发明名称
具有用锶基合金形成的电极的点火装置

摘要
一种诸如火花塞的点火装置，其具有接地电极和中心电极，所述电极中的至少一个包括由含有锶、铋、钨和铬的合金形成的点火尖端。由于该合金中包含了钨和铋，所以可在将钨的百分比保持在相对低水平的情况下，不牺牲该点火尖端的抗腐蚀性或降低的跳火电压。在一个实施方案中，点火尖端包含2.5%的铋、0.3%的钨、0.07%的铋和剩余的锶。
1. 一种用于内燃机的点火装置，包括：
 罩壳；
 绝缘体，其固定在所述罩壳内，并且在所述罩壳的开口处具有外露的轴向端；
 中心电极，其安装在所述绝缘体中并具有点火端，并且所述中心电极穿过所述轴向端从所述绝缘体伸出；以及
 接地电极，其安装在所述罩壳上，并且终止于处在与所述中心电极相对的位置处的点火端，从而定出所述中心电极的点火端与所述接地电极的点火端之间的火花隙；
 其特征在于，所述电极的至少一个包括由含有铱、铑、钨和锆的合金形成的点火尖端。

2. 如权利要求1所述的点火装置，其特征在于所述合金由铱与1-3 wt%的铑、0.1-0.5 wt%的钨以及0.05-0.1 wt%的锆的组合物形成。

3. 如权利要求1所述的点火装置，其特征在于所述合金由铱与2.5 wt%的铑、0.3 wt%的钨以及0.07 wt%的锆的组合物形成。

4. 如权利要求1所述的点火装置，其特征在于所述点火尖端在所述火花隙处被冶金地接合到所述中心电极。

5. 如权利要求4所述的点火装置，其特征在于所述点火尖端包括一段导线，其通过激光连接接合至所述中心电极。

6. 如权利要求4所述的点火装置，其特征在于所述接地电极的所述点火端包括点火尖端，其位于与所述中心电极的点火尖端相对的位置处。
7. 如权利要求6所述的点火装置，其特征在于所述接地电极上的所述点火尖端包括铂或铂合金。

8. 如权利要求7所述的点火装置，其特征在于所述中心电极上的所述点火尖端由镍与1-3 wt %的铑、0.1-0.5 wt %的钨以及0.05-0.1 wt %的锆的组合物形成。

9. 如权利要求7所述的点火装置，其特征在于所述中心电极上的所述点火尖端由镍与2.5 wt %的铑、0.3 wt %的钨以及0.07 wt %的锆的组合物形成。

10. 如权利要求1所述的点火装置，其特征在于所述点火装置包括火花塞。

11. 如权利要求1所述的点火装置，其特征在于所述点火尖端由镍、铑、钨和锆组成。

12. 如权利要求11所述的点火装置，其特征在于所述中心电极和接地电极包括由镍、铑、钨和锆组成的点火尖端。

13. 如权利要求11所述的点火装置，其特征在于所述点火尖端由合金制成，所述合金由镍与1-3 wt %的铑、0.1-0.5 wt %的钨以及0.05-0.1 wt %的锆的组合物形成。

14. 如权利要求11所述的点火装置，其特征在于所述点火尖端由合金制成，所述合金由镍与2.5 wt %的铑、0.3 wt %的钨以及0.07 wt %的锆的组合物形成。

15. 一种制造点火装置的电极的方法，所述点火装置具有罩壳、中心电极以及安装在所述罩壳内用于支撑所述中心电极并使其绝缘绝缘的绝缘体，所述方法包括如下步骤：
第一步骤，用包含铱、铑、钨和鎃的合金形成至少一个点火尖端，
第二步骤，用不同于所述合金的导电材料形成接地电极，以及
第三步骤，将所述至少一个点火尖端连接到所述中心电极和所述接地电极中的至少一个的端部，由此为与所述点火尖端连接的电极提供集成的点火尖端，所述集成的点火尖端为与所述点火尖端连接的电极提供外露的点火表面。

16. 如权利要求 15 所述的方法，其特征在于所述第一步骤进一步包括用合金形成所述点火尖端，所述合金由铱与 1-3 wt %的铑、0.1-0.5 wt %的钨以及 0.05-0.1 wt %的鎃的组合物制成。

17. 如权利要求 15 所述的方法，其特征在于所述第一步骤进一步包括用合金形成所述点火尖端，所述合金由铱与 2.5 wt %的铑、0.3 wt %的钨以及 0.07 wt %的鎃的组合物制成。

18. 如权利要求 15 所述的方法，其特征在于所述第一步骤进一步包括将所述电极形成为衬垫、铆钉、球或导线。

19. 如权利要求 15 所述的方法，其特征在于所述第三步骤进一步包括用激光连接将所述点火尖端接合到中心电极的端面上。

20. 如权利要求 15 所述的方法，其特征在于所述第三步骤进一步包括将所述点火尖端连接到接地电极的端部上。

21. 一种用于内燃机的点火装置，包括：
罩壳；
绝缘体，其固定在所述罩壳内，并且在所述罩壳的开口处具有外露的轴向端；
中心电极，其安装在所述绝缘体中并具有点火端，并且所述中心电极穿过所述轴向端从所述绝缘体伸出；以及
接地电极，其安装在所述罩壳上，并且终止于处在与所述中心电极相对的位置处的点火端，从而定出所述中心电极的点火端与所述接地电极的点火端之间的火花隙；

其特征在于，所述电极的至少一个包括由含有铱、1-3 wt %的铑、0.1-0.5 wt %的钨以及0.05-0.1 wt %的锆的合金形成的点火尖端。

22. 如权利要求21所述的点火装置，其特征在于所述合金由铱与2.5 wt %的铑、0.3 wt %的钨以及0.07 wt %的锆的组合物形成。

23. 如权利要求21所述的点火装置，其特征在于所述点火尖端通过激光连接接合至所述中心电极。

24. 如权利要求23所述的点火装置，其特征在于所述接地电极包括由铂或铂合金形成的点火尖端。

25. 如权利要求21所述的点火装置，其特征在于所述中心电极和接地电极包括由所述合金形成的点火尖端。
具有用铱基合金形成的电极的点火装置

技术领域

本发明一般涉及火花塞和在内燃机中使用的一些点火装置，特别涉及具有贵金属点火尖端的点火装置。本文所使用的术语“点火装置”意思是火花塞、点火器以及其它用于启动燃气或燃料内燃机的装置。

发明背景

多种铱基合金已经被建议用于火花塞电极以增加电极的点火表面的抗腐蚀性。铱具有相对较高的熔点并且具有比现今广泛使用的许多金属更好的耐受火花腐蚀的性能。铱典型地以衬垫（pad）或铆钉（rivet）的形式被使用，这里的衬垫或铆钉以激光焊接或其它冶金焊接方式连接到位于火花隙（spark gap）任一侧的中心电极和接地电极。但是铱的使用存在着公知的缺点，包括将铱连接到电极的困难性以及铱在较高温度下的氧化挥发。本发明致力于这两个问题中的后一个。

一种已知的用于降低铱的氧化损耗的方法是以与铱组合的合金的形式使用铱。Osamura等人的第 6,094,000 号美国专利和公布的英国专利申请 GB 2,302,367 披露了这样一种合金，该合金中可以包括含量为 1-60 wt ％的铱。也可在其中加入诸如氧化铱或氧化铱的 3A 和 4A 族元素，用以帮助降低消耗抵抗性。虽然 Osamura 等人教导出可以使用含量低至 1％的铱，但已经发现较高温度下使铱的氧化损耗最小化需要更多量的铱。这在 Osamura 等人提出的实验数据中得到证实，并且在他们的专利中声称铱的含量优选地为至少 3％。

Matsutani 等人的第 5,793,793 号美国专利公布了相似的发现，其中铱的含量保持在 3-50 wt ％范围内，并且最优选地为至少 18％。在第 5,998,913 号美国专利中，Matsutani 确认了包含高百分比的铱的一些缺点，试图降低合金中铱的含量，并提议加入铱或钌。按照该专利，通过加入含量至多达 17 wt ％铱和/或钌，需要维持好的抗氧化损耗的铱的数量可降到仅 0.1 wt ％。
发明内容

本发明致力于这样一种点火装置，其具有一对限定出其间的火花隙的电极，所述电极的至少一个包括由铱、铑、钨和锆的合金形成的点火尖端。这些组成元素的组合物可以实现已知的良好抗腐蚀性和降低的点火电压的优点，该优点可以在锆的百分比远低于已被发现仅包含铱和铑的合金中所需的锆的百分比的情况下获得。

根据本发明的一个实施方案，提供了一种用于内燃机的点火装置，包括：罩壳；绝缘体，其固定在罩壳内，并且在罩壳的开口处具有外露的轴向端；中心电极，其安装在绝缘体中并具有点火端，并且中心电极穿过多轴向端从绝缘体伸出；以及接地电极，其安装在罩壳上，并且终止于处在与中心电极相对的位置处的点火端，从而定出中心电极的点火端与接地电极的点火端之间的火花隙；该点火装置的特征在于，电极的至少一个包括由含有铱、铑、钨和锆的合金形成的点火尖端。

根据本发明的另一个实施方案，提供了一种制造点火装置的电极的方法，该点火装置具有罩壳、中心电极以及安装在罩壳内用于支撑中心电极并使其电绝缘的绝缘体，该方法包括如下步骤：第一步骤，用包含铱、铑、钨和锆的合金形成至少一个点火尖端，第二步骤，用不同于合金的导电材料形成接地电极，以及第三步骤，将至少一个点火尖端连接到中心电极和接地电极中的至少一个的端部，由此为与点火尖端连接的电极提供集成的点火尖端，集成的点火尖端为与点火尖端连接的电极提供外露的点火表面。

根据本发明的又一个实施方案，提供了一种用于内燃机的点火装置，包括：罩壳；绝缘体，其固定在罩壳内，并且在罩壳的开口处具有外露的轴向端；中心电极，其安装在绝缘体中并具有点火端，并且中心电极穿过多轴向端从绝缘体伸出；以及接地电极，其安装在罩壳上，并且终止于处在与中心电极相对的位置处的点火端，从而定出中心电极的点火端与接地电极的点火端之间的火花隙；该点火装置的特征在于，电极的至少一个包括由含有铱、1-3wt%的铑、0.1-0.5wt%的钨以及0.05-0.1wt%的锆的合金形成的点火尖端。

附图的简要说明
下面将结合附图对本发明的优选的示例性实施方案进行描述，在附图中相同的标号指代相同的部件。

图 1 是按照本发明的优选实施方案构造的火花塞的片断图（fragmentary view）和局部剖视图；

图 2 是可用于代替在图 1 所示火花塞上使用的点火尖端衬垫的铆钉的侧视图；

图 3 表示可用于代替图 1 所示的点火尖端衬垫的导线。

优选实施方案的说明

参照图 1，其中示出了火花塞 10 的工作端，它包括金属套或罩壳 12、固定在罩壳内的绝缘体 14、中心电极 16、接地电极 18 以及一对分别位于中心和接地电极 16 和 18 上并相互相对的点火尖端 20 和 22。罩壳 12 可按传统的方式构造，并可包括带有环形下端 26 的标准螺纹 24。接地电极 18 被焊接或连接至环形下端 26。类似地，火花塞 10 的所有其它部件（包括那些没有示出的部件）可使用公知技术和材料构造，当然除了如下所述的以点火尖端 20 和/或 22 构造的接地和/或中心电极 16、18 之外。

公知地，罩壳 12 的环形端 26 限定出开口 28，绝缘体 14 通过开口 28 突出。中心电极 16 通过玻璃封口或使用其它合适的技术被永久地安装在绝缘体 14 内。它通过外露的轴向端 30 从绝缘体 14 伸出。接地电极 18 是传统的九十度弯管的形式，该弯管的一端 32 机械地和电气地连接到罩壳 12，其另一端 34 终止于与中心电极 16 相对处。自由端 34 包括接地电极 18 的点火端，该点火端连同中心电极 16 的相应的点火端一起定出了其间的火花隙 36。

点火尖端 20 和 22 分别位于各自的电极 16 和 18 的点火端，从而它们可提供点火表面以用于发射和接收穿过火花隙 36 的电子。这些点火端以剖面形式示出，其目的是表示在本实施方案中的包括焊接到点火端上适当位置的衬垫的点火尖端。如图所示，点火尖端 20 和 22 可焊接到各自电极上的局部凹槽内。可选地，这些衬垫的一个或两个都可在其相关的电极上完全凹入，或者可被焊接到电极的外表面上而完全凹入。

根据本发明，每个点火尖端用包含铱、铑、钨和锆的合金构成。优选地，该合金由铱、1-3 wt %的铑、0.1-0.5 wt %的钨、0.05-0.1 wt %的锆以及不超
过少量的其它物质组合而成。这里，“少量”的意思是未确定的基底金属和
PGM（铂族金属）杂质的组合的最大值为 2000 ppm。在一非常优选的实施
方案中，该合金由约 2.5 wt %的铑、约 0.3 wt %的钨、约 0.07 wt %的钯，以
及具有不超过微量其它物质的铱构成。该合金可通过公知方法制成，例如将
所需数量的铱、铑、钨和铱熔合在一起，如本领域技术人员公知的那样，在
熔合以后，该合金可通过粉碎过程被转变为粉末形式。然后粉末化的合金可
被均衡地压成固体形式，如果需要，可使用二次成形操作来得到所需的最终
形态。实现这些步骤的技术和过程是本领域技术人员所公知的。

虽然这些电极可直接由合金制成，但优选地，它们可单独地由更传统的
导电材料形成，同时用合金形成点火尖端以便随后连接到上述电极。一旦点
火尖端和电极都形成，点火尖端随后通过冶金接合（例如激光焊接、激光连
接或其它适当的方式）被永久连接（机械地和电气地）到它们相关的电极。
这样可导致每个电极具有为该电极提供外露的点火表面的集成的点火尖端。
激光焊接可按照本领域技术人员公知的大量技术的任何一种进行。激光连接
包括通过用激光熔化电极材料以便其能流入点火尖端的凹槽或者其它表面
特征中并随后使电极凝固和锁定在点火尖端的适当位置，从而形成电极与点
火尖端的机械互锁。这种激光连接技术在欧洲专利局公开号为 EP 1 286 442
A1 中得到更充分地描述，其全部公开内容通过引用并入本文。

可以理解，点火尖端 20 和 22 不一定必须为衬垫，其也可为铆钉 40（如
图 2 所示）、导线（如图 3 所示）、球（未示出）的形式或者任何其它适当
形状。虽然在图 2 中示出的是圆形端的铆钉，但是也可以使用具有圆锥形或
截头圆锥形头部的铆钉。如图 3 所示，点火尖端可以（但不是必须）包括一
个或多个表面特征，例如凹槽 44，以允许利用前面所述的激光连接技术使点
火尖端与电极互锁。这些多种类型的点火尖端的结构和安装是本领域技术人
员所公知的。而且，虽然中心电极和接地电极的点火端在图中都被示出为具
有用铱/铑/钨/钯合金形成的点火尖端，但可以理解该合金可仅用于这两个电
极中的一个。另一个电极可在不具有点火尖端的情况下使用，或者可包括用
其它贵金属或贵金属合金形成的点火尖端。例如，在一个实施方案中，中心
电极点火尖端 20 可用铱/铑/钨/钯合金形成，而接地电极点火尖端 20 可由铂
或铂合金形成。
已经发现由铌、锗、钨和锆的组合产生的合金可表现出良好的抵抗火花和抗氧化损耗的性能，本发明能够使用相对少量的锆来保持这些优点。

显而易见，按照本发明提供了一种点火装置和制造该点火装置的方法，其能够获得本文描述的目的和有益效果。当然，可以理解，前面的描述是关于本发明的优选示例性实施方案的，本发明并不局限于特定描述的实施方案。对本领域的普通技术人员而言，各种变换和修改都是显而易见的。例如，虽然已经描述了火花塞形式的点火装置，但应理解，本发明也可应用于这样一系列点火器，其中点火发生在穿过位于中心电极与环形接地电极之间的半导体材料的表面处。所有这些变换和修改都包含在本发明的范围之内。