/or the
LANS 4, as shown. In this example, each entity station 5 is formed from an entity processing system 15,

coupled to a Store, such as a database 16, as shown.

In use, users of the system can use the end stations 3 to communicate with the base station 1 to thereby

obtain the provision of services embodied in suitable components.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-23.

This may be achieved in a number of manners however in this example, access to the services is provided
through the use of web pages, although this is for illustrative purposes only. In order to achieve this, each
end station 3 is therefore formed from a processing system that is adapted to access web pages and

transfer data to the end station 1, as required.

An example of a suitable end station 3 is shown in Figure 5. As shown the end station 3 includes a
processor 30, a memory 31, an input device 32, such as a keyboard, or the like, an output device 33, such
as a display, which are coupled together via a bus 34. The processing system is also provided with an

external interface 35 for coupling the end station 3 to the Internet 2, or the LAN 4, as required.

In use, the processor 30 is adapted to communicate with the processing system 10 provided in the base
station 1 via the communications networks 2, 4 to allow the processing system services to be accessed.
Accordingly, it will be appreciated that the end stations 3 may be formed from any suitable processing
system, such as a suitably programmed PC, Internet terminal, lap-top, hand-held PC, or the like, which is

typically operating applications software to enable data transfer and in some cases web-browsing.

The components can be implemented either at the processing system 10 itself, or at one of the entity

processing systems 15, depending on the nature of the component and the service provided therein.

The entity processing system 15 must therefore be able to communicate with the processing system 10 via
the communications networks 2, 4. In order to achieve this, the entity processing system 15 would

generally be similar to the processing system shown in Figure 6.

As shown the entity processing system 15 includes a processor 40, a memory 41, an input device 42, such
as a keyboard, or the like, an output device 43, such as a monitor, which are coupled together via a bus 44.
The processing system is also provided with an external interface 45 for coupling the entity station 5 to the
Internet 2, or the LAN 4, as well as the database 16, as required.

In use, the processor 40 is adapted to allow the entity to perform the services encapsulated in respective
components. Accordingly, it will be appreciated that the entity stations 5 may be formed from any suitable
processing system, such as a suitably programmed PC, Internet terminal, lap-top, hand-held PC, or the
like. As the services may be data intensive, the entity processing systems 15 are often formed from

servers, or the like.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-24 -

In any event, it will be appreciated that the end station 3 and the entity stations may be implemented using
common processing systems, and the distinction between end stations 3 and entity stations 5 is primarily

for the purpose of explanation only.

To allow components to be implemented by the entity stations 5, whilst still allowing users of the end
stations 3 to access the services provided therein via the base station 1, it is typical for at least some details
of the components to be stored in the database 11, in the form of component specifications. The
component specifications may be in any one of a number of forms, and may include graphical
representations, or the like. However, in general the component specifications include sufficient
information for a user to determine the service embodied by the respective component. It should be noted
that the component specification provides enough information to allow the component to be selected and
used. Thus, it will include an indication of the data manipulation that can be performed, but nit how this

achieved. The importance of this will be highlighted in more detail below.

The manner in which computer executable code may be created will now be described with reference to

Figure 7.

In particular, at step 400 the entity determines a manner of providing a respective service. This may be
achieved in a number of ways and will depend on the respective service and the manner in which the

entity wishes to provide the service.

Thus, for example, the entity may provide the service manually such that the entity receives data at the
entity station 5, modifies the data using the entity processing system 15, and then returns the modified data

to the processing system 10 or the end station 3, all under control of the entity.

Alternatively, the process may be performed by computer executable code, executed by the entity

processing system 15, in which case, the entity must first determine the necessary executable code.

A combination of manual and automatic processes may also be used. Furthermore, data may not be
returned to the processing system 10 or the end station 3, but instead may be transferred to another one of

the entity stations 5 for manipulation by another service embodied by a different component.

As a further option, the entity may provide a service in the form of a compound component. In'this case,

the entity effectively defines a combination of previously existing components, which when combined

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-25 -

define a component allowing the required service to be performed. In this case, the entity station 5 will be
adapted to "hand-off" implementation of the components contained within the compound component to

other ones of the entities, such as through other entity stations 5, and/or the base station 1, as required.

In any event at step 410 the entity defines a component encapsulating the provision of the service using
the entity station 5. In order to achieve this, the entity processing system 15 will generally execute
applications software that aids the entity in this process. The software will prompt the entity to provide
information that will be required by the processing system 10 to allow the functionality provided by the
respective component service to be understood by an end user. Thus, for example the entity may be
presented with a dialog box including fields defining the types of information that are required in order for

users to determine the operation of the component.

In general, the required information includes at least component, input and output specifications. In
particular, the component specifications are used to provide information regarding the service provided by
the component, together with information regarding the component author, implementing entity, or the
like. The component specification also includes sufficient information to allow the processing system 10

or the end station 3 to access the services embodied by the component.

Accordingly, the component specifications typically include at least:

e Manufacturer ID — used to identify the entity providing the service

e Component ID — used to identify the respective component

¢ Location information — used to identify where the component is implemented

e Description — an indication of the service provided by the component

This information may be provided for example through the use of a properties dialogue box shown for
example in Figure 8. The properties dialogue box will prompt the entity to provide information such as
the component name, the component description, the author, the address, report number or the like. In this
example, the figure shows the graphical user interface (GUI) for a designer program which will be
described in more detail below. In this case, the designer program has an “add_other” component loaded
for editing. The GUI has three major fields, namely:

1. Tool bar - which permits the editing of the component representation.

2. Component representation - What will be available at the forum once published

3, Component details - additional information that will be combined with the component representation

that is required by the end user.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-26 -

The applications software installed on the entity processing system 15 can also be used to generate any
identifiers that may be required. In particular, it is generally necessary to generate identifiers to allow

both the entity, and the component to be uniquely identified.

Furthermore, when implementing the component to provide the embodied service, an entity station 5 may
be implementing the same component simultaneously for a number of different code generation projects.
In this case, several different component instances will exist, with one or more component instances being
applied to each respective code generation project depending on the implementation. Accordingly, in this
case, it is also necessary to generate respective identifiers allowing each component instance to be

uniquely identified.

The component specification may be provided in any form, although typically this is provided in the form
of an XML file generated in accordance with a predetermined XML schema. This will typically be
achieved by having software implemented by the end station 3 translate the information provided through
the use of the dialogue box into an XML file.

In addition to this, the input and output specifications, are used to indicate any information required to
allow data to be transferred between the components, and this will therefore typically depend on the nature

of the respective component.

For example, the components may be adapted to handle a variety of data at respective inputs. This may
include for example, different data formats and/or different data types. In this case, the input and output
specifications include details of the types and/or formats of data that can be received by the component
inputs, or supplied by the component outputs. However, if components are only adapted to receive one
form or type of data, this will not be required. ~Addressing information may also be provided to allow
inputs and outputs to be connected. This allows components to communicate with each other, by

transferring data from the output of one component to the input of a subsequent component.
In one example, control of this communication is achieved using agents, which are software applications
executed at the location at which the respective component is implemented. The operation of the agents

will depend on the implementation of the system, and in particular the nature of the components involved.

Thus, for components able to handle different types of data, the agents may be adapted to perform

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

_27-

negotiation to select between available data types and formats specified in the input and output
specifications, to allow respective components to communicate directly. Alternatively, the component
may only be adapted to receive or output data in a single format. Accordingly, no such negotiation is

required.

Agents are generally software constructs operated by the entity station to allow a component instance to
communicate with other content instances. The input and output specifications may therefore also include

details of the manner of operation of the respective agent.

In any case, details of the input and output specifications may be provided through the use of a dialog box
that prompts the entity for details regarding the respective input and/or output and associated agent. An

example of a dialog box for an output is shown in Figure 9.

The input and output specifications are then typically integrated into the component specification, and
therefore are incorporated into the respective XML file. However, this is not essential, and alternatives

may be defined by respective XML files.

The operation of the agents will be described in more detail below. However, it will be appreciated that

the entity also operates to construct agents when encapsulating the service as a component.

It is also possible for the negotiation to be performed using techniques other than agents, depending on the

implementation of the invention.

In any event, at step 420 the entity processing system 15 operates to store the generated component, input
and output specifications, and agent details, typically in the database 16. The entity station 5 is then used
to access the base station 1 at step 430, allowing details of the component, input and output specifications,

to be transferred to the base station 1 at step 440, for storage in the database 11 at step 450.

It will be appreciated that if the component is self contained, the entire component may be downloaded to
the database 11, for storage thereon, in which case there is no requirement to store any information at the
entity station 5. This allows the component service to be implemented by the processing system 10
automatically, as described above for example with respect to Figures 3A and 3B. Alternatively, the
component may be transferred to the end station 3 for implementation thereon. These techniques will

generally result in the manner of implementation of the services to be made publicly available.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-28 -

The entity will usually wish to retain at least some form of control over the operation of the component

and accordingly the component service is typically implemented at the entity station 5.

This is generally required if the service implementation requires manual input from the entity, but may

also be desirable for other reasons.

Thus, for example, this allows the entity to monitor use and operation of the component, as well as making
it easier for the entity to adjust and/or modify the operation of the component to improve its efficiency.
Furthermore, this allows the entity supplying the service to provide only the manipulated data, or another
output, and not divulge the method used to implement the service. This allows the technique for
implementing the service to be retained as a trade secret, specialised knowledge or the like, as will be

described in more detail below.

Furthermore, as the system is adapted to handle a large number of components, it is generally undesirable
to have all these located at the base station 1, as the database 11, and processing systems 10 would rapidly

become over used.

Accordingly, the components are usually implemented at the entity stations 5, with details of the
specifications and the agents being transferred to the base station 1, to allow users of the end stations 3 to
select the components for use. In particular, when the users of the system select components in this
fasﬁic’m, it is transparent to the user whether the component itself is actually provided at the base station 1
or whether the component is provided at an entity station 5. This is because all the specifications and
agent details needed to access the entity station 5 providing the respective service are stored in the base

station 1.

In the event that the service embodied by the component is implemented at the entity station 5, then it is
typical to further generate a private component specification, which sets out details of the manner of
implementation of the respective service. This may include executable code and/or instructions used by
the entity when performing the service. Alternatively, if the entity implemented the data manipulation
solely by using other components, the private specification may be in the form of a component schematic,
which is constructed and implemented in accordance with the techniques described herein. It will be
appreciated from this that entities can define service implementations by contracting out data manipulation

services to other entities in a specific combination.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-29 -

In any event, if a private specification is created this is stored at the entity station 5 at steps 460.

Private specification should be contrasted with the component specification described above which only
describes the sérvice provided, and not the manner of implementation. The private specifications are
never made available to individuals outside the entity, thereby allowing the entity to retain the method by
which the respective service is implemented as secret. This therefore helps the entity retain protection for
their method, as will be appreciated by persons skilled in the art. In any event, by only providing a
definition of the implemented service in the component specification, it will be appreciated that there is no
danger in making the component specification available to the public, by having the component

specification stored on the base station 1.

A detailed example of the manner in which a user uses the base station 1 to produce applications software

will now be described in more detail, with respect to the flow chart set out in Figures 10A to 10E.

As shown at step 500 in Figure 10A the first stage is for a user to determine the requirements of the
computer executable code to be created. At step 510 the user then accesses the base station 1 using the

end station 3.

At step 520 the user selects a component search using the end station 3 and this causes the processing
system 10 to provide details of available components based on component specifications stored in the
database 11, at step 530. In particular, the processing system will typically allow users to search through
categories of components, with the categories defining different forms of functionality. This allows users

to rapidly locate components that embody the required services.

At step 540 the user reviews the component properties and selects one or more components. This may be
achieved in a number of ways, although typically the user will be presented with navigable lists that
provide at least a component title and brief additional description of suitable components. The user can
then select a respective one of the components allowing further details to be provided, and ultimately, the

selection to be made.

The further details may be provided for example through the use of the properties dialogue box similar to
that shown for example in Figure 8. In this case, the details include information such as the component

name, the component description, the author, the address, report number, or the like, and will be

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-30 -
determined directly from the component specifications stored in the database 1 1.

At step 550 an indication of the selected components is stored. This may be achieved in a number of
manners depending on the implementation. For example, the end station 3 may generate component data
representing each component selected by the user, which is then stored in the memory 31.. Alternatively,

the processing system 10 may generate the component data and store it in the database 11.

At step 560, the end station 3 (or alternatively the processing system 10) generates a schematic
representation, including representations of the selected components. The schematic representation is
used to allow the user to define the component interconnections, as will be described in more detail below.
In particular, this allows the user of the end station 3 to visualise the components and how these will need

to interact with each other to produce the computer executable code.

The schematic representation includes a representation of each selected component and this is generally
defined by the entity and transferred to the base station 1 as part of the component specifications. When
the user selects a respective component, the corresponding component representation is transferred from

the base station 1 to the end station 3, and added to the schematic representation, as required.

It will therefore be appreciated that the indication of the component stored by the end station 3 may be in
the form of the component representations. Furthermore, selection of components may be achieved by

simply dragging component representations, and dropping these into the schematic representation.

An example of a schematic representation is shown in Figure 11. As shown, the schematic representation
is displayed in a schematic window 50, and in this example, includes four component representations 51,
52, 53, 54. Each of the components has a number of inputs and outputs, as shown generally in the

component representation at 514, 51B 51C, ...

If the user selects a respective one of the components shown in the schematic representation, the user is
presented with a single component representation, an example of which is shown in Figure 12. In
particular, Figure 12 shows a component display screen 60 including a component representation 52

having a number of input and output representations 52A, 52B, 52G presented thereon.

The component display screen also includes a number of window selection tabs 61, which allow the user

to navigate between the component window 60 shown, the schematic window 50 mentioned above, and an

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-31-

auto select window.

An agent window 62 is also provided, which displays details of a selected input or output agent (in this

example agent 52G), obtained from the respective input and/or output specification.

In use, the user can navigate around the component and schematic representations to allow various
information regarding the components to be provided. Thus, for example, by selecting the component
representation 52, this can allow the properties of the corresponding component to be displayed, as shown
for example in Figure 8. Similarly, by selecting a respective one of the input and/or output
representations, details of the respective input or output will be displayed in the agent window 62. These
details will typically be provided by displaying an input or output dialog box, similar to the one shown in

Figure 9, as appropriate.

In any event, the user reviews the presented schematic representation and determines if further
components are required at step 570. If it is determined that more components are required at step 580,
the process returns to step 520 to allow the user to return to the component search tool and select more
components using the end station 3. Representations of these components can then be added to the

schematic representation as required, for example using drag and drop techniques.

Once the required components (or at least some of the required components) are selected, through the
placement of corresponding component representations on the schematic representation, the user

determines component inputs and outputs that are to be connected at step 590.

In order to ensure that the components may interact successfully, the user will typically check at this point
whether the input and output that are to be connected are compatible at step’ 600. In particular, the user
checks whether the input and output can handle any common data types and/or formats. This information
can be determined by examination of the input and output details contained in the input and output
specifications. It will be appreciated that consideration of this is also usually taken into account when

making initial selection of the components.

If the user determines that the input and output cannot be connected at step 610, the process returns to step

520 to allow one or more alternative components to be selected.

Otherwise, the user selects a connection tool and operates to generate a connection representation between

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-32-

the input and output of the respective component representations on the schematic representation, at step
620. An example of this is shown in Figures 13 and 14. The end station 3 interprets the connection
representation as a connection between the respective input and output, and generates connection data

representing the connection.

In particular, Figure 13 shows the schematic representation of the component representations 51, 52, 53,
54 of the component representations shown in Figure 11, with the components being interconnected using
the connection representations shown generally at 65. In particular, in this example, the component
representation 52 is coupled to a duplicate component representation 51, a BNE addressed component

representation 53, and a build component representation 54, as shown.

Figure 14 shows that the component representation 52 corresponds to a compound component formed
from a number of sub-components. These sub-components are in turn represented as a LDAA component
representation 70, a DECA component representation 71, an STAA component representation 72, and two

build component representations 73, 74, interconnected by the connection representations 65, as shown.

The combination of components represented by the schematic shown in Figure 13 allow computer
executable code forming a decrement counter to be produced. However, it will be appreciated that this
example is provided to demonstrate the operation of the schematic representation and the actual

functionality implemented is not important. Additional examples are described in more detail below.

In any event, the user can select a respective input and output on the schematic representation, and then
draw on a connection representation between the inputs and outputs at step 620 thereby defining a

connection between the respective input and output.

In this example, neither the end station 3 or the processing system 10 operate to examine the validity of
the connections, and in particular it is not determined whether data can successfully be transferred from
the output of the first component, to the input of the second component. However, it will be appreciated

that checking by any of the processing systems may be performed in some implementations.

In any event, in this example, the end station stores an indication of the created connection in the form of

connection data at step 630.

The user then reviews the schematic representation and determines if further connections are required at

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-33-

step 640. If it is determined that further cormections are required at step 650, the process returns to step

590 to allow further connections to be defined in the manner described above.

Thus effectively, the user will use the drawing tool to define all the connections required in the schematic
representation. This will typically require that each input and output of each component is coupled either

to another output or input, although appropriate termination may be provided in some cases.

If it is determined that no further connections are required for the components in the schematic
representation at step 650, the user reviews the schematic representation and determines if more
components are required at step 660. This allows the method to return to step 520 so that more

components may be included, if it is determined that more components are required at step 670.

Thus, the user can effectively select two or more components and operate to interconnect these, before

~

going back to select further components.

If it is determined that no further components are required at step 670, the user indicates that the computer

executable code is to be constructed at step 680.

It will be appreciated that the use of the graphical based system described above is for the purpose of
example only, and that alternative techniques may be used to define component combinations. For
example, components could be represented with a suitable text based language, where functions could
represent components, statements could represent component combinations, and variables could represent

agents.

At this point, the user may optionally review the schematic representation and determine if the computer
executable code is to be generated, as outlined above for example with respect to steps 310 to 340 in
Figure 3B. In particular, the user will generally be presented with information regarding the overall code
generation process, such as an indication of the overall cost, time to build, resource usage, resultant

performance, or the like.

This is typically generated by having the end station 3 and the base station processing system 10 cooperate
to determine the relevant information. Thus for example, the end station 13 may transfer an indication of
the schematic to the processing system to allow the relevant values to be determined, or the information

may be included as part of the component specification. If the schematic build process is hosted by

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

_34 -

processing 10, then the information can be determined and simply displayed to the user on the end station.

In any event, the allows the user to assess whether they are satisfied with the construction process defined
by the respective schematic representation, and therefore whether they wish to proceed with construction

of the computer executable code.

The construction of the computer executable code by implementation of the services defined in the
schematic representation is known as a build process. In one example, this is implemented through the

use of agents, which operate to allow the components to interact.

The manner in which this is achieved will depend on the respective implementation. In one example, the
agents are adapted to do no more than receive data from another component. In this case, a single transfer
of data occurs between the agents on the respective components, and this form of communication may
therefore be considered a single event transaction. However, in the event that components are adapted to
handle different data formats, negotiation is required to determine common data formats. This will require
transfer of a number of messages between the agents known as multiple event transactions. For the
purpose of this example, multiple stage transactions will be described, although it will be appreciated that
the general techniques equally apply to single stage transactions.

It will also be appreciated that the build process may alternatively, or additionally be performed by the
processing system 10, one or more of the entity stations 5, other processing systems, or a combination of
the above depending on the respective implementation. However, the remainder of this example will be

described with reference to the build process being performed by the end station 3.

In this example, upon receiving instructions to proceed with the build process at step 680, the end station 3
accesses the component and connection data at step 690. At step 700, the end station uses the component

data to determine the components to be used in generating the computer executable code.

At step 710, the end station 3 implements a component server which is a software entity executed by the
end station 3, to allow the end station to implement a component instance. In this case, the component
server is at the highest level in the hierarchy, and is therefore used to implement a root component
containing all other components in the schematic. As a result, the component server is known as the root

server.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-35-

At step 720, the end station 3 uses the schematic and the component specifications to determine those
entity stations 5 that are supplying the respective components. At step 730, this information, together with
the connection data from the schematic is used to determine details of the required connections between

the agents of respective components.

At step 740 the end station 3 generates a purchase order corresponding to each component to be used. In
particular, the purchase order is adapted to be sent to the entity providing the respective service, via a
respective entity station 5, to request the provision of the services associated with the respective
component. In general each purchase order will include at least the following information:

e Manufacturer ID

e Component ID

e Build ID — used to identify the respective build instance

e Restrictions — an indication of any restrictions placed on the implementation by the user

e Details of the required agent connections.

It will be appreciated that whilst the above describes the use of purchase orders, these are not essential,
and alternative techniques for ordering the implementation of services associated with respective

components may alternatively be used.

At step 750 each purchase order is sent to the respective entity. In one example, this allows each entity to
determine if it is capable of performing the respective service. Thus for example, an entity may become
unavailable due to implementation problems such as faults with the computer executable code or

unavailability of an individual performing the service manually, or the like.

In the event that a component is formed from a number of sub-components, the inability of an entity to
implement the component may arise from the failure of one or more of the sub-components, which in turn
may be the responsibility of other entities. This will be determined by the entity station 5 based on
responses from entity stations 5 implementing the sub-components and will be indicated to the end station
3.

If an entity cannot perform a service, whether this is due to a problem with the respective component
itself, or any associated sub-components, an indication of this can be transferred to the end station 3. If
the end station 3 determines not all components can be performed, then the process can either end, or

allow the user to update the schematic representation by selecting one or more alternative components.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-36 -
Thus, for example, the process can return to step 520, to allow different components to be selected.

Assuming the service can be performed, or if no such assessment is made, the entity station 5 generates a

component server at step 760 to allow the respective component instance to be performed.

In this regard, the component server implemented by the entity station 5, may need to generate respective
purchase orders which are sent to any entity stations providing sub-components used in the
implementation of the component. It will therefore be appreciated that the entity station 5 implementing
the component can act in a manner similar to the end station 3 by sending out respective purchase orders
to entity stations 5 implementing the sub-components. Thus the entity station 5 uses the component
specification to determine the sub-components and so on, in a manner similar to steps 700 to 740

performed by the end station 3. This highlights the hierarchical nature of the process.

Alternatively, the data manipulation service may be implemented by executable code, in which case this
will be implemented by the component server as 2 component instance, as will be appreciated by persons

skilled in the art. Other options are also available as will be appreciated by persons skilled in the art.

At step 770 the agents associated with each input and each output to be connected are activated. In
general, the agents are software entities implemented by the component server implementing the
respective component instance. Accordingly, the agents will be activated as soon as the respective entity
station 5 has received the purchase order, and has generated the respective component instance. Thus,
activation of the required component instances and associated agents will occur in sequence throughout

the schematic as the required purchase orders are propagated to the required entity stations 5.

In particular, the agents are activated in a predetermined sequence as will be described in more detail
below. In a multiple event transaction environment, as an agent is activated, the agent determines details
of the respective data formats and/or types from the respective input/output specification at step 780. At
step 790 the agents then compare the determined data formats/types, by establishing a connection in
accordance with the connection information provided to the respective component server in the purchase
order. In particular, the agents of the respective input and output to be connected transfer messages via

the communications networks 2,4 as required, based on the addressing information in the purchase orders.

In any event, to achieve the negotiation, the messages include indications of the respective data

formats/types to determine if there are any data formats/types in common. In this regard, it will be

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-37-

appreciated an input and output can only successfully communicate if both the input and output are able to

handle a common data format and/or type.

Whilst this may be performed automatically by forming the agents from executable code able to determine
the common formats, negotiation may alternatively be performed manually, for example, if the service
embodied by the components are manually implemented. In this case, the agent will launch a dialogue
box to allow operators at different entity stations to communicéte and negotiate. This will typically be

implemented in 2 manner similar to a chat session between the two operators.

If it is determined that there are no data formats/types in common at step 800 the process proceeds to step
810 at which points the agents determine that the components can not be interconnected. This will occur
for example if one of the components is outputting data in a first format whilst the other component needs
to accept the data in a second format. If this occurs, the build process is halted and the user informed at
step 820. This allows the user to take corrective measures 0 allow the build process to continue. This
may be achieved, for example by adding in additional components or agents, or by manual manipulation

of the data, to allow the error to be corrected.

In this regard, if the agents are provided on sub-components of a component implemented by one of the
entity processing systems, it may be the responsibility of the entity implementing the respective

component to ensure that the sub-components establish communication.
Alternatively, the build process can be terminated such that the software cannot be constructed.

In any event, if the respective input and output have data formats/types in common, then at step 830 the
agents determine if the respective inputs and outputs are ready to communicate, in which case

implementation of the services will commence at step 850.

Tt will be appreciated from this that in the case of a single transaction event connection being established
between agents, this will general involve, simply activating an input agent to receive a message containing
data from any another agent. Similarly, in the case of an output agent, the agent will be activated, and will
take no action until output data is provided by the component, at which point it will generate an message
including the output data and transfer this to another agent. In this case, the steps 780 to 830 are not

required.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-38 -

In any event, the entities will provide the respective services defined the respective component by having
the entity stations 5 interact with data received by agents at the inputs in messages from other agents. The
data is then manipulated or used as required, before being transferred to the end station 3, or another one

of the entity stations 5, as required by the defined schematic representation.

In general, each component will be implemented at the respective entity station 5. In order to achieve this
the data to be manipulated will be downloaded from the end station 3, the base station 1 or another one of
the entity stations 5, to the respective entity station 5. This will be achieved by transferring the data to a
specific port or the like on the processing system 15, as indicated in the component specification. The
data will be transferred with the component instance ID to ensure that the correct component instance is

used to manipulate the data.

It will be appreciated however that this may be achieved using other techniques, such as providing each

content instance at a respective port, and transferring the data to the respective port.

In any event, when a respective component instance receives the data to be manipulated, the component
server hosted by the respective entity station 5 will interact with the data, modifying the data as required
before providing the modified data at one or more of the output ports. Thus, the data may be manipulated
by the executable code implemented by the respective component server, or manually, in accordance with
input commands from an operator. In this latter case, it will be typical for an agent receiving data to
present this to the user via a suitable interface, and then allow the operator to modify the data before
transferring it to an output agent. Accordingly, from this it will be appreciated that the agent may serve no

more purpose than to provide an interface to allow an operator to interact with data and other components.

In any event, once the service has been performed the data will then be transferred to the base station 1, or
the end station 3 for temporary storage in the memory 21 or the database 11, before being transferred to
the input port of the entity station 5 hosting the next component instance. Alternatively however the data
provided at the output port of a component at one of the entity stations 5 could be transferred directly to

another entity station 5, for subsequent manipulation by another component.

It will be appreciated that during this process, data may also be manipulated simultaneously by several

different components depending on the format of the component specification.

In addition to this, it will be appreciated that in practice not all of the components will interact with data

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-39 -

that will ultimately form the executable code. Instead, some components may only operate to exchange
data between themselves. In general, this can therefore be performed as soon as the agents are activated

and have established communication between the respective component instances.

It will therefore be appreciated from this and the above description, that parts of the service
implementation may begin almost immediately as soon as the build process is started. In particular, as

soon as any two agents have connected and data is ready to be exchanged, this will be performed.

In contrast to that, components which require data to be received from other components will await for

data before commencing to perform the respective associated service.

Furthermore, it is usual for the base station 1, the end stations 3, and the entity stations 5 to be effectively
interchangeable or implementable on a common processing system in the examples outlined above.
Accordingly, the processing system 10, 15 and the end station 3 will generally execute applications
allowing the functionality of each of the base station 1, the end station 3, and the entity station 5 to be
implemented. For example, this allows an entity to use the entity station 5 to create executable code in the

manner outlined above for the end station 3, and vice versa.

Thus, for example, an entity may have a number of processing systems, some of which operate as entity -
stations 5, and some of which operate as end stations 3, depending on the functionality required at the
time. Thus, for example, the entity may be providing a number of component instances, the
implementation of which is distributed across the processing systems. In this instance the functionality
provided by the processing systems will be equivalent to either or both of the end stations 3 and the entity

stations 5, as required.

It will be appreciated that performing the implementation of components will typically require a support
structure, and it is therefore common for the entity to have an infrastructure in place including a number of
end stations 3 that will be used in supporting the implementation of the service, as well as to allow

software to be generated.

In the case of an entity providing a service, the entity would typically have a number of entity stations 5
that will be automated. However, if an exception, or other error occurs, such that the component cannot
complete the service, then the entity station 5 will hand-off or transfer the component to another entity

station 5 that is operated by an individual. This allows the individual to provide manual feedback to allow

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 40 -

the exception or error to be resolved, if possible. Otherwise, an indication that the problem cannot be
resolved will be returned to another component or entity within the system. Thus, if the problem occurs
with a sub-component an indication of the problem will initially be returned to the parent component.

This will continue with the exception being paséed up the chain until it can be resolved.

Some of the features of the implementation described above, such as the nature and operation of the

agents is described in more detail below.

Example Implementation

Tt will be appreciated from the above that the base station 1 allows services provided by a number of
different entities, typically at respective entity stations 5, to be accessed centrally by a number of different
users. This allows components provided by entities to be reused a large number of times in the creation of

numerous different software applications.

In one example, this in the form of a forum that provides users with a means to access the different
services. The forum may be implemented using a single base station, as in the example described above.
However, persons skilled in the art will appreciate the forum may be implemented using a number of base
stations, the end stations 3, the entity stations 5, or any other suitable processing systems, with the forum
being distributed between the base stations, end stations 3, entity stations 5 and/or other processing
systems as required. The forum operates to provide a mechanism for marketing components to make

these available for selection by the users.

The following description therefore focuses on the implementation of the system using a forum, although

the techniques are equally applicable to any implementation, such as the use of a single base station.

Tn use, it is typical for each entity to define a fee associated with each component. This fee corresponds to
a fee payable by users of the forum, for the use of a respective component instance service. Thus, the
users pay one or more fees to each entity in return for the provision of one or more services provided by

the entity.

This allows the entities to charge a fee for the provision of the respective services, thereby allowing the
entities to obtain income to recoup the investment made in the development of the respective components.
This in turn allows entities to specialise by providing, and obtaining financial return for, specific well-

defined services.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-41 -

This is in contrast to current software construction techniques in which entities typically only obtain

financial benefit by constructing all the required executable code for entire software applications.

This in turn allows entities to focus on optimisation of a specific service provision, rather than trying to

create an entire software application that typically would garner less detailed attention.

By having the forum provide users with access to a number of components, provided by different entities,
and which provide similar services, this will force entities to compete against each other to provide similar
services to the user. The resulting market forces will therefore drive competition between the entities,

thereby forcing each entity to improve the provision of its respective service.

In particular, users will tend to select components that are deemed to be more successful. As a result,
entities compete with each other at the component level to provide increasingly successful components.
This allows the entities to invest more time and money in improving the implementation of the specific
components, whilst recouping the investment as more successful components will be implemented a larger

number of times.

In this regard, components may be deemed to be more successful if they are cheaper, faster, result in more

optimal code, or the like, when compared to other components offering the same service.

From this, it can be seen that market forces and direct competition at a specialisation level will lead to
improvement in each service provided through the forum. Thus, each component at every level within the
hierarchical structure will be optimised resulting in the generation of optimal code with no bugs or other
errors. This reflects an industrialised approach to software creation in which competition occurs directly

at the specialisation level.

In order to help competition within the forum, the user will be provided with information to allow an
assessment of which are the best components for use in constructing the respective application. The user

can then select components in accordance with a wide variety of factors including, for example:

The entity performing the respective service;

The cost;

The location of the entity performing the respective service;

The popularity of the component;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-42 -

e The data format/types that can be received by or output from the component; and,

¢ Ratings given to the component by previous users or the forum.

In this regard, the forum will generally provide a rating system allowing users to rate the effectiveness of
components. Ratings can be determined statistically, for example by determining the number of build
faults that occurred for each respective component, by user feedback, or by testing of the components by

the forum itself.

Tt will be appreciated that whilst market competition through the use of reviews or the like exist, this is
normally provided with respect to entire software code. In contrast, the review and rating in this instance
is performed at the component level thereby forcing the improvement of individual components, as

opposed to entire software applications.
Tt will be appreciated that other factors may also be used in judging the success of components.

In any event, in order to remain competitive, each entity will focus on providing well-defined, efficient
service implementations, allowing vastly improved software to be created. It will be appreciated that as
components improve so will entire software applications thus the development of the new software

generation technique will lead to rapid improvement in software applications.

Tn order to allow the operators of the forum to make a profit, it will also be typical for at least a portion of
any fees charged by the entities, to be provided to the operator of the forum, allowing the operator to
obtain profit based on usage levels of respective components. However, alternatively, subscription
charges or the like could be applied to individuals wishing to use the system, or entities wishing to submit

components to the forum.

Accordingly, the above described systerﬁ allows the software development process to accommodate
international competition at every level of the binary code outcome, down to the bytes in the generated

binary output.

This international competition leads to acute specialisation which in turn causes automation, where the
specialisation achieves such an understanding of a narrow field that it can be captured and reduced 6 rules

or the like. Once reduced in this way some semi-automatic means can be employed with the aid of a

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-43 -

machine to improve productivity. With time and further specialisation this can evolve into fully

automated means.

Thus specialisation in the process provides access to both competition and automation. The former results
in ever improving quality as options are exercised based on market forces, while the latter greatly

improves productivity.

In general, every software development effort starts with a requirements document distilled from customer
expectations, needs and wants, and ends with an outcome of a binary program. It is therefore unimportant

how the process arrives at the outcome.

The above system therefore allows executable binary files to be constructed by selecting and coordinating
a number of specialists each of which provide a service. In analogy to building a house by coordinating
services like roof truss supplier, a crane operator and transport contractor. The trusses can be

manufactured, delivered to the site and erected into place with simple coordination.

Typically the system is embodied in two major parts, Workstations and a Forum. In this case, a large
number of workstations and a singular Forum are networked together with some kind of LAN Internet,
with each workstation being a specialist that is capable. of providing some service based on their
specialisation. Once the service is implemented and tested the specialist can use the network connection
to retail the service via the Forum since potential customers must be aware of the service in order to locate

the appropriate workstations and its respective specialist.

The Forum registers and organises advertising for all the services supplied by the specialists at each
workstation. Accordingly, software can be constructed by simply visiting the Forum and noting a number
of services that must be retained to build a required binary. Once this has been completed, the respective
workstations used in implementing the offered services are contacted to thereby cause the various

specialists to perform the necessary work.

Formally encapsulated services are an example of an implementation called components. As part of the

encapsulation process a component representation is registered with the Forum.

Any workstation, including the specialist’s workstation with access to this retail network of services can

construct software. Workstations can include tools that can encapsulate services for retail and register

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-44 -

them with the Forum, as well as tools that can build software by coordinating the component services
across the network. Thus with suitable tools to both retail and retain services, workstations can be used to

create our software and contribute to the creation of others.

In a preferred example, the Forum provides a portal through which the other tools can operate more
effectively. For example, rather than visiting the Forum and noting the contact details of a service you
would like to retain, the Forum can deliver a graphical symbol that represents the service in question
complete with the service description, service retailer location, etc directly from within the coordination
tool. This includes all the pertinent information needed to locate the retailer should they be required at

some future date, like a business card.

The Forum allows the registration of other useful information in addition to the purchase details.
Information like the cost and expected length of time to complete the service are obvious candidates while
more interesting information about the outcome of the service like estimated resource usage and

performance are exceedingly helpful in making a decision to proceed with construction.

A designer program can be used to create a schematic of the proposed binary considered for construction.
A schematic consists of a collection of graphical symbols representing each of the services that make up
the construction team. This collection of symbols are arranged and connected so that all the services will
have sources for the necessary information to complete their task as well as the destination necessary to .

deliver their outcomes.

The designer program allows the operator to construct the schematic by opening a portal to the Forum and
allowing the operator to select from the products advertised there. In this way the graphical symbols are

dragged and dropped from the Forum onto the schematic, arranged and connected.

The portal to the Forum also provides details about the services that are of great assistance to the operator.
When the schematic is complete the Designer Program can compute the total cost of the proposed binary,
the total time to construct the proposed binary the expected size of the binary and expected performance of
the binary.

The operator can then make a judgement on whether to proceed with construction and incur the associated

costs, time etc.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-45 -

Component servers can provide the retail services embodied in the components. When the component is
registered with the Forum the component is available for purchase by any entity on the network. The
operator should be expecting to perform the service immediately or risk losing business due to unreliable
service. It is the component server that presents the retail interface to the network. To be in a position to
perform the service the operator starts the component server on the workstation and loads the component
that encapsulates the service into the server program. Once loaded the component server program waits
for build requests from the network. A build request is a package of data that contains a purchase order
for the component, details of sources of information the service requires, details of destinations the service

requires, purchaser details etc.
A specific example of the process will now be outlined.

A user decides on the requirements for a binary program. The user starts the designer program on a
workstation connected to a network of component servers and a Forum. Using the designer program the
user selects a number of component representations from the Forum, which are dragged and dropped onto
a new schematic for the binary program. When all the components are on the schematic they are
connected together to satisfy the input and output requirements of the components selected. The
schematic is then saved onto the hard drive for access by the component Server which will be used to

coordinate the construction process.

When the schematic is finished the user makes a decision on whether to build based on the cost, resource

usage, schedule etc.

The user then starts a component Server and loads the schematic into the server. Once loaded the
component server is available to retail the component. It should be noted however that this component is

not registered with the Forum since it is not intended to be retailed.

This is a special case component called the “Root Component”. The user then issues a build request to
this component server essentially purchasing an instance of this schematic. When the component server
receives the build request it scans the schematic and compiles a list of build requests for each of the
components in the schematic. These are then issued to the respective component servers over the
network. They in turn create a new instance of their component and load their corresponding schematic

and issue build requests and so on down the supply chain until all the services are activated.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 46 -

The user’s schematic thus decomposes into a collection of manual and automated components scattered
across the network. As each service embodied by the respective component is completed the outcome is
forwarded to the correct parent component until the binary result is returned to the root component server

and the process completes. The user then has a binary program that is the result of the build process.
Further details of an example of the implementation of the processes outlined above will now be described

Agents

In the examples above, agents are the only form of inter-component communication. Agents are
responsible for providing and gathering all the information a component needs to complete the service it
embodies. An agent is generally formed from a simple piece of executable code with limited
functionality, and this may form part of, or be implemented by the component server. In use the agent is
adapted to communicate with agents of other components via respective ports. The agents typically

communicate by transferring messages as will be described in more detail below.

In particular, when the end station 3 sends out purchase orders to the entity stations 5, the reception of a
purchase order causes each entity station 5 to implement a component server to generate a new component
instance, and corresponding agents that are capable of finding and connecting to the agents of other
components. This may be performed as described above, or for example by having connection details
specified in the purchase orders. The agents only ever connect o (communicate with) other agents,

although manual interaction with the agent as part of the performance of the data manipulation may occur.

In particular, an example will now be described with reference to Figure 15, which shows a schematic P

having components X and Y connected by agents X1 and Y1.

Tn order to specify the address of a particular agent for a particular component instance, it is necessary to
be able to identify the agent uniquely. Accordingly, for the purposes of this example, the component X is
manufactured by an entity having a manufacturer ID IDx, and component Y is manufactured by a an

entity having a manufacturer ID IDy.

When schematic P is laid out, the component representations for the components X and Y are
downloaded, typically as part of the component specification, arranged and connected in the schematic
representation P using the method described above with respect to Figures 10A to 10E. As the schematic

is constructed, each component is given a unique label, as shown at Ul and U2. These labels allow

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-47 -

schematics with more than one component of the same type to reference the correct instance of that

component.

Associated with the respective component representations are the component specifications, including the
manufacturer ID, and part number. The component specification will include input and output

specifications detailing the agents, which for this example is exactly one for each component.

Before the schematic can be built, the user creating the schematic P must be specified so that the entities
IDx, IDy can bill the user. In this example, the user is given an identifier IDp. Once this information is

contained in the schematic it is ready to be built.

The process of building a schematic results in a number of entities being contracted with purchase orders.
Thus the decision to build will incur costs and contractual responsibility. A mistake in the schematic may

result in a bad build wasting time and money.

Assuming the build is to proceed, the next step is to submit schematic P to the builder program. The
builder program interprets the schematic and compiles and issues purchase orders for each component in
the schematic. The purchase orde‘rs for the component X would contain the following information:
e Base station identifier 1
e Schematic identifier P
e X component label Ul
e Entity identifier IDx
e Entity part number X
e Component X agent connection details, including:
e Entity identifier IDy '
. Eiltity part number Y
e Component Y agent number Y1
e User’s identifier IDp
e Schematic identifier P

e Y component label U2

The purchase order for the component Y would include similar information.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 48 -

Should the component being purchased have more than one agent, then each agent must have separate

connection details included with the purchase order specifying each agent's respective target.

When the entity IDx receives the purchase order from the user IDp, the entity IDx creates an instance of
the component using a component server. At this point, the agents are created by executing the code

associated with each of the agents.

After the provision of the purchase orders, the respective instance of the component X now has the

information it needs for the agent X1 to communicate with the agent Y1.

In a basic example, if the agents are only adapted to perform single event transactions, then the only form
of communication is for one of the agents, in this example the agent X1 to generate a message including a
header and payload. The header will specify routing information needed to the transfer the message to the

agent Y1, whilst the payload will contain any data to be transferred.

The message will be transferred to the agent Y1, which will receive the message and extract the data from

the payload. With the task complete, the agents can terminate.

However, alternatively the transaction may be a multi-event transaction, in which case the agents will
operate to connect and perform multiple transactions, such as to perform negotiation. In this case, one of
the agents will generate a message including a header and payload, as before. In this case, the purpose of
the message is to establish communication, and accordingly, the nature is not important, although it may

contain information used to authenticate the agents to each other.

In any event, once communication has been established, the multiple messages can be transferred between

the agents as required, for example to allow agent negotiation to be performed.

Thus, for example, in the event that the agents are adapted to handle the data types shown in Figure 16, the
agent X1 can handle integers INT, characters CHAR, and floating point numbers FLOAT, whereas the
agent Y1 can handle double inputs DOUBLE, floating point numbers FLOAT, and dates DATE.
Accordingly, the agents will determine the component X must provide the output in the form of floating

point numbers FLOAT.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 49 -

From the above it will be appreciated that the agents are the only form of inter-component
communication. As a result the agents must be able to communicate via the communications networks 2,

4.

Whilst the agents are themselves simple, processes called bundling and hand-off allow agents to exhibit

complex behaviour and powerful information providing and gathering capabilities.

The hand-off mechanism terminates an agent to agent transaction and opens another. This is most useful
when a component is using the agent of a sub-component as if it were an agent on the component itself.
Worked examples help to clarify the hand-off procedure and an example of hand-off to a sub-component

is presented.
Bundling is a recursive mechanism by which multiple agents related by a specific purpose can be treated
as a single simple agent. Worked examples help to clarify the bundling and debundling mechanism and

an example of bundling and debundling components are presented.

Component server

The component server is a software application provided at the entity stations 5 to allow the entity stations
to implement components. In particular, the component server is adapted to receive a purchase order
generated by the end station 3, and then use the purchase order to create a new component instance,

together with appropriate agents.

Once this is completed, the local component server activates the agents associated with the component, in
a process hereinafter referred to as presenting the agent. All agents by definition are connected to another
agent associated with another remote component. When an agent is presented, it is made available for

interaction with its counterpart operating in its remote component server.

An example will now be described with reference to Figure 17A, which represents a component CP. In
particular, the component CP is formed from three sub-components A, B and C, and is provided with four
agents W, X, Y and Z.

Upon receiving the purchase order from the end station 3, the component server will initiate the

construction of the component instance that is to perform the service in the respective build process.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-50-

In order to achieve this the component server operates to:
e Submit purchase orders PO to the entities supplying the services associated with the respective
components A, B and C, as shown in Figure 17B;
e Provide the data required to each of the sub-components A, B and C, to allow each of the sub-
components to perform the services defined therein; and,
e Supply sub-component agent addresses to allow the components A, B, and C to be erected once

their agents have terminated.

In general, the component server contains many components at various stages of erection but for the

purposes of the following explanation the component server will only operate on one component.

In particular, the component server presents the agents W, X, Y, Z to allow these to communicate with
agents of other components, as required by the schematic. In addition to this as the component CP has sub

components A, B and C, a number of internal interactions must also be resolved.

In general, users of the component CP are unaware that the component CP is formed from a number of
sub-components A, B, C. Accordingly, the user needs not provide details of the interactions that need to
be performed between the components A, B, C as this will be determined by the entity providing the
component CP. Accordingly, when the component server orders the components A, B and C, the

component server will also provide details of the interactions required between the components A, B, C.

The component server also presents temporary agents T1, T2, T3 and T4 as shown in Figure 17C to
provide the interface between the internals agents of the component CP and the sub-components A, B and
C. These temporary internal agents T1, T2, T3 and T4 are presented along with the external agents W, X,
Y, Z as shown in Figure 17C, thereby allowing the component to be implemented with all the agents

having a chance to resolve and connect.

Hand-Off
In addition to agents making a static connection there exists an agent hand-off mechanism. The agent
hand-off mechanism allows an agent to agent connection to terminate with one of the agents reconnecting

to yet another agent.

This behaviour provides a means by which multiple agents can be managed as if a simple agents. This is

achieved by a component performing some simple information transaction then handing the agent-off to

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-51 -

another component to negotiate further. With only these simple transactions a complex overall transaction

can occur with from appearances, a single component.

In particular, hand-off allows a component to present a service that internally is made up of carefully
crafted arrangement of sub-components or processing. Thus although a component presents a number of
agents and appears to perform a given service, in actual fact the service is supplied by many sub-
components which have at least some of their agents satisfied by a hand-off from a parent agent. In order
to achieve this, an agent of the parent must first connect to some outside component, then order that agent

at the other end to connect to a sub-component.

A walk through of the hand-off mechanism demonstrates the steps involved in the hand-off process.

Figure 18A represents a schematic involving a hand-off, In Figure 18A agent Al of components C1 and
agent A2 of component C2 connect as normal, however C2 has sub-component C3 as shown in Figure
18B.

The component C2 intends to hand-off the agent A1 to the agent A3 of the sub-component C3 as shown in
Figure 18C.

To simplify the agent protocol, it is assumed that each agent only connects to one other agent at a time.
Thus the agent A2 could not connect to the agents Al and A3 at the same time. As a result of the agent A2
being connected to the agent Al, it is not possible to include details of the agent A2 in the purchase order
that cause component C3 to be generated. To allow the component C3 to be built and access to the agent

A3 to be gained, a temporary agent A2b is created as shown in Figure 18D.

The details of agent A2b can be included in a purchase order, allowing the component C3 to be built and
the agent A3 to connect to agent A2b providing means for the component C2 to communicate to the
component C3. When the agent Al is connected to the agent A2 and the agent A2b is connected to the
agent A3, the component C2 can direct the agents A2 and A2b to terminate and cause the agent Al to

reconnect to the agent A3

Thus, the component C2 uses the local agents A2 and A2b to communicate the hand-off order to the

agents Al and A3 respectively, resulting in the agents Al and A3 connecting as shown in Figure 18E.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-52.

This is generally achieved by having the agents exchange the identifiers of Al and A3, allowing them to

connect directly.

An example of the hand-off mechanism handing from one component to another will now be described
with reference to Figure 19. In particular, in this example, the schematic includes three components A B,
C, each of which has respective agents Al; B1, B2; C1, C2.

In this example, the agent Al gets the address of the agent Bl from the schematic purchase order.
Similarly the agent B1 gets the address of the agent A1 from its schematic purchase order. Using the agent

connection mechanism outlined above agents Al and B1 connect and authenticate.

Agents Al and B1 perform their information transfer, which results in the agent B1 deciding to hand off
the agent A1 onto the agent C1. The component B obtains the agent address of the agent C1 by having the
agent B2 communicate with the agent C2. The agent B1 then uses its authenticated link to the component

A, and sends a hand-off request together with the agent address of the agent C1.

The agent Al simply disconnects from the agent B1 and connects with the agent C1. Should the agent C1
be busy with a connection elsewhere. The agent Al simply waits for the agent C1 to become available.
Similarly the component B obtains the address of the agent Al and transfers this to the agent C1, allowing
the agent C1 to reconnect to the agent Al. Thus, the connection between agents Al, Bl and agents B2,

C2, is handed-off as shown by the arrow, to result in connection between the agents A1, C1, as shown.

As mentioned above, the agents may be no more than a “dumb” interface to allow manual negotiation and

data transfer, for example through a chat or e-mail type interface.

It will be appreciated that hand-off is not stricily necessary in single event transaction systems, as the

messages can simply be forwarded on to subsequent agents.

Combining Agents

As described above, each agent interacts with one other agent, which is typically associated with another
component. In general, components may include many inputs and outputs and therefore may have many
agents. If it were necessary for individuals to define connections between each agent of each component
when creating the schematic, the task would be onerous in situations where a large number of related

connections are to be made.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-53-

Accordingly, it is typical for related agents to be combined, thereby allowing a single connection to be

defined. This may be achieved using complex payloads and/or bundling.

Complex payloads are formed when the payloads from each of the agents are combined into a single
payload. In this case, a component P having sub-components A, B, C could have a single external agent,
which provides a single payload which corresponds to a concatenation or other combination of each of the
payloads of the agents of components A, B, C. In this case, the single agent can be presented to a
component Q having sub-components D, E, F. In this case, in order for the sub-components D, E, F to
interact with the data, it is necessary for the complex payload to be deconstructed by the component Q, to
allow respective individual payloads to be formed, which can then be provided to the agents of the

components D, E, F.

In the case of bundling, agents are combined via the use of a bundle component such that two or more
agents are effectively treated as a single agent. An unbundling component is then used to deconstruct
component bundles as required. This in turn allows agent hand-off to be implemented so that agents not
actually involved in any interaction can transfer the interaction requirements to other agents as described

above.

This allows complex interactivity between multiple components whilst presenting to the user as a simple

single agent.

Bundling
Often a component will require a number of agents to resolve information for a specific task. Since these
agents are sometimes related it makes sense to group the agents into a bundle to hide the complexity and

so deal with the bundle like a single agent. This greatly simplifies the schematic and reduces errors.

Thus, the purpose of the bundling is to manage agents more effectively. Although not strictly necessary
bundling allows related agents to be attached to each other so that their relationship is preserved making

the management of large numbers of agents an easier task.

Special components provide the service of bundlers/debundling and these will hereinafter be referred to
generally as bundlers. In this example, bundlers have three agents - two "inputs" and an "output", whereas

bundlers operating to debundle (which may be referred to as "debundlers") have two "outputs" and an

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-54 -

"input”. The terms output and input are in inverted commas as the bundler and debundler perform almost
exactly the same task. They both gather the addresses of a pair of agents and send it through a third agent,
however the bundler is the one that initiates the communication, and so gathers the addresses first -
making the pair of agents inputs and the lone agent an output. As soon as the debundler has received the
addresses through its input the roles are reversed. Once the bundler and debundler have swapped agent
information, they hand-off the connected components to each other and retire. If either of these connected

components is a bundler or debundler, the process begins again.

Figure 20A represents two agents Al, Bl from respective components A, B coupled through a bundle
component BUNDLE, which provides bundle agents BU1, BU2, BU3. The bundle agent BU3 is used to
comnect to the component X. The bundle agents BU1, BU2, BU3 are indistinguishable from a normal

agent.

Tn use, the component BUNDLE depicted in Figure 20A receives connections from the agents Al, B1 and
presents the agent BU3. The role of the agent BUS3 is to provide the addresses of the agents Al, Bl to the

component X.

In the example shown in Figure 20A, the components A, B, X receive addresses of the agents BU1, BU2
and BU3 respectively from the schematic purchase orders. Similarly the bundle component BUNDLE
gets the agent addresses Al, Bl and X1 from a respective schematic purchase order. The agents Al, BUI1
connect and authenticate while the agents B1, BU2; and, X1, BU3 do the same. The component X
negotiates with the component BUNDLE and determines that the payfoad of the agent BI’B represents a
bundle.

Accordingly, by using the hand-off mechanism as described above, the component X can determine the
addresses of the agents A1, B1, and order the bundle component BUNDLE to hand-off A1, B1 as shown
in Figure 20B. Thus, in Figure 20B the component X through agent BU3 learns of the agents A1, B1. The
component X then orders the bundle component BUNDLE via the agent BU3 to hand-off the agents Al,
Bl to the agents X1 and X2 respectively. The bundle component and its respective agents has then

completed its service and can retire.

The bundling component BUNDLE as shown in Figure 21 has no concern as to the nature of the agents
Al, Bl. As far as the bundling component is concerned, they are any two agents and their payload is

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-55-

irrelevant. This enables cascading of bundling components as shown in Figure 21. Any number of

bundling components may be cascaded.

In addition to providing bundle components for bundling agents, debundling components are provided for

performing the opposite function.

An example of this is shown in Figure 22, in which a component A is coupled to a debundling component
DEBUNDLE, which in turn is connected to two components X, Y, as shown. In this example, the
debundling process starts with the component agents A1, DBU1; DBU3, X1; and DBU2, Y1 connecting

and authenticating as specified in the purchase order.

The debundling component then learns the addresses of the two agents represented by the bundle. It then
requests X1 and Y1 to hand off in accordance with the addresses provided by agent Al. At this point the

debundling agent has then completed its service and can retire.

With components bundle and debundle a number of useful operations can be performed on bundles. For
example, agents a, b can be reordered within a bundle by extracting the agents a, b from the bundle and
reassembling the bundle with the agents b, a in the reverse order. Furthermore, selective debundling can
be used to extract desired agents from bundles, as shown in Figure 23.

In this example, a respective agent ¢ in a bundle of agents a, b, ¢, d is required to be separated from the
bundle. This is achieved by debundling the bundle using the debundle components U until the agent of

interest is available, then rebundling the bundle using the bundling components B.

Hierarchical Bundling

It is typical for agent bundles to include a large number of agents, up to for example a hundred or more.
In order to improve the efficiency of the bundling/debundling process, it is typical for agent bundles to be
arranged hierarchically so that those agents or bundles of agents which need to be accessed on a large

number of occasions are more easily accessible.
A number of different hierarchy structures may be used, such as linear or dynamic hierarchies or
structures reflecting the application. Bundles can be arranged in a hierarchical tree fashion as shown for

example in Figure 24A.

This presents the structure of an example bundle. In particular, in this example, the bundle B contains the

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-56 -

agents A; - A, arranged as shown. Thus some of the agents A, - Ay, are arranged with bundles By - Bs
which are themselves contained within the bundle B. Thus, if a component requires interaction with the
agent A;, the bundle may be debundled at a first level to provide access to the agent A; In this case a
debundle component is used to break the bundle B down at the first hierarchical level and extract the agent
A, allowing this to be provided to a respective agent as required. At this time the bundles B, - B, are also

typically extracted from the bundle B. An example of this is shown in Figure 24B.

In this example, a component 1000 is provided having sub-components 1001, 1002 and 1003 as shown.
In use, the component 1002 is adapted to operate on a payload provided by the agent A; in the bundle B.
Accordingly, in use the component 1000 operates to receive the bundle B at the agent 1004 which
operates to transfer the bundle to the agent 1005. This will typically be achieved by a hand off mechanism
with the agent 1004 simply handing off the bundle B to agent 1005.

In any event the component 1001 is a debundle component which operates to debundle the bundle B to the
first level in the hierarchy. The agent A, is then output via the agent 1006 with the bundles B,, B, being
output via the agents 1007 and 1008 respectively. The agent A, is transferred to the agent 1009 allowing
the component 1002 to obtain the payload of the agent A; and provide any data manipulation as required.

An output may then be provided via the agent 1010.

It will be appreciated that this is all that is required in order to interact with a particular agent within a
bundle. Thus, the bundles B; and B, may themselves be transferred on to other components for further
processing. Similarly, the agent A, may now have fulfilled its purpose. Whether further use is made of

the bundle, or any agents extracted therefrom is not essential to the bundling process.

However, in this example, for illustrative purposes only, the component 1000 is adapted to provide a

modified bundle B' at the output agent 1015.

Thus, in this example, the output provided at the agent 1010 may include a modified version of the
payload from the agent A;, as indicated at A;" The agent A;', together with the bundles B,, B; are then
transferred to the component 1003 via the agent 1011, 1012, 1013 respectively. The component 1003
operates to rebundle the bundle B as now modified, indicated by B' providing this via the agent 1014 to
the output agent 1015, as shown.

Thus, the component 1000 allows the payload of the Agent A, to be modified. It will be appreciated that

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-57-

the rebundling of the modified agent A,' into the bundle B' is not required, and instead, agents may simply

be extracted from bundles and used as required.

Figure 24C shows a modification of the component 1000 in which an additional component 1020 provides
additional interactivity with the payload of the agent A;. In order to achieve this an additional debundle

component 1021 and bundle component 1022 are used as shown.

It will be appreciated that the functionality of this is similar to that described above and this will not
therefore be described in any further detail.

Bundle Hand-Off

As described above, hand-off of agents occurs to allow agents not explicitly involved in interactions, to

pass on responsibilities to other sub-components.

In order for agent hand-off to be performed correctly it is necessary for hand-off to be performed in

accordance with a predetermined order. This is particularly important where bundles are involved.

An example of this will now be described with reference to Figures 25A-E. In particular Figure 25A
shows a schematic including a component 1100 which includes three sub-components 1101, 1103, 1105
each which has respective agents 1102, 1104, 1106 adapted to be coupled to a bundle component 1107 via
agents 1108, 1109, 1110. The bundle component 1107 includes an agent 1111 adapted to be coupled to an
agent 1112 of the parent component 1100. Similarly, 2 component 1120 is provided which includes a

similar schematic as shown.

In this Figure, the connections between the agents have not yet been implemented and are therefore shown

as dotted lines.

Initially, as shown in Figure 25B, when thé schematic is first built, with the respective component
instances and corresponding agents being generated, the agents operate to connect as shown in Figure
25B. Thus, initially, the agents 1102, 1104, 1106 connect to the agents 1108, 1109, 1110, with the agents
1112, connecting to the agents 1132.

The agents 1112 and 1132 negotiate and determine they do not need to take any further part in the process,
and in particular, they determine that they can hand-off to the agents 1111, 1131. In order to achieve this

10

15

20

25

30

WO 2004/042639 ‘ PCT/AU2003/001474

-58 -

the agents 1111, 1131, will need to exchange the addresses of the agents 1111, 1131. As each agent can
only connect to a single other agent, this is achieved by creating a temporary agent associated with each of

the agents 1112, 1132. This is represented by the dotted lines in the agents 1112, 1132, in Figure 25B.

In this case, the agent and associated temporary agent are referred to an internal agent and an external
agent. In the case of agent 1112, the internal agent will couple to the agent 1111, with the external agent

connecting to the external agent of the 1132.

Each internal agent 1112, 1132 determines the address of the respective agent 1111, 1131. The addresses
are then transferred between the external agents 1112, 1132, and transferred on to the agents 1111, and
1131 as required. Once the agents 1111, 1113 have obtained each other’s address, they can communicate
directly, allowing these agents to negotiate directly with each other. The agents 1112, 1132 will then
retire, as shown in Figure 25C. .

In this instance, when agents 1111 and 1131 negotiate it is found that components 1107, 1127 can now
perform their service. In particular, it will be determined that further hand-offs can now be performed as

the bundle and debundle components have corresponding inputs and outputs.

Accordingly, addresses of the agents 1108, 1109, 1110 will be included in a bundle, which is transferred
from the agent 1111 to the agent 1131. This will be debundled with the addresses of the agents 1108,
1109, 1110 being transferred to the agents 1128, 1129, 1130 respectively. A similar process will be
performed in the opposite direction. Once the agent addresses have been transferred, connections need to
be formed between the agents 1108, 1109, 1110 and the agents 1128, 1129, 1130. In order to achieve this,
temporary agents will need to be generated as described above, such that the external agents 1108, 1109,
1110 will be connected to the agents 1102, 1104, 1106, and the internal agents 1108, 1109, 1110 will be
connected to the internal agents 1128, 1129 1130, as shown in Figure 25D. At this point the agents 1111

and 1131 can retire.

Once this is complete the agents 1108, 1128; 1109, 1129; and 1110, 1130 negotiate to allow the addresses
of the agents 1102, 1122; 1104, 1124; 1106, 1126 to be exchanged, in a manner similar to that described
above. Thus, for example, the address of the agent 1102 will be determined by the external agent 1108,
transferred to the internal agent 1128, and then transferred via the internal agent 1128 to the agent 1122.
Once this has been completed, hand-off can occur, with the agents 1108, 1109, 1110, 1128, 1129, 1130

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-50.-

retiring, and the agents 1102, 1104, 1106 communicating directly with the agents 1122, 1124, 1126
directly, as shown in Figure 25E. Also at this point components 1107 and 1127 can also retire.

Tt will be appreciated that the use of hand-off reduces interaction required by agents. Furthermore, when
implemented in conjunction with bundling, allows hand-off of entire bundles, corresponding to many
agents. This thereby further reduces computational load and operator complexity due to the simplified

schematic.

Chaining
A further useful technique in implementing the build process is a technique known as chaining.

In particular chaining operates by transferring agents, or more usually agent bundlés, through a schematic
allowing the agent or agent bundles to have payloads modified as required, in a manner similar to that
described above. In addition to this, the chain is intended to pass through the schematic, or a portion
thereof unbroken. This allows modification of payloads to be passed through the system, and returned as

required.
An example of chaining will now be described with respect to the example shown in Figures 26A to 26G.

As shown in Figure 26A, three components 1151, 1154, 1157, each having a respective input agent 1152,
1155, 1158 and respective output agent 1153, 1156, 1159, are connected as shown to agents 1160,.1161.
The components are provided to produce executable code, and operate by inserting code fragments into a
build bundle.

In particular, a header file is provided by the agent 1160 to the agent 1151. This is typically provided in
the form of an agent payload. When the component 1150 receives the header file it appends its code to the
end of the header file and forwards it on via the agents 1153, 1155 to the component 1154. Again, this
will typically be in the form of an agent payload.

In any event, component 1154 receives the executable code fragment appended to the header file, and
appends its own executable code fragment. Alternatively, or additionally the component 1154 may
modify the code fragment provided by the component 1150. In any event, the header file including the
appended code fragments is transferred on to the component 1157 in a similar manner for further code

fragments to be added. The process proceeds until all required code fragments are added to the header file

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

\ -60-
and the resulting executable code is supplied to the agent 1161.

An example of the structure of the header file and appended code fragments is shown schematically in
Figure 26B, with the reference numeral being indicative of the component generating the respective code

portions.

It will be appreciated that many more details are required to effectively construct an executable program,
such as RAM allocation, processor register allocation, physical address details and general global details

of the target construction site.

In order to supply all the above data it is necessary to expand the simple single agent connections as
described in the first example to include additional agents, and indeed additional components.
Considering the example shown in Figure 26C, where four sets of agents form several unbroken chains
allowing each component in turn to add code, allocate memory, reserve or relinquish a CPU register etc.
In this case, the file header is received from and returned to a single component 1063. It will be
appreciated that interconnecting all the agents for all the components would be time consuming and would

make the schematic unwieldy.

In the example, each of the components 1151, 1554, 1157 has a number of inputs agents and a number of
output agents. These can be replaced by a single agent so that the respective component can access the

chain involved in code construction or memory allocation using a single agent.

All these related agents then can be combined into a single build bundle, as described above, thereby
allowing the functionality of separate agents to be retained, whilst allowing a single simple agent to be
presented. Thus the schematic shown in Figure 26C, can be replaced with the schematic shown in Figure
26D. In this case, components 1164, 1165 are CAT components designed to concatenate agents, with the
component 1163 being a component used in code construction. Thus, for constructing an executable file
for use with Linux based systems, this could be in the form of an ELF INIT component, which is

described in detail in Appendix A.

Further components can be added to simplify the processing internal to components 1151, 1154, 1157.
These additional components effectively shield the components 1151, 1154, 1157 and all other
components from the details of the build bundle. An example of this is provided by the build bundle

described above, which allows a bundle received by the component to be debundled. An example of this

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 61 -

is shown in Figure 26E, with the component 1166 being a build component, which received the build
bundle at the agent 1167, presenting respective bundles or agents at the agents 1168, 1169, 1170.

Tt will be appreciated that if each of the components 1151, 1154, 1157 may include a respective build sub-

component, in which case the file header must also be passed to these components.

Thus, for example, the ELF INIT component 1163 can start the process by supplying a header into the top ‘
of the chain and allowing each component connected to the chain to append (using some suitable

component) their code until the executable is constructed. Alternatively the ELF INIT component 1163

can wait for the outcome of the chain and prepend a header forming the ELF executable format as

required by the operative system.

The result is a tree of components of sub-components connected by an unbroken line facilitating

construction.

Arbitrary length chains can be easily constructed while hiding the complexity. In any event, this allows
the supplier of the build component to expand the Build Bundle into hundreds or thousands of agent's as

required to coordinate even complex construction sites.

In addition to the functionality described above, a component may export part of the build bundle to

another component to insert code into the relevant section.

An example of this is shown in Figure 26F. In particular, this system includes three components 1200,
1201, 1202, adapted to generate respective executable code fragments. In this example, the components
1200, 1202, include respective sub-components 1203, 1204, 1205, 1206, 1207, also adapted to generate
code fragments. These components, 1200, ... 1207 are connected via a number of build cat components
1208, 1209, 1210, 1211, to an ELF INIT component 1212. In use the header file is passed in turn to the
component 1200, and hence to the components 1203, 1204, 1202, before being passed to the component
1201 and hence the components 1205, 1206, 1207.

Accordingly, this results in the header file being appended with code fragments as shown in Figure 26G.

In this example, if the link between the component 1200 and the component 1202 is created dynamically
then the tree structure can be converted to a mesh structure, by creating links at build time.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-62 -

This may be used for example to allow data to be output to a predetermined location as specified.
However, in order to provide an output it may be necessary for the component to have obtained a
predetermined memory location or the like, or be able to insert data into a bundle for transfer to the root
component. In this instance, the root component typically generates a bundle and transfers this to the
output of the component. This is then transferred onto the output of each of the sub-components which is

to generate an output for transfer to the root server.

Tt will be appreciated that this mechanism allows the data to be generated and constructed on the root

server in desired memory locations.

Tn order for this to function correctly it is necessary for the chain to be passed from the output agents

through any sub-components and back to the output agent.

Connections 4
In all the above examples interaction between agents has been performed on a one-to-one basis. Thus, a
single output from a component is connected to a single input on a subsequent component with each agent

being adapted to interact with a single corresponding agent.

This vastly reduces the complexity of the system by ensuring that it is simple for agents to negotiate. In
this case, components such as the DUP component described in more detail below, can be used to
duplicate an output from an agent, allowing this output to be transferred to a number of subsequent agents,
to thereby provide effective one-to-many connections. However, as an alternative, agent behaviour can be
modified to provide one-to-many, many-to-one and many-to-many interactions to be performed between
agents. Thus, for example, an output from a single component may be coupled to the inputs on several
successive components. It will be appreciated that in this instance data provided at the output of a
component may be provided to the inputs of several subsequent components simultaneously without the
need for a connecting DUP component. In this instance, the agent associated with the output will need to

negotiate with several agents simultaneously.
An example of this will now be described with reference to Figure 27.

Figure 27 shows a component 1030 having an agent 1031, which in this example is adapted to provide an

output in decimal, binary or hexadecimal code, in that preferred order. The component 1030 is coupled to

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-63 -

components 1032 and 1034 via respective agents 1033, 1035 adapted to receive data in decimal or
hexadecimal and hexadecimal or binary data forms as required. Accordingly, in this case it will be
appreciated that the agents 1031, 1033, 1035 must negotiate to determine a common data format which in

this case is hexadecimal code.

The component 1030 will then operate to provide an output in hexadecimal code format. -Thus, the agent
1031 must provide the output in a least preferred format. In this case, if a third component 1036 is
provided adapted to receive data via an agent 1037 which is only adapted to operate in decimal code it will
be appreciated that no common data format can be found thus causing a build exception error to occur.
Thus, it can be appreciated that providing for too many outputs, interactions will vastly complicate the

negotiation and data transfer process.
Despite this, there are significant advantages in providing for one-to-many, many-to-one and many-to-
many connectivity between agents in that this will allow broadcast data to be provided from a single agent

to a number of other agents, which can result in increases of efficiency in some circumstances.

Staged Construction

Staged construction can be used to allow dynamic components or dynamic schematics to be implemented.
In particular, staged construction typically refers to a situation where a designer deliberately lays out a
schematic in a number of stages to control a difficult build, then implements this when satisfied of the

progress of the early stages. However, this can also be implemented at the component level.

In particular, this allows for dynamic components where the functionality of the component may be
modified during implementation dependent on the results of earlier data manipulations. An example of

this will now be described with reference to Figures 28A - 28C.

As shown in Figure 28A, a component 1050 having agents 1051, 1052, 1053, 1054 and 1055 is provided.
The component is adapted to receive inputs via the agents 1051, 1052, 1053 and provide an output via the
agent 1054. The component 1050 includes a sub-component 1060 having input agents 1061, 1062 and an
output agent 1063. As shown the input agents 1061, 1062 are coupled to the input agents 1051, 1052,
with the output agent 1063 being coupled to the internal agent 1055.

In use, the component 1050 is adapted to receive data via the agents 1051, 1052, 1053, manipulate these

and then provide an output via the agent 1054. In this example, when data are received via the agents

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-64 -

1051, 1052 these are transferred to the component 1060 which manipulates the inputs and generates an

output transferred via the agent 1063 to the internal agent 1055.

The internal agent 1055 is a particular type of agent known as a selector. In particular, the agent 1055 will
operate to examine the payload received from the agent 1063 and then cause one or more schematics to be
built depending on the data contained therein. Thus for example, if the payload received from the agent
1063 is a decimal number the selector agent 1055 may select a schematic 1064 containing a single
component 1070 and cause this to be incorporated into the schematic of the component 1050 as shown in
Figure 28B. Accordingly, agents 1071 and 1072 will be coupled to the agents 1053 and 1055 as shown,
with an output agent 1073 being coupled to the agent 1054. ‘

It will be appreciated that the schematic 1064 may have external agents, coupled to the agents 1071, 1072,
1073, which will need to hand-off as described above, to allow the agents 1071, 1072, 1073 to connect to
the agents 1053, 1054, 1055, as shown. Similarly, as the selector agent 1055 cannot connect to two agents
simultaneously, the connection will also require the creation of a temporary agent 1055, as shown by the

dotted line in Figure 28B.

In use, once the component 1070 has been incorporated into the specification the agent 1055 can operate
to hand-off the agent 1063 to the agent 1072 in a manner similar to that described above, thereby allowing
the component 1070 to manipulate data received via the agents 1071, 1072 as required. Manipulated data

can be provided via the agent 1073 as will be appreciated by a person skilled in the art.

However, the agent 1055 may determine that the output provided by the agent 1063 is in a hex format in
which case the selector agent 1055 must select a different schematic1065. An example of this is shown in
Figure 28C, in which case the incorporated schematic includes the component 1070 coupled to an
additional component 1080 for converting the hex number into a decimal format. Thus the schematic
shown in Figure 28C includes the component 1080 having an input agent 1081 coupled to the internal
agent 1055 and an output agent 1082 coupled to the input 1072 of the component 1070.

In this instance, the internal agent 1055 will cause the schematic to be built before transferring the payload
to the agent 1081, allowing the agent 1080 to convert the data into a decimal format before it is transferred
via the agent 1082 to the agent 1072. Again, this may require the formation of a temporary agent 1055, as

shown. The remainder of the operation will be as described above.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 65 -

In the above process, the selector agent therefore needs to analyse the output provided by the component
1060 in order to determine the subsequent schematic 1064, 1065. Thus during the build process, the
selector agent 1055 will operate to negotiate with the agent 1063 in the normal way. When this has been
completed and the component 1060 performs the service embodied therein, the agent 1063 will supply the
output to the selector agent 1055 as a payload. The selector agent determines the output contained in the
payload, and then selects the subsequent schematic 1064, 1065 as required. The subsequent schematic can

then be built and implemented in the normal way in which any sub-component would be implemented.

It will be appreciated from this that the agent 1055 may terminate the connection with the agent 1063

before the schematic is selected in which case a temporary agent 1055 will not be required.

In order to implement this form of component, the entity implementing the component 1050 will therefore
need to modify its mode of operation. In paﬁicular, if the schematic of the component 1050 is predefined,
as in normal circumstances, when the entity receives a purchase order it will generate a component
instance 1050. This component instance will in turn determine that additional component instances are
required for any sub-components such as the component 1060. Accordingly, respective component
instances are initiated for the components 1070 and/or 1080 as defined in the schematic. It will be
appreciated that these component instances may be implemented on different component servers to the

component 1050, and indeed may be implemented by different entities.

When the entity receives a purchase order for the component 1050 it will initially initiate a single
component instance, corresponding to the component 1060. In this situation the component instance 1060
will operate to perform data manipulations in the usual way providing the output to the schematic selector
agent 1055. The selector agent 1055 will then operate to determine a schematic needed to implement the

remaining service, or data manipulations as required.

Thus in the case of the schematic shown in Figure 28B the schematic selector agent 1055 will select a
schematic resulting in the use of a component instance corresponding to the component 1070, whereas in
the case of the schematic of Figure 28C the selector agent 1055 will initiate the schematic 1065 resulting

in the use of two respective component instances corresponding to the components 1080 and 1070.

Staged construction may be implemented either automatically or manually depending on the preferred

implementation.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 66 -

In the case of manual operation, the internal agent 1055 may be adapted to provide an output to the entity
operating the component 1050, such as an indication of the data received in the payload from the agent
1063. An operator will examine the output and construct the remainder of the component schematic
shown for example in Figures 28B, 28C as required. The user defines the schematic and then operates to
build it, causing respective component instances to be generated in the normal way. Thus, the agent 1055
will perform hand-off as described above. Once the components have been implemented and agent
negotiation completed, the component 1050 then allows the remaining data manipulations to be completed

as required.

Alternatively, in the case of the automatic operation the agent 1055 will trigger the selection of the
remaining components and their interconnections automatically. It will be appreciated that this generally
has to be achieved in accordance with predefined schematics which are selected from a predetermined list
stored in the memory, or the like. This selection can therefore use the data received from the agent 1063

to access a Look-Up Table (LUT) and determine the required schematic for example.

In order for this to function reliably, provision for schematics to handle any data that may be potentially
provided at the agent 1063 must be made, or the overall build process may fail, or have to divert to a

manual operation.

Thus, in the above example, the build process is completed in two stages, although any number of stages
may be provided. In any event, the technique of staged construction allows a wide range of functionality

to be achieved.

In particular, the use of stage constructioﬂ can apply to overall schematics. Thus, users may define a
schematic designed for staged construction. In this case, the user can define three or four different
schematics with the final schematic used depending on results obtained part way through the
manipulation. In the case in which this is performed, any components that potentially will perform data
manipulation after a selector agent will not be constructed until the selector agent has made a decision on

the schematic to be used.

This decision may be made in conjunction with input from the user. Thus, the user can partially define a
schematic to produce a stage output. Once the stage output has been obtained, the user can complete the

remainder of the schematic in response to the particular output obtained.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-67 -

It will be appreciated that in this instance, purchase orders are not issued for the components involved in

the second stage of construction, until the first stage has been completed and the desired output obtained.

This allows users to perform data manipulations and build executable code in stages. This in turn reduces
the expense incurred if the build process fails, as well as providing users opportunity to optimise

schematics since the number of variables to be considered may be reduced.

Staged construction also allows dynamic components to be implemented. That is components where the
schematic may change given the conditions rather than a fixed static schematic. In this case, the entity
may define a component that requires staged construction in order to complete, with this fact being
transparent to the user. The component will interact with other components in the schematic during the
build process, by offering the external agents, such as the agents 1051, 1052, 1053, 1054, in the normal
way. This allows other components to be constructed as normal, with the output from the component

1050 only being provided once the second internal stage of construction is complete.

As a result, it is generally the entity that issues any purchase orders required to implement the components
required in subsequent stages of construction, and it will therefore be appreciated that this may be

performed automatically in some cases. The entity server may therefore act as a root server for the second

stage of construction, particularly if the components used in the second stage of construction are provided .

by another entity.

Prototype Components

In the examples above the components are predefined, even in the case of dynamic components. This is

because the nature of the input and output data is predetermined. This means that when the user selects a

- component from the forum they are aware of the specific input and output requirements of the component.

Thus, in the example described above with respect to Figures 28A - 28C the component may be dynamic
and this may allow, for example, the component to receive inputs having different formats. However, it is
still necessary for these formats to be predefined thereby providing the user with only limited options for

implementation.

As an alternative, an entity may provide a prototype component which is situated on the forum. The

prototype component will not include a defined component schematic and similarly will not include

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-68 -

finalised input and output specifications. Instead, the prototype component will include an indication of
the functionality that may be provided. Accordingly, the user may select a prototype component which is

capable of combining inputs.

At this stage, the nature of the inputs and/or outputs, and in particular the data formats that can be handled
are undefined. Accordingly, when the user selects the prototype component and includes this in a
schematic it will be necessary for the user to provide the entity with an indication of the data formats that

they wish to combine. This procedure can be performed in 2 number of ways.

In a first example when the user selects the component and attempts to add this into a schematic the user
will be prompted to provide input and/or output specifications they desire for the component, with this
being transferred to the entity for review. The entity then assesses if it will be possible to provide the
respective service in accordance with the requirements. If so, and the component can be implemented,
confirmation of this is sent to the user together with defined input and output specifications for the
components agents as required. The specifications will then be used to finalise the component allowing it

to be added into the schematic.

This form of prototype component will hereinafter be referred to as a conditional prototype as this requires
confirmation from the entity that the component can be implemented before it may be incorporated into

the schematics.

As an alternative however if the entity is confident that they can perform the data manipulation service
embodied in the component regardless of the input and output specifications required, then the prototype

component can be provided as unconditional prototype.

In this case, the prototype component may simply be incorporated into the schematic immediately. In this
instance, the agents of the component will be adapted to communicate with agents of other components
and determine input and output specifications therefrom. The agents will therefore effectively accept any
input or output options selected by corresponding agents during the build process when the agents

negotiate in the normal way.

Agent negotiation is basic in that the agent of an input of one of the unconditional prototype components
will simply indicate that it can receive data from an output in accordance with the preferred format

specified by the output agent. Similarly, the output will simply indicate that it can provide data in the

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 69 -
format required by the agent associated with the input of a subsequent component.

Accordingly, the input and output specifications of the unconditional prototype are therefore effectively
determined in accordance with the input and dutputs specifications required by other adjacent components

in the schematic.

Tt will therefore be appreciated that if two conditional prototypes components are interconnected, common
specifications may not be defined automatically. In this instance, some user input either by the user
creating the schematic or by the entities implementing the components will be required in order for the

schematic build to be successful.

In any event, in the case of unconditional prototype components, when the component is to be
implemented the entity will simply operate to receive the data and perform the required data
manipulations regardless of the format. It will be appreciated that this may be performed automatically if

a suitably flexible component can be defined.

Fundamental Components

As described above, the system allows components to be combined hierarchically to allow a complex
series of data manipulations to be performed. Thus complex components can be constructed using basic

fundamental components, which may be provided via the forum.
The fundamental components represent basic data manipulations that will be required in most schematics,
such as logic manipulations, or the like, and are typically implemented automatically utilising suitable

executable code. Examples are provided in Appendix A.

Context Dependency

To provide protection for the component suppliers service implementation, the system can be

implemented so as to generate context dependent code.

Context dependant code is where the code is produced in such a way that it exploits the context in which
the code will be run. This context dependence makes it very difficult to extract the executable code
produced by a component and to use it in another project, and is therefore useful in providing inherent IP

(intellectual property) protection for a component.

10

15

20

25

30

WO 2004/042639 . PCT/AU2003/001474

-70 -

In particular when a supplier delivers code to the customer, the customer received a unique solution based
on the context as provided by the customer, the environment and fellow suppliers. Thus, in contrast to
supplying context independent code from which the customer could conceivably work out certain supplier
process details by examining the outcome as supplied, the supplier's IP is obscured by the customised
nature of the solution. If the supplier deeply and finely constructs their solution into the customers

outcome, then it enhances the obscurity.

In contrast to this, conventional coding practices encourage code to be made reusable by making it context
independent. This allows the code to be reused in a range of different projects all without modifying the
code. If components were to produce code in this manner it would eliminate the need for anyone to
repurchase the component, undermining the economics of producing the component. Thus in this case

there would be no IP protection for the component provider.

Since components are services there should be encouragement for their reuse and it is therefore beneficial
if they produce context dependent code. This is achieved by the component producing customised output,
which is based on the requirements for the code, by exploiting the context in which code will be used.
Context may include such things as:

e Known state of the executable at start-up

e Known state of registers from the previous instructions

e Known state of the stack and memory

e Allocation of registers, stack and memory

e Number of myself (component) in the project

e What components are connected to my component

e Location where our code is to be placed

Context dependant code exploits the fact that there are many ways of performing the same task, some of
which are dependant on other parts of the system. By creating dependant code it prevents a third party
from easily reusing or reverse engineering the code without extensive rewriting. Past some level of
dependency it becomes more economical to simply repurchase the component, rather than to reverse

engineer and rewrite.

Context dependency is achieved by the supplier examining the context in which the outcome is to be

delivered. Since each context is unique, it is possible to customise for each context.

10

15

20

25

30

WO 2004/042639) PCT/AU2003/001474

-71 -

For example the code to terminate a program may be constructed, ignoring the context thus:

Example 1

Note: This is x86 assembly, also assembly is presented instead of hex.
mov eax, 1 ;store number 1 in register eax
mov ebx, 0 ;store number 0 in register ebx
int 0x80 ;trap call to Unix OS

This results in the constants 1 and 0 being loaded into the registered eax and abx respectively, then
executing a software interrupt to trap back to the operating system. Executing this code would result in
the operating system terminating the program and freeing the code from memory. Example 1 is context

insensitive in that delivering this to the customer gives away the IP of the supplier.

If the context is included, then certain modifications can be made to:
1) reduce the amount of code delivered
2) reduce the execution time

3) allow the code to only operate in this specific context

Execution of previous instructions may have left known constants in the CPU registers. In the rare case
that eax and ebx already contain 1 and 0 respectively, the outcome for this context could simply be:
Example 2

int 0x80

There are many other combinations. For example, if a different register contains the correct constant, then
a register to register move would be cheaper than moving a constant into a register. Similarly, a register
could be incremented if the existing constant was very similar to the one required. In each case, the
outcome delivered would be unusable in any other context. Further, the customer would be unaware of

the many other combinations for their respective contexts.

Context dependency can be achieved using a number of different mechanisms as will now be described.

10

15

20

25

30

35

WO 2004/042639 PCT/AU2003/001474

-72 -

Assembly Level Context Dependency

In one example, the process described above uses a supply chain of components to produce the code for an
executable application. At the bottom of the code producing components supply chain, are components
that resemble something similar to assembly instructions. Each of these bottom-rung components produce

typically 1-3 machine code instructions, some examples might be:

e assign

e add

e multiply
o divide

e subtract

e jump condition
Each of these components would understand what effect they would have on registers, stack memory,

heap memory and the machine state.

The machine state is a progressive calculation of the known state of the processor on the selection of the

instructions used in a program. For example:

;machine state after each instruction (x86 assembly)

;eax=?, ebx=?, ecx=?, edx=?
mov eax, 1 ;eax=1 ;eax=1, ebx=?, ecx=?, edx=?
mov ebx, 2 ;ebx=2 ;eax=1l, ebx=2, ecx=?, edx=?
add eax, exb ;eax=eax+ebx ;eax=3, ebx=2, ecx=?, edx=?
mov ecx, eax ;jecx=eax ;eax=3, ebx=2, ecx=3, edx=?

Single Parameter Context Dependence
Single parameter dependence is when the code produced is dependant on the state of a single register.

Single parameter dependence represents the minimum level of machine state context dependence.

The following describes an implementation of an assign component. This component sets a specific
register to a specified constant value known at construction time. For example assign(eax, 1) would
produce code that results in eax obtaining the value of 1. The assign component achieves context
dependence by using the known machine state prior to the assign code being executed to create code that

will achieve the outcome.

For example, if the machine state was {eax=2, ebx=10, ecx=0, edx=1}, then there are multiple ways of

achieving an assignment of 1 to eax, as set out in Table 1.

WO 2004/042639

PCT/AU2003/001474
-73 -
Table 1
Name Pseudo code x86 fl'j;ig nce
Mov number eax=1 mov eax, 1 0
Setto 1 eax=0 XOor eax, eax
eax=eax+1 inc eax 0
Decrement self eax=eax-1 dec eax 1
Subtract other eax=ebx mov eax, ebx
eax=eax-9 gub eax, 9 1
Add other eax=ebx mov eax, ebx
eax=cax+(-9) add eax, -9 1
Increment other eax=ecx mov eax, ecx
eax=eax+1 inc eax 1
Copy other eax=edx mov eax, edx
Subtract self other eax=cax-edx sub eax, edx 2

In general the option that maximises the level of dependence, while minimising size and speed is best
option. The above example shows several rules that match the assignment number and the machine state

of the input. Additional details are shown in Table 2.

Table 2
Name Speed Size Pseudo code x86 Level of
(~cycles) | (bytes) dependence
Mov number 1 5 eax=1 mov eax, 1 0
Set to 0 | 1 2 Eax=0 xor eax, eax {0
Setto 1 2 3 eax=0 xor eax, eax |0
eax=eax+1 inc eax
Decrement self , 1 1 eax=eax-1 dec eax 1
Decrement other | 2 3 Eax=ebx mov eax, ebx 1
dec eax dec eax
Increment self eax=eax+1 inc eax
Increment other eax=ecx mov eax, ecx |1
eax=eax+l inc eax
Subtract self 1 1 eax=eax-9 sub eax, 9 1

10

15

20

WO 2004/042639 PCT/AU2003/001474

-74 -

Subtract other 2 6 to7 eax=ebx mov eax, ebx 1
eax=eax-9 gub eax, 9

Add self 1 5t06 eax=eax= (-9) add eax, -9 1

Add other 2 6to7 eax=ebx mov eax, ebx 1
eax=eax+ (-9) add eax, -9

Copy self 0 0 (eax is already No code 1
set)

Copy other 1 1 eax=edx mov eax, edx 1

Subtract self 1 2 eax=eax-edx sub eax, edx |2

other .

Add self other 1 2 eax=eax+edx add eax, edx |2

Multi-level Context Dependency
The hardest level to implement is to create context dependency at a low level near assembly. This is due
to the limited number of ways that a given problem can be implemented. If higher level components use

these context dependant components then they too inherent context dependency.

If the assembly like code generating primitives are sufficiently context dependant then components using
these as sub-components will become dependant to the point where it will be easier to rewrite the entire

code then reverse engineer.
Specific examples of context dependency are shown in Appendix C.

Variable Context Dependency
In the previous example, if the code generation is performed multiple times, the same output will result

each time, as the result is directly dependent on the context.

However, in order to provide further protection it is possible to modify the output code so that the result is

different each time the code is generated in the same context. This can be achieved by:

¢ Introducing random context (known as dithering)

e Selecting from multiple possible outputs (for example table 1 shows eight possible outcomes for the
given context, with one of these eight options being selected randomly for use as the output)

e Negotiating redistribution of data manipulation (known as Meshing).

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-75 -

Thus, for example, components can be adapted to introduce random context for use by subsequent
components, for example by setting registers to random values, or the like. Additionally, the system can

operate to select an output from a number of equally applicable but different context dependent solutions.

Specific examples of this are described in Appendix C.

Dithering
In this case, components are adapted to internally perform data manipulations using a number of different
techniques. In this case, the techniques are configured to generate different resulting code. An example

of this will now be described with respect to Figure 29A.

In particular, in this example, a component 1250 is shown. In this case, the component includes five sub-
components 1251, 1252, 1253, 1254, 1255, coupled together as shown. Tﬁe exact nature of the sub-
components is not important for the purpose of this example, however, for the purpose of illustration only,
the component 1250 is adapted to assign a value to the register eax. In this case, the value to be written
into the register eax via an external agent 1256. The value is transferred to a DUP component 1251,

which copies the value to each of the components 1252, 1253, 1254.
In this example, each of the agents 1252, 1253, 1254, is adapted to assign the value in a different way.

Thus for the value “V”, the component 1252 may be adapted to simply write the value into the register
using the command eax=V. The component 1253 may be adapted to clear the register and add the value
“V” using the commands eax=0, eax=eax+V. Finally the component 1254 can be adapted to set the
register to a predetermined value and then modify the register as required using for example the

commands eax=10, eax=eax-(10-V).

Accordingly, it will be appreciated that each one of the components 1252, 1253, 1254 will generate

different commands for achieving the same end result.

In this case, the results of the component processing, in the form of the determined commands are
transferred to the component 1255. The component 1255 is a dither component, which is adapted to

receive a number of different inputs from which one is randomly selected.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-76 -

Accordingly, when the component 1250 is implemented and a value V received, each of the components
1252, 1253, 1254 will generate appropriate commands based on the value V. The commands will be
passed onto the dither component which randomly selects one of the commands for output via the agent
1257. Thus, each time the component 1250 is performed for a given value V, one of three different

commands will provided at the agent 1257 as an output.

In this case, the component 1250 is external context independent, that is to say that the component is not
capable of taking into account the existing state of the register eax. However, it is still desirable to

provide dithering so that the resulting code generated may be different in each case.

It will therefore be appreciated that this system operates to ensure that different outputs are provided even
in the event of the same external context. This helps ensure that the manner in which the component

performs the service will be retained as secret.

Tt will be appreciated that this is a simplistic example to highlight the operation of the dither component
1255, but that the techniques may be implemented in more éomplex environments, to thereby introduce

automatic variations in the output from the component.

This can also be implemented together with external context dependency, as shown for example in Figure
29B. In this example, the component 1254 is replaced by a component 1258, with an additional input
agent 1259 being provided as shown. In this case, the agent 1259 provides an indication of the existing

value “V,” of the register eax if it is known.

Accordingly, in this case, the component 1258 is adapted to set the vélue of the eax using the command
eax=eax~(V,-V). Accordingly, it will be appreciated that the output from the component 1258 introduces
external context dependency, thereby further enhancing the context dependency of the component 1250.
In the case in which no value V, is received at an input agent 1259, the component may be adapted to
produce no output, in which case the component 1255 will simply select one of the outputs provided by
the components 1252, 1253. However, if an output is provided by the component 1258, then the dithering
component can be adapted to randomly select an output from any one of the components 1252, 1253, 1258
as the output of the component 1250.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-77 -

Meshin
In the event of meshing, components cooperate to allow the output of each component to be modified

based on the respective working of each component.

An example of this will now be described with respect to Figures 30A, 30B.

Tn this case, in Figure 30A, two components 1260 and 1265 are provided, with the component 1260
including sub-components 1262, 1263, 1264, and the component 1265 including the sub-components
1267, 1268, 1269. In this example, the components 1260, 1265 are adapted to receive inputs W, X, Z, and
generate respective outputs W, X’, and Y’, Z’, as shown. In this case, the final outputs are combined

using a concatenate component 1270 to form the final resulting code W*, X, Y, 2.

However, by meshing, the components 1260, 1265 can operate to modify the code that each component

produces.

Accordingly, in this instance the components 1260, and 1265 negotiate and determine that the exact
location of implementation of the sub-component 1263 is not essential to the operation of the components.
In particular, the functionality of the components means that the component 1263 can be implemented as a

sub-component of the component 1265.

It will be appreciated that in this example, the input agent remains unaltered, with the inputs W, X, Z still

needing to be received by the components 1260, 1265 in an identical manner.

However, following the meshing procedure, the resulting output generated by the components has
changed. Thus in the arrangement of Figure 30B, the components outputs are W’ for the component
1260, and X’, Y’, Z’ for the component 1265.

As a result, following the meshing, the output of the components 1260, 1265 have changed.

In this example, the outputs of the components 1260 and 1265 are concatenated by the component 1270.
This highlights that the end result of implementing the components 1260 and 1265 can integrate into a
schematic without effecting the overall schematic and the way in which this operates, even though the

components themselves produce different outputs.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-78 -

Thus, this introduces context dependency by modifying the output of the components dependent on other
components in the schematic. It will be appreciated that this will exacerbate the ability of any third parties
to monitor the outputs of the components 1260 and 1265 to thereby reverse engineer the service

implementation.

In this respective example there are a number of unexpected benefits to the meshing procedure. In
particular, the agents of the component 1260 which receive the input X and subsequently output X’ can
simply hand-off so that the input X is provided to the component 1265.

Furthermore, the component 1260 now no longer needs to implement a concatenate component 1264.
This vastly reduces the processing required by the component 1260, whilst only marginally increasing the
processing required within the component 1265. In this scenario, the use of meshing can therefore also

result in an overall increase in the efficiency of the implementation of the schematic.

Tt will be appreciated that the above described meshing process depends on the components implemented

within a schematic. Accordingly, meshing can only be implemented during the build process.

In general the ability to perform meshing is achieved by having the entity provide an indication of
willingness to negotiate meshing as part of the functionality of the agents. In this case, the entity may
therefore create an agent which operates to detect the type of component to which it is connected and then
offer a negotiate option. This may include for example details of any sub-components that could be

readily implemented by other components without undue effect on the remainder of the component.

In the event that an agent receives a negotiate request, the agent will determine if an option to negotiate

has been set, indicating that negotiation is acceptable.

Once negotiation is commenced, this may be implemented in a variety of manners. For example this may
require manual intervention by the operating entities. Typically however, this can be achieved by having
the agents exchange lists of sub-components which can be implemented externally to the component

without undue effect on the component operation.

Thus in the above mentioned example, when instances of the components 1260 and 1265 are constructed,
the agent 1261 will provide an indication of the sub-component 1263 to the agent 1266. In this case, the

agent 1266 will perform checking based on the component schematic and determine that the component

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

=79 -

1266 can be integrated into the component schematic relatively easily. Accordingly, the agent 1266 will
indicate to the agent 1261 that this is to be performed.

During the build process, the component 1265 will therefore generate the purchase orders requesting the
implementation of the component 1263, as will be appreciated by persons skilled in the art. Hand-off can
then be used to allow the agent 1261 to hand-off to the 1265, as described above.

It will be appreciated by persons skilled in the art that this process can readily be achieved by having
component designers anticipate common meshing that may be used, based for example on the
functionality of the components. This allows the entity to implement the component as a dynamic

component.

Thus if the entity providing the component 1265 can anticipate that there may be occasions on which the
component 1263 may be implemented as a sub-component therein, this allows the entity to create the

component 1265 as a dynamic component. In this case, the entity defines two schematics for the

- component 1265, one including the component 1263, the other without. In this case, when the agent 1261

proposes meshing, the agent 1261 will provide an indication of the component 1263. The agent 1266,
which is implemented as a selector agent, can therefore receive the indication of the component 1263, and

use this to select the schematic used for implementation of the component 1265.

It will be appreciated that whilst anticipating potential meshing options, and creating appropriate
schematics that can be implemented as dynamic components increases the complexity of the component
creation, it will also help the implementing entity retain the method by which the component performs the
data manipulation as secret. Accordingly, this investment in making the component flexible with respect
to potential meshing is rewarded with additional protection for the entity’s knowledge in performing the

data manipulation.

It will be appreciated that the entity providing 1260 on agreeing to cooperate with the entity providing
1265 for the purposes of meshing may provide a build bundle so that component 1263 or the like, while
being purchased by 1260 delivers code via 1265.

It will be appreciated that meshing need not be performed in accordance with dynamic components, and

instead may be performed manually.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-80 -

In any event, it will be appreciated that the techniques described above for producing context dependent
code can provide significant barriers to the reverse engineering of the method of performing the respective
data manipulation, thereby providing significant protection for the entity with respect to protecting their

investment in the development of the components.

This protection for the entity in developing components significantly rewards investment in development,

thereby allowing entities to compete with respect to providing services.

General

Accordingly, in one example, the above described systems allows users to perform data manipulation or
generate computer code by defining combinations of components. In this case, each component
corresponds to a respective data manipulation service and accordingly, the component combination
defines a sequence of data manipulations which when performed will result in the desired data

manipulation being performed or the desired code being generated.

The components are generally provided by respective entities which are capable of performing the data
manipulation service defined therein, and this may be achieved either manually or through automated
procedures. Accordingly, in order to allow a user to define a suitable component combination, the
components are usually made available through a centralised system, which is often referred to as a forum.
This is typically implemented by one or more processing systems and may be achieved by having the

forum receive formal definitions of the components in the form of component specifications.

In order to allow the data manipulations to be performed, it is necessary to be able to define the
component combination with sufficient detail to allow the components to interact. In order to achieve
this, in the examples described above, a schematic is defined which sets out the components to be used,
and the interactions therebetween. The schematic is typically defined using a suitable GUI, which
therefore allows users to select components presented on a forum, drag and drop these into the schematic,
and define suitable connections between the components to define the component interactions. In this
regard the forum is provided by one or more processing systems that operate as a portal to provide access

to the component specifications.
Once the schematic is completed, this may then be implemented in a process known as a build.

During a build a respective component instance can be generated for each component in the schematic.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-81-

Fach component instance may be created on a respective component server which is typically
implemented using a processing system provided by the respective entity. In use, when the system is
implemented data may be transferred between the respective component instances with at least some of
the component instances performing required data manipulations on received data, so as to provide an

output of manipulated data as required.

It will be appreciated that the component instances can be capable of communicating with each other, and
in particular, can be capable of transferring information and data in a form that can be understood by both

components.

In one example, this is achieved using agents, with a respective agent being provided for each component
port. Thus, an agent associated with a port on one component will cooperate with an agent associated
with a port output on another component. Whilst the ports are generally used for bi-directional exchanges
of information, there is often a directionality associated with the transfer of data and the ports are therefore

commonly referred to as inputs and outputs.

Communication between agents is typically achieved by transferring messages including a header with
address information and a payload containing any data to be transferred. The interaction between the
agents can be as simple as causing one agent to send a message to another agent, with no further
communication occurring. Alternatively a two stage process may occur including negotiation followed by
data transfer. In this case, the agents will first negotiate with each other to determine a common data
format which can be used to transfer data between the respective components, before proceeding with the
data transfer as required. Thus, during negotiation, the payload will typically include a list of acceptable
data formats that may be handled by the agent, or the like. Thus, a first agent will transfer a suitable list to
a second agent with the second agent responding with an indication of a format which is acceptable. In

the case of transferring data to be manipulated, the data will be included in the payload.

Thus, in one example the agents represent the only form of interaction between the components.

When a schematic is to be built during a build process, this can be achieved by sending purchase orders to
each entity providing components within the schematic. Each entity can then construct a respective
component server including a respective component instance together with any associated agents. Once
this has been completed, the agents perform any required negotiations before the transfer of data between

the components occurs in order to allow the components to perform the respective data manipulations

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-82-

embodied by the component.

In this example, an entity receives a purchase order for a respective component this will specify
connections that need to be formed between agents associated with the component, and other agents. In
particular, this will include the agent addresses of the other agents so that when the component instance
and corresponding agents are constructed, the agents will be able to communicate directly with the other

agents.

Furthermore, in one example the generated code can be context dependent code as described above,
allowing the system to providing a viable economic development model by protecting both the customers
and suppliers Intellectual Property (IP). In one example, all rights to the resultant code can be bestowed
on the customer whilst the IP used by the supplier and the method by which the code was created is never
exposed to the customer. The customer therefore purchases the outcome rather than the process that
created that outcome. A real world example would be to purchase a car from the manufacturer. The

customer is only interested in the car, not how the car was constructed.

As the above techniques capture how software is constructed this provides an IP protection mechanism for
protecting the supplier's IP. That is, "how" is never exposed to the customer. This may be further
enhanced by the generation of context dependent code, which in turn assists the supplier to protect their

special capability.

It will be appreciated that the above examples describe systems that can be adapted to generating code
which is context dependent and therefore substantially reduced in size compared to conventional code.
Furthermore, the specialisation that can be achieved by allowing component suppliers to focus on small
but detailed aspects of the code generation process enable a dramatic increase in reliability and

optimisation to be achieved.

Accordingly this provides a completely new process for constructing software moving away from the
current “artisan” approach (in which individuals or small groups work linearly on all parts of a larger
application from start to finish) to an “industrial” model (using specialist component suppliers, high level
coordination and assembly line concepts) which replicates current best practice in manufacturing

industries.

This may be achieved using one or more of a number of techniques including:

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-83-

e Adding a competitive element to software development.
e Allowing supplier specialisation.

e Protecting both supplier and customer IP.

e Creating fully transferable ownership rights for clients.

e Creating an industrial style software supply chain.

As a result, in some examples, the process can:

e Allow for competition between component suppliers by allowing component suppliers to compete
directly to provide respective services.

e Symmetrically protect the IP of suppliers and clients.

e Allow for the development of component supply chains.

e Provide a fully distributed component processing engine.

e Support fully automated code generation.

In one implementation this is aided through the use of the following tools:

e Component Designer - an application supporting visual assembly of components.

e Component Public and Private specification files — for defining components in a predetermined format
such as XML.

e Component Server - an application supporting the supply of services as specified by the component

public specification file;

A set of server-to-server communication messages embodied by agents, that coordinate the serving of

a component.

IP Protection
The process can protect the intellectual property of suppliers by providing an intrinsic mechanism to allow
components to be individually identified and to produce useable outputs only within the context for which

they were designed.

In this regard it will be noted that existing compiler technologies may use proprietary processes to
generate code, but the resulting code is always the same (context independent) and may be reused by
others as they wish without recognising the IP of its creator. For example, a “printf” function in C may be

reused indefinitely via code libraries or even binary code without any recognition for its creator.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-84 -

However, in the techniques described above the supplier can learn how to protect their component IP by

defining components yielding context based IP protection as a by-product of the construction process.

The IP protection is symmetric in the sense that component suppliers provide their service by running the
component server. The supplier may have no access to information on how the component is ultimately

used by a component consumer.

Pay-Per-Use

In addition to this the model described above allows a pay-per-use component strategy as opposed to
current coding practice which encourages the development of code from passive reusable elements which
exist in a context independent environment. Context independent components eliminate the need for users
to repurchase these components for each use, undermining the economics of producing the component

originally.

Legal licensing mechanisms are currently the only safeguard in effect to protect context independent code.
However, the introduction of the context dependent code generation, together with direct market
competition between component suppliers makes extraction and reuse of the executable code produced by
an individual component difficult enough so that it would be cheaper to purchase rather than reverse

engineer that component.

Supply chains

The described processes support industrial type supply chains. In this case, when a purchase order for a
given component arrives with a supplier, a Component Server deployed at the component vendor’s site
automatically generates purchase orders for the required sub-components. Such automation creates an

efficient “just-in-time” component supply chain.

Distributed construction

The process supports truly distributed code construction.

Persons skilled in the art will appreciate that numerous variations and modifications will become apparent.
All such variations and modifications that become apparent to persons skilled in the art, should be

considered to fall within the spirit and scope that the invention broadly appearing before described.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-85 -

Appendix A

This section includes examples of primitive components that will typically be used in the construction of

executable code.

In the following examples the executable code actually used to implement the components will not be
described as this is generally straight forward and well within the scope of any programmer as will be
appreciated by a person skilled in the art. In any event, it will also be appreciated that different forms of

fundamental component implementation may be provided.

Bundle
The bundle component operates to bundle agent connections together into a single agent connection, as
described above. A range of different bundling components may be provided including different numbers

of inputs and outputs.

The BUN2 component shown in Figure 31A is a primitive component that can bundle two agents
provided via the agent inputs 1, 2 into a single agent. The bundle is named with the name gathered from
an NI agent. When connected to another BUN2 component the bundle name from the remote BUN2
component will be presented on the NO agent to permit error checking. The agent B presents the bundle

while the agent E presents any errors in operation.

The BUN3 component shown in Figure 31B is a primitive component that can bundle three agents
presented at the input agents 1, 2, 3. The bundle is named with the name gathered from the NI agent.
When connected to another bundle 3 the bundle name from the remote bundle 3 will be presented on the
NO agent permitting error checking. The agent B presents the bundle while the optional agent E presents

any errors in operation.

DUP
The dup components includes an input agent I coupled to two or more output agents O, as shown for

example in Figures 31C.

In use, an input payload received at the input agent I is duplicated and supplied by each output agent O as

required. This allows data from a single agent to be copied and disiributed to multiple agents as required.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 86 -

D2H
This component, shown in Figure 31D converts a payload received on agent I from decimal to Hex and
presents it on agent O. It is done with a precision given by agent P. Any errors in the conversion are

presented on optional agent E.

H2B ‘
The H2B component shown in Figure 31E converts a payload received via the agent I from Hex to binary
and presents it on agent O. It is done with a precision given by agent P. Any errors in the conversion are

presented on optional agent E.

endian

The endian component shown in Figure 31F performs a byte wise reversal of input hexadecimal number
received as the payload on agent I and presents it on agent O. For example with an input of 01234567 the
output would be 67452301. It is done with a precision given by agent P. Any errors in the conversion are

presented on optional agent E.

Find & Replace
This component shown in Figure 31G will search through a string presented at the agent In for every
appearance of the string presented at the agent Find, and will replace each of those appearances with the

string presented at the agent Replace, with the result being sent via the agent Out.
If the string Find is not found, the agent string In will appear at agent Out unchanged.

Find Tag

This component shown in Figure 31H will search an XML document presented at the XML In agent for "
the tag presented at Tag In agent.

It will return:
¢ the value associated with the tag at Value Out
o the remainder of the XML document at XML Out

e any exceptions that occurred at Exception

For example, if payload at the agent XML In is:

10

15

20

25

30

35

WO 2004/042639 PCT/AU2003/001474
-87-

"
<asl

<a>2

<a>3
"

and the payload of the Tag In agent is "a" then Value Out will be “2” and XML Out will be:

"
<a>l

<a>3
"

An exception will occur when the payload of the XML In agent is not valid XML or the payload of the

Tag In agent is not found. If an exception occurs, nothing will appear at either output.

If the XML contains data that is Base-64 encoded, it will appear Base-64 encoded in the payload of the
XML Out agent, but will be decoded if and when it appears at Value Out agent.

Add_tag

The add tag component shown in Figure 311 creates an XML tuple of the form <Tag In>Value In</Tag
In> in valid XML, based on the tag presented in the payload at the Tag In agent, and in accordance with
the value provided at the Value In agent. If the value needs to be stored as a Base-64 number, then it will
be done. If the tag is not valid for XML, an exception will occur and the payload of the XML Out agent

will not include anything.

Cat
This component shown in Figure 31J will concatenate the strings provided in payloads at the agents 1 and
2, and output the result at the remaining agent. For example, if the string 1 was "banana " and the

string 2 was "smoothie", the output agent will output "banana smoothie".

Len

This component shown in Figure 31K will measure the length of the string received at the agent I, and
send the length from agent O. For example, if the input string at agent I was "ABCDEF" the output would
be 6.

10

15

20

25

30

35

WO 2004/042639 PCT/AU2003/001474

-88 -

LUT
This component shown in Figure 31L searches a lookup table, supplied in XML at the agent "T" and
complying to the "lookup table" protocol, for an input "I", and returns the matching output at agent "O".

The table is comprised of a number of entries, mostly made up of input/output tuplesl If the input at agent
"I" matches the input of the tuple, the output at agent "O" will be the output from the same tuple. The table
also has an optional entry, containing the single tag "otherwise". If this tag is present and no matching
tuple has been found, then the output "O" will be the output value associated with the "otherwise" tag. If
not match could be found, or the table data does not comply with the protocol, then an exception will

occur. If an exception occurs, nothing will appear at the output O.

An example of the "lookup table" protocol is as follows:

<protocol>
<protocol name>lookup table</protocol_ name>
<protocol_data>
<entry>
<input>input 1</inputs>
<output>output 1l</outputs>
</entrys>
<entry>
<input>input 1</input>
<outputs>output 1l</outputs>

</entry>
<entry>
<otherwises>output otherwise</otherwise>
</entry>
</protocol data>
</protocol>
And

This component shown in Figure 31M computes the logical AND of the boolean strings provided in the
payloads at agents 1 and 2, and outputs the result in the payload of agent O. An exception will occur if
either of the inputs are not able to be parsed into boolean strings, and nothing will be sent from the agent

O. For example, if 1 was "true" and 2 was "false", then O would be "false".

Math
Figures 31N, 310 and 31P show mathematical operator components DIV, ADD EQ, for performing the

mathematical functions of divide, add and an equals determination of the payloads presented at the agents

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-89-

1, 2. In this case, the result is presented at the respective output agent O, with an exception indication

being provided at the agent E.

Build ASM 1
The Build ASM 1 component shown in Figure 31Q is a member of the build components which

manipulate build chains representing the data structure responsible for collecting code fragments.

Build ASM 1 receives code via the agent code and proceeds to insert it into the build chain which is

connected to the build agent.

An example of the interhal schematic of the Build ASM 1 component is shown in Figure 31R. It can be
seen that the external agent code is handed off onto the internal agent DUP which makes two copies of the
payload of the code agent. The first copy of the code agent is presented to a component LEN which
computes the length of the code string. This is then presented to the DIV component for division by 2
before being added to an address chain. The address chain is received on the agent 1 of the component
BUNS3 and is returned on the agent 2 of the component BUN3. The second copy of the code agent is
presented to the agent 3 of the BUN3 to deliver the code to the build chain. The component BUN3 serves
to bundle the address in/out and the code agents together for delivery to the other members of the build
family.

Build ASM 2
The Build ASM 2 component shown in Figure 318 is also a member of the build components.

Build ASM 2 is adapted to receive code on the agent code and proceeds to insert it into the build chain
which is connected to the agent build. Build ASM 2 also provides the current address of the memory

allocated for the code on agent Addr out.

An example of the internal schematic of the Build ASM 2 component is shown in Figure 31T. It can be
seen that the external agent code is handed off onto the internal agent DUP which makes two copies of the
payload of the code agent. The first copy of the code agent is presented to a component LEN which
computes the length of the code string. This is then presented to the DIV component for division by 2
before being added to the address chain. The address chain is received on the agent 1 of the component
BUN3 and is duplicated using the component DUP before being returned on the agent 2 of the BUN3

component.

10

15

20

WO 2004/042639 PCT/AU2003/001474

-90 -

The second copy of the address is presented on the Addr out agent. The second copy of the code agent is
presented to the agent 3 of the component BUN3 to deliver the code to the build chain. The component
BUNS3 serves to bundle the address in/out and code agents together for delivery to the other members of
the build family.

Init_elf

The Init_elf component shown in Figure 31U is also a member of the build components.

The Init_elf component presents a build bundle for interfacing with the other members of the build family.
Via this build bundle the Init_elf component receives the code which is formed into a file format for

execution and loading (ELF). This file format data is presented on the elf agent.

An example of the internal schematic of the Init EIf component is shown in Figure 31V. It can be seen
that the agent build is handed off to the component BUN3 which unpacks the bundle to recover the
address in/out and the code agents. Because this is a simplified version of the build chain designed for this
example, it has only limited capability. Thus when the code is incorporated into the execution and loading
file format (ELF) the address information is ignored. The address agents aré only used to track the code
address as fragments are added. Once the code agent is recovered on agént 3 of the BUN3 component it is
presented to the DUP component which makes two copies. The first copy is used to compute the total size
of the ELF file for inclusion into the header via component Fine & Replace while the second copy of the
code is appended to the header via the CAT component and converted to binary with the B2H component

before being presented to the external agent elf for delivery to the parent.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474
-91 -

Appendix B

Specific Examples

Alternative techniques are outlined in a number of specific examples set out in detail below.

First Specific Example
The first example results in the construction of a schematic containing a single component. This

straightforward example serves to highlight the steps involved in construction.

Figure 32A shows an external component representation Addl of a component “Addl” that offers an
“add” service. An internal component representation is shown in Figure 32B. As shown the component
includes two inputs IN1, IN2, and two outputs OUT, EXCEPTIONS.

In this example, the component representation Addl is léyered-up into a schematic “Addl test” as shown
in Figure 32C. This schematic consists of an outer box called the root component, the component
representaﬁon Addl, and connected to this are four internal agents IN1, IN2, OUT, EXCEPTIONS
denoted by the crosshatched boxes of Figure 32C. In this example, all agents are connected in pairs with a

single line.

Every build begins with the starting of a root component server, which in this example corresponds to one
of the processing systems outlined in the example above. Theoretically any one of the base station 1, the
end stations 3 and the entity stations 5 in the example set out above could act as the root component

server, although in this example it is the end station 3 of the user.

When the root component server receives a build request it proceeds to construct the root component. In
this example the root schematic associated with the root component is loaded and scanned. All
component representations in the root schematic are then identified and secondary build requests are
issued by the root component server. In this case only a single build request is issued to an “Addl”

component server since the example schematic only contains this one component.

On the “Add1” component server, which may for example be one of the entity stations 5 operated by a
respective entity and positioned at a remote location, there is an “Add1” schematic associated with the

component in much the same way as the root schematic is associated with the root component. Figure

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474
-92 -

32B represents the “Add1” schematic residing on the “Add1” component server. Of note is that the

schematic contains nothing. Accordingly, the component Add1 does not include any sub-components.

When the “Add1” component server receives the secondary build request that was issued from the root
server it creates a new instance to serve as a vehicle for providing the “add” service to this new customer.
Similar to the actions of the root component server the “Add1” component server loads the schematic
associated with “Add1” and scans it for any component representations so that further build requests can
be sent out. In this example however the “Add1” schematic is empty and thus no further build requests

are issued.

It is important to note that the “Addl” build request issued by the root component server supplies
information about the agents associated with the “Add1” component. That will allow the “Addl”
component instance’s agents to connect to the correct destination, which in this case are on the root

component server.

The next step for the root component server is to scan its root schematic for internal or external agents.
Since it is a root component it will not contain any external agents. However the schematic does include

the four internal agents IN1, IN2, OUT, EXCEPTIONS as shown in Figure 32C.

The root component server then proceeds to create these internal agents and they begin to contact their
respective partners, namely the agents IN1, IN2, OUT, EXCEPTIONS on the “Add1” component server.
The “Add1” component server performs a similar function. The “Add1” schematic is scanned for agents
and only four external agents IN1, IN2, OUT, EXCEPTIONS are found. The «Add1” component server
then proceeds to create these external agents and they also begin to contact their partners at the root

component server.

Since the root component server and the “Add1” component servers were successful in creating their

internal and external agents respectively, they connect successfully.

At this point the root component server has established four communications paths to the “Add1”
component server and the user can now utilise the service at the “Add1” component server via the agents

available on the root component server.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-93-

Since the “Add1” schematic is empty the service supplied by the entity must be performed manually by an
operator stationed at the “Add1” component server. Thus when the user of the root component server
enters a number in the internal agents IN1, IN2, respectively, the operator at the “Add1” compénent server
will receive these numbers and can then perform their service. In this example the operator at the “Add1”

component server must add the numbers manually and return their result using the agent OUT.

If the “Add1” component wished to verify the formatting of the inputs or outputs, for instance, the base of
the number system to be used, or the number of decimal places to be used, the agents are free to send
additional payload packets until all parties are satisfied. In this case, as there is no need to transfer further

information, the agents are free to terminate the link.

Once the transaction is complete the agents can be terminated at both the root component server and the
“Add1” component server, and the root component instance and “Addl” component instance can be

retired respectively.

Although this example is quite simple it serves to highlight the concept of the component servers, how the
agents interact and that a service performed remotely at the component server, which will typically be
situated remotely to the end station 3. Thus, for example, the root component server may be located in
Townsville, with the “Add1” component server in Rome. Despite this, the location of the “Add1”

component server is transparent to the user in Townsville.

The last point to note is the use of the EXCEPTIONS agent, which can be used should the entity providing
the Add service have any difficulty in performing the service as contracted, the exception agent can be

used to communicate the difficulty.

Second Specific Example
The second example is substantially the same as the first example, except that in this example, the

provision of the “Add” service is through the use of a component “Add2” which is automated. An
example of the component representation Add2 of the component “Add2” is shown in Figure 33. As
shown the component representation Add2 is substantially the same as the component representation
Addl.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-94 -

This example shows it is very easy to automate the services of simple components. In particular,
automation is achieved by monitoring states of the agents belonging to each instance of an automated add,

and performing certain tasks as the states change.

In this example, at the time when the agents IN1, IN2 of the “Add2” component have received payloads
and the agent OUT is connected, the payloads from the agents IN1, IN2 are added together and sent out as
a payload packet via the agent OUT.

As this automated add component is designed to work for only decimal addition, it will send a message
indicating that an input was incorrectly formatted if an input is not a valid decimal number. When the
agent OUT has received a termination indication, the agents IN1, IN2 send terminate packets to their
partners.

The result of this is that if the root component sends the numbers 5 and 4 to the automated “Add2”
component, the result, 9, will quickly arrive at the agent OUT of the root component. If the root
component was to then send the number 6 via the agent that had sent the number 5, the number 10 will

arrive at the output, allowing for any corrections without the need for a restart.

If the root component were to send the letters "five" and the number 4 via the agents IN1, IN2
respectively, agent IN1, will receive the message "Number formatted incorrectly” from the automated

“Add2” component.

Third Specific Example
The third specific example extends the complexity of the add component allowing it to handle input
numbers of different number bases, such as decimal and hexadecimal. This is an addition that can accept

inputs as either decimal or hexadecimal numbers and can output either a decimal or hexadecimal number.

Figure 34A is an example of the component representation Add3 of an “Add3” component. The “Add3”
component includes inputs and output having agents IN1, IN2, FormatIN1, FormatIN2, FormatOUT,
EXCEPTIONS, as shown. In this example, the “Add3” component is a compound component containing

‘many internal components that have been selected and arranged in such a way as to perform this more

complex service. Figure 34B is the internal schematic of the “Add3” component and this introduces a

number of new components in order to perform this more complex service.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-95-

Detailed in the schematic shown in Figure 34B are a number of “convert” components, which perform the
service of converting a number in a particular format to another format. In this way a user of the “Add3”

component can specify the format of each number.

Because the automated “Add2” component will only work with decimal numbers it is rather fragile.
However the “Add3” component performs the same basic service but is much more robust in that it can
handle input numbers of many formats and even produces the output number in any format desired. This

is despite using the fragile “Add2” component.

Formatting is achieved using the agents FormatIN1, FormatIN2, FormatOUT.

Each of the input numbers supplied to the agents FormatIN1, FormatIN2, are converted to decimal using
the respective “convert” components, before being transferred to the “Add2” component. Each “convert”

component has four agents IN, FormatIN, OUT, FormatOUT.

The number from the respective IN agent of the “Add3” component is presented at the agent IN, and is
interpreted as being of the format specified by the respective FormatIN agent of the “Add3” component.

In this example, three instances of the “convert” component are used, one for each of the agents belonging

to the “Add2” component. This is necessary as the “Add2” component only works with decimal numbers.

When the “Add3” component is used in a build all of the external agents IN1, IN2, FormatIN1,
FormatIN2, FormatOUT, EXCEPTIONS, will become connected to their respective partner agents on the

- root component (not shown).

The “Add3” component will then build its internal schematic corresponding to Figure 34B. This will send
build requests and agent connection details to all the sub-components. All the external agents IN1, IN2,
FormatIN1, FormatIN2, FormatOUT, EXCEPTIONS, of the “Add3” component are connected directly to
the respective “convert” sub-components and so they are handed off resulting in the subcontractor
“convert” components connecting directly to the partner agents on the external agents. Apart from the
external agents the “Add3” component has three internal agents DECIMAL, which are set to

automatically deliver their payload as soon as the agent has connected. As these agents send their payload

automatically and send terminate as soon as they receive a terminate packet, they are in effect automated

agents.

10

15

20

25

WO 2004/042639 PCT/AU2003/001474

-96 -

If the conversion component is automated, then the entire “Add3” component is in effect automated. This
is a good example of the building of complex programming components from simpler programming
components, and also of non-primitive automation. The “Add2” component was automated, but as there
is no way of performing the task via a sub-schematic it is classified as a primitive component. In effect,

all software produced with these techniques will be derived out of primitives at the lowest level.

The “Add3” component is more versatile than the automated “Add2” component. The purchaser of an
“Add3” component will be able to perform addition without worrying about how the conversions work,

demonstrating a level of complexity hiding.

Fourth Specific Example

This specific example is the most complicated add component to be discussed.

In this example, an “Add5” component also provides additional testing and functionality to the “add”
service. However it will be noted that the discussion only adds sufficient complexity to illustrate certain
key features of the technology. The “Add5” component demonstrates the use of agent bundling, basic

input testing, schematic selection and exception handling.

The “Add5” component extends the “Add3” component by including input validation for the Format
specification and uses bundling to reduce the number of external agehts. Figure 35A shows the
component representation of the “Add5” component. It has 5 agents that are briefly described in the table
3 below:

Table 3
Agent Description
IN1 Input number 1 (Bundle of number value and number format)
IN2 Input number 2 (Bundle of number value and number format)
FORMAT Specifies the required format of the output number (ie. decimal or
hexadecimal)
ouT Output result of the addition (Bundle of number value and number format)
EXCEPTIONS | Indicates if any build exception occurs.

10

15

WO 2004/042639

Figure 35B shows the internal schematic of the “Add5” component. This example uses 6 other

PCT/AU2003/001474

-97-

components as briefly described in Table 4.

Table 4

Component Designators Brief description

Dup C4,C3,C9 Duplicates the payload of its IN agents to all of its OUT
agents.

Validate String | C5, C6, C7 Checks an input string against a list of valid strings. It
outputs the result of the checking and reformats of the input
string to a given specification.

Or C8 OR Boolean logic, output is true if any input is true, else
output is false.

U Cl,C2 Unbundle. Splits a bundle of agents.

B C10 Bundle. Combines two agents into a bundle.

Schematic Cl1 Selectively builds one of 7 schematics based on the payload

selection of the selector agent.

Add4 Same as an Add3 except that the service is performed
manually, allowing much more power resolution of
problems than the automatic Add3 component. (

Validate String

The Validate String component works by comparing the input string (In) to a list of valid strings on the
LIST agent. In this example the list would be “Decimal” and “Hexadecimal”. If the input string is valid
than it is passed as being valid resulting in the OUT(checked) agent returning “true”. If the string were not
valid the OUT(checked) agent would return “false”. An additional service of the validate string is to
reformat the input string into a specified output format. This might include the removal of white space
(space, and carriage return character), converting the string to lower case and also trimming the string

length. The FORMAT agent specifies this output formatting.

Or

The Or component is a logical operator used when to trigger an event based on input from multiple
sources. It combines all its inputs so that if any of them are true it will output a true. When Or is first
purchased all of its input agents are undefined as each of the agents will only have just cormected and will

thus have no payload. The Or component then waits for agent payloads until it has sufficient information

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-98 -

to decide what output it should deliver. It will output a “true” as soon as any of the input agents have a
payload of “true”, otherwise it will wait until all input agents are specified as “false”, at which point it will

output “false”.

Bundled Agents

The agents IN1, IN2, OUT use bundling to combine two agents together, one representing the value of the
number and one for specifying the format of the number. This bundling assumes that the number format
is in the first position of a bundle, and the number value is in the second location. This combination of
these two particular agents will be referred to as a number bundle. To ensure ~compatibility the agents
IN1, IN2 must only be connected to agents that produce a number bundle and the OUT agent must only be
connected to an agent that can handle a number bundle. For more information about bundling refer to the

section on bundling and unbundling.

The number inputs Inl, In2 of the agents IN1, IN2 of the “Add5” component are unbundled by the
components C1, C2 to get the number value and number format agents. After the components C2, C1
perform their service the number value of In1 becomes connected to the agent A37 and the number format

becomes connected to the agent A26.

For the number input In2 the number value becomes connected to the agent A39 and the number formét
becomes connected to the agent A29. The number formats for each of the inputs Inl, In2 is then verified
and formatted by the Validate String components C6, C7. The agent A19 specifying the output format is
also checked using C5.

Duplicates and Validate Lists and Formats
The Validate String components allow the inputs to checked and formatted based on predetermined

requirements.

In this example, it is necessary want to ensure that the Format specified for the Add component used in the
addition component C11 is compliant with the agents FormatIN1, FormatIN2 and FormatOUT. Each of
the Validate String components C5, C6, C7 require a specified list of valid strings, which is supplied by
the internal agent A14, and duplicated three times by the Dup component C4. In this case the payload for
the internal agent A14 would be “Decimal, Hexadecimal”. The internal agent A10 specifies the required

output format for the three Validate String components, which maybe something like “No white space,

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-99 -

lower case”. This is achieved by duplicating the string received from the internal agent A10 using the

Dup component C3.

Selective Construction

The OUT(checked) agents A23, A53, A31 of the Validate String components indicate whether each of the
Format specifications passed the input verification. It any of them fail, additional functionality is required
to be performed manually. The OUT(checked) agents A23, A53, A31 are combined into a single agent
A36 using an Or component C8, which will have an agent payload specifying whether to use a manual or

automatic add provided by “Add4” or “Add3” respectively.

The core part of the schematic in Figure 35B is performed by the addition component C11. This
component is special in that the sub-schematic of the addition component is dependent on the payload of a

selector agent A36.

Internally to the component C11, the agent A36 selects whether to construct an automated “Add3” or
manual “Add4” component. If the inputs In 1, In 2 and Format provided to the agents Al, A3, A19
respectively pass the input checking performed by the validate string components C5, C6 and C7 then an
“Add3” component is used to perform the addition operation. Conversely, if the inputs don’t pass the
validation than the addition is performed by a manual “Add4” component, allowing the inputs to be
studied and queried by a human. If the information makes no sense whatsoever, an exception will be

generated and passed to the parent component.

The addition component C11 demonstrates the use of selective construction, where a different sub-
schematic is built based on the information provided by an agent. Although only a simple case has been
presented in this example, in general this technique is extremely powerful. It allows the schematic design
to be selected based on the input information to the component. It also allows the construction to be

completed in stages; as each stage completes it can trigger the construction of the next stage.

Staged construction can greatly minimise the total number of component instances used at any one time,
minimising computer resources. It also allows a trade off between a completely serial construction (ie. the
components are purchased and built one at a time) and a completely parallel construction (ie. all
components are purchases and built at the same time). A serial construction minimises computer resources

but is inherently slower than a parallel construction.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 100 -

The addition component C11 only has a single component in its sub-schematic, however in general it can
contain a schematic of any size. The operation of the addition component C11 is transparent as for as the

remainder of the schematic is concerned, and in this example acts just like a normal component.

In fact it could be implemented using a component server that selects the sub-schematic based on an agent
payload. Alternatively it could be implemented direcily as part of the “Add5” component. In this case
each of the agents A36-A43of the addition component C11 are implemented as internal agents, which get

handed off when the sub-schematic of the addition component C11 is built.
Component Output
The output of the addition performed by the addition component C11 is combined into a number bundle

using the bundle component C10.

Fifth Specific Example

Tn the previous four specific examples, it has been demonstrated how it is possible to perform processing
of agent information. None of the previous examples have dealt with the construction of code, but were
instead computer programs performing some task, which in these examples was the calculation of an
addition. Tt will be appreciated from this that although the examples set out in the flow charts of Figures 1,
3A to 3B, and 10A to 10E are examples of producing software, these could also be used in performing

processing operations directly.

In any event, the fifth specific example extends the concept by using the technology to construct
executable code directly byte by byte.

In this example a component is outlined that constructs code, that when executed on an IBM PC will
display a pixel on the screen, given a position and a colour. The code produced is not however a complete
program, but instead a code fragment constructed to the requirements of the program in which this
component has been designed into. This component produces x86 machine code as its output. The details

of this component are specific to IBM PC architecture, and so the details will only be briefly ‘described.

Figure 36A shows the component representation Put Pixel of the “Put Pixel” component. It has five input

agents X, Y, Width, Colour and Screen and two output agents Exceptions and Build.

A description of each of the agent is shown in Table 5 below.

10

15

WO 2004/042639 PCT/AU2003/001474

- 101 -

Table 5
Agent Input/Output | Description
X Input Horizontal position, from left to right in pixels, to draw the pixel.
Y Input Vertical position, from top to bottom in pixels, to draw the pixel.
Width Input Width of the screen in pixels. This must match the current mode

of the screen and must be set up previously in the program.

Colour Input Colour of the pixel (colour code 1 byte)
Screen Input Segment address of the screen (Typically 0xA000)
Build Y Output Code produced by the component
Exception | Output Indicates any build exceptions detected by the component.

Figure 36B shows the internal schematic for the “Put Pixel” component. This component uses the “Add5”

component from before, plus a number of new components (Mul, Mov, Seg Prefix, and Build).

An outline of the components is given in table 6 below.

All of the pixels on the screen are stored in video memory - which is just a certain set of addresses in
normal memory. Changing anything in those areas of memory results in a change on the screen. Memory
for IBM PCs is referenced by segment and offset. The segment selects large regions of memory, while the
offset allows access to all the locations with in a segment. The screen memory is located at the segment
address A000 hexadecimal. The offset determines the position of the pixel, and the value stored at that

offset determines the colour of the pixel.

Table 6
Component Description
Mul Similar to the Add5 except that it performs a multiply.
Mov x86 Move assembly instruction. This creates machine code for move.
Seg Prefix Calculates the prefix for the next move instruction based on which segment

register is specified. For example: x86 segment register es corresponds to

38 in hexadecimal.

Build Concatenates the code produced by two components.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-102 -

The offset of any point (x, y) on the screen is given by (y * width) + x as the screen image is store as a

linear array, one row at a time. The multiply (C1) and add (C2) perform this calculation.

The “Put Pixel” component assumes that the screen has been set to the correct video mode, and that the

segment register specified by the screen agent is set to A000 hexadecimal.

The “Put Pixel” component creates three MOV assembly instructions. The pixel colour is moved in to the
AL register with C3 and C6. The calculated pixel offset (A14) is then moved into the DI register by C4
and C7. Then finally the value in the register containing the colour (AL) is moved to thé memory location
described by the value in the segment register and the value in the register containing the offset (AL ->
Segment:DI).

The assembly instructions use the MOV component, which takes a source and destination, and outputs the

appropriate hexadecimal machine code for the requested MOV instruction.

The code produced by the individual components is collected and combined by the build components

producing the deliverable executable code out the Build agent (A48).
This may be achieved using chaining, as will now be described.

In particular, in this example, the putpixel component is adapted to generate executable code which is
provided via a build agent A48 as shown. In general, the resultant executable code will, when executed by
a suitable processing system, cause the processing system to position a pixel at a required location on a

screen.

The executable code will need to be constructed at a specific memory location on a root server, and the
agents in the schematic will therefore need to know the memory location at which the executable code is

to be constructed.

In order to achieve this, a build bundle formed from a bundle of appropriate agents required to construct
the executable code, is provided by the root server. This will typically be achieved by having the root
server implement appropriate agents as required. In this case, the payloads of agents in the build bundle
will include details of the required memory locations. Thus the build bundle will specify memory

locations at which specific data is to be constructed.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 103 -

The root server transfers the build bundle to the build agent A48 and this is in turn handed off to the build
output agent A35 of the build component C12. The bundle is then transferred back via the agents A34,
A33, A32, A31, A30 to the agent A26. This allows the move component C6 to generate a move assembly
instruction and include this as a payload within the build bundle as required. The move assembly
instruction which is provided in the build bundle will be associated with a respective memory location as

defined in the build bundle‘by the root server.

The build bundle, having been modified in this manner, is then transferred back via the agents A26, A30
to the agent A29 of the move component C7. The move component C7 will generate a corresponding
move instruction and include this in the build bundle, allowing the build bundle to be transferred back via
the agents A31, A32, A37 to the agent A36. In this case, the seg prefix component C8 will calculate a
prefix for a next move instruction and include this in the build bundle as a respective payload before
transferring the build bundle back via the agents A37, A33, A34, A39 to the agent A38. The move
component C9 will then insert a further instruction before providing the build bundle back to the build

agent A48 and hence back to the root server.
In the above example, the path of the build bundle through the putpixel component passes through the
agents A48-A35-A34-A33-A32-A31-A30-A26-A30-A29-A31-A32-A37-A36-A37-A33-A34-A39-A38-

A39-A35-A48 to form a chain.

Accordingly, it will be appreciated that in this instance the put pixel component is adapted not only to

receive inputs at the agents X,Y, WIDTH, as required but also to receive a build bundle via the build

output A48. In this case, as soon as data is received at a respective one of the inputs X,Y, WIDTH, this

~ will be transferred onto and processed by the corresponding sub-components as required. Thus, inputs

may be reacted to as soon as they are received.

Sixth Specific Example
The final specific example demonstrates the usage of the Put Pixel component of Figure 36A to create

stand-alone program as detailed in Figure 36C.

The “Put Pixel” component is used in conjunction with a “Setup Screen” component - responsible for
changing the video mode and setting a segment register to the value of the screen memory. The address of

the screen memory is input to the “Put Pixel” component, and the outputs are the bytes corresponding to

10

WO 2004/042639 PCT/AU2003/001474

- 104 -

the code produced, and the segment register used to store the memory, which is used by the put pixel
component. The program is to be booted from a floppy drive, and will clear the screen (from the setup

screen component) and then display a single pixel at location 20,50 of colour red.

The put pixel component gets its inputs from number bundles - bundles containing numbers and the
corresponding formats of the numbers - which are input to the agents x, y, and width. The colour input is
input directly ﬁoﬁ an internal agent of the root schematic. As mentioned above, the segment register used
to store the segment address of video memory is input from the setup screen component. The output of
the Put Pixel component, build, delivers the bytes generated by the component to a build component
which appends the bytes to the bytes pfoduced by the setup screen component. The Build component then
delivers the complete program to a Boot component, which is responsible for correctly formatting the

bytes as required for a boot disk.

10

15

20

25

30

35

WO 2004/042639 PCT/AU2003/001474

- 105 -

Appendix C

Variable Context Dependency will now be described with respect to an assign component used the

internal schematic of which is shown in Figure 37A.

The Assign component generates code that when executed will assign a specified numerical value (agent
value) into a specified register (agent register). The Assign component works in conjunction with the build
chain to calculate and record the known value of each register in the CPU, after each assignment. This
information represents the state of the machine and in effect, acts as the context in which the assign

component operates.

Machine state ‘

The machine state records whether each register contains a value that can be determined at construction
time, and if so what that value is. The value of a register becomes unknown if its value can only be
determined at run time. In the following example the machine state corresponds to an XML payload with ’
the following format:

<eax>A</eax>
<ebx>B</ebx>
<ecx>C</ecx>
<edx>D</edx>

where A, B, C or D correspond to a decimal numerical value of the register or the string “unknown”. For
example:

<eax>0</eax> -
<ebx>1</ebx>

<ecxs>unknown</ecx>

<edx>10</edx>

It will be appreciated that this example only tracks the machine state of four of the registers of the x86
CPU, and that this can be extended and modified depending on various CPU architectures.

Components

All the components in the build must support the machine state service, including the Init_elf, int 0x80,
Bcat and Assign components. The Init_elf component initialises the build chain with the start up machine
state of a Linux executable, which corresponds to the registers eax, ebx, ecx, and edx all containing a
value of 0. The Assign component sets the value of one register entry in the machine state to match the

assigning register and value. Int 0x80 component sets the eax entry in the machine state to “unknown” as

10

15

20

WO 2004/042639 PCT/AU2003/001474

- 106 -

the code generated by this component corresponds to a system call, that modifies the value of the register
eax at run time. Beat forms part of the build chain and supports the machine state by providing a machine
state chain in parallel with the code chain, allowing each component to receive the machine state from the

previous component in the chain and deliver the updated machine state to be next component.

This example demonstrates context dependant coding principally with the Assign component.

In particular, an example of the internal schematic of the 4ssign component is shown in Figure 37A.

As shown the Assign component is formed from a number of sub-components, the functionality of which
is summarised in Table 7. Each of these components implement one rule for achieving an assignment of a
register to a specified value. All these components, except Mov immediate, produce resulting code that is
dependant on the known machine state. Mov immediate is a fall back position if no context information in
available. These components are private components, meaning that they are not designed to be available

on the open market. They merely assist in simplifying the design of the Assign component in order to be

managed.
Table 7

Priority | Rule Description

1 Mov Self If the specified register contains the assigned value then no code is required.

2 Inc self If the specified register contains the value one less than the assigned value then
increment the specified register

3 Dec self If the specified register contains the value one more than the assigned value then
decrement the specified register.

4 Mov other | If another register contains value to be assigned then copy value it from there.

5 Inc other If another register contains the value-1, then copy and increment.

6 Dec other If another register contains the value+1, then copy and decrement.

7 Add self If the specified register has a known value then add an appropriate constant.

8 Add other | If any other register are known then select randomly, copy and add a constant to
get the desired value.

9 Mov Assign value to a register directly.

immediate

Each rule is tested in order of priority. If a match is found, then the calculated code is output and
subsequent rule components pass the resulting code through to the Build ASM2 component, which inserts

the code and updated machine state into the build chain.

An example of the external schematic of the Add Other component is shown in Figure 8. Figures 37B-E
show the internal schematics of the Add Other component. If a previous component has already performed

the assign service then the Found In agent will receive “true”, triggering the build of the schematic shown

10

15

20

25

30

35

WO 2004/042639 PCT/AU2003/001474

- 107 -

in Figure 37C. This schematic simply passes through the results provided by the previous rule
components. If agent Found In is “false” then the schematic shown in Figure 37D is built. This schematic
extracts each register entry from the ma<':hine state information then tests whether the register has a known
value. A single register that has a known value is chosen by the select register component. If multiple
registers have a known value then the select register component chooses randomly. This results in a

dithering in the output code, as the code can vary even when the context and requirements are identical.

In Figure 37D, the agent Found match triggers the construction of schematics Figure 37C or Figure 37E. If
no registers with a known value were found then Figure 37C is built. This occurs when the Add Other rule
didn’t match the machine state context. Figure 37C simply passes through the requirements to the next
rule component, and terminates the agent Chosen reg generated by Figure 37D. If a match was found then

Figure 37E is built. This schematic generates the appropriate code and updates the machine state.

This schematic generates machine code that has the following structure in assembly code:

Mov Regl, Reg2

Add Regl, K
where Regl is the register to be assigned to, Reg2 is the register that contains a known value, and X is the
number that needs to be added to the value in Reg2 to obtain the required assignment value.

calculates the difference between the known value of the register.

Regl is specified by the payload received by the agent Register In, and corresponds to one of “eax”,
“ebx”, “ecx”, “edx”. Reg?2 is specified by the agent Chosen reg as a result of a search of known registers
in by Figure 37D. K is calculated from the difference between the known value of Reg2 (80), extracted

from the machine state by component 81, and the required assignment value specified by agent Value In.

The generated machine code is calculated in two parts,lthe first corresponding to:
Mov Regl, Reg2
Add Regl _
and the second corresponding to the value K. The first part is calculated using a lookup table component

82 to transform the Regl, Reg2 information into the appropriate machine code.

An example of the payload delivered by agent 83 specifying the lookup table is as follows:

<protocol>
<protocol name>lookup table</protocol_name>
<protocol data>

10

15

20

25

30

35

40

WO 2004/042639

<entry>

<input>eaxeax</input>

PCT/AU2003/001474

- 108 -

<output>89C005</output>
</entry>
<entrys>

<input>eaxebx</input>

<output>89D805</output>
</entry>

</protocol_data>

</protocol>

This lookup table contains one entry for each combination of Regl and Reg2, and so for registers eax,

ebx, ecx, and edx there are 16 entries. A second lookup table 84 outputs the number of bytes

corresponding to the code being delivered, including the code for K.

Components 85, 86 and 87 calculate K. The endian component 87 byte swaps the number to make it

compatible with x86. This is then concatenated with the instruction machine code to generate the final

output code. In addition to generating code the machine state is updated by components 88, 89 and 90.

Hello World Example

An example of this will now be described with respect to a “hello world” program. In particular, a

conventional example of a "hello world" program written in “assembly like” code generating components

is set out below.

BITS32

GLOBAL _start
section .text

_start:
mov
mov
mov
mov
int

mov
mov
int

ebx,
eax,
ecx,
edx,
0x80

ebx,
eax,
0x80

section .data
string db 'hello world'

string
11

;standard out

;eystem write system call
;Pointer to string
;Length of string

;start system call

;exit error code
;System exit system call
;start system call

10

15

20

25

30

35

40

45

WO 2004/042639 PCT/AU2003/001474
- 109 -

This would be assembled and linked using:

nasm -f elf hello. asm -o hello.o -1 hello.lst
1d -8 hello.o. -o hello

The disassembly of the executable is shown in Table 8. This shows the machine code and was created
with:
ndisasm -e 128 -b 32 hello

As a comparison with conventional code the same program was created using the assign component

outlined above. This was achieved using a root schematic shown in Figure 38A.

For completeness the XML document representing the schematic shown in Figure 38A is shown below:

<?xml version="1.0" encoding="UTF-8 ?>
<gchematic>
<names>test</name>
<authors>none</author>
<description>undescribed</description>
<w>400</w>
<h>460</h>
<agent>
<x>371</x>
<y>412</y>
<agent 1d>2147483647<agent_id>
<agent_name>Code Out</agent_name>
<agent_ description></agent_description>
<auto_termsmanual</auto_term>
<persistances>persistance</persistance>
<payload></payload>
<optional>false</optionals>
<auto payload>false</auto_payload>
<hand_offs>true</hand off>
<sound_ file></sound file>
</agent>

<component >
<filenames>/dream/asm/techreview/assign.comp</filename>
<schematic_component_id>1l</schematic_component_id>
<x>190.0</x>
<y>66.0</y>

</component >

<link> .
<half links>
<schematic component id>10</schematic_component_id>
<agent id>3</agent_id>
</half_link>
<half_link>

WO 2004/042639 PCT/AU2003/001474

-110-

<schematic_component_id>17</schematic_component_id>
<agent ids>l</agent_id>
<half_ link>

<anchor>
5 <x>190.0</x>
<y>66.0</y>
</anchoxr>
</links>
10 </schematic>

A comparison of the resulting codes generated by conventional techniques and in accordance with the

1

invention are set out in Table 8.

15 Table 8
Generated with Figure 384 Conventional Function
(context dependant) (context independent)
43 inc ebx BB01000000 mov ebx, 0xl Print
0504000000 add eax, 0x4 B804000000 mov eax, 0x4 string
81C1D8900408 add ecx,0x80490d8 | BO9A4900408 mov ecx,0x80490a4
81C20B000000 add edx, 0xb BAOB000000 mov edx, 0xb
CD80 int 0x80 CD80 int 0x80
89D8 mov eax, ebx BB00000000 mov ebx, 0x0 System
4B dec ebx B801000000 mov eax, 0xl exit
CD80 int 0x80 CD80 int 0x80
68656C6C6F20 ‘hello world’ 68656C6C6F20 ‘hello world’ Data
776F726C64 776F726C64 section

Accordingly, it will be appreciated that both codes are functionally identical, and include two logical
blocks in the form of print string and system exit. However, the context dependent code makes use of the
context in which it is run, and therefore is of a significantly reduced size, which in this example is 24

20 bytes against 34 bytes for the conventional technique

For example, the conventional context independent code, if implemented as a C program hello.c:
main () {
printf ("hello world");
25 }

when statically linked and stripped using:

gce -static hello.c -o hello !

10

15

20

25

30

35

40

WO 2004/042639 PCT/AU2003/001474
-111-
strip hello

results in an executable that is 377kB. This program uses printf, which is generic and context

independent, and obviously highlights code bloat.

In this case, if the context independent conventional print string code were reused, only the string pointer
(0x80490A4) would need to be modified. The system exit is completely context independent and would

not require any modification for reuse.

However, in the context dependent version, the print string will only work if eax, ebx, ecx and edx are
zero, which is the start up state for an executable in Linux. Additionally system exit will only work when
ebx is 1. In the current example the system exit exploits the fact that ebx is initialised to 1 by the print

string code.

Double print string "Hello world"

This example uses two print string system calls to print "Hello " then "world". An example of a schematic
for performing this in accordance with the invention is shown in Figure 38B, with a comparison of the
resultant code against hand optimised context independent code, with results shown in Table 9. The
conventional assembly code is as follows: '

BITS32
GLOBAL _start
section .text

_start:
mov ebx, 1 ;standard out
mov eax, 4 ;system write system call
mov ecx, stringl ;Pointer to stringl
mov edx, 6 ;Length of stringl
int 0x80 ;start system call
mov ebx, 1 ;standard out
mov eax, 4 ;system write system call
mov ecx, string2 ;Pointer to string2
mov edx, 5 ;Length of string2
int 0x80 ;start system call
mov ebx, 0 ;jexit error code
mov eax, 1 ;System exit system call
int 0x80 ;start system call

section .data
stringl db ‘hello ’

10

15

WO 2004/042639 PCT/AU2003/001474

-112 -

string2 db ‘world’

In this example, the context independent example is hand optimised, and as will be appreciated by those
skilled in the art, is significantly reduced in size as compared to the equivalent standard C++ program. of
interest is the setting of ecx to the pointer of string 2 in the second print string of the code valley output
(add ecx, 0x6). In this case the previous print string initialised ecx to the value of stringl. The address of

string? is calculated relative to the previous value of ecx. This is achieved using the Add self in the assign

component.
Table 9
(context dependant) Conventional (context independent hand | Function
optimised)
43 inc ebx BB01000000 wmov ebx, 0x1 Print
0504000000 add eax, 0x4 B804000000 mov eax, 0x4 string
81C1D8900408 add ecx, 0x80490d8 | BO9B8900408 mov ecx, 0x80490b8
81C206000000 add edx, 0x6 BA0O6000000 mov edx, 0x6
CD80 int 0x80 CD80 int 0x80
89F8 mov eax,edi BB01000000 mov ebx, 0xl
0504000000 add eax, 0x4 B804000000 mov eax, 0x4 Print
81C106000000 add ecx,0x6 BO9BES00408 mov ecx,0x80490be string
4A dec edx BA05000000 mov edx,0X5
CD80 int 0x80 CcD80 int 0x80
89D8 mov eax, ebx BB0000000O mov ebx, 0x1 System
4B dec ebx B801000000 mov eax, 0x4 exit
CD80 int 0x80 CD80 int 0x80
41 bytes, 13 instructions 72 bytes, 13 instructions

Note: the data section contains the strings has been omitted as it is common in both cases, except for the
starting address.

In this example, on each generation of the code there is a random output from Mov other, Inc other, Dec
other, and Add other. Each of these select randomly from multiple solutions, as shown in Table 10. This
shows that even without changing the requirements or context that different outputs are generated that

satisfy the requirements of the application whilst being functionally the same.

Table 10
(context dependant 2) (context dependant 3) Function
43 inc ebx 43 inc ebx Print
0504000000 add eax, 0x4 0504000000 add eax, 0x4 string
81C1D8900408 add ecx, 0x8049048 81C1D8900408 add ecx, 0x80490d8
81C206000000 add edx, 0x6 81C206000000 add edx, 0x6
CcD80 int 0x80 CD80 int 0x80

WO 2004/042639 PCT/AU2003/001474
-113 -

89D0 mov eax, edx 89D0 mov eax, ebx Print
OSFEFFFFFF add eax, Oxfffffffe 0503000000 add eax, 0x3 string
81C106000000 add ecx, 0x6 81C106000000 add ecx, 0x6
47 dec edx 4A dec edx
CD80 int 0x80 CD80 int 0x80
89D8 mov eax, ebx 89D8 mov eax, ebx System
4B dec ebx 4B dec ebx exit
CD80 int 0x80 CD80 int 0x80

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

114 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1)

2)

3)

4)

5)

6)

7)

8)

9

A method of generating code using components, each component corresponding to a respective data
manipulation service, the method including:
a) Determining a combination of components that defines the code requirements; and,
b) Implementing the component combination to theteby perform the defined sequence of data
manipulations, such that the computer code is generated.
A method according to claim 1, at least some of the components including one or more ports for
receiving and/or outputting data to be manipulated.
A method according to claim 2, each port having an agent adapted to control transfer of data to and
from the component.
A method according to claim 2 or claim 3, the method including having the component:
a) Receive data including a number of data portions;
b) Manipulate the data by:
i) Adding data portions into the sequence at a predetermined location;
ii) Moving data portions from a first location to a second location within the sequence;
iii) Removing data portions from the sequence; and,
iv) Modifying data portions in the sequence.
A method according to claim 4, at least a portion of the method being performed using a processing
system including a store, the method including storing one or more of the data portions in the store.
A method according to any one of the claims 1 to 5, at least some of the components being formed
from a number of combined sub-components, the sub-components also being components.
A method according to any one of the claims 1 to 6, at least some of the components being formed
using at least one of:
a) Manual manipulation of the data by an individual;
b) Computer code adapted to be executed by a processing system, to.thereby manipulate of the data
automatically; and,
c) Combinations of sub-components, the sub-components also being components.
A method according to any one of the claims 1 to 7, the method being performed using one or more
processing systems.
A method according to claim 8, the method including causing a first processing system to:
a) Select a number of components in response to input commands received from a user;
b) Define the component combination using the selected components; and,
¢) Cause the component combination to be implemented such that the defined sequence of data

manipulations is performed.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-115-

10) A method according to claim 9, at least some of the components including one or more ports, the

method including causing the processing system to:

a) Provide an indication of the ports of each selected component to the user; and,

b) Interconnect selected ones of the ports in response to input commands from the user to thereby
define the component combination.

11) A method according to any one of the claims 8 to 10, the method including causing a second
processing system to:

a) Determine details of a number of components;
b) Provide at least an indication of the details to the user via the first processing system.

12) A method according to claim 12, the method including causing the processing system to:

a) Select respective ones of the components in response to input commands from the user; and,
b) Provide the details of the selected components to the user via the first processing system.

13) A method according to claim 12, the details being component spe?:iﬁcations, the processing system

including:
a) A store for storing the component specifications including at least one of:

i) An indication of the manipulation service;

if) A graphical representation of the component; and,

iii) Port specifications defining the operation of the agents associated with each port; and,
b) A processor, the method including causing the processor to:

i) Obtain one or more component specifications from the store; and,

ii) Provide the component specifications to the user via the first processing system.

14) A method according to any one of the claims 9 to 13, the method including causing the first

processing system to:

a) Generate a graphical representation of the one or more selected components; and,

b) Manipulate the graphical representation in response to input commands received from a user to
~ thereby define the component combination.

15) A method according to any one of the claims 9 to 14, the first processing system being coupled to one
or more component processing systems via a communications network, each component processing
system being adapted to implement one or more respective components, the method including:

a) Generating an service request for each component in the component combination; and,

b) Transferring the service request to each entity via the communications network, each entity being
adapted to respond to the service request to implement the data manipulation embodied by the
respective component. '

16) A method according to claim 15, the method including:

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 116 -

a) Determining any data required by the components; and,
b) Providing the data in the service request.
17) A method according to claim 15 or claim 16, each service request including an indication of the
interconnections for each of the ports of the respective component.
18) A method according to claim 17, the method including causing each component processing system to:
a) Implement one or more respective component instances in accordance with the received service
request; and,
b) Cause each component instance to:
i) Interact with other components in accordance with the interconnections defined n the service
request; and,
ii) Perform any required data manipulations.
19) A method according to claim 17 or claim 18, the method including causing each component
processing system to:
a) Implement a respective agent associated with each port; and,
b) Cause each agent to cooperate with an agent of another component in accordance with the defined
interconnections, to thereby allow data to be transferred between the ports.
20) A method according to claim 11, the method including causing the second processing system to:
a) Determine performance information, the performance information being representative of one or
‘more criteria regarding the implementation of the components;
b) Provide the performance information to a user, the user selecting the components in accordance
with the performance information.
21) A method according to claim 20, the performance information including at least one of:
a) An indication of the entity implementing the component;
b) An indication of the geographical location of the entity;
¢) An indication of the duration for implementing the component;
d) An indication of a cost associated with implementing the respective component; and,
€) A rating, the rating being indicative of the success of the component.
22) A method according to claim 20 or claim 21, the method including:
a) Providing a number of different components for performing equivalent services, the different
components being provided by different entities; and,
b) Inducing competition between the entities to thereby drive improvement of the components.
23) A method according to any one of the claims 20 to 22, the method including generating revenue by
charging a cost for the use of each component.

24) A method according to claim 23, the including:

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-117 -

a) Providing at least some of the revenue to a respective entity implementing the component; and,
b) Having the operator of the second processing system retain at least some of the revenue.

25) A method according to any one of the claims 1 to 24, the method including causing the generated code
to be context dependent.

26) A method according to claim 25, the method causing at least some of the components to:

a) Determine a context for the code; and,
b) Perform the data manipulation service in accordance with the determined context such that the
performed data manipulation is dependent on the context.

27) A method according to claim 26, the processing system including at least a memory, stack and
registers, the context including at least one of:

a) The state of at least one of the registers, stack and memory;
b) Other components in the defined component combination; and,
¢) Random factors.

28) A method according to claim 26 or claim 27, the method including making the data manipulation
context dependent by at least one of:
a) Dithering;

b) Meshing; and,
¢) Obscuring.

29) Apparatus for generating computer code using components, each component corresponding to a
respective service for manipulating data in a predetermined manner, the apparatus including one or
more processing systems adapted to: |
a) Define a combination of components corresponding to a sequence of data manipulations; and,

b) Implement the component combination to thereby perform the defined sequence of data
manipulations, such that the computer code is generated.

30) Apparatus according to claim 29, the apparatus including:

a) One or more component processing systems, each component processing system being adapted to
implement a respective component; and,

b) A first processing system, the first processing system being adapted to:
i) Define the component combination in accordance with input commands received from a user;

and,
ii) Determine the component processing systems implementing the respective components; and
iii) Transfer service requests to each of the determined component processing systems.
31) Apparatus according to claim 30, the component processing system being adapted to:

a) Receive the service request;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-118 -

b) Generate a respective component instance; and,
¢) Perform the service using the respective component instance.

32) Apparatus according to any one of the claims 29 to 31, the apparatus including a second processing
system, the second processing system being adapted to store details of available components.

33) Apparatus according to claim 32, the second processing system being adapted to obtain the details of a
component from a respective component processing system.

34) Apparatus according to claim 32 or claim 33, the first processing system being adapted to cooperate
with the second processing system to thereby allow a user to:

a) Select one or more of the available components; and
b) Define the component combination.

35) Apparatus according to any one of the claims 29 to 34, the apparatus being adapted to perform the
method of any one of the claims 1 to 28.

36) A computer program product for generating computer code using components, each component
corresponding to a respective service for manipulating data in a predetermined manner, the computer
program product includingA computer code which when executed on a suitable processing system
causes the processing system to perform the method of one of the claims 1 to 28.

37) A method of allowing users to manipulate data, the method including using one or more processing
systems to:

a) Store details of a number of components, each component representing a respective data
manipulation service implemented by a respective entity; and,

b) Provide details of selected components to users, thereby allowing the users to define a component
combination defining a sequence of data manipulation services for manipulating the data.

38) A method according to claim 37, the method including:

a) For each component, receiving a component specification from a respective entity; and,
b) Providing the details in accordance with the component specification.

39) A method according to claim 38, the method including causing the processing system to:

a) Determine performance information representative of one or more criteria regarding the
implementation of the components; and,

b) Provide the performance information to a user, the user selecting the components in accordance
with the performance information.

40) A method according to claim 39, the performance information including at Jeast one of:

a) An indication of the entity implementing the component;
b) An indication of the geographical location of the entity;

¢) An indication of the duration for implementing the component;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 119 -

d) An indication of a cost associated with implementing the respective component; and,
€) A rating, the rating being indicative of the success of t'he component.

41) A method according to claim 39 or claim 40, the method including:

a) Providing a number of different components for performing equivalent services, the different
components being provided by different entities; and,
b) Inducing competition between the entities to thereby drive improvement of the components.

42) A method according to any one of the claims 38 to 41, the method including generating revenue by
charging a cost for the use of each component. '

43) A method according to claim 42, the method including providing at least a portion of the fee to the
respective entity.

44) A method according to any one of the claims 38 to 43, the method including using a processing
system coupled to a number of end stations via a communications network, the method including
allowing users to select components and define a component combination using the end stations.

45) A method according to claim 44, the processing system including a store and a processor, the method
including:

i) Storing component specifications in the store; and,

ii) Providing the component specifications to the user via the end station, thereby allowing the
user to define a component combination and implement the required data manipulation
services.

46) Apparatus for allowing users to manipulate data, the apparatus including one or more processing
systems adapted to:

a) Store details of a number of components, each component representing a respective data
manipulation service implemented by a respective entity;

b) Provide details of selected components to users, thereby allowing the users to define a component
combination defining a sequence of data manipulation services for manipulating the data.

47) Apparatus according to claim 46, the apparatus being adapted to perform the method of any one of the
claims 38 to 45.

48) A computer program product for allowing users to manipulate data, the computer program product
including computer code which when executed on a suitable processing system causes the processing
system to perform the method of any one of the claims 38 to 45.

49) A method of providing a component embodying a data manipulation service using a processing
system, the method including:

a) Determining a data manipulation service to be performed,;

b) Determining a method of performing the data manipulation service; and,

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 120 -

¢) Generating a component specification defining the data manipulation service, the component
specification including ports specifications representing ports used for receiving or outputting
data.

50) A method according to claim 49, the method including further determining a private component
specification defining the method of performing the data manipulation service.

51) A method according to claim 49 or claim 50, the method including providing the component
specification to a processing system, the processing system being adapted to provide details of the
component to users thereby allowing users to select the component for use in data manipulation
service.

52) A method according to any one of the claims 49 to 51, the method including defining a component
server to be implemented by the processing system, the component server being adapted to generate
component instances for:

a) Receiving the data to be manipulated;
b) Manipulating the data; and,
¢) Outputting the manipulated data.

53) A method according to claim 52, the method including defining a respective agent for each port, the
agent being adapted to cooperate with agents of other components to thereby allow data to be received
at and output from the ports.

54) A method according to claim 53, each agent being formed from respective code adapted to be
executed by the component server.

55) A method according to any one of the claims 52 to 54, the method including defining the component

' to thereby cause the data to be manipulated by least one of:
a) Manually in accordance with user inputs; and,
b) Automatically by the component server.

56) A method according to claim 55, the method including causing the data manipulation to be context
dependent by:

a) Causing at least one of the agents to determine an indication of the context; and,
b) Manipulating the data in accordance with the content.

57) A method according to claim 56, the method including making the data manipulation by at least one

of:

a) Dithering;

b) Meshing; and,
¢) Obscuring.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-121 -

58) A method according to any one of the claims 49 to 57, the method including determining 2 method of
performing the data manipulation service by defining a combination of other components
corresponding to a sequence of data manipulations.

59) A method according te claim 58, the method including using a processing system to:

a) Select one or more components;

b) Define the component combination; and,

¢) Generate the component specification in accordance with the defined component combination.

60) A method according to claim 58 or claim 59, the component being provided by an entity, the other
components being provided by different entities. '

61) Apparatus for providing a component embodying a data manipulation service, the apparatus including
a processing system adapted to:

a) Determine in accordance with user input commands:

i) A data manipulation service to be performed;
ii) A method of performing the data manipulation service; and,

b) Generating a component specification defining the data manipulation service, the component
specification including ports specifications representing ports used for receiving or outputting
data.

62) Apparatus according to claim 61, the épparatus being adapted to perform the method of any one of the
claims 55 to 66.

63) A computer program product for providing a component embodying a data manipulation service, the
computer program product including computer code which when executed on a suitable processing
system causes the processing system to perform the method of any one of the claims 49 to 60.

64) A method of providing a service embodied in a component using a processing system, the method
including causing the processing system to:

a) Receive a service request;

b) Generate a respective component instance in response to the received service request;

¢) Receive data to be manipulated,

d) Manipulate the data using the respective component instance; and,

€) Supply the manipulated data to an output.

65) A method according to claim 64, the method including causing the processing system to manipulate
the data in accordance with at least one of:

a) A predetermined process; and,

b) Input commands received from an operator;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-122 -

66) A method according to claim 64 or claim 65, the method including causing the processing system to
generate an agent associated with each input and output of the component, the agent being adapted to
cooperate with agents of other components to thereby allow data to be received at the input and output
from the outputs.

67) A method according to claim 66, the method including:

a) Determining connections with other components from the service request; and,
b) Causing the agents to cooperate with agents of other components in accordance with the
determined connections.

68) A method according to claim 67, the processing system being coupled to one or more component
processing systems via a communications network, each component processing system being adapted
to implement a respective component, the method including:

a) Determining a connection address for each agent from the service request, the connection address
corresponding to an address of agents located on component processing systems;

b) Causing the agent to cooperate with the other agent in accordance with the determined connection
address.

69) A method according to any one of the claims 64 to 68, the method of manipulating the data including:
a) Defining a combination of other components corresponding to a sequence of data manipulations;

and,
b) Implementing the component combination.

70) A method according to claim 69, the processing system being coupled to one or more component
processing systems via a communications network, each component processing system being adapted
to implement a respective component, the method including causing the processing system to:

a) Generate one or more service requests in accordance with the defined component combination;
b) Transferring the service request to each component processing system via the communications
network, thereby causing each component to be implemented.

71) A method according to any one of the claims 64 to 70, the method including:

a) Determining a context for the performance of the service; and,
b) Manipulating the data in accordance with the content, to thereby make the data manipulation
context dependent.

72) A method according to claim 71, the data manipulation including generating computer code, the code
being adapted to be implemented by a processing system having a memory, stack and registers, the
context including at least one of:

a) The state of at least one of the registers, stack and memory;

b) Other components in the defined component combination; and,

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 123 -

¢) Random factors.

73) A method according to claim 71 or claim 72, the method including making the data manipulation by at

least one of:

a) Dithering;

b) Meshing; and,
¢) Obscuring.

74) Apparatus for providing a service embodied in a component, the apparatus including a processing
system adapted to:

a) Receive a request for the provision of the service;

b) Generate a respective component instance in response to the received request;
c) Receive data to be manipulated;

d) Manipulate the data with the respective component instance; and,

e) Supply the manipulated data to an output.

75) Apparatus according to claim 80, the apparatus being adapted to perform the method of any one of the
claims 69 to 73.

76) A computer program product for providing a service embodied in a component, each component
corresponding to a respective service for manipulating data, the computer program product including
computer code which when executed on a suitable processing system causes the processing system to
perform the method of any one of the claims 64 to 73.

77) A method of manipulating data by implementing a defined combination of components, each
component corresponding to a respective service for manipulating data, the method including:

a) Determining from the component combination:

i) The components to be implemented;

ii) Connections between ports of respective ones of the components;

iii) Any data required by the components;

b) For each component:

i) Generate a service request, requesting the provision of the respective service;

ii) Transfer the service request to an entity implementing the respective component, the entity
being responsive to the service request to perform the respective service thereby allowing the
data manipulations to be performed.

78) A method according to claim 77, the method including using a processing system, the method
including causing the processing system to:

a) Generate a component server;

b) Cause the component server to:

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-124 -

i) Implement a component instance corresponding to the defined component combination;

ii) Generate the service requests;

iii) Generate agents associated with any ports of the component instance; and,

iv) Cause the agents to cooperate with agents of other components in accordance with the defined
connections, to thereby allow data to be transferred between ports of the components.

79) A method according to claim 77 or claim 78, the processing system being coupled to one or more
component processing systems via a communications network, each component processing system
being adapted to implement a respective component, the method including:

a) Determining a connection address for each agent of each component in accordance with the
defined component combination, the connection address corresponding to an address of agents
located on component processing systems;

b) Generating the service request including:

i) Any required data; and,

ii) An indication of a connection address for each agent.

80) A method according to claim 85, the processing system- including a store for storing component
specifications, the method including determining the connection address in accordance with the
component specifications.

81) Apparatus for manipulating data by implementing a defined combination of components, each
component corresponding to a respective service for manipulating data, the apparatus including a
processing system adapted to:

a) Determine from the component combination:

i) The components to be implemented,;

ii) Connections between ports of respective ones of the components;

iii) Any data required by the components;

b) For each component:

i) Generate a service request, requesting the provision of the respective service;

ii) Transfer the service request to an entity implementing the respective component, the entity
being responsive to the request to perform the respective service thereby allowing the data
manipulations to be performed.

82) Apparatus according to claim 81, the apparatus being adapted to perform the method of any one of the
claims 77 to 80.

83) A computer program product for manipulating data by implementing a defined combination of

components, each component corresponding to a respective service for manipulating data, the

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 125 -

computer program product including computer code which when executed on a suitable processing
system causes the processing system to perform the method of any one of the claims 87 to 80.
84) A method of defining a component combination using a processing system, each component
representing a respective service for manipulating data, the method including:
a) Selecting one or more components to be combined; and,
b) Causing the processing system to:
i) Generate a graphical representation of each selected component on a display; and,
ii) Manipulate the graphical representation to define connections between ports of the
components.

85) A method according to claim 84, the method further including causing the processing system to

generate:
a) Component data representing the components in the representation.
b) Connection data representing the connections between the components.
86) A method according to claim 84 or claim 85, the method including:
a) Causing the processing system to generate a representation of a root component; and,
b) Defining connections between any ports of the root component and ports of the components.

87) A method according to any one of the claims 84 to 86, the method including causing the processing
system to manipulate the graphical representation to display sub-components associated with any one
of the root components.

88) A method according to any one of the claims 84 to 87, the method including causing the processing
system to manipulate the graphical representation in response to input commands from the user.

89) Apparatus for combining components, each component representing a respective service for
manipulating data, the apparatus including a processing system adapted to:

a) Select one or more components to be combined;
b) Generate a graphical representation of each selected component on a display; and,
¢) Manipulate the graphical representatioﬁ to define connections between ports of the components.

90) Apparatus according to claim 89, the apparatus being adapted to perform the method of any one of the
claims 84 to 88.

91) A computer program product for combining components using a processing system, each component
representing a respective service for manipulating data, the computer program product including
computer code which when executed on a suitable processing system causes the processing system to
perform the method of an one of the claims 84 to 88.

92) A method of performing context dependent data manipulations, the method including:

a) Determining a number of techniques for performing a desired data manipulation;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 126 -

b) Defining a component embodying each of the determined techniques; and,
¢) In use, performing a selected one of the techniques in accordance with the context, such that the
resulting manipulated data is dependent on the context.

93) A method according to claim 92, the method including:

a) Determining the context;
b) Selecting one of the number of techniques in accordance with the context; and,
¢) Performing the data manipulations.

94) A method according to claim 93, the method including:

a) Receiving a service request requesting the implementation of the service embodied by the
component; and,
b) Determining the context from the service request.

95) A method according to claim 93 or claim 94, the component being implemented as part of a
component combination defining a sequence of déta manipulations, the method including determining
the context from other components in the component combination.

96) A method according to claim 95, the method including providing an agent associated with each port of
the component, the agents being adapted to cooperate with agents of other components in accordance
with connections defined in the component combination to thereby allow data to be transferred
between the ports of the components, the method including causing one of the agents to receive a
context indication from another component.

97) A method according to any one of the claims 92 to 96, the data manipulation being used in generating
computer code adapted to be executed by a processing system having a memory, stack and registers,
the context including the state of at least one of:

a) The registers;

b) The stack;

¢) The memory; and,
d) Code location.

98) A method according to any one of the claims 98 to 103, the method including determining a random
variable, and selecting one or the techniques in accordance with the random variable.

99) A method according to any one of the claims 98 to 104, the component being implemented as part of a
component combination defining a sequence of data manipulations, each of the components being
implemented by respective entities, the data manipulation including a number of data manipulation
steps, the method including negotiating with one or more other entities, to thereby cause one or more

of the data manipulation steps to be performed by the other entities.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 127 -

100) Apparatus for performing context dependent data manipulations, the apparatus including a

processing system adapted to:

a) Determine a number of techniques for performing a desired data manipulation;

b) Define a component embodying each of the determined techniques; and,

¢) Perform a selected one of the techniques in accordance with the context, such that the resulting
manipulated data is dependent on the context.

101) Apparatus according to claim 100, the processing system being adapted to perform the method of
any one of the claims 92 to 99.

102) A computer program product for performing context dependent data manipulations using a
processing system, the computer program product including computer code which when executed on a
suitable processing system causes the processing system to perform the method of an one of the
claims 92 to 99.

103) A method of implementing an agent for use in component based data manipulation, the method
including:

a) Receiving an agent indication;

b) Generating an agent; and,

¢) Causing the agent to establish a connection with another agent in accordance with the agent
indication.

104) A method according to claim 103, the agents being associated with ports of the components, the
method including:

a) Causing the agents to cooperate to determine a data type; and,
b) Causing the data to be transferred between the ports in accordance with the determined data type.

105) A method according to claim 104, each agent having an associated agent specification defining
the respective data types that can be handled, the method including:

a) Comparing the agent specifications; and,
b) Determining the data type in response to a successful comparison.

106) A method according to claim 105, the agent being implemented by a respective component
processing system coupled to one or more other component processing systems for implementing
respective components via a communications network, the agent indication being in the form of a
network address.

107) A method according to claim 105, the method including:

a) Receiving first and second agent indications requesting connection of the agent to respective first

and second other agents;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

b)

108)

g)
109)

- 128 -

Causing the agent to provide the first and second agent indications to the second and first agents
respectively, thereby causing the first and second other agents to interconnect.

A method according to claim 107, the method including:

Receiving the first agent indication;

Connecting the agent to the first other agent;

Receiving the second agent indication;

Generating a temporary agent;

Connecting the temporary agent to the second other agent;

Allowing the first and second other agents to connect by:

i) Transferring the first agent indication from the temporary agent to the second other agent;
ii) Transferring the second agent indication from the agent to the first other agent; and,
Terminating the agent and the temporary agent.

A method according to any one of the claims 103 to 108, each agent being associated with a

respective component, the method including implementing the agent using a component processing

system.

110)

to:

a)
b)
111)

A method according to claim 109, the method including causing the component processing system

Generate a component server for implementing a respective component instance; and,
Causing the component server to implement the agent.

A method according to claim 110, the processing system being coupled to one or more other

processing systems via a communications network, method including:

a)

b)
c)

112)

to:

a)
b)

113)

Generating a component instance in accordance with a received service re’quest, the service
request including the agent indication in the form of a network address;

Generating any agents associated with the component instance; and,

Causing the agents to connect to any other agents in accordance with the respective network

address.

A method according to any one of the claims 103 to 111, the method including causing the agent

Receive data via the connection with another agent;
Determine a schematic in accordance with the received data, the schematic being used to
implement the component.

A method according to any one of the claims 103 to 112, the method including generating an

agent header and an agent payload, the agent header including routing information to allow the agent

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 129 -

to be transferred to another component to thereby establish a connection, the payload including the
data to be transferred. 4

114) Apparatus for implementing an agent for use in component based data manipulation, the apparatus

including a processing system for:

a) Receiving an agent indication;

b) Generate an agent; and,

¢) Cause the agent to establish a connection with another agent in accordance with the agent
indication.

115) Apparatus according to claim 114, the processing system being adapted to perform the method of
any one of the claims 103 to 113. '

116) A computer program product for implementing an agent for use in component based data
manipulation, the computer program product including computer code which when executed on a
suitable processing system causes the processing system to perform the method of an one of the
claims 103 to 113.

117) A method of providing a dynamic component for providing data manipulation services, the
method including:

a) Determining a service to be performed;

b) Determining at least two methods of performing the service;

¢) Determining a method of selecting one of the methods in accordance with received data; and,

d) Generating a component specification defining a component embodying the data manipulation
service.

118) A method according to claim 117, the methods of performing the service utilising respective
components, the method including:

a) Selecting components to implement the desired services;
b) Defining a component schematic including at least:
i) A first schematic portion representing any common portion of each method of performing the
services;
i) At least two second schematic portions representing any different portion of each method of
performing the services;
iii) A selector agent for selecting a respective one of the second schematic portions.

119) A method according to claim 118, the method including defining an agent associated with each
input or output, the agent being adapted to cooperate with an agent of another component in
accordance with the defined interconnections, to thereby allow data to be transferred between the

ports of the components.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

- 130 -

120) Apparatus for providing a dynamic component for providing data manipulation services, the

apparatus including a processing system for:

a) Determining a service to be performed;

b) Determining at least two methods of performing the service;

¢) Determining a method of selecting one of the methods in accordance with received data; and,

d) Generating a component specification defining a component embodying the data manipulation
service,

121) Apparatus according to claim 120, the processing system being adapted to perform the method of
any one of the claims 117 to 119.

122) A computer program product for providing a dynamic component for providing data ﬁlanipulation
services, the computer program product including computer code which when executed on a suitable
processing system causes the processing system to perform the method of an one of the claims 117 to
119.

123) A method of providing a service embodied in a dynamic component using a processing system,
the method including causing the processing system to:

a) Receive a service request;

b) Generate a respective component instance in response to the received service request;
¢) Receive data to be manipulated;

d) Select a method of manipulating the data in accordance with the received data;

¢) Manipulate the data using the respective component instance; and,

f) Supply the manipulated data to an output.

124) A method according to claim 123, the component including a number of agents, the method
including causing the processing system to generate an agent associated with each input and output of
the component, the agent being adapted to cooperate with agents of other components fo thereby
allowing data to be received at the input and output from the outputs.

125) A method according to claim 124, the method including:

a) Determining connections with other components from the service request; and,
b) Causing the agents to cooperate with agents of other components in accordance with the
determined connections.

126) A method according to claim 124 or 125, the component instance being defined by a component
schematic including at least:

a) A first schematic portion representing any common portion of each method of performing the

services;

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-131-

b) At least two second schematic portions representing any different portion of each method of

©)

127)

performing the services;

A selector agent for selecting a respective one of the second schematic portions, the method
including:

i) Implementing at least some of the first schematic portion;

if) Causing the selector agent to select one of the second schematic portions; and.

iii) Implementing the remainder of the schematic portions.

A method according to claim 128, the processing system being coupled to one or more component

processing systems via a communications network, each component processing system being adapted

to implement a respective component, the method including:

2)

Generate one or more service requests in accordance with the defined component combination;

and,

b) Transferring the service request to each component processing system via the communications

128)

network, thereby causing each component to be implemented.

Apparatus for providing a service embodied in a dynamic component using a processing system,

the processing system being adapted to:

2)

Receive a service request;

b) Generate a respective component instance in response to the received service request;

c)

Receive data to be manipulated,

d) Select a method of manipulating the data in accordance with the received data;

e)
1))
129)

Manipulate the data using the respective component instance; and,
Supply the manipulated data to an output. ‘
Apparatus according to claim 128, the processing system being adapted to perform the method of

any one of the claims 123 to 127.

130)

A computer program product for providing a service embodied in a dynamic component using a

processing system, the computer program product including computer code which when executed on a

suitable processing system causes the processing system to perform the method of an one of the
claims 123 to 127.

131)

A method of providing connections for a number of agents between two respective components in

a component based data manipulation scheme, the method including:

a)

Providing a bundling sub-component in each component; and,

b) Defining a connection between:

i) First agents of the bundling sub-component and respective agents of the respective

component; and,

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

132)

a)
b)

133)
a)

b)

g)
134)

-132 -

ii) A second agent of each bundling sub-component.

A method according to claim 137, the method including:

Causing the agents to establish defined connections in accordance with the defined connections;
Causing the second agents to exchange details of the number of agents of the two components;
and,

Causing the agents of the two components to interconnect in accordance with the exchanged
details.

A method according to claim 132, each agent having a respective address, the method including:
Providing each bundling sub-component with the addresses of the number of agents of the
respective component and the address of the second agent of the other bundling sub-component;
Causing the first agents of each bundling sub-component to connect to the number of agents of the
respective component and the second agent of the other bundling sub-component in accordance
with the respective agent addresses;

Causing the second agents to exchange addresses of the first agents;

Generating temporary first agents associated with each first agent;

Interconnecting the temporary first agents in accordance with the exchanged addresses;

Causing the first agents and temporary first agents to exchange the addresses of the number of
agents on each component; and,

Causing the number of agents to connect in accordance with the exchanged addresses.

A method according to claim 132, the method of bundling the agents, including causing the first

bundling component to:

a)
b)
c)
d)

135)

Obtain a message including a payload and header from each agent;

Extract the payload from each message;

Concatenate the payloads; and,

Generate a message including the concatenated payload and a header based on the headers of the
received message.

A method according to claim 134, the method of debundling the agents, including causing the

second bundling component to:

a)
b)
c)
d

Obtain a message including a payload and header from the bundling component;

Extract the payload from the message;

De-concatenate the payload into a number of payloads; and,

Generate a respective message for each of the number of agents, each message including a

respective payload and a header based on the header of the received message.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-133 -

136) A method according to any one of the claims 131 to 135, the method including arranging bundling
components in sequence to thereby define a hierarchical bundle.

137) A method according to claim 136, the method including placing bundling components in series to
thereby defining different levels in the bundle.

138) A method according to claim 136, the method including placing bundling components in parallel
to thereby define groups of agents within a level of the hierarchy.

139) Apparatus for providing connections for a number of agents between two respective components
in a component based data manipulation scheme using a processing system, the processing system
being adapted to:

a) Providing a bundling sub-component in each component; and,
b) Interconnecting:
i) An bundling component agent to each agent of the number of agents in the respective
component;
ii) A respective agent for on each bundling sub-component.

140) Apparatus according to claim 149, the processing system being adapted to perform the method of
any one of the claims 131 to 138.

141) A computer program product for providing connections for a number of agents between two
respective components in a component based data manipulation scheme using a processing system,
the computer program product including computer code which when executed on a suitable
processing system causes the processing system to perform the method of an one of the claims 131 to
138. A

142) A method of constructing code using a root processing system and a number of component
processing systems, each component processing system being adapted to implement a respective
component defined in a schematic, the method including:

a) Causing the root processing system to generate an agent including a payload,;
b) Transferring the agent to a number of components in sequence from a last component to a first
component; ‘
¢) Causing the first component to interact with the agent to provide data in the payload;
d) Transferring the agent from the first component to the next component;
¢) Causing the next component to interact with the agent to provide data in the payload;
f) Repeating steps (d) and (e) until the last component has interacted with the payload; and,
g) Transferring the agent to the root processing system, to thereby provide code.
143) A method according to claim 142, the method including further components to interact with one

or more of the components to provide data thereto.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-134 -
144) A method according to claim 142 or claim 143, the agent being a bundle of agents, the method
including:
a) Providing bundling components;
b) Optionally transferring the agent bundle to the bundling compdnents in accordance with the
defined component schematic;
¢) Selectively unbundling the bundle; and,
d) Transferring selected ones of the agents to the components, to thereby allowing the components to
interact with the respective agents.
145) A method according to claim 144, the agent bundle being a hierarchical bundle.
146) A method according to claim 144 or claim 145, the agents in the bundle representing different
portions of the code, the method including:
a) Receiving the bundle at the root processing system; and,
b) Extracting the data from the payload to thereby form the code.
147) Apparatus for constructing code, the apparatus including a root processing system and a number

of component processing systems, each component processing system being adapted to implement a

respective component defined in a schematic, apparatus being adapted to perform the method of any

one of the claims 142 to 146.

148)

A computer program product for constructing code in accordance with a schematic using a

processing system, the computer program product including computer code which when executed on a

suitable processing system causes the processing system to perform the method of an one of the
claims 142 to 146.

149)
a)

b)

c)

150)

b)

A method of allowing users to manipulate data, the method including:

Providing details of a number of components, each component representing a respective data
manipulation service implemented by a respective entity;

Allowing users to define a component combination defining a sequence of data manipﬁlation
services; and, .

Causing the data manipulation services to be performed in accordance with the defined
combination.

A method according to claim 149, the method including:

Allowing users to select components; and,

Providing users with a component specification for each selected component, each component

specification defining the data manipulation service and port specifications defining the data to be

received at or output from respective ports.

10

15

20

25

30

WO 2004/042639 PCT/AU2003/001474

-135-

151) A method according to claim 150, the method including obtaining the component specification for
a respective component from an entity implementing the component.

152) A method according to claim 150 or claim 151, the method being implemented using one or more
processing systems coupled to a user end station via a communications network, the method
including:

a) Allowing the user to select the components using the end station; and,
b) Transferring the component specifications to the end station from one or more of the processing
systems.

153) A method according to any one of the claims 150 to claim 152, the method including allowing
users to select the components in accordance with performance information including at least one of:
a) An indication of the entity implementing the component;

b) An indication of the geographical location of the entity;

¢) An indication of fhe duration for implementing the component;

d) An indication of a cost associated with implementing the respective component; and,
e) A rating, the rating being indicative of the success of the component.

154) A method according to any one of the claims 150 to claim 153, the method including:

a) Causing the end station to generate service requests in accordance with the component
combination; and,

b) Transferring the service request to entity processing systems thereby causing the entity processing
systems to perform the data manipulation defined by the component.

155) A method according to claim 154, the component combination defining connections between the
components, the service requests including connection information determined by the end station from
the component specifications.

156) A method according to claim 155, the method including causing the component processing
systems to:

a) Generate one or more component instances in accordance with the received service request;
b) Cause each component instance to:

i) Cooperate with other components to send and/or receive data; and,

ii) Perform the required data manipulation service.

157) Apparatus for allowing users to manipulate data, the apparatus including a system for:

a) Providing details of a number of components, each component representing a respective data
manipulation service implemented by a respective entity;
b) Allowing users to define a component combination defining a sequence of data manipulation

services; and,

WO 2004/042639 PCT/AU2003/001474

- 136 -

¢) Causing the data manipulation services to be performed in accordance with the defined
combination.
158) Apparatus according to claim 157, the apparatus being adapted to perform the method of any one
of the claims 150 to 156.
159) A computer program product for allowing users to manipulate data, the computer program
product including computer code which when executed on a suitable processing system causes the

processing system to perform the method of an one of the claims 150 to 156.

WO 2004/042639

1/45

Determine the
requirements for the
computer executable

code to be created

A

Select a number of
components

\ /

Define a combination of
the selected
components

Y

Implement the services
defined by the
component combination

Fig. 1

PCT/AU2003/001474

100

110

120

130

10

20

21

22

25

23

WO 2004/042639

PCT/AU2003/001474

2/45

A user determines
requirements of the

computer executablie 200
code to be created

Y

The user provides a

» componentrequesttothe | 2710
processing system 10

y

The processing system

10 accesses component

specifications stored in 220
a store

\ 4

The processing system 10 provides
an indication of one or more of the 230

components to the user in response
to the component request

y

The user provides a component
selection to the processing system 2 40
10 indicating one or more selected

components

A4

The processing system 10
includes an indication of

the selected components 2 50

in a component indication

4

The user determines at least
two of the selected
components to be connected 260

Fig 3B

Fig. 3A

WO 2004/042639

3/45

The user provides an connection

- indication representing the

desired connections to the
processing system 10

Y
The processing system 10
interconnects the components
in accordance with the
connection indication

Yes Are more
connections

required?

Yes Are more

Fig 3A

The user optionally
reviews the defined
component interactions

No

the process to b

330

The process ends

implemented?

The system operates to cause
the services defined by the
interconnected components to
be performed

Fig. 3B

270

280

290

310

320

340

PCT/AU2003/001474

WO 2004/042639

[E i

LAY
[T

4145

PCT/AU2003/001474

Fig. 4

WO 2004/042639

PCT/AU2003/001474

5/45
30 31
3
~ 34\1
32 33
35
Fig. 5
40 41
15
~ 4‘\1
42 43
45

Fig. 6

WO 2004/042639

460

6/45

An entity determines a
manner of providing a
respective service

Y

Y

The entity defines a
component encapsulating the
provision of the service using

the entity station 5

A

Private specifications are
optionally generated and
stored in the database 16

Component, input and
output specifications are
stored in the database 16

Y

The entity accesses the
base station 1 using the
entity station 5

Y
The component, input
and output specifications
are transferred to the
base staiton 1

Y

The specifications are
stored in the database
11

PCT/AU2003/001474

400

410

420

430

440

450

WO 2004/042639 PCT/AU2003/001474

7145
(W Designer- add_othercy - X
File Edit Options Debug Component Window
oo Iy -
(€} component | 2 Schematics |
Add GOther
State In State Ou
Code In Code Qut
Bytes In Bytes Out
Register In Register Qu
Yalue In Yalue Ou
Faund In Found Ou -
A I T T e e T T T T T e T T T T T T N
~Add Other
Component Name [ndd Other |
Compenent Description | Description |
Component Author |Eric Laverey |
Schematic file [No default schematic - |
Account location lfurum.r'atcounts."add_otherl @ - 3
Label X Position |1n |
Label ¥ Position lf |
Price {$) [o.05 |
Build Time (sec) B |
Kumber Subtompanents |32 I
Address [192.168.2.30 |
Port Number [pu36 |
Autemation key l I

WO 2004/042639 PCT/AU2003/001474

8/45
W Designer- add_othercy - X
File Edit Options Debug Component Window
ui - w
N @ H e w
(€t component | B¢ Schematics |
Add Other
State In State Ou
Cade In Cade Out
Bytes in Bytes Out
Register In Register Ou
Yalue In Yalue Ou
Found In Found Qu
"‘ ..
-Found In
Agent Name Found In |
Des cription | Description |
Automatically Ter minate [Auto terminate on rx of payl... w |
Default payload | Payload |
Automatic paylead delivery [Manually deliver payload v |
Agent Handoff [Auto handoff - |
Agent Connection mandatgw - |
Sound on Payload Rx | | »
Schematic Selection false - > not_found.sch
aﬂa true -= Figure 566.5ch oo _
false -= Figure 56D.sch Schematic file | Figure 56D.5ch |
Fayload [false |

WO 2004/042639

580, 610
& 670

9/45

A user determines

computer executable
code to be created

Y

The user accesses the

end station 3

\

The user selects a

the end station 3

Y

The processing system 10 provides

properties of available components

based on component specifications
stored in the database 11

A/
The user reviews the
component properties and
selects one or more
components

Y

The end station 3 stores
component data indicating the
selected components

Y

The end station 3 generates a
schematic representation which
is displayed to the user

Fig 10B

Fig. 10A

PCT/AU2003/001474

the requirements of the
500

base station 1 using the 51 0

»-| component search using 520

530

540

550

560

WO 2004/042639 PCT/AU2003/001474

10/45

The user reviews the
schematic representation
and determines if further 570
components are required

components
equired?

520

The user determines
component inputs and 590
outputs to be connected

Y

The user checks compatibility
of the input and output to be 600
selected

520

The user selects a connection

tool and operates to connect 62 0
the component representations
on the graphical representation

Fig 10C

Fig. 10B

WO 2004/042639

11/45

Fig 10B

The end station 3 stores
connection data
indicating the created
connection

Y

The user reviews the
component representation
and determines if further
connections are required

re more

PCT/AU2003/001474

630

640

Yes

connections
equired?

No

650

The user reviews the
component representation
and determines if more
components are required

re more
components
equired?

No

Yes

520

The user indicates that the
computer executable code
is to be constructed

\

The end station 3
accesses the component
and connection data

Fig 10D

Fig. 10C

590

660

670

680

690

WO 2004/042639

12/45

The end station 3 determines
the components to be used in

generating the computer
executable code

Y

The end station 3
implements a
component server

Y
The end station 3
determines the entity
stations 5 providing
the components

Y

The end station 3
determines the required
connections between
respective agents

Y

The end station 3
generates a purchase
order for each entity

A

Each purchase order is
sent to the respective
entity

Y

Each entity station 5
generates a respective
component instance

Y

Fig 10E

Fig. 10D

700

710

720

730

740

750

760

PCT/AU2003/001474

WO 2004/042639 PCT/AU2003/001474

13/45

The agents associated
with each input and output

to be connected are 770

activated

\
Each agent determines

details of respective
data formats and/or 780
types

Y

The agents cooperate to
compare the data formats 790
and/or types

No

e there da
formats/types in
gommon?

800

Y Yes
The agents determine that
81 O the comgig::,i:; r:jnot be The agents determine the
respective inputs and outputs 830
are ready to communicate
\
The build process is : A
820 halted and the user
informed The services are
' implemented 840

Fig. 10E

WO 2004/042639

14/45

PCT/AU2003/001474

‘W Schematic Editor- example 2sch

=R

File

Edit Options Debug Tools Schematic Window

EELERRLLILIL L

51A

Duplicate

51C 52A
51B 51 5
52 Example 1 ,2
Load Address Rel ln/ Mout
Load Address
Dout
Store ADddress Store AdIESRe out Rout
52
52D
EME Address
Rel In Mout
Opr Dout

Rel Qut Rout]
i

RmF:ou't Dout Mout

53

O 0O 0O
Rel Out Rout Dout Mout

WO 2004/042639 PCT/AU2003/001474
15/45
qu'l Designer- Example 1ov [M
File Edit Options Debug Component Window
N g Hnw
61— |[{EF Component [B Schematics |
Example 1 -/ 52A
598 Load Address Rel In Mout 52G
92 Dout 52F
52C Stare Addrejiel out fout 50F
60/ 52D
Al I T T e e T T T T Tt T T T T T T T
62\ -Mout
Agent Name IMout |
Des cription I Description l
Automatically Ter minate | Fallow termination - |
Default payload | Payload |
Automatic payload delivery [Manually deliver payload v |
Agent Handoff [Auto handoff - |
ALgent Connection | Mandatory w |
Sound on Payload Rx | RN _
Schematic Selection - -
=+ Sche matic file
[—]
ot R

=

Fig. 12

WO 2004/042639 PCT/AU2003/001474

16/45

(% Schematic Editor - example 2.sch - X
File Edit Options Debug Tools Schematic Window

AQ#BrNEe e ol

51A

Duplicate

52G
Rel In Mout
O— Load Address /
Load Address 52F
Dout 5oE
O— tore Address
Store Address Ref Qut Rout 54
52C
52D
BME Address’
Rel In Maout
Opr Dout

Rel Out Rout

Rin
Rout Dout Mout

53

Rel Cut Rout Dout Mout

Ll

WO 2004/042639

PCT/AU2003/001474
17145
[% Schematic Editor- defaniisch -
File Edit Options Debug Tools Schematic Window
RQRQAUHEBD YN d e s oI
— | Relln
52A 70
LDAA \ 65
Load Address Rel In Malloc 7 7
opr vl 0 Deliver i
A el Qut Rel
52B
DECA Rin Din Min
Rel In Malloc Min Build 23
Deli Din
4 Rel Out - I;eel; R’ln 4
I Rout Dout Mout
71
52
STAA Rin Din Min
Store Address Rel h malloc Min id 74
Delivet| pin Buil T
—T1 Rel Out Ral .
52C Rmlilnut Dout Mout
79 52G
52F
Rel Out 52E
IreS L N —————— _J
52D

Fig. 14

WO 2004/042639 PCT/AU2003/001474

18/45
U1 P u2
X X1 Y1 Y
Fig. 15
TYPE M
-Double
-Float
-Date
Fig. 16
A A1 B1 B
/ B2
c2
C1 C

Fig. 19

WO 2004/042639

19/45

JJJ

h

Component CP

Component CP
< olc

PCT/AU2003/001474

1)
N~
-—
o
L

<

N~

-

Iin.

(18

WO 2004/042639 PCT/AU2003/001474

20/45
W
Tl\)\
| X
TZJ\ Component CP /C/
Y
- g
T4J\ 1< c /? /Q/z
J\ v =
s
Fig. 17C
B A B A
B1 At B1 — AT
Y
BU1)1'1
» BU2 | BUNDLE 2l X
BU3
A
X1
X

Fig. 20A Fig. 20B

WO 2004/042639 PCT/AU2003/001474

21/45

C1 A1 A2 C2

Fig. 18A

C2

Fig. 18B

Cc2

C1 A1 A2 A3 C3

Fig. 18C

WO 2004/042639

PCT/AU2003/001474

AE c2
C1 Al / A3 C3
A2b
|
Fig. 18D
C2
C1 A1 A3 C3
Fig. 18E
a
b b
; o
d
_ > d > U
d
\
a > B -

O T o o
Y

Fig. 23

WO 2004/042639

23/45

PCT/AU2003/001474

Fig. 21

B A A
B1 A Al
\
) DBU1
. BUﬁDLE DEBUNDLE |DBU2
DBU3
\ \
y X1 Y1
c [crl_. BUNDLE X Y
2
Y Fig. 22
X1
X

WO 2004/042639

PCT/AU2003/001474

24/45
B
B, A,
B, B,
A, A, A, B,
/\
A8 AQ A10
Fig. 24A .

12

1000

1015
BI

PCT/AU2003/001474

WO 2004/042639

25/45

n

G101

+t

oz "614

WO 2004/042639 PCT/AU2003/001474

26/45

1122
1121

Fig. 25A

1102 1122

1112 1132

Fig. 25B

WO 2004/042639 PCT/AU2003/001474

27145
Fig. 25C
1102 1122
1101 E] 1121
];1108 1128—;[

1108 [L1107 [[] (] [1127} 1123
1104 1109 Mo 1135 1129" | 1124
~110 1130
1105 1125
1100 1120
1106 1125

Fig. 25D

WO 2004/042639

PCT/AU2003/001474
28/45
1102 1122
1101 [|] 1121
. .
L r“08 ”28%1 |
1103] u,'f_ffl\1 107 [][] L] [127)j 1123
1104 EWL1109 1129J - 1124
~1110 11304
]] 1125
1108 [1 1100 1120]
1106 1126
Fig. 25E
1033
1032
1030 1034
1031 1035
------------ ;;[] 1036
1037

WO 2004/042639 PCT/AU2003/001474

29/45
1152
1151 4"{ Header
1153
1060 1151
1154
1155 1157
1154
1156
1158 1061 Fig. 26B
1157 ﬁ
1159
Fig. 26A
1151
1054 1063
1055

Fig. 26C

WO 2004/042639 PCT/AU2003/001474

30/45

1151

1154] 1165

1157 [—] 1164 1163

1154

1165

Fig. 26E

WO 2004/042639

31/45

PCT/AU2003/001474

Header

1204

1203

1202

1205

1206

1204
1200
\
1203 1208
|
1202 1209
1205
1201
\
1206 1210
|
1207 1153
Fig. 26F

1211

1207

1212

Fig. 26G

WO 2004/042639 PCT/AU2003/001474

32/45

1053

1050 1054

[

]
]

1051ir/1061 1065 1071 1053
~rh
L
[j\—i[] 1060 [}- b] 1080 [}/—1/

i

WO 2004/042639 PCT/AU2003/001474

33/45

1250

1252

1256 1257

N 125 1253 1265 1 1

1254

Fig. 29A

1250

1252

1256 1257
[H 1251 1253 1255

1259

1258

L

Fig. 29B

WO 2004/042639

34/45

PCT/AU2003/001474

1260 ——
W 1262 | W
[‘L WX
I 1264 —
X [E}— 1263 -
'_H
1261 /’ji\)('/1266 1270 WX Y27
IT_N
Y!
1267
—L 1269 —
Z J— Y'\Z'
[— 1268 >
o Fig. 30A
1265
1260
\
w [— 1262
Wl
]7
X D—]
Ix 1270
w.X\Y",Z'
1265, L
1263 | X
- |
Yl
1267 1269]——7',\(',2
} [1268 1=, Fig. 30B

WO 2004/042639 PCT/AU2003/001474

35/45

BUN3
BUN2 NI NO DUP D2H

1
, o WE
3 E

Fig. 31A Fig. 31B Fig.31C Fig. 31D

H2B endian Find & Replace [Find Tag
In Value O
Replace Tag In

E

Fig. 31E Fig. 31F Fig. 31G Fig. 31H

Tag In XML Out
Value In E
Fig. 31 Fig. 31J Fig. 31K Fig. 31L

AND DIV ADD EQ

Fig. 31M Fig. 31N Fig. 310 Fig. 31P

WO 2004/042639 PCT/AU2003/001474

36/45

Build ASM 1 Build ASM 2
+c0de build+ :Adjmmbund+

Fig. 31Q Fig. 31S

name in name out

Fig. 31R

name in hame out

Addr out

Fig. 31T

WO 2004/042639 PCT/AU2003/001474

37/45
Init_elf
build el
Fig. 31U
build
| |
o BUN3
name in

start address

finish addres

32 bit 32 bit
ADD D2H endian
PE PE
1 O I O

O
elfg

WO 2004/042639

In2
4 Add1 out
n1i

Excetions

G

Fig. 32A

Add1 test
In1 Ein2 out out
u
In2 Eln1 Add'l_“
Excefnons
Exceptions
Manual add test schematic

PCT/AU2003/001474
Add1
In1
Out &
In2
Manual add Exceptions

Fig. 32C

Aln2
Add2 out
Aln1 .
Exceptlons

kel

Fig. 33

1 Format Exceptions [

Fig. 35A

Fig. 32B

o Formatinz [Exceptions

Fig. 34A

B Width Build

B2 Screen

Fig. 36A

PCT/AU2003/001474

WO 2004/042639

39/45

ave ‘b4

suopdesig
v LOISISAUOGS JELLIOY UM PPY
bite]
NG HaAUOD sS4V
Y IBULSS L 1BULD-
wvdﬂ
0 £1Y B
N - S |Buitzeg Z U 38ULiod
P 1o HSAUDD
YLIN0 1I|wkiog Y umﬁta&
Hﬁ.
12y
[Eweeg to
no Mm:tﬁu u umgau
Iu{ ﬁ
“ W
Elo¥ £ L U] JeuLio-]
jPwaeg

EPPY

PCT/AU2003/001474

WO 2004/042639

40/45

mno

gac¢ 614

suojdayxy
@i sajpung pug Bunsei induj 'suondeaxe yus ppy
mmaanm&u T ﬁéa.,;m T o)
41@ NG JRuLGS E4: : ﬁﬁx . »uﬁwﬂﬁ e v
..... — H - e L H10 _..w buj————mz
LU} JOULO B ﬁr
I~ v U —
PRy Lure B muﬁa ¥y
- _ x ; B ; —Zgmo MM ug-——aru
_ yppy lotRpY =
! - opepg
T ELM = : | B
?%mﬁ&wg jeusiog EyiEino
! Bug sepiea uwl 35“3 ng sﬂ
ﬁﬁ ?axuﬁum wo ﬁﬁﬁﬂ i’ i
v Mu:w@ 5
3 i , ” el Buing
_ “ 2 .
: mnww;it x:imm._(ﬁwiwm% ipomuunl} N0 yeunod %«2 FEo
| L w0 10 | Bumg aleplieA ud——
W, ﬂ% {pmisoys} ing wg
1 Py
08 %ac mmmnﬁwq %ﬁw i LIRS S =
o5 Bung stepilea 543 %MM o mna ol .E
m%& {pasisayo) 100 1517 ALY L 1n0 w
m Hiny
o Eww __ senuog siqeideody
o sopy Ieuniog

PCT/AU2003/001474

WO 2004/042639

41/45

g9¢ "bi4
gpy PIING suopdadxy _HeeRs .
sov Faid - W v ©xid nd
inQ ping - | J— —
plng Pingois——apina AOWN |
ui ping e
i) ile]
M‘_‘H& ; g1y
aoisiBay Bag ’ mmﬁmumﬁ =
k y 134 vy
pjing ping oy e 10 |y m:u_ﬁmuum Jewio & TV
T 219 L4 ! SppYy w&ﬁ& "
ul pling W m LU
- 3
ng pung -~ o] * w - wmﬁﬁm%
e e Lgsg 4n _
plng ping ﬁﬁéﬁi%m:nm AOW &V 0 n_mm EEE | o¥ suondonyy e ﬁ%
pIng 190 ,T%Z:a | av , , | ey
ulplng v po Ny Uty
= 85 L EING Ly mmt.tw,q e
oomog #i— [B
Pig AOW | SHEWO o o ey
ssog il uq;_m amﬂwvwzo auy | A
aojey [3X1d 1nd

X

> UIp

WO 2004/042639

PCT/AU2003/001474

42/45

Put Pixel

Put Pixel bootable program

Address Build
Setup Screen
Seg Register

ca X
Exceptions
S As2

Build In
To Build Build

Build Out

Fig. 36C

WO 2004/042639

PCT/AU2003/001474

Mov Self

State Out]
Code Ou
Bytes Out
Reglster In Register Qutl
Value In Value Out
Found In Found Out|

CodeIn
Bytes In Bytes Outl
Register In Register Outl
Value In Value Outl
Foundin___ Found Out

Value In
Found In

Mov Other

Register In Register Qut]

Inc Other

Value Outl
Found Outl

Dec Other Add Self Add Other
State In State Outl State In State Out
Code In Code Oul Code In Code Out
Bytes In Bytes Outl Bytes In Bytes Outl

Mov Immediate

ode Bulld ASM2

Register In Reglster Outl Register in Reglster Outl
Value In Value Outl Value In Value Qut Value Out
FoundIn___ Found Out] Found In___ Found Out| Found Out
Terminate j Terminate
Terminate

DUP

o—ag |

"Hello world"

data string
address =
string build

Fig. 38A

[]
Code Out

WO 2004/042639 PCT/AU2003/001474

44/45

Find Tag

termonrx
convert value to boolean

Find Tag
Value Outl

XMLIN sl out
Tag In

ebx E

LUT

5
term on rx

convert value to boolean

LUT

Find Tag

State in

convert value to boolean

LUT

term on rx ph

[al
convert value to boolean Found match

Fig. 37D

88
DUP ‘ Find J?g ;
Staw XML In V0 U Term on rx
XML Out
) DUP Tag in E Register Out
Ch
osen reg DUP |
Regi DUP
egister In 82

DUP ClAT DUP 'TUT CAT State Out

2 83 T O

- "

add reg reg2 lookup

Bytes In LUT

term on tx | E
10 Bytes Out

instruction length lpokup
Code In 84 Code Out
term on tx 83 SUB 1 D2H 86
E 3 Found Out
Value In pup DUP
-—i = i ='— Value Out
—80

Term on rx

Fig. 37E

WO 2004/042639 PCT/AU2003/001474

45/45

State Out l
E .
State in
State In State Out
Chosenreg term on rx
Code In Code Out Code In Code Out
| | N
Bytes In Bytes Out Bytes In Bytes Out
o |
Register In Register Out Register In Register Out

Value In Value Out

n—n

Value In Value Qut

Found Out

Found Out

true false

Fig. 37B Fig. 37C

data string
address |
string__bulld

data string
address

string _ buildl—] BCat

DUP

"Hello" E=

"World"

Register
O Bl i] BCat

Value

Assign

Register
eax I uild i | BCat
Value

Assign

Register
ebx Build
Value

int 0x80

Init_elf
build elfl

Fig. 38B

O
Code Out

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU2003/001474
A CLASSIFICATION OF SUBJECT MATTER
Int. CL ™ GOG6F 009/00

According to International Patent Classification (IPC) or to both national classification and IPC

B.

-FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DWPL USPTO (MODUL+, COMPONENT?, PORT? ETC)

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
US 6405361 B1 (BROY ET AL) 11 June 2002
X See Whole Document 1-3,5-9, 14,
25-27,29 -
38, 46 - 48,
117, 120 -
122, 149 -
151,157 - 159
EP 1211598 Al (TEXAS INSTRUMENT INCORPORATED) 5 June 2002
X Abstract 1, 29, 36, 37,
Column 4, paragraph 0017 - Column 6, paragraph 0036 46, 149, 156 -
‘ 159
US 5867707 A (NISHIDA ET AL) 2 February 1999
A See Whole Document 1-48,117 -
122, 149 - 158
|:| Further documents are listed in the continuation of Box C See patent family annex
* Special categories of cited documents:

"A" document defining the general state of the art "I later document published after the international filing date or priority date
which is not considered to be of particular and not in conflict with the application but cited to understand the principle
relevance or theory underlying the invention

"E" earlier application or patent but published on or "X" document of particular relevance; the claimed invention cannot be
after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone

"L* document which may throw doubts on priority "Y" document of particular relevance; the claimed invention cannot be
claim(s) or which is cited to establish the considered to involve an inventive step when the document is combined
publication date of another citation or other special with one or more other such documents, such combination being obvious to
reason (as specified) a person skilled in the art

"O" document referring to an oral disclosure, use, "&" document member of the same patent family

~ exhibition or other means -
"P" " document published prior to the international filing

date but later than the priority date claimed

Date of the actual completion of the international search

27 January 2004

Date of mailing of the international search report

0 4 FEB 2004

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE

PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaustralia.gov.au

Facsimile No. (02) 6285 3929

Authorized officer

M.J. O'ROURKE
Telephone No : (02) 6283 2017

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU2003/001474

Box 1 Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following
reasons: -

1. l:] Claims Nos :

‘because. they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos :

because they relate to parts of the international application that do not comply with the prescribed requirements to
such an extent that no meaningful international search can be carried out, specifically:

3. D Claims Nos :

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule
6.4(a)

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See Supplemental Box

1. |:| As all required additional search fees were timely paid by the applicant, this international search report covers all
searchable claims ,

2, l:] As all searchable claims could be searched without effoﬁ justifying an additional fee, this Authority did not invite
payment of any additional fee.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search
report covers only those claims for which fees were paid, specifically claims Nos.: ,

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report
is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1 - 48, 117 - 122 and 149 -
158

Remark on Protest D The additional search fees were accompanied by the applicant's protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.

PCT/AU2003/001474
Supplemental Box
(To be used when the space in any of Boxes I to VIII is not sufﬁcient)
Continuation of Box No: II
1. Claims 1-48, 117 - 122 and 149 - 158 relate to combinations of components, each component corresponding to

a data manipulation service. This feature represents a first "special technical feature".

2. Claims 49 - 63 and 77 - 91 are directed towards generating specifications for the data manipu]atioﬁ services
embodied in components, and to implementing combinations of components. In these claims, the specification
of ports within the components, and the connections between the ports, represents a second "special technical
feature".

3. Claims 64 - 76 and 123 - 130 relate to a method of providing a service in a component. These claims do not
rélate to combinations of the components themselves, nor to ports within the components. The steps of
providing the service embodied in a component represent a third "special technical feature".

4. Claims 92 - 102 are directed towards a method of performing context dependent data manipulations. The claims
relate to defining components embodying several techniques for manipulating data, so that in use, the technique
used will depend on the context. These claims do not relate to combinations of components, nor to ports within
the components. The context-dependent nature of the data manipulation represents a fourth "special technical
feature".

5. Claims 103 - 116 and 131 - 148 relate primarily to the implementation of agents in domponent based data
manipulation. These agents interact with agents within their component and also with agents in other
components. These agents represent a fifth "special technical feature".

The only common feature between all of these claims is the use of component based data manipulation. However, this
concept is known, for example from these prior art documents:

e US 6405361 B1 (BROY ET AL) 11 June 2002
o [EP 1211598 Al (TEXAS INSTRUMENTS INCORPORATED) 5 June 2002.

These documents disclose specific applications of component based data manipulatior'the applications requiring
combinations of the components. Particularly these documents disclose components corresponding to computer code
which are combined to produce code. The components defined in the application correspond to data manipulation
services however, they are combined to form code and as such must contain code themselves.

The identified special technical features are not so linked as to form a common inventive concept. Therefore unity of
invention is lacking a posteriori.

Form PCT/ISA/210 (extra sheet)(July 1998)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members PCT/AU2003/001474

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars
which are merely given for the purpose of information. “

Patent Document Cited in . Patent Family Member
Search Report ’

US 6405361 . DE 19837871

EP 1211598

Us 5867707 JP 7104981

END OF ANNEX

Form PCT/ISA/210 (citation family annex) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

