20057029326 A1 | IV 0 00 0 0 O

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date

(10) International Publication Number

WO 2005/029326 Al

31 March 2005 (31.03.2005) PCT
(51) International Patent Classification’: GOGF 9/455
(21) International Application Number:
PCT/US2004/029611

(22) International Filing Date:
10 September 2004 (10.09.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/663,206 15 September 2003 (15.09.2003) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]J; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NEIGER, Gilbert
[—/US]; 2424 NE 11th Avenue, Portland, OR 97212
(US). BENNETT, Steven [—/US]; 6469 SE Sigrid Street,

(74)

(81)

Hillsboro, OR 97123 (US). KAGI, Alain [—/US]; 3624
SE Crystal Springs Boulevard, Portland, OR 97202 (US).
JEYASINGH, Stalinselvaraj [—/US]; 16893 NW Tucson
Street, Beaverton, OR 97006 (US). ANDERSON, Andrew
[/US]; 677 SE 68th Avenue, Hillsboro, OR 97123 (US).
UHLIG, Richard [—/US]; 1564 NE Orenco Station Park-
way West, Hillsboro, OR 97124 (US). COTA-ROBLES,
Erik [/US]; 11790 SW Lanewood, Portland, OR 97225
(US). RODGERS, Scott [—/US]; 452 SW Brookwood
Avenue, Hillsboro, OR 97123 (US). SMITH, Lawrence,
III [—/US]; 14995 NW Northumbria, Beaverton, OR
97006 (US).

Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff,
Taylor & Zafman, 12400 Wilshire Boulevard, 7th Floor,
Los Angeles, CA 90025 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

[Continued on next page]

(54) Title: USE OF MULTIPLE VIRTUAL MACHINE MONITORS TO HANDLE PRIVILEGED EVENTS

103 \F [B~ VRN /105 156 /-115
App.1 App. 2 App. 1 App. 2
0os#1 0S #2 0S #n
134 144 154
LI N]
Virtual Machine Virtual Machine Virtual Machine
Abstraction 1 132 Abstraction 2 142 Abstraction n 152

Virtual-Machine Monitor

125

(VM) #1 .

Virtual-Machine Monitor
(VMM) #k
125

Routing Logic 130

Processor 11

Memory 120

Bare Platform Hardware 110

(57) Abstract: In one embodiment, a method for handling privileged events in a virtual machine environment includes detecting an
occurrence of a privileged event, determining which one of multiple virtual machine monitors (VMMs) is to handle the privileged

event, and transitioning control to this VMM.

WO 2005/029326 A1 [N} A0VOA0 T O 00 VO AR

TN, TR, TT, TZ, UA, UG, US,UZ, VC, VN, YU, ZA,ZM, — before the expiration of the time limit for amending the
7ZW. claims and to be republished in the event of receipt of
amendments

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

WO 2005/029326 PCT/US2004/029611

USE OF MULTIPLE VIRTUAL MACHINE MONITORS TO HANDLE
PRIVILEGED EVENTS

Field of the Invention

[0001] The present invention relates generally to virtual machines, and
more specifically to handling privileged events using multiple virtual machine
monitors.

Background of the Invention

[0002] A conventional virtual-machine monitor (VMM) typically runs
on a computer and presents to other software the abstraction of one or more
virtual machines. Each virtual machine may function as a self-contained

platform, running its own “guest operating system” (i.e., an operating system

. (OS) hosted by the VMM) and other software, collectively referred to as guest

software. The guest software expects to operate as if it were running on a
dedicated computer rather than a virtual machine. That is, the guest software
expects to control various events and have access to hardware resources. The
hardware resources may include processor-resident resources (e.g., control
registers), resources that reside in memory (e.g., descriptor tables) and resources
that reside on the underlying hardware platform (e.g., input-output devices). The
events may include internal interrupts, external interrupts, exceptions, platform
events (e.g., initialization (INIT) or system management interrupts (SMIs)),
execution of certain instructions, etc.

[0003] In a virtual-machine environment, the VMM should be able to

have ultimate control over these events and hardware resources to provide proper

1

10

15

20

WO 2005/029326 PCT/US2004/029611

operation of guest software running on the virtual machines and for protection
from and between guest software running on the virtual machines. To achieve
this, the VMM typically receives control when guest software accesses a protected
resource or when other events (such as interrupts or exceptions) occur. For
example, when an operation in a virtual machine supported by the VMM causes a
system device to generate an interrupt, the currently running virtual machine is
interrupted and control of the processor is passed to the VMM. The VMM then
receives the interrupt, and handles the interrupt itself or delivers the interrupt to

the appropriate virtual machine.

Brief Description of the Drawings

[0004] The present invention is illustrated by way of example, and not
by way of limitation, in the figures of the accompanying drawings and in which
like reference numerals refer to similar elements and in which:

[0005] Figurel illusfrates one embodiment of a virtual-machine
environment, in which the present invention may operate;

[0006] Figures 2 illustrates a configuration of multiple VMMs in a
virtual-machine environment;

[0007] Figure 3 is a flow diagram of one émbodiment of a process for
handling privileged events in a virtual-machine environment having multiple
VMMs;

[0008] Figures 4, 6 and 7 illustrate exemplary embodiments of processes

of identifying a VMM for handling a privileged event; and

10

15

20

WO 2005/029326 PCT/US2004/029611

[0009] Figure 5 illustrates an exemplary usage of process 400 in a
virtual machine environment having two VMMs.

Description of Embodiments

[0010] A method and apparatus for handling privileged events using
multiple virtual machine monitors are described. In the following description, for
purposes of explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It will be apparent,
however, to one skilled in the art that the present invention can be practiced
without these specific details.

[0011] Some portions of the detailed descriptions that follow are
presented in terms of algorithms and symbolic representations of operations on
data bits within a computer system’s registers or memory. These algorithmic
descriptions and representations are the means used by those skilled in the data
processing arts to most effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, conceived to be a self-
consistent sequence of operations leading to a desired result. The operations are
those requiring physical manipulations of physical quantities. Usually, though
not necessarily, these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, elements, symbols,

characters, terms, numbers, or the like.

10

15

20

WO 2005/029326 PCT/US2004/029611

[0012] It should be borne in mind, however, that all of these and similar
terms are to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless specifically stated otherwise
as apparent from the following discussions, it is appreciated that throughout the
present invention, discussions utilizing terms such as "processing" or "computing"
or "calculating" or "determining" or the like, may refer to the action and processes
of a computer system, or similar electronic computing device, that manipulates
and transforms data represented as physical (electronic) quantities within the
computer system's registers and memories into other data similarly represented
as physical quantities within the computer-system memories or registers or other
such information storage, transmission or display devices.

[0013] In the following detailed description of the embodiments,
reference is made to the accompanying drawings that show, by way of
illustration, specific embodiments in which the invention may be practiced. In the
drawings, like numerals describe substantially similar components throughout
the several views. These embodiments are described in sufficient detail to enable
those skilled in the art to practice the invention. Other embodiments may be
utilized and structural, logical, and electrical changes may be made without
departing from the scope of the present invention. Moreover, it is to be
understood that the various embodiments of the invention, although different, are
not necessarily mutually exclusive. For example, a particular feature, structure, or
characteristic described in one embodiment may be included within other

embodiments. The following detailed description is, therefore, not to be taken in

4

10

15

20

WO 2005/029326 PCT/US2004/029611

a limiting sense, and the scope of the present invention is defined only by the
appended claims, along with the full scope of equivalents to which such claims
are entitled.

[0014] Although the below examples may describe embodiments of the
present invention in the context of execution units and logic circuits, other
embodiments of the present invention can be accomplished by way of software.
For example, in some embodiments, the present invention may be provided as a
computer program product or software which may include a machine or
computer-readable medium having stored thereon instructions which may be
used to program a computer (or other electronic devices) to perform a process
according to the present invention. In other embodiments, steps of the present
invention might be performed by specific hardware components that contain
hardwired logic for performing the steps, or by any combination of programmed
computer components and custom hardware components.

[0015] Thus, a machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by a machine (e.g., a
computer), but is not limited to, floppy diskettes, optical disks, Compact Disc,
Read-Only Memory (CD-ROMs), and magneto-optical disks, Read-Only Memory
(ROMs), Random Access Memory (RAM), Erasable Programmable Read-Only
Memory (EPROM), Electrically Erasable Programmable Read-Only Memory
(EEPROM), magnetic or optical cards, flash memory, a transmission over the
Internet, electrical, optical, acoustical or other forms of propagated signals (e.g.,

carrier waves, infrared signals, digital signals, etc.) or the like.
5

10

15

20

WO 2005/029326 PCT/US2004/029611

[0016] Further, a design may go through various stages, from creation
to simulation to fabrication. Data representing a design may represent the design
in a number of manners. First; as is useful in simulations, the hardware may be
represented using a hardware description language or another functional
description language. Additionally, a circuit level model with logic and/or
transistor gates may be produced at some stages of the design process.
Furthermore, most designs, at some stage, reach a level of data representing the
physical placement of various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used, data representing a
hardware model may be the data specifying the presence or absence of various
features on different mask layers for masks used to produce the integrated circuit.
In any representation of the design, the data may be stored in any form of a
machine-readable medium. An optical or electrical wave modulated or otherwise
generated to transmit such information, a memory, or a magnetic or optical
storage such as a disc may be the machine readable medium. Any of these
mediums may “carry” or “indicate” the design or software information. When an
electrical carrier wave indicating or carrying the code or design is transmitted, to
the extent that copying, buffering, or re-transmission of the electrical signal is
performed, a new copy is made. Thus, a communication provider or a network
provider may make copies of an article (a carrier wave) embodying techniques of
the present invention.

[0017] Figure 1 illustrates one embodiment of a virtual-machine

environment 100, in which the present invention may operate. In this
6

10

15

20

WO 2005/029326 PCT/US2004/029611

embodiment, bare platform hardware 110 comprises a computing platform, which
may be capable, for example, of executing a standard operating system (OS) or
virtual-machine monitors (VMMs), such as VMMs 125.

[0018] The platform hardware 110 can be of a personal computer (PC),
mainframe, handheld device, portable computer, set-top box, or any other
computing system. The platform hardware 110 includes at least one processor
112, memory 120 and possibly other platform hardware (e.g. input-output
devices), not shown.

[0019] Processor 112 can be any type of processor capable of executing
software, such as a microprocessor, digital signal processor, microcontroller, or
the like. The processor 112 may include microcode, programmable logic or
hardcoded logic for performing the execution of method embodiments of the
present invention.

[0020] Memory 120 can be a hard disk, a floppy disk, random access
memory (RAM), read only memory (ROM), flash memory, any combination of the
above devices, or any other type of machine medium readable by processor 112.
Memory 120 may store instructions or data for performing the execution of
method embodiments of the present invention.

[0021] Each VMM 125, though typically implemented in software, may
emulate and export a bare machine interface to higher level software. Such higher
level software may comprise a standard or real-time OS, may be a highly stripped
down operating environment with limited operating system functionality, may

not include traditional OS facilities, etc. The VMMSs 125 may be implemented, for
7

10

15

20

WO 2005/029326 PCT/US2004/029611

example, in hardware, software, firmware, or by a combination of various
techniques.

[0022] When running, each VMM 125 presents to “guest” software (i.e.,
software other than that of the VMMs 125) the abstraction of one or more virtual
machines (VMs). The VMMs 125 may provide the same or different abstractions
to the various guests. The guest software running on each VM may include a
guest OS (e.g., a guest OS 134, 144 or 154) and various guest software applications
(e.g., applications 136, 146 and 156). Collectively, guest OS and software
applications are referred to herein as guest software 103, 105 and 115.

[0023] Guest software 103, 105 and 115 expects to access physical
resources (e.g., processor registers, memory and I/O devices) within the VMs 132,
142 and 152 on which the guest software is running. The VMMs 125 facilitate
access to resources desired by guest software while retaining ultimate control
over resources within the platform hardware 110. In addition, the guest software
103, 105 and 115 expect to handle various events such as exceptions, interrupts
and platform events (e.g., initialization (INIT) and system management interrupts
(SMIs)). Some of these events are “privileged” because they cannot be handled by
the guest software to ensure proper operation of VMs 132, 142 and 152 and guest
software 103, 105 and 115 and for protection from and between guest software
103, 105 and 115. The privileged events are handled by the VMMs 125.

[0024] In particular, a specific VMM is identified to handle each
privileged event. In one embodiment, a specific VMM is identified using routing

logic 130. In some embodiments, the routing logic 130 is implemented as
8

10

15

20

WO 2005/029326 PCT/US2004/029611

microcode, programmable logic or hardcoded logic. In other embodiments, the
routing logic 130 is implemented as software residing in memory 120. In yet other
embodiment, the routing logic 130 is implemented as a combination of hardware
and software.

[0025] Once a specific VMM is identified, it will facilitate functionality

desired by guest software while retaining ultimate control over this privileged

event. The act of facilitating the functionality for the guest software may include a

wide variety of activities on the part of the VMMSs 125. These activities of the
VMMs 125 should not limit the scope of the present invention.

[0026] The system 100 may include two or more VMMs 125 executing
on the platform hardware 110. In one embodiment, the VMMs 125 run in parallel,
and each VMM 125 can receive control from a VM. Figure 2 illustrates one
embodiment of such configuration of the VMMSs 125 within the system 100.

[0027] Referring to Figure 2, an exemplary parallel configuration of
VMMs 210 through 214 is illustrated. According to this configuration, control
transfers from a VM to a specific VMM when a privileged event occurs during the
operation of a VM. The specific VMM is identified based on certain criteria as will
be discussed in more detail below. Once the specific VMM is identified, the
information pertaining to the virtualization event is delivered to this VMM, and
control is transitioned to it. For example, privileged event 1 occurring during the
operation of VM 202 may cause transition from VM 202 to VMM 210, privileged
event 2 occurring during the operation of VM 202 may cause transition from VM

202 to VMM 212, privileged event 3 occurring during the operation of VM 206
9

10

15

20

WO 2005/029326 PCT/US2004/029611

may cause transition from VM 206 to VMM 212, and privileged event 4 occurring
during the operation of VM 206 may cause transition from VM 206 to VMM 214.
A corresponding VMM then handles the virtualization event and may transfer
control back to a VM from which the control was received. In one embodiment,
the transfer of control from a VMM to a VM is achieved by executing a special
instruction. The transfer of control from a VMM to a VM is referred to herein as a
VM entry and the transfer of control from a VM to a VMM is referred to herein as
a VM exit.

[0028] In one embodiment, when a VM exit occurs, control is passed to
a VMM at a specific entry point (e.g., an instruction pointer value) delineated in a
virtual machine control structure (VMCS) that resides in memory and is
maintained by the processor. In another embodiment, control is passed to a VMM
after vectoring through a redirection structure (e.g., the interrupt-descriptor table
in the processor instruction set architecture (ISA) of the Intel® Pentium® 4
(referred to herein as the IA-32 ISA)). Alternatively, any other mechanism known
in the art can be used to transfer control from a VM to a VMM.

[0029] A privileged event may occur during the operation of a VMM.
Examples of privileged events that may occur during the operation of a VMM
may include, for example, system management interrupts (SMlIs), INIT, non-
maskable interrupts (NMlIs), hardware interrupts, interprocessor interrupts (IPIs),
etc. In one embodiment, if a privileged event occurs during the operation of a
VMM, routing logic is employed to identify a VMM designated to handle this

privileged event. If the designated VMM is not the VMM that is currently
10

10

15

20

WO 2005/029326 PCT/US2004/029611

operating, the information pertaining to the privileged event is delivered to the
designated VMM, and control is transitioned to it. For example, privileged event
5 occurring during the operation of VMM 210 may cause transition from VMM
210 to VMM 212. VMM 212 then handles the privileged event and may transfer
control back to VMM 210. Hence, in interactions between VMM 210 and VMM
212, VMM 210 plays a role of a VM. Accordingly, in one embodiment, a VM exit
and VM entry mechanism similar to the one described above with respect to the
transfer of control between a VM and a VMM is used to transfer control between
the VMMs.

[0030] Figure 3 is a flow diagram of one embodiment of a process 300
for handling privileged events in a virtual-machine environment having multiple
VMMs. The process may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable logic, microcode, etc.),
software (such as run on a general purpose computer system or a dedicated
machine), or a combination of both.

[0031] Referring to Figure 3, process 300 begins with processing logic
detecting the occurrence of a privileged event (processing block 302). A
privileged event is an event that is not to be handled by the currently running
software. Such privileged events may include exceptions, interrupts, platform
events, execution of a “privileged” instruction (an instruction whose execution
causes a VM exit), etc. A privileged event may occur during the operation of

guest software or during the operation of a VMM.

11

10

15

20

WO 2005/029326 PCT/US2004/029611

[0032] At processing block 304, processing logic determines which one
of the multiple VMM is to handle the privileged event. The determination may
be based on various factors such as characteristics of the privileged event, current
values of designated fields modifiable by the VMMs, operational parameters of
the VMM, operational parameters of guest software, etc. In one example, the
determination is based on the type of the privileged event as will be discussed in
greater detail below in conjunction with Figure 4. In another example, the
determination is based on current values of control fields configured by one of the
multiple VMMs as will be discussed in more detail below in conjunction with
Figure 6. In yet another example, the determination is based on the evaluation of
load and/or usage characteristics of the VMMs, as will be discussed in greater
detail below in conjunction with Figure 7. In still another example, the
determination is based on the combination of the above factors.

[0033] Once the processing logic determines which VMM is to handle
the privileged event, it delivers information pertaining to the privileged event to
the designated VMM and transitions control to this VMM (processing block 306).
The VMM may then handle the privileged event itself or route it to guest software
for handling.

[0034] Figures 4, 6 and 7 illustrate exemplary embodiments of processes
of identifying a VMM for handling a privileged event. The processes may be
performed by processing logic that may comprise hardware (e.g., circuitry,

dedicated logic, programmable logic, microcode, etc.), software (such as run on a

12

10

15

20

WO 2005/029326 PCT/US2004/029611

general purpose computer system or a dedicated machine), or a combination of
both.

[0035] Referring to Figure 4, process 400 begins with processing logic
detecting the occurrence of a privileged event during the operation of guest
software or a VMM (processing block 402). At processing block 404, processing
logic identifies the type of the privileged event. Next, processing logic determines
which VMM is designated to handle privileged events of this type (processing
block 406). In one embodiment, each event type is statically mapped to a
particular VMM (e.g., using hardcoded logic). In another embodiment, the
determination is dynamic, as described below with regard to Figure 6. In yet
another embodiment, a combination of staticaily determined VMMs and
dynamically determined VMMs is used. That is, some event types may be
statically mapped to corresponding VMMs while other event types may require
some additional processor operation for the determination.

[0036] If the currently-operating entity is not the designated VMM
(decision box 408), processing logic transitions control to the designated VMM
(processing block 410). In one embodiment, the transition to the designated VMM
may be accomplished by generating a VM exit. Alternatively, any other
mechanism known in the art may be used to transition control to the designated
VMM.

[0037] If the currently-operating entity is the designated VMM, the
event is delivered to the currently running VMM (processing block 412). In one

embodiment, the delivery of the event to the VMM is performed by synthesizing a
13

10

15

20

WO 2005/029326 PCT/US2004/029611

VM exit from the VMM to itself. In another embodiment, the event is delivered as
it would be delivered in a non-virtual machine environment (e.g., by vectoring
through an interrupt descriptor table or causing a transition to system
management mode). It should be noted that a variety of other mechanisms
known in the art may be used to deliver the event to the currently running VMM.

[0038] Figure 5 illustrates an exemplary usage of process 400 in a
virtual machine environment having two VMM, according to one embodiment of
the present invention. One of the two VMMs (e.g., VMM 508) is exclusively
designated to handle certain platform events (e.g., system management interrupts
(SMIs), IPIs, non-maskable interrupts, etc.). VMM 508 is referred to as the
Platform VMM (PVMM). In some embodiments, the PVMM is designated to
handle only SMIs. In other embodiments, PVMMs handle additional event types,
as well as SMIs. In yet other embodiments, multiple PVMMs are used, each
handling different platform events.

[0039] When a privileged event occurs, routing logic 510 determines the
type of the event. If the event is a platform event to be handled by the PVMM
508, routing logic 510 routes it to VMM 508. Otherwise, the event is routed to
VMM 506. As illustrated in Figure 5, routing logic 510 may route events that
occur during the operation of guest software or during the operation of a VMM.

[0040] The routing of an event to a VMM may differ depending on what
entity was running when the event occurs. If guest software was running, the
transition to the VMM selected by the routing logic 510 is performed, in one

embodiment, via a VM exit. If the VMM selected by the routing logic was
14

10

15

20

WO 2005/029326 PCT/US2004/029611

running when the event occurred, the event may be delivered to the VMM
through a variety of mechanisms, as described above with regard to Figure 4.

[0041] The use of a second VMM designated exclusively to handle
certain platform events eliminates product dependency between hardware
vendors and OS vendors. That is, it allows platform hardware vendors to develop
the c,;ode for the second VMM (the PVMM) independently from OS vendors.
Similarly, OS vendors can develop the code for the first VMM independently
from the hardware vendors. In addition, the use of two VMMs performing
different functionality enhances system security and limits the exposure of the
code that needs to be validated for security.

[0042] Referring to Figure 6, process 600 begins with processing logic
detecting the occurrence of a privileged event during the operation of guest
software or a VMM (processing block 602). At processing block 604, processing
logic receives information that identifies the privileged event. Next, processing
logic accesses a resource (e.g., an in-memory data structure, a processor register,
memory in the platform chipset, a register in an input-output device, etc.) that
controls the selection of a VMM for handling privileged events (processing block
606) and reads the current value of a resource field associated with the identifier
of the privileged event (processing block 608).

[0043] In one embodiment, the identifier of the privileged event is the
type of the privileged event, and processing logic uses the type of the privileged
event to identify a resource field value associated with this type of privileged

event.

10

15

20

WO 2005/029326 PCT/US2004/029611

[0044] In another embodiment, the identifying information identifies a
specific input-output address associated with the privileged event. In this
embodiment, processing logic analyzes the input-output access associated with
the privileged event, determines what input-output address is being accessed,
and then uses this input-output address to find a resource field value associated
with an input-output address range to which the determined input-output
address belongs. In one embodiment, the values of the resource fields are set
during the initialization and cannot be modified. In another embodiment, the
values of the resource fields can be dynamically configured by a VMM (e.g., a
main VMM) based on such factors as security requirements, the VMM’s
knowledge of the platform, etc. This dynamic configuration of resource field
values allows for VMM functionality to be partitioned, possibly improving
security, system performance, development methodologies, etc.

[0045] Further, processing logic determines which VMM is designated
to handle the privileged event based on the current value of the corresponding
field (processing block 610) and, if the currently-operating entity is not the
designated VMM (decision box 612), transitions control to the designated VMM
(processing block 614). In one embodiment, the transition to the designated VMM
may be accomplished by generating a VM exit. Alternatively, the transition to the
designated VMM may be accomplished through any other mechanism in the art.

[0046] If the designated VMM is the currently-operating entity,
processing logic delivers the event to that VMM (processing block 616), as

described above in conjunction with Figure 4 and Figure 5.

16

10

15

20

WO 2005/029326 PCT/US2004/029611

[0047] Referring to Figure 7, process 700 begins with processing logic
detecting the occurrence of a privileged event during the operation of guest
software or a VMM (processing block 702). At processing block 704, processing
logic identifies resource usage/load parameters of each VMM in the system.
Next, processing logic evaluates the resource usage and/or load parameters of the
VMMs in the context of load balancing (processing block 706) and determines
which VMM is the best candidate for handling the privileged event based on the
above load balancing evaluation (processing block 708). Further, if the currently
operating entity is not the VMM that was identified as the best candidate
(decision box 712), processing logic transitions control to the identified VMM
(processing block 714). In one embodiment, the transition to the identified VMM
may be accomplished by generating a VM exit. Alternatively, the transition to the
identified VMM may be accomplished through any other mechanism in the art.

[0048] If the designated VMM is the currently-operating entity,
processing logic delivers the event to that VMM (processing block 716), as
described above in conjunction with Figures 4-6.

[0049] Thus, a method and apparatus for handling privileged events
using multiple VMMs have been described. It is to be understood that the above
description is intended to be illustrative, and not restrictive. Many other
embodiments will be apparent to those of skill in the art upon reading and
understanding the above description. The scope of the invention should,
therefore, be determined with reference to the appended claims, along with the

full scope of equivalents to which such claims are entitled.

17

10

15

20

WO 2005/029326 PCT/US2004/029611

CLAIMS
What is claimed is:
1. A method comprising;:
detecting an occurrence of a privileged event;
determining which one of a plurality of virtual machine monitors (VMMs) .
is to handle the privileged event; and

transitioning control to said one of the plurality of VMMs.

2, The method of claim 1 wherein the plurality of VMMs includes a main

VMM and one or more parallel VMMs.

3. The method of claim 1 wherein determining which one of a plurality of
VMNMs is to handle the privileged event comprises:

determining a type of the privileged event; and

identifying one of the plurality of VMMs that is designated to handle

privileged events of the determined type.

4. The method of claim 1 wherein determining which one of a plurality of
VMMs is to handle the privileged event comprises:
accessing a field associated with the privileged event in a resource; and
identifying one of the plurality of VMMs that is designated to handle the

privileged event based on a value of the field.

18

10

15

20

WO 2005/029326 PCT/US2004/029611

5. The method of claim 4 wherein the field associated with the privileged

event is a field associated with a type of the privileged event.

6. The method of claim 4 wherein the field associated with the privileged
event is a field associated with an input-output address range to which an input-

output address of the privileged event belongs.

7. The method of claim 4 wherein the value of the field associated with the

privileged event is either predetermined or dynamically configurable.

8. The method of claim 1 wherein determining which one of a plurality of
VMM is to handle the privileged event comprises:
evaluating resource usage parameters of the plurality of VMMS; and
identifying one of the plurality of VMMs that is designated to handle the

privileged event based on evaluation of the resource usage parameters.

9. The method of claim 4 wherein the resource resides in any one of a

memory, a processor, a chipset, and an input-output device.

10. The method of claim 1 wherein the privileged event represents any one of
an interrupt, an exception, an execution of a privileged instruction, and a platform

event.

19

10

15

20

WO 2005/029326 PCT/US2004/029611

11. The method of claim 1 wherein the privileged event occurs during an

operation of guest software.

12. The method of claim 1 wherein the privileged event occurs during an

operation of one of the plurality of VMMs.

13. A system comprising:

a plurality of virtual machine monitors (VMMSs); and

routing logic to detect an occurrence of a privileged event, to determine
which one of the plurality of VMMs is to handle the privileged event, and to

transition control to said one of the plurality of VMMs.

14. The system of claim 13 wherein the plurality of VMMs includes a main

VMM and one or more parallel VMMs.

15. The system of claim 13 wherein the routing logic is to determine which one
of the plurality of VMMs is to handle the privileged event by determining a type
of the privileged event, and identifying one of the plurality of VMMSs that is

designated to handle privileged events of the determined type.

16. The system of claim 13 wherein the routing logic is to determine which one
of the plurality of VMMs is to handle the privileged event by evaluating resource

usage parameters of the plurality of VMMs, and identifying one of the plurality of
20

10

15

20

WO 2005/029326 PCT/US2004/029611

VMMs that is designated to handle the privileged event based on evaluation of

the resource usage parameters.

17. The system of claim 13 wherein the privileged event represents any one of
an interrupt, an exception, an execution of a privileged instruction, and a platform

event.

18. The system of claim 13 wherein the privileged event occurs during an

operation of guest software.

19. The system of claim 13 wherein the privileged event occurs during an

operation of one of the plurality of VMMs.

20. A system comprising:

a memory having stored therein guest software and a plurality of virtual
machine monitors (VMMs); and

a processor, coupled to the memory, to execute the guest software, to
detect an occurrence of a privileged event, to determine which one of the plurality
of VMMs is to handle the privileged event, and to transition control to said one of

the plurality of VMMs.

21. The system of claim 20 wherein the plurality of VMMs includes a main

VMM and one or more parallel VMMs.
21

10

15

20

WO 2005/029326 PCT/US2004/029611

22. The system of claim 20 wherein the processor is to determine which one of
the plurality of VMMs is to handle the privileged event by determining a type of
the privileged event, and identifying one of the plurality of VMMs that is

designated to handle privileged events of the determined type.

23. The system of claim 20 wherein the processor is to determine which one of
the plurality of VMMs is to handle the privileged event by evaluating resource
usage parameters of the plurality of VMMs, and identifying one of the plurality of
VMMs that is designated to handle the privileged event based on evaluation of

the resource usage parameters.

24. The system of claim 20 wherein the privileged event represents any one of
an interrupt, an exception, an execution of a privileged instruction, and a platform

event.

25. The system of claim 20 wherein the privileged event occurs during

operation of any one of guest software and one of the plurality of VMMs.

26. A machine-readable medium containing instructions which, when
executed by a processing system, cause the processing system to perform a
method, the method comprising:

detecting an occurrence of a privileged event;

22

10

WO 2005/029326 PCT/US2004/029611

determining which one of a plurality of virtual machine monitors (VMMs)
is to handle the privileged event; and

transitioning control to said one of the plurality of VMMs.

27. The machine-readable medium of claim 26 wherein the plurality of VMMs

includes a main VMM and one or more parallel VMMs.

28. The machine-readable medium of claim 26 wherein the privileged event
represents any one of an interrupt, an exception, an execution of a privileged

instruction, and a platform event.

29. The machine-readable medium of claim 26 wherein the privileged event

occurs during operation of any one of guest software and one of the plurality of

VMMs.

23

WO 2005/029326

1/7
App.1 App. 2 App. 1 App. 2
0S #1 0S #2
134 144
[I J
Virtual Machine Virtual Machine
Abstraction 1 132 Abstraction 2 142

Virtual-Machine Monitor

PCT/US2004/029611

100
/

/156\

App. 1 App. 2

OS #n
154

Virtual Machine
Abstraction n 152

Virtual-Machine Monitor

(VMM) #1 ¢ oo (VMM) #k
125 125
Routing Logic 130

Memory 120

Processor 11

Bare Platform Hardware 11

FIG. 1

WO 2005/029326 PCT/US2004/029611

2/7
— 202 — 204 —206 —208
VM1 VM 2 VM3) VMn
W
A 4 ¥
PRIVILEGED RIVILEGED PRIVILEGED
EVENT 1 EVENT 4
iy
VMM = VMM 2 oo VMM k
. PRIVILEGED 4 C
210 EVENT 5 212 214

FIG. 2

WO 2005/029326 PCT/US2004/029611
B/7

300
/

{ START)

] C

DETECT THE OCCURRENCE
OF APRIVILEGED EVENT

302

(‘304

DETERMINE WHICH ONE OF MULTIPLE VMMs
IS TO HANDLE THE PRIVILEGED EVENT

306

-

DELIVER INFORMATION PERTAINING TO THE
PRIVILEGED EVENT TO THE DESIGNATED VMM AND
TRANSITION CONTROL TO DESIGNATED VMM

END

FIG. 3

WO 2005/029326 PCT/US2004/029611

4/7

400
S/

{(START)
402

-

DETECT THE OCCURRENCE OF A PRIVILEGED
EVENT DURING THE OPERATION OF GUEST
SOFTWARE OR A VMM

4 404

DETERMINE
THE TYPE OF PRIVILEGED EVENT

406

FIND A VMM DESIGNATED TO HANDLE
PRIVILEGED EVENTS OF THIS TYPE

408

CURRENTLY
-OPERATING ENTITY IS
THE DESIGNATED
VMM?

(‘412

DELIVER EVENT TO l (410

CURRENTLY
OPERATING VMM TRANSITION CONTROL TO THE DESIGNATED VMM

END

FIG. 4

WO 2005/029326 PCT/US2004/029611

5/7

GUEST1 GUEST2

PLATFORM
EVENT

NON->
PLATFOR
EVENT
[
1 7
N

/ROUTING LOGIC:510

NI

AN \
N N\
N \

PLATFORM
506 \ EVENT ,— 508
VMM1 VMM2

FIG. 5

WO 2005/029326

PCT/US2004/029611

6/7
z 600
{ START)
(.602
DETECT THE OCCURRENCE OF A
PRIVILEGED EVENT DURING THE OPERATING
OF GUEST SOFTWARE OR A VMM
s 604
RECEIVE INFORMATION THAT
IDENTIFIES THE PRIVILEGED EVENT
r606
ACCESS A RESOURCE THAT CONTROLS
THE SELECTION OF A VMM FOR
HANDLING PRIVILEGED EVENTS
f 608
READ THE CURRENT VALUE OF A RESOURCE
FIELD ASSOCIATED WITH THE PRIVILEGED EVENT
‘ - 610
DETERMINE WHICH VMM IS DESIGNATED TO
HANDLE THE PRIVILEGED EVENT BASED ON THE
CURRENT VALUE OF THE CORRESPONDING FIELD

612

CURRENTLY
-OPERATING ENTITY IS

Y THE DESIGNATED
VMM?
616
DELIVER ;'EVENT TO T e
OP%@?EIN;%M TRANSITION CONTROL TO THE DESIGNATED VMM

Y

FIG. 6 END

WO 2005/029326

PCT/US2004/029611

7/7

700
i

{ START)

702

-

DETECT THE OCCURRENCE OF A PRIVILEGED
EVENT DURING THE OPERATION
OF GUEST SOFTWARE OR A VMM

(704

IDENTIFY RESOURCE USAGE/LOAD PARAMETERS
OF EACH VMM IN THE SYSTEM

706

, C

EVALUATE THE RESOURCE USAGE AND/OR LOAD
PARAMETERS OF THE VMMs IN THE CONTEXT OF
LOAD BALANCING

708

-

DETERMINE WHICH VMM IS THE BEST CANDIDATE
FOR HANDLING THE PRIVILEGED EVENT BASED ON
THE ABOVE LOAD BALANCING EVALUATION

712

CURRENTLY
-OPERATING ENTITY IS

Y

716

DELIVER EVENT
TO CURRENTLY
OPERATING VMM

THE DESIGNATED
VMM?

| (‘714

TRANSITION CONTROL TO THE DESIGNATED VMM

END

FIG. 7

INTERNATIONAL SEARCH REPORT Integ@i°nal Application No

PCT7US2004/029611

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F9/455

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

EPO-Internal, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

27 June 1989 (1989-06-27)

research”
COMPUTER USA,

34-45, XP009043730
ISSN: 0018-9162

column; figure 3

X US 4 843 541 A (BEAN ET AL)

column 1, 1ine 25 - column 2, line 10
column 6, 1ine 56 - column 7, Tine 9
column 9, line 25 - column 10, line 50

X GOLDBERG R P: "Survey of virtual machine 1,2,13,

vol. 7, no. 6, June 1974 (1974-06), pages

page 37, right-hand column, line 7 - line

page 38, left-hand column - right-hand

-/

1-29

14,20,
21,26,27

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the arn which is not
considered to be of particular relevance

*E" earlier document but published on or after the internationai
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T

we

e

%

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the ¢laimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
[n?'r]\ts, ﬁuch combination being obvious to a person skilled
in the ant.

document member of the same patent family

Date of the actual comptetion of the international search

11 February 2005

Date of mailing of the intemational search repon

24/02/2005

Name and mailing address of the ISA

European Patent QOffice, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Ross, C

Fom PCT/ISA/210 (second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Int lonal Applicatlon No

PCT/US2004/029611

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 6 496 847 B1 (BUGNION EDOUARD ET AL)
17 December 2002 (2002-12-17)

column 16, l1ine 5 - column 17, line 34;
figure 6

JOHN SCOTT ROBIN ET AL: "Analysis of the
Pentium’s Ability to Support a Secure
Virtual Machine Monitor"

PROCEEDINGS OF THE USENIX SECURITY
SYMPOSIUM, XX, XX,

14 August 2000 (2000-08-14), pages 1-17,
XP002247347

Section 2.1 "Virtual Machine Monitors
Types" up to and including section 2.4
"Type II VMM"

1-29

1-29

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

_formation on patent family members

Int ional Application No

PCT/US2004/029611

Patent document
cited in search report

Publication
date

Patent family
member(s)

Publication
date

US 4843541 A 27-06-1989 AU 606187 B2 31-01-1991
AU 2001488 A 02-02-1989
BR 8803742 A 14-02-1989
CA 1305799 C 28-07-1992
DE 3850181 D1 21-07-1994
DE 3850181 T2 12-01-1995
EP 0301275 A2 01-02-1989
JP 1037636 A 08-02-1989
JP 1945910 C 23-06-1995
JP 6073108 B 14-09-1994
US 6496847 B1 17-12-2002 US 6704925 B1 09-03-2004
us 6795966 B1 21-09-2004
us 6397242 Bl 28-05-2002
us 6785886 Bl 31-08-2004

Form PCT/ISA/210 {patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

