(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization | o
International Bureau :

(43) International Publication Date
4 December 2008 (04.12.2008)

) IO O OO OO

(10) International Publication Number

WO 2008/147738 Al

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/US2008/063997

(22) International Filing Date: 16 May 2008 (16.05.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/805,729 24 May 2007 (24.05.2007) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052-6399 (US).

(72) Inventors: DENGLER, Patrick; One Microsoft Way,
Redmond, WA 98052-6399 (US). LVOVITCH, Oleg;
One Microsoft Way, Redmond, WA 98052-6399 (US).
KIMMERLY, Randy; One Microsoft Way, Redmond,
WA 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— asto applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— asto the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report

106 100

COMPUTING DEVICE

102

(54) Title: PROGRAMMING MODEL FOR MODULAR DEVELOPMENT

REMOVABLE
®.
STORAGE ~ 108
NON-REMOVABLE
STORAGE ™.

10

OUTPUT DEVICE(S) .

FIG. 1

8/147738 A1 I 10 OO 0 OO0 OO

SYSTEM MEMORY I, 1
VOLATILE PROCESSING UNIT
INPUT DEVICE(S) <112 15
NON-VOLATILE M4 ’
OTHER » OTHER
COMMUNICATION % | COMPUTERS/
200 CONNECTION(S) APPLICATIONS
. FRAMEWORK APPLICATION
-
BUILDER ANALYZER ‘ LOADER ‘
i 4 k4
201 202 203

(57) Abstract: Various technologies and techniques are disclosed for providing a programming model for modular development.
A definition feature is provided that allows a definition to be specified for a particular method that is part of an application. A
production feature allows a functionality implementation to be specified for the particular method separately from the definition.

& A consumption feature allows a method call to be made indirectly to the functionality implementation of the particular method by
& referencing the definition of the particular method from a consuming method. The consuming method has no awareness of the
functionality implementation for the particular method. An analysis process inspects components containing indirect associations

=
=

application.

between these consumers and producers of application functionality to generate a graph of direct associations between the consumers
and producers without having to actually load the components. A loader process uses the graph of direct associations to run the

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

PROGRAMMING MODEL FOR MODULAR DEVELOPMENT
BACKGROUND

[001] Computer software can be written by software developers using one or more
software development tools. In software development programs, the developer
writes a series of code segments called methods or functions that are each designed
to perform one or more tasks. The developer also writes code that connects the
methods together so that they are executed in one or more desired orders. The
typical way of connecting methods together is by making a call to a particular
method from within another method. Simple software applications may be written
as one or more methods that are contained within a single program file. However,
with more comprehensive software applications, it is common is to separate the
functionality of the software application into different components or assemblies
that are contained in different files. When a first component of the application
wants to call one or more methods that are contained in a second component, a
reference is made to the second component in the source code of the first
component so the first component knows how to find and communicate with the
second component. After the reference is made, code can be written to directly call
a desired method in the second component.
[002] One problem with directly referencing a particular method in one component
from another component is that there is no easy way for a developer to come in
later and use different functionality for that particular method. One way the
developer can implement the new functionality is to change the source code within
that specific method to achieve the different functionality. However, the problem
with this potential solution is that the developer may want to keep that particular
method intact for use in some situations, yet use a totally different implementation
for the present situation. Another option is to write a totally new method that
contains the different functionality, and then change the first component to directly
reference and call the new method. Both of these solutions can be tedious and
greatly limit the extensibility of an application after original product shipment. For
example, in the case of MICROSOFT® programming technologies, while
extensibility can be fairly achievable using the MICROSOFT® Component Object

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

Model (COM), it is not as achievable using MICROSOFT® .NET. Even when
using COM to create the abstraction of interface-> implementation, there is no
method to determine dependencies or closure. This is especially problematic when
derivations are made on specific implementations of a particular method. This locks
the original code author to either being locked into one implementation, or to break
extensibility based upon that implementation.

SUMMARY
[003] Various technologies and techniques are disclosed for providing a
programming model for modular development. A definition feature is provided
that allows a definition to be specified for a particular method that is part of an
application. A production feature allows a functionality implementation to be
specified for the particular method separately from the definition. A consumption
teature allows a method call to be made indirectly to the functionality
implementation of the particular method by referencing the definition of the
particular method from a consuming method. The consuming method has no
awareness of the functionality implementation for the particular method. An
analysis process inspects components containing indirect associations between
these consumers and producers of application functionality to generate a graph of
direct associations between the consumers and producers without having to actually
load the components. A loader process uses the graph of direct associations to run
the application.
[004] In one implementation, an original functionality implementation can be
replaced with a different functionality implementation. A publicly accessible
definition is provided for a particular method that is part of an application. An
original private, inaccessible functionality implementation can be provided for the
particular method separately from the definition. A consuming method is provided
that indirectly calls the original functionality implementation of the particular
method by referencing the definition of the particular method. The consuming
method has no awareness and needs no awareness of the original functionality
implementation for the particular method. A different or complimentary

(additional) functionality implementation is then provided for the particular method

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

to be used in a current configuration of the application instead of the original
functionality implementation. An intermediate language version of the application
1s recompiled to point to the different or multiple functionality implementations.
[005] This Summary was provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[006] Figure 1 is a diagrammatic view of a computer system of one
implementation.
[007] Figure 2 is a diagrammatic view of a framework application of one
implementation operating on the computer system of Figure 1.
[008] Figure 3 is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the definition, production, and consumption features of a
programming model for modular development.
[009] Figure 4 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in using pre-defined attributes with the
definition, production, and consumption features to designate the respective areas
in the source code.
[010] Figure 5 is a diagram for one implementation of the system of Figure 1
illustrating some exemplary source code that uses the definition, production, and
consumption features and the respective pre-defined attributes to create a portion of
a software application.
[011] Figure 6 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in performing an analysis process and a
loading process to construct and load the application.
[012] Figure 7 is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the stages involved in providing multiple implementations

of a particular method using extensions.

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

[013] Figure 8 is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the stages involved in replacing an original functionality
implementation of a method with a different functionality implementation.
DETAILED DESCRIPTION
[014] For the purposes of promoting an understanding of the principles of the
invention, reference will now be made to the embodiments illustrated in the
drawings and specific language will be used to describe the same. It will
nevertheless be understood that no limitation of the scope is thereby intended. Any
alterations and further modifications in the described embodiments, and any further
applications of the principles as described herein are contemplated as would
normally occur to one skilled in the art.
[015] The system may be described in the general context as an application that
provides a framework for developing and/or executing modular software
applications, but the system also serves other purposes in addition to these. In one
implementation, one or more of the techniques described herein can be
implemented as features within a framework program such as MICROSOFT®
NET Framework, or from any other type of program or service that enables the
creation and/or execution of software applications.
[016] In one implementation, a platform for developing modular software
applications is provided that allows the developer to design code up front that can
be extended post development. The system makes use of indirect relationships
between consumers and producers, and the isolation of these components, to make
the application flexible and extensible. The terms consumer and consuming
method as used herein are meant to include a method, function, procedure, or other
process that wishes to execute functionality contained elsewhere. The term
producer as used herein is meant to include a method, function, procedure, or other
process that implements an underlying functionality for a particular purpose. A
definition is provided by a public interface or other means to specify what the
functionality implementation should look like (e.g. its signature or contract), and
optionally includes metadata that can be used by the consumer to differentiate

between intended uses. The consuming method references this definition at the

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

spot where it wishes to call the actual producer, instead of directly referencing the
producer itself. An analysis process is responsible for generating a graph of direct
relationships from these indirect relationships. The term “graph of direct
relationships” is meant to include a graph, list, or other data structure that contains
the list of direct relationships. The loader then uses this graph of relationships to
run the application appropriately. By using these indirect relationships instead of
direct connections between producers and consumers, the system allows new
implementations to be plugged in post-shipment or at other times to allow for
different application configurations.

[017] As shown in Figure 1, an exemplary computer system to use for
implementing one or more parts of the system includes a computing device, such as
computing device 100. In its most basic configuration, computing device 100
typically includes at least one processing unit 102 and memory 104. Depending on
the exact configuration and type of computing device, memory 104 may be volatile
(such as RAM), non-volatile (such as ROM, flash memory, etc.) or some
combination of the two. This most basic configuration is illustrated in Figure 1 by
dashed line 106.

[018] Additionally, device 100 may also have additional features/functionality.
For example, device 100 may also include additional storage (removable and/or
non-removable) including, but not limited to, magnetic or optical disks or tape.
Such additional storage is illustrated in Figure 1 by removable storage 108 and non-
removable storage 110. Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any method or technology for
storage of information such as computer readable instructions, data structures,
program modules or other data. Memory 104, removable storage 108 and non-
removable storage 110 are all examples of computer storage media. Computer
storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory
or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other

magnetic storage devices, or any other medium which can be used to store the

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

desired information and which can accessed by device 100. Any such computer
storage media may be part of device 100.

[019] Computing device 100 includes one or more communication connections
114 that allow computing device 100 to communicate with other
computers/applications 115. Device 100 may also have input device(s) 112 such as
keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s)
111 such as a display, speakers, printer, etc. may also be included. These devices
are well known in the art and need not be discussed at length here.

[020] In one implementation, computing device 100 includes framework
application 200. Framework application 200 can include various components that
enable the creation and/or execution of software applications, such as a builder
component 201, an analyzer component 202, and a loader component 203. In one
implementation, the builder component 201 provides the programming patterns and
practices that are used in the framework, along with verification tools that check
and enforce adherence to these rules at build time. These programming patterns
and practices are described in further detail in various figures herein, including
Figures 2-5. In one implementation, the analyzer component 202 is responsible for
connecting producers and consumers together. The analyzer component 202
ensures that all required service dependencies that are otherwise indirect are
satistied and that the model is complete, as described in Figures 2 and 6. In one
implementation, the loader component 203 handles loading and activation of
programs/assemblies, transfers calls from consumers to the appropriate
functionality producers, and in the case of extensions, provides access to their
associated metadata. Once constructed and linked together, though, the application
generally executes with very little involvement from the loader. The loader
component 203 is also described in further detail in various figures herein, such as
Figures 7 and 8. While Figure 1 shows the framework application 200 as having
three components: builder 201, analyzer 202, and loader 203, it will be appreciated
that in other implementations, fewer, all, and/or additional components can be
included. Several features of framework application 200 will now be described in

reference to Figure 2.

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

[021] Turning now to Figure 2 with continued reference to Figure 1, a framework
application 200 operating on computing device 100 is illustrated. Framework
application 200 is one of the application programs that reside on computing device
100. However, it will be understood that framework application 200 can
alternatively or additionally be embodied as computer-executable instructions on
one or more computers and/or in different variations than shown on Figure 1.
Alternatively or additionally, one or more parts of framework application 200 can
be part of system memory 104, on other computers and/or applications 115, or other
such variations as would occur to one in the computer software art.

[022] Framework application 200 includes program logic 204, which is
responsible for carrying out some or all of the techniques described herein.
Program logic 204 includes logic for providing a software modular design/build
feature that allows consumers (e.g. consuming methods) to be connected to
producers (functionally implementations) indirectly through references to interfaces
that define the producers 206; logic for providing an analysis process that is
operable to inspect components containing indirect associations between consumers
and producers of application functionality for an application to generate a graph of
direct associations between the consumers and producers without having to actually
load the components 208; logic for providing the analysis process as a final compile
step to ensure that binding can be achieved between the consumers and producers
210; logic for generating the result of the analysis process in an intermediate
language that is later converted to a machine language using just-in-time
compilation techniques 212; logic for providing a loader process that is operable to
use the graph of direct associations to run the application 214; logic for ensuring
that the loader process will not run the application if the analysis process reveals
that binding cannot be achieved between the consumers and producers 216; and
other logic for operating application 220. In one implementation, program logic
204 is operable to be called programmatically from another program, such as using
a single call to a procedure in program logic 204.

[023] Turning now to Figures 3-9 with continued reference to Figures 1-2, the

stages for implementing one or more implementations of framework application

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

200 are described in further detail. Figure 3 is a process flow diagram for
framework application 200 that illustrates the definition, production, and
consumption features of a programming model for modular development. In one
torm, the process of Figure 3 is at least partially implemented in the operating logic
of computing device 100. The process begins at start point 240 with providing a
definition feature that allows a definition to be specified for a particular method
that is part of an application (stage 242). A production feature is provided that
allows a functionality implementation to be specified for the particular method
separately from the definition (stage 244). In one implementation, the production
tfeature optionally prohibits the functionality implementation from being declared
as a public method to ensure that no method calls can be made directly to the
functionality implementation (stage 244). A consumption feature is provided that
allows a method call to be made indirectly to the functionality implementation of
the particular method by referencing the definition of the particular method from a
consuming method (stage 246). The consuming method has no awareness of the
functionality implementation (stage 246). While the example described in Figure 3
and some other figures discusses just one particular method, the definition,
production, and consumption features can be used with multiple methods or
functions to build a software application. The process ends at end point 248.

[024] Figure 4 illustrates one implementation of the stages involved in using pre-
defined attributes with the definition, production, and consumption features to
designate the respective areas in the source code. In one form, the process of
Figure 4 is at least partially implemented in the operating logic of computing
device 100. The process begins at start point 270 with the definition feature
supporting decorating an interface with a pre-defined definition attribute to
designate the interface as the definition (stage 272). The production feature
supports decorating the functionality implementation with a pre-defined production
attribute to designate that the functionality implementation is present (stage 274).
The consumption feature supports decorating the consuming method with a pre-
defined consumption attribute to designate that the consuming method contains the

method call that references the definition of the particular method (stage 276).

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

These attribute decorations are used by an analysis process to help identify the
indirect associations which are then used to create a graph of direct association
(stage 278). The process ends at end point 280.

[025] Figure 5 is a diagram of one implementation that illustrates some exemplary
source code that uses the definition, production, and consumption features
described in Figure 3 and the respective pre-detined attributes described in Figure 4
to create a portion of a software application. In one form, some or all of the
teatures illustrated in Figure 5 are at least partially implemented in the operating
logic of computing device 100. Three separate components or assemblies are
shown, called Poker.dll 281, CardGameUltilities.dll 284, and CardShuffler.dll 287.
As described in further detail herein in the discussion of Figure 5, the Poker.dll
component 281 is the consumer component (e.g. consumer), the
CardGameUltilities.dll component 284 is the definition component, and the
CardShuftler.dll component 287 is the production component (e.g. producer).

[026] A pre-defined definition attribute called “ServiceDefinition” 285 is provided
in the definition component, CardGameUtilities.dll 284. This pre-defined
definition decorates a public interface called “iShuftler” 286. The iShuffler public
interface 286 defines the contract for what the particular “shuftler” method should
look like in an underlying functionality implementation. The functionality
implementation is actually provided in the separate production component,
CardShuftler.dll component 287. A pre-defined production attribute called
“ServiceProduction” 288 decorates the functionality implementation of the
“Shuftfle” method 289. The actual code to implement the desired functionality 1s
provided in the “Shuffle” method 289. The consumer component, Poker.dll 281
contains a method call to the shuffle method from within the StartGame method
283. However, the method call is itself indirect in that it does not directly reference
the actual shuffle method 289, but instead only references the definition provided in
the public interface 286 of the definition component 284. Thus, the consumer
component 281 has no knowledge of the production component 287 that contains

the actual implementation. As described in further detail herein, it is the job of the

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

analyzer and loader to assemble and load these indirect references into a graph of
direct relationships that can be executed in the application.

[027] Figure 6 illustrates one implementation of the stages involved in performing
an analysis process and a loading process to construct and load the application. In
one form, the process of Figure 6 is at least partially implemented in the operating
logic of computing device 100. The process begins at start point 300 with
performing an analysis process prior to runtime to generate a graph of direct
associations from indirect references (e.g. including a direct association between a
particular consuming method and the functionality implementation of a particular
method) (stage 302). The analysis process ensures that all required service
dependencies for indirect associations are satistied so that binding can be achieved
properly before allowing the application to be run by a loader (stage 304). If the
analysis process determines that binding cannot be achieved properly, then some or
all of the application will not be allowed to run (stage 304). The system generates
the intermediate language code to be used by the loader (e.g. to achieve the
indirection) (stage 306). Assuming that the analysis process determined that
binding can be achieved properly, then a loader is responsible for just-in-time
loading and activating of components that are used in the application (stage 308).
As an example, the loader uses the graph of direct associations to properly transfer
a method call from the particular consuming method to the functionality
implementation of the particular method (and repeats the step for other method
calls) (stage 310). The process ends at end point 312.

[028] Figure 7 illustrates one implementation of the stages involved in providing
multiple implementations of a particular method using extensions. In one form, the
process of Figure 7 is at least partially implemented in the operating logic of
computing device 100. The process begins at start point 320 with providing a
public interface or abstract class definition that supports singular or multiple
productions for a particular method, with metadata that can help describe each of
the definitions (stage 322). A private production feature (e.g. inaccessible outside
the loader) is provided that supports multiple functionality implementations for the

particular method, with optional metadata to describe each functionality

10

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

implementation (stage 324). A consumption feature is provided that allows one or
more consuming methods to indirectly call one or more of the functionality
implementations through referencing one of the definitions (stage 326). The loader
inspects the metadata to determine when to allow the consumer through the loader
to call a particular one of the multiple functionality implementations for a given
scenario (stage 328). In one implementation, functionality implementations are not
loaded during inspection time, only at first invocation (eager loading). The process
ends at end point 330.

[029] Figure 8 illustrates one implementation of the stages involved in replacing
an original functionality implementation of a method with a different functionality
implementation. In one form, the process of Figure 8 is at least partially
implemented in the operating logic of computing device 100. The process begins at
start point 340 with providing a definition for a particular method that is part of an
application (stage 342). An original functionality implementation is provided for
the particular method separately from the definition (stage 344). A consuming
method 1s provided that indirectly calls the original functionality implementation of
the particular method by referencing the definition of the particular method, the
consuming method having no awareness of the original functionality
implementation for the particular method (stage 346). At a later point in time, a
different functionality implementation is provided of the particular method to be
used in a current configuration of the application instead of the original
functionality implementation (stage 348). An intermediate language version of the
graph of direct associations is recompiled to point to the additional and/or different
functionality implementation (stage 350). The process ends at end point 352.

[030] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specitic
features or acts described above. Rather, the specific features and acts described
above are disclosed as example forms of implementing the claims. All equivalents,
changes, and modifications that come within the spirit of the implementations as

described herein and/or by the following claims are desired to be protected.

11

MS 319258.02
WO 2008/147738 PCT/US2008/063997

[031] For example, a person of ordinary skill in the computer software art will
recognize that the client and/or server arrangements, user interface screen content,
and/or data layouts as described in the examples discussed herein could be
organized differently on one or more computers to include fewer or additional

options or features than as portrayed in the examples.

12

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

What is claimed is:
1. A method for providing a programming model for modular development
comprising the steps of:

providing a definition feature that allows a definition to be specified for a
particular method that is part of an application (242);

providing a production feature that allows a functionality implementation to
be specified for the particular method separately from the definition (244); and

providing a consumption feature that allows a method call to be made
indirectly to the functionality implementation of the particular method by
referencing the definition of the particular method from a consuming method, the
consuming method having no awareness of the functionality implementation for the
particular method (246).
2. The method of claim 1, further comprising:

performing an analysis process prior to runtime to generate a graph of direct
associations from indirect references, including a direct association between the
consuming method and the functionality implementation of the particular method
(302).
3. The method of claim 2, wherein the analysis process ensures that all
required service dependencies for indirect associations are satisfied so that binding
can be achieved properly before allowing the application to be run by a loader
(302).
4. The method of claim 3, wherein the loader is responsible for just-in-time
loading and activating components that are used in the application (308).
S. The method of claim 3, wherein the loader uses the graph of direct
associations to properly transfer the method call from the consuming method to the
functionality implementation of the particular method (310).
6. The method of claim 1, wherein multiple productions can be specified for
the particular method using the definition feature, wherein multiple functionality
implementations can be specified for the particular method using the production

teature, and wherein metadata can be specified for each of the multiple definitions

13

10

15

20

25

30

MS 319258.02
WO 2008/147738 PCT/US2008/063997

to allow the consumer through the loader to determine when to call a particular one
of the multiple functionality implementations for a given scenario (322).
7. The method of claim 1, wherein the definition is provided by a public
interface (322).
8. The method of claim 1, wherein the definition feature allows the interface to
be decorated with a pre-defined definition attribute to designate the interface as the
definition for the particular method (272).
9. The method of claim 1, wherein the production feature allows the
functionality implementation of the particular method to be decorated with a pre-
defined production attribute to designate that the functionality implementation of
the particular method is present (274).
10. The method of claim 1, wherein the consumption feature allows the
consuming method to be decorated with a pre-defined consumption attribute to
designate that the consuming method contains the method call that references the
definition of the particular method (276).
11. The method of claim 1, wherein the production feature prohibits the
functionality implementation from being declared as a public method to ensure that
no method calls can be made directly to the functionality implementation (244).
12. A computer-readable medium having computer-executable instructions for
causing a computer to perform the steps recited in claim 1 (200).
13. A computer-readable medium having computer-executable instructions for
causing a computer to perform steps comprising:

provide an analysis process that is operable to inspect components
containing a plurality of indirect associations between consumers and producers of
application functionality for an application to generate a graph of direct
associations between the consumers and producers without having to actually load
the components (208); and

provide a loader process that is operable to use the graph of direct
associations to run the application (214).
14. The computer-readable medium of claim 13, wherein the analysis process is

operable to output the direct associations in an intermediate language (212).

14

10

15

20

25

MS 319258.02
WO 2008/147738 PCT/US2008/063997

15. The computer-readable medium of claim 14, wherein the intermediate
language is later converted to a machine language using a just-in-time compilation
technique (212).
16. The computer-readable medium of claim 13, wherein the analysis process
serves as a final compile step to ensure that binding can be achieved between the
consumers and producers (210).
17. The computer-readable medium of claim 16, wherein the loader process will
not run the application if the analysis process reveals that binding cannot be
achieved between the consumers and producers (216).
18. The computer-readable medium of claim 13, wherein the consumers are
connected to the producers indirectly through references to interfaces that define
the producers (206).
19. A method for replacing an original functionality implementation of a method
with a different functionality implementation comprising the steps of:

providing a definition for a particular method that is part of an application
(342);

providing an original functionality implementation for the particular method
separately from the definition (344);

providing a consuming method that indirectly calls the original functionality
implementation of the particular method by referencing the definition of the
particular method, the consuming method having no awareness of the original
functionality implementation for the particular method (346);

providing a different functionality implementation of the particular method
to be used in a current configuration of the application instead of the original
functionality implementation (348); and

recompiling an intermediate language version of a graph of direct
associations to point to the different functionality implementation (350).
20. A computer-readable medium having computer-executable instructions for

causing a computer to perform the steps recited in claim 19 (200).

15

PCT/US2008/063997

WO 2008/147738

1/8

| "Old

€0z 202 102
e e e
¥3Av01 || ¥AZATYNY || ¥3aTng
NOILYOITddY YHOMINVYS 4/
SNOILLYDI1ddY (SINOILOINNOD 002
ISYILNANOD ﬂlf NOILYOINNIWINOD
Y3HIO v d3H1O
\ 7" J1LVIOA-NON
Gl 21, (8)301A3Q LNdNI
LINN ONISSIO0Nd J1LYTI0A
L
4 (9)301A30 1NdLNO a AJONANWALSAS
20}
0Ll vo_\\
d 39V40LS
FIEVAOHIENOR 301A3d ONILNNOD
50 4 J9VHOLS
319vAONTY

001 901

PCT/US2008/063997

WO 2008/147738

2/8

02
NOILVOIlddV FHL ONILVHIdO 404 J1907T H3H10

91C
SY30NA0Yd ANV SHINNSNOD FHL NIIM 139 AIAFIHOV 39 LONNVD ONIANIF LVHL STV3aATY SST00dd
SISATYNY 3HL 41 NOILVIIddV FHL NNd LON TTIM SS300dd d3dvO0T 3IHL LVYHL ONIINSNI 404 D190

71C NOILYOIddY JHL NNY OL SNOILVIDOSSY
1034Id 40 HAVdO 3HL 3SN O1 319vd3d0 Sl LVYHL SS300dd 43AV0TV ONIAIAOYd 404 31901

ZIZ INDINHOAL NOILYHINOD JWIL-NI-LSNI Y ONISN IDVNONYT ANIHOVIN ¥ OL AILYIANOD ¥ILY1 S|
1VHL 3DVNONYT ILVIAFNETLINI NV NI SS300dd SISATYNY FHL 40 LTNSFH FHL ONILVHIANTO J04 J190T

012 SY3INA0Y ANV SYIWNSNOD FHL NIIMLIFG AIAIIHOV 3G NVD
ONIANIE LVYHL FdNSNT O1 d341S FT1IdINOD TVNIH V SV SS330dd SISATYNY FHL ONIJINOHd d04 D190

80¢ SININONOD FHL AVOT ATIVNLIV OL ONIAVH LNOHLIM SHIINA0Yd ANV SHIWNSNOD
JH1 NI3ML39 SNOILVIOOSSY 103410 40 HAVHO V 31VHIANTO OL NOILYOIlddY NV J04 ALITYNOILONNAS
NOILVI1ddV 40 SH430NA0Hd ANV SHINNSNOD NI3M 139 SNOILYIOOSSY LOFHIANI ONINIVLINOD
SININOdIWOD 133dSNI OL 319¥d3d0 SI LYHL SSFO0dd SISATVNY NV ONIAIANOYHd 404 31901

90¢ S¥3ONA0Yd FHL INIZIA LYHL STOVAYILNI OL STONIHIATY HONOYHL ATLOFHIANI
(SNOILVINIWI Il ALITYNOILONNL) SY430NA0Yd O1 G3103NNOD 39 OL (SGOHLIN ONINNSNOD
'9'3) SHINNSNOD SMOTTV LYHL FdN1Y34 A1NE/NDISIA HYINAON FHYMLA0S ¥ ONIAIAOYH ¥O4 21901

v0C
31901 NVHO0dd

002
NOILYII'ddV XdOMINVHS

¢ Ol

WO 2008/147738 PCT/US2008/063997

3/8

START
240

PROVIDE A DEFINITION FEATURE THAT ALLOWS A DEFINITION TO BE
SPECIFIED FOR A PARTICULAR METHOD THAT IS PART OF AN APPLICATION
242

l

PROVIDE A PRODUCTION FEATURE THAT ALLOWS A FUNCTIONALITY
IMPLEMENTATION TO BE SPECIFIED FOR THE PARTICULAR METHOD
SEPARATELY FROM THE DEFINITION, AND THAT OPTIONALLY PROHIBITS THE
FUNCTIONALITY IMPLEMENTATION FROM BEING DECLARED AS A PUBLIC
METHOD TO ENSURE THAT NO METHOD CALLS CAN BE MADE DIRECTLY TO
THE FUNCTIONALITY IMPLEMENTATION
244

|

PROVIDE A CONSUMPTION FEATURE THAT ALLOWS A METHOD CALL TO BE
MADE INDIRECTLY TO THE FUNCTIONALITY IMPLEMENTATION OF THE
PARTICULAR METHOD BY REFERENCING THE DEFINITION OF THE
PARTICULAR METHOD FROM A CONSUMING METHOD, THE CONSUMING
METHOD HAVING NO AWARENESS OF THE FUNCTIONALITY IMPLEMENTATION
246

END
FIG. 3 248

WO 2008/147738 PCT/US2008/063997

4/8

START
270

THE DEFINITION FEATURE SUPPORTS DECORATING AN INTERFACE WITH A
PRE-DEFINED DEFINITION ATTRIBUTE TO DESIGNATE THE INTERFACE AS THE
DEFINITION
272

:

THE PRODUCTION FEATURE SUPPORTS DECORATING THE FUNCTIONALITY
IMPLEMENTATION WITH A PRE-DEFINED PRODUCTION ATTRIBUTE TO
DESIGNATE THAT THE FUNCTIONALITY IMPLEMENTATION IS PRESENT

274

i

THE CONSUMPTION FEATURE SUPPORTS DECORATING THE CONSUMING
METHOD WITH A PRE-DEFINED CONSUMPTION ATTRIBUTE TO DESIGNATE
THAT THE CONSUMING METHOD CONTAINS THE METHOD CALL THAT
REFERENCES THE DEFINITION OF THE PARTICULAR METHOD
276

'

THESE ATTRIBUTE DECORATIONS ARE USED BY AN ANALYSIS PROCESS TO
HELP IDENTIFY THE INDIRECT ASSOCIATIONS WHICH ARE THEN USED TO
CREATE A GRAPH OF DIRECT ASSOCIATIONS
278

END
280

FIG. 4

WO 2008/147738 PCT/US2008/063997

5/8
<<HOST>> 281
POKERDLL /
CLASS POKER 282
{ y
[SERVICECONSUMPTION] * .
ISHUFFLER SHUFFLER; /

VOID STARTGAME (CARD [] CARDS)
{
/I INVOKE THE SHUFFLER
SHUFFLER.SHUFFLE (CARDS);

i 284

<<DEFINITION>>
CARDGAMEUTILITIES.DLL

/I' DEFINE SHUFFLING SERVICE
[SERVICEDEFINITION] 285
PUBLIC INTERFACE ISHUFFLER 286

{
}

VOID SHUFFLER (CARD [] CARDS);

:

<<IMPLEMENTATION>> 287
CARDSHUFFLER.DLL /

/I THIS CODE IS INJECTED IN TO THE INTERFACE ADORNED WITH
/' THE SERVICECONSUMPTION OF THE SAME TYPE (ABOVE)
[SERVICEPRODUCTION] <—————— 288

CLASS MYSHUFFLER: ISHUFFLER

{ 289
VOID SHUFFLE (CARD [] CARDS) «

{
}

/I IMPLEMENT SHUFFLE ROUTINE

FIG. 5

WO 2008/147738 PCT/US2008/063997

6/8

PERFORM AN ANALYSIS PROCESS PRIOR TO RUNTIME TO GENERATE A
GRAPH OF DIRECT ASSOCIATIONS FROM INDIRECT REFERENCES (E.G.
INCLUDING A DIRECT ASSOCIATION BETWEEN A PARTICULAR CONSUMING
METHOD AND THE FUNCTIONALITY IMPLEMENTATION OF A PARTICULAR
METHOD) 302

v

THE ANALYSIS PROCESS ENSURES THAT ALL REQUIRED SERVICE
DEPENDENCIES FOR INDIRECT ASSOCIATIONS ARE SATISFIED SO THAT
BINDING CAN BE ACHIEVED PROPERLY BEFORE ALLOWING THE APPLICATION
TO BERUNBY ALOADER 304

v

GENERATE THE INTERMEDIATE LANGUAGE CODE TO BE USED BY THE
LOADER (E.G. TO ACHIEVE THE INDIRECTION)
306

A

ASSUMING THAT THE ANALYSIS PROCESS DETERMINED THAT BINDING CAN
BE ACHIEVED PROPERLY, THEN A LOADER IS RESPONSIBLE FOR JUST-IN-TIME
LOADING AND ACTIVATING COMPONENTS THAT ARE USED IN THE
APPLICATION (E.G. OTHERWISE, SOME OR ALL OF THE APPLICATION WILL NOT
BE ALLOWED TO RUN) 308

v

FOR EXAMPLE, THE LOADER USES THE GRAPH OF DIRECT ASSOCIATIONS TO
PROPERLY TRANSFER A METHOD CALL FROM THE PARTICULAR CONSUMING
METHOD TO THE FUNCTIONALITY IMPLEMENTATION OF THE PARTICULAR
METHOD (AND REPEATS THE STEP FOR OTHER METHOD CALLS)

310

END
FIG. 6 312

WO 2008/147738 PCT/US2008/063997

718

< START)
320

PROVIDE A PUBLIC INTERFACE OR ABSTRACT CLASS DEFINITION THAT
SUPPORTS SINGULAR OR MULTIPLE PRODUCTIONS FOR A PARTICULAR
METHOD, WITH METADATA THAT CAN HELP DESCRIBE EACH OF THE
DEFINITIONS
322

i

PROVIDE A PRIVATE PRODUCTION FEATURE (E.G. INACCESSIBLE OUTSIDE
THE LOADER) THAT SUPPORTS MULTIPLE FUNCTIONALITY IMPLEMENTATIONS
FOR THE PARTICULAR METHOD, WITH OPTIONAL METADATA TO DESCRIBE
EACH FUNCTIONALITY IMPLEMENTATION
324

i

PROVIDE A CONSUMPTION FEATURE THAT ALLOWS ONE OR MORE
CONSUMING METHODS TO INDIRECTLY CALL ONE OR MORE OF THE
FUNCTIONALITY IMPLEMENTATIONS THROUGH REFERENCING ONE OF THE
DEFINITIONS
326

/

THE LOADER INSPECTS THE METADATA TO DETERMINE WHEN TO ALLOW THE
CONSUMER THROUGH THE LOADER TO CALL A PARTICULAR ONE OF THE
MULTIPLE FUNCTIONALITY IMPLEMENTATIONS FOR A GIVEN SCENARIO
328

END
FIG. 7 330

WO 2008/147738 PCT/US2008/063997

/

PROVIDE A DEFINITION FOR A PARTICULAR METHOD THAT IS PART OF AN
APPLICATION
342

:

PROVIDE AN ORIGINAL FUNCTIONALITY IMPLEMENTATION FOR THE
PARTICULAR METHOD SEPARATELY FROM THE DEFINITION
344

/

PROVIDE A CONSUMING METHOD THAT INDIRECTLY CALLS THE ORIGINAL
FUNCTIONALITY IMPLEMENTATION OF THE PARTICULAR METHOD BY
REFERENCING THE DEFINITION OF THE PARTICULAR METHOD, THE
CONSUMING METHOD HAVING NO AWARENESS OF THE ORIGINAL
FUNCTIONALITY IMPLEMENTATION FOR THE PARTICULAR METHOD
346

/

PROVIDING A DIFFERENT FUNCTIONALITY IMPLEMENTATION OF THE
PARTICULAR METHOD TO BE USED IN A CURRENT CONFIGURATION OF THE
APPLICATION INSTEAD OF THE ORIGINAL FUNCTIONALITY IMPLEMENTATION

348

/

RECOMPILING AN INTERMEDIATE LANGUAGE VERSION OF THE GRAPH OF
DIRECT ASSOCIATIONS TO POINT TO THE ADDITIONAL AND/OR DIFFERENT
FUNCTIONALITY IMPLEMENTATION
350

END
352

FIG. 8

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2008/063997

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 : GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models since 1975
Japanese utility models and applications for utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(Kipo Internal), Google, NDSL
keywords: program*, software, develop*, method, application, function, compos*, construc*, assem*, defin*

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US2006/0200796 A1 (OTA, Y. et al.) 07 SEPTEMBER 2006 1-20
See tigures 1, 2A~2D, 11; paragraphs [53]~[56][63][79]~[86][97]~[99]; claim 17.

A US2004/0006765 A1 (GOLDMAN, K.J.) 08 JANUARY 2004 1-20
See paragraphs [59]~[66], [85]~[87].

A US2004/0107414 A1 (BRONICKI, Y. et al.) 03 JUNE 2004 1-20
See paragraphs [16]~[27].

A US2003/0177140 A1 (DEBARD, D.M. et al.) 18 SEPTEMBER 2003 1-20
See Summary.

PA JP2007/236750 A (NEX ENTERTAINMENT CO.) 20 SEPTEMBER 2007 1-20
See paragraphs [8]~[17].

PA US2007/0129931 A1 (LEE J.H. et al.) 07 JUNE 2007 1-20
See Summary.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
10 SEPTEMBER 2008 (10.09.2008) 10 SEPTEMBER 2008 (10.09.2008)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo- YOON, Hye Sook
. gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8370

Form PCT/ISA/210 (second sheet) (July 2008)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2008/063997

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2006-0200796 A1 07.09.2006 NONE

US 2004-0006765 A1 08.01.2004 NONE

US 2004-0107414 A1 03.06.2004 NONE

US 2003-0177140 A1 18.09.2003 NONE

JP 2007-236750 A 20.09.2007 NONE

US 2007-0129931 A1 07.06.2007 NONE

Form PCT/ISA/210 (patent family annex) (July 2008)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report

