Abstract: A method of forming a light bulb core, and a light bulb or lamp incorporating the core. The method includes forming a heat sink having at least six working facets located equally on opposite sides of a central plane, and then mounting a light source on each of the working facets. The light sources are mounted on circuit boards, each circuit board corresponding to a respective one of the working facets. The boards are then applied to respective working facets. The bulb is composed of a screw base, an external heat sink mounted in the screw base, and the light bulb core mounted in and extending from the external heat sink. The light source comprises a plurality of light emitting diodes.
Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))
HIGH INTENSITY LED REPLACEMENT OF INCANDESCENT LAMPS

RELATED APPLICATION

BACKGROUND OF THE INVENTION

This invention relates to LED lamps, and in particular to a method of forming a core for an LED lamp, as well as the lamp itself.

Incandescent lamps are slowly being replaced with more modern lamps, including LED lamps. Low intensity LED lamps can provide efficient light without the need for a large heat sink, but as luminosity increases, providing a practical lamp becomes more difficult because a large heat sink is needed to remove heat, not only affecting the aesthetics of the lamp, but also blocking some of the emitted light.

LED lamps are self contained. The power supply for driving the lamps, as well as all circuitry, is located within the lamp. United States Patent Application Serial No. 12/826,774, filed June 30, 2010, the disclosure of which is incorporated herein by reference, discloses an LED lamp replacement for low power incandescent lamps. It describes an LED lamp that allows light to radiate in a full 360° view angle and maintains the look of an incandescent filament.

Higher intensity LED lamps require dissipation of heat, normally with heat sinks of various types of thermally conductive material. The heat sinks, however, tend to obstruct the light and create dark bands. It is therefore necessary to mount LEDs in a manner that allows light to radiate in all directions, while still dissipating heat. In incorporated Application Serial No. 12/826,774, because of the low power, heat is dissipated through a multi-layered printed circuit board and screw-type lamp base. That is sufficient to keep the LED junction temperature under the maximum rated value set by the manufacturer. However, increasing power requires an external sink for dissipating heat which cannot be adequately channeled through the printed circuit board and lamp base.

For dissipating heat in higher intensity LED lamps, the individual LEDs are mounted on a thermally conductive medium, such as an aluminum plate. However,
mounting LEDs on a plate of even nominal thickness will reduce the view angle of the emitted light, resulting in a noticeable band of lower intensity light when projected on a nearby surface.

SUMMARY OF THE INVENTION

The invention is directed to a light bulb or lamp comprising a screw base, an external heat sink mounted in the screw base, and an internal heat sink extending from the external heat sink. The internal heat sink has at least six working facets. A light emitting source is mounted on each of the working facets.

In accordance with the preferred form of the invention, the light source for each working facet comprises a plurality of light emitting diodes. The light emitting diodes of each facet are mounted on a circuit board secured to the facet. Preferably the internal heat sink is metal, such as aluminum, which readily conducts heat from the internal heat sink to the external heat sink and to the screw base. The facets of the internal heat sink are located in a mirror image relationship on opposite sides of a central plane. The facets are formed at an angular relationship to one another.

The light bulb core is formed by a method comprising the steps of forming a heat sink having at least six working facets, with the working facets being located equally on opposite sides of the central plane. A light source is mounted on each of the working facets. Preferably, the facets are formed in mirror image relationship on opposite sides of the central plane.

In mounting a light source on each working facet, the invention includes the steps of locating the light sources on circuit boards, with each circuit board corresponding to a respective one of the working facets, and then applying the circuit boards to the respective one of the working facets. Preferably, the circuit boards are electrically connected to one another before the circuit boards are applied to the working facets.

The circuit boards are formed in a planar array interconnected by frangible tabs. While the circuit boards are in the planar array, they are electrically interconnected. Then, the frangible tabs are fractured as the circuit boards are applied to the working facets.
BRIEF DESCRIPTION OF THE DRAWINGS

The invention is described in greater detail in the following description of examples embodying the best mode of the invention, taken in conjunction with the drawing figures, in which:

Figure 1 is an elevational illustration of an LED lamp for replacement of low power incandescent lamps as disclosed in incorporated U.S. Patent Application Serial No. 12/826,774;

Figure 2 is a front elevational illustration of the internal heat sink according to the invention as mounted in the external heat sink;

Figure 3 is a top perspective view of the combination shown in Figure 2;

Figure 4A is a side elevational illustration of the combination shown in Figure 2;

Figure 4B is a top plan view of the combination shown in Figure 2;

Figure 4C is a schematic view similar to Figure 4A, and showing overlap of the beams of mounted LEDs;

Figure 4D is a view similar to Figure 4B, and showing the overlap of beams from mounted LEDs;

Figure 5 is an isometric view of the planar formation of the printed circuit boards in a printed circuit panel, showing the tabs maintaining the printed circuit boards in place, with all elements mounted thereon;

Figure 5a is a plan view of Figure 5, better showing relative dimensions;

Figure 6A is an isometric elevational illustration of a lamp according to the invention;

Figure 6B is an isometric view similar to Figure 6A, but taken from above;

Figure 6C is a front elevational illustration similar to Figure 6A;

Figure 6D is a side elevational illustration of Figure 6C;

Figure 7A is a block diagram of a driver using a series dropping resistor to limit input current;

Figure 7B is a block diagram of a driver using a linear current regulator to limit input current;

Figure 8 shows the peak LED current that can be set, using the driver of Figure 7A;
Figure 9 shows the peak LED current that can be set, using the driver of Figure 7B;

Figures 10, 11 and 12A-12C illustrate how an LED lamp will dim with forward phase TRIAC dimmers for circuits shown in Figures 7A and 7B at different dimming angles; and

Figure 13 shows a circuit according to the invention including use of surge suppressor at the input to limit a temporarily high input voltage and guard against failure.

DESCRIPTION OF EXAMPLES EMBODYING THE BEST MODE OF THE INVENTION

Incorporated U.S. Patent Application Serial 12/826,774, filed June 30, 2010, describes an A-type lamp with an LED arrangement that allows light to radiate in a full 360° view angle and maintain the look of a typical incandescent filament. One form of that lamp is shown at 10 in Figure 1, and reference should be made to the incorporated application for greater detail.

Figures 2-4 illustrate one form of an external heat sink 12 and internal heat sink 14 of the present invention, with a fully assembled lamp shown in Figures 6. The external heat sink 12 is connected to a conventional lamp screw base 16 (Figures 6), and may, itself, be conventional and therefore is not described in greater detail. An insulator 15 electrically isolates the external heat sink 12 from the screw base 16.

As is well known, higher power LED lamps require a larger power supply and require temperature dissipation so as to function properly. Typically, temperature dissipation requires a thermally conductive material, but the disadvantage of using a thermally conductive material is that it also obstructs some of the light and creates dark bands. Therefore, were the internal heat sink 14 simply a flat slab of thermally conducting material, such as metal, mounting LEDs on it would lead to unacceptable dark bands or a noticeably lower band of light intensity when projected near a surface.

To overcome the problems of light intensity, the internal heat sink 14 is formed with six working facets as shown in Figures 2-4, the working facets being located equally on opposite sides of a central plane 18. Thus, working facets 20, 22 and 24 are located on one side of the plane 18, while working facets 26, 28 and 30 are located on the
opposite side. The internal heat sink 14 also has truncated portions 32 and 34 which are not working facets, but rather are simply areas where material does not exist in order to easily accommodate fitting within a transparent glass dome or enclosure, as described in further detail below.

As explained further below, each of the working facets 20-30 includes a light source mounted thereon. While in the preferred embodiment that light source is a series of LEDs, it could, in appropriate circumstances, be a different but similar light source.

The working facets 20-30 are formed in an angular relationship to one another such that beams of light emitting from LEDs mounted thereon overlap and eliminate any dark bands. This is depicted schematically in Figures 4C and 4D, where LEDs 36 are schematically shown located on the various facets and the beam angles of the LEDs are also illustrated. While an LED actually illuminates past the beam angle illustrated, the LED beam angle is considered to be that where the light intensity diminishes below 50%.

A typical white LED has a beam angle of 120°-150°. That is shown as the LED beam in Figures 4C and 4D. That leads to overlap of the emanated light beams so as to be visually uniform to the viewer, when the working facets 20-30 are appropriately oriented. In a preferred form of the invention, the working facets 20 and 26 are oriented at an external angle of about 150° to the central plane 18. The working facets 22, 24, 28 and 30 are oriented at an external angle of about 168°. Obviously, the angles of the working facets 20-30 may vary, depending on the beam angles of the LEDs being employed.

Figures 5 illustrate one form of printed circuit boards that can be used for mounting of the LEDs 36. There, necessarily, is one printed circuit board for each of the working facets 20-30, or therefore six printed circuit boards that are sized to be mounted on their corresponding six working facets.

The printed circuit boards are advantageously formed from a single panel 38. Thus, the panel 38 is divided into printed circuit boards 40, 42 and 44 on one side, and printed circuit boards 46, 48 and 50 on the other. Each of the printed circuit boards 40-50 corresponds, in sequence, to the working facets 20-30 upon which it is mounted. The printed circuit boards 40-50 are held together by tabs 52 connected between the respective circuit boards 40 and the remaining material of the panel 38, as well as
between the printed circuit boards 40-50, themselves. The tabs 52 are easily broken to release the boards from the panel 38 and for mounting on the working facets 20-30.

The printed circuit boards 40-50 may be formed in a conventional fashion, which is therefore not described in greater detail. The printed circuit boards 40-50 are populated with LEDs 36 connected in series as well as the various electrical components necessary to drive the LEDs 36. Those electrical components form no part of the invention, and are shown generally at 54 in the drawing figures. For electrical connection between the printed circuit boards 40-50, surface-mounted jumper wires 56 are installed while the printed circuit boards 40-50 are populated with the LEDs 36 and various electrical components 54.

Spacing between the various printed circuit boards 40-50 is chosen so that the length of the jumper wires 56 is sufficient for the boards to be mounted on their respective working facets 20-30. Thus, spacings 58, 60 and 62 are established between the printed circuit boards 40-50, as shown in Figure 5a, so that the printed circuit boards 40-50 can then be mounted on their respective working facets 20-30. Obviously, the spacings 58-62 may vary, and are varied depending on the angular relationships of the working facets 20-30.

The printed circuit boards 40-50 may be mounted on the working facets 20-30 in a conventional fashion. For example, the printed circuit boards 40-50 may be underlain by an adhesive layer, which is overlayed by a release. Removing of the release will allow the respective printed circuit boards 40-50 to be adhesively secured to their respective working facets 20-30. For example, the six printed circuit boards 40-50 can be severed from the panel 38 by breaking the tabs 52 connecting the printed circuit boards thereto. Then, the printed circuit board 40 can be applied to the working facet 20. The tabs 52 connecting to the printed circuit boards 42 and 44 to the printed circuit board 50 can then be broken, and the printed circuit boards 44 and 42 applied to their respective working facets 24 and 22. Similarly, the opposite side of the internal heat sink 14 is then populated by the overlying printed circuit boards.

A completed lamp or light bulb 64 is shown in Figures 6. A transparent glass enclosure or dome 66 extends from the external heat sink 12 and surrounds and protects the components of the invention mounted on the internal heat sink 14, and gives the lamp
64 the appearance of a conventional incandescent lamp. Obviously, since LEDs are used, no particular gas in the enclosure 66 or evacuation is needed.

The working facets 20-30 are located in a mirror image relationship on opposite sides of the central plane 18, at the angular relationship to one another described above. While a mirror image relationship is preferred, it will be evident that if even light dispersion throughout 360° is not critical, then a mirror image relationship between the various facets would be unnecessary.

A driver is necessary to drive the LEDs 36. Two drivers are shown in Figures 7A and 7B. In both, input voltage, after passing through a rectifier 68, is used to drive the series combinations of the LEDs 36. In Figure 7A, in order to limit input current, a resistor 70 is employed, and this type of circuit is also discussed in incorporated U.S. Application Serial No. 12/826,774. In Figure 7B, instead of the resistor 70, a linear current regulator 72 is employed. The types of driver illustrated and described are simply for purposes of explanation, and it will be evident that other types of drivers might be employed, as well. The driver forms no part of the present invention.

Current regulator 72 is advantageous in that less power is used, and also the peak LED current can be set to not exceed a predetermined value, which insures that the LEDs operate within safe limits established by the manufacturer of the LEDs. This is shown simply and graphically in Figures 8 and 9.

When the LED current drops below a constant current set point, the current regulator will no longer clamp the LED current but will be limited by the dynamic resistance of the LEDs and any resistance that is added to the driving circuit. As the input voltage is further reduced, the LED current will drop until the source voltage approaches the LED voltage, at which point the LED will turn off. In a similar fashion, the LED will dim with reverse phase or forward phase dimmers. These concepts are shown schematically in Figures 10, 11 and 12A-12C. This is simply for explanation, only, and dimming forms no part of the invention.

A temporary voltage surge to an LED lamp can be destructive. To guard against a surge, a surge suppressor 74 can be employed, as shown in Figure 13.

The invention permits replacement of an incandescent lamp with an LED lamp, with little or no aesthetic difference that is discernible by the user. As shown in Figures
6, the invention replicates an incandescent lamp, and with an Edison-type screw base 16, provides an A19 LED lamp fully compatible to the incandescent lamps it replaces. Various changes can be made to the invention without departing from the spirit thereof or scope of the following claims.
What is claimed is:

1. A light bulb, comprising
 a. a screw base,
 b. an external heat sink mounted in said screw base,
 c. an internal heat sink extending from said external heat sink, said internal heat sink having at least six working facets, and
 d. a light emitting source mounted on each working facet.

2. The light bulb according to claim 1, in which said light source comprises a plurality of light emitting diodes (LEDs).

3. The light bulb according to claim 2, in which the LEDs of each facet are mounted on a circuit board secured to the facet.

4. The light bulb according to claim 1, in which said internal heat sink is metal.

5. The light bulb according to claim 1, in which said facets are located in mirror image relationship on opposite sides of a central plane.

6. The light bulb according to claim 5, in which said facets are formed at an angular relationship with one another.

7. A method of forming a light bulb core, comprising the steps of
 a. forming a heat sink having at least six working facets, said working facets being located equally on opposite sides of a central plane, and
 b. mounting a light source on each working facet.

8. The method according to claim 7, in which method step "a" includes locating said facets in mirror image relationship on opposite sides of said central plane.

9. The method according to claim 7, in which method step "b" includes the steps of
i. locating said light sources on circuit boards, with each circuit board corresponding to a respective one of said working facets, and then
ii. applying said circuit boards to the respective one of said working facets.

10. The method according to claim 9, including the step, between method steps "i" and "ii", of electrically connecting said circuit boards to one another.

11. The method according to claim 10, in which, before method step "i", including the steps of forming said circuit boards in a planar array interconnected by frangible tabs, and electrically connecting said circuit boards while in said planar array.

12. The method according to claim 11, including fracturing at least some of said tabs before method step "b".
FIG. 7A

FIG. 7B

V_{rms} 68 \rightarrow V(t) \rightarrow i(t) \rightarrow R \rightarrow I_{av} 70 \rightarrow V_D 36

V_{rms} 68 \rightarrow V(t) 72 \rightarrow i(t) \rightarrow \text{CURRENT SOURCE} \rightarrow I_{av} \rightarrow V_D 36

SUBSTITUTE SHEET (RULE 26)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2011/035832

A. CLASSIFICATION OF SUBJECT MATTER
IPCI(8) - F21V 23/00 (2011.01)
USPC - 362/249.06
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPCI(8) - H01J 7/24; F21S 4/00; F21V 3/00, 17/12, 21/00, 23/00, 29/00 (2011.01)
USPC - 313/45; 362/249.06, 363, 373, 800

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBase, Google Patents, Google Scholar

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2009/0195186 A1 (GUEST et al) 06 August 2009 (06.08.2009) entire document</td>
<td>1, 2, 4, 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3, 5-6, 8-12</td>
</tr>
<tr>
<td>Y</td>
<td>US 2009/0273940 A1 (THURGOOD et al) 05 November 2009 (05.1.2009) entire document</td>
<td>5, 6, 8</td>
</tr>
<tr>
<td>A</td>
<td>US 6,870,328 B2 (TANABE et al) 22 March 2005 (22.03.2005) entire document</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
01 August 2011

Date of mailing of the international search report
09 AUG 2011

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer: Blaine R. Copenhaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)