

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 3 873 259 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

14.08.2024 Bulletin 2024/33

(51) International Patent Classification (IPC):

**A24D 1/20 (2020.01) A24B 3/14 (2006.01)
A24B 15/10 (2006.01) A24B 15/12 (2006.01)
A24B 15/18 (2006.01) A24F 40/20 (2020.01)**

(21) Application number: **19797614.5**

(52) Cooperative Patent Classification (CPC):

**A24D 1/20; A24B 3/14; A24B 15/10; A24B 15/12;
A24B 15/18; A24F 40/20**

(22) Date of filing: **25.10.2019**

(86) International application number:

PCT/EP2019/079164

(87) International publication number:

WO 2020/089065 (07.05.2020 Gazette 2020/19)

(54) SMOKING SUBSTITUTE CONSUMABLE

RAUCHERSATZVERBRAUCHSSTOFF

CONSOMMABLE DE SUBSTITUTION POUR FUMEUR

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

- MURRAY, Samantha**
Liverpool Merseyside L24 9HP (GB)
- SHENTON, Edward Ross**
Liverpool Merseyside L24 9HP (GB)

(30) Priority: **29.10.2018 GB 201817538**

(74) Representative: **Mewburn Ellis LLP**
Aurora Building
Counterslip
Bristol BS1 6BX (GB)

(43) Date of publication of application:

08.09.2021 Bulletin 2021/36

(56) References cited:

**EP-A1- 2 394 520 EP-A1- 2 885 983
WO-A1-2015/177247 WO-A1-2017/178394
US-A1- 2009 038 628 US-A1- 2016 044 943
US-B2- 8 663 671**

(73) Proprietor: **Imperial Tobacco Limited**
Bristol, BS3 2LL (GB)

(72) Inventors:

- FERRIE, Kate**
Liverpool Merseyside L24 9HP (GB)

Description**Field of the Disclosure**

[0001] The present disclosure relates to a consumable for use in a smoking substitute system and particularly, although not exclusively, to a heat-not-burn (HNB) consumable.

Background

[0002] The smoking of tobacco is generally considered to expose a smoker to potentially harmful substances. It is generally thought that a significant amount of the potentially harmful substances are generated through the heat caused by the burning and/or combustion of the tobacco and the constituents of the burnt tobacco in the tobacco smoke itself.

[0003] Conventional combustible smoking articles, such as cigarettes, typically comprise a cylindrical rod of tobacco comprising shreds of tobacco which is surrounded by a wrapper, and usually also a cylindrical filter axially aligned in an abutting relationship with the wrapped tobacco rod. The filter typically comprises a filtration material which is circumscribed by a plug wrap. The wrapped tobacco rod and the filter are joined together by a wrapped band of tipping paper that circumscribes the entire length of the filter and an adjacent portion of the wrapped tobacco rod. A conventional cigarette of this type is used by lighting the end opposite to the filter, and burning the tobacco rod. The smoker receives mainstream smoke into their mouth by drawing on the mouth end or filter end of the cigarette.

[0004] Combustion of organic material such as tobacco is known to produce tar and other potentially harmful byproducts. There have been proposed various smoking substitute systems (or "substitute smoking systems") in order to avoid the smoking of tobacco.

[0005] Such smoking substitute systems can form part of nicotine replacement therapies aimed at people who wish to stop smoking and overcome a dependence on nicotine.

[0006] Smoking substitute systems include electronic systems that permit a user to simulate the act of smoking by producing an aerosol (also referred to as a "vapour") that is drawn into the lungs through the mouth (inhaled) and then exhaled. The inhaled aerosol typically bears nicotine and/or flavourings without, or with fewer of, the odour and health risks associated with traditional smoking.

[0007] In general, smoking substitute systems are intended to provide a substitute for the rituals of smoking, whilst providing the user with a similar experience and satisfaction to those experienced with traditional smoking and with combustible tobacco products. Some smoking substitute systems use smoking substitute articles that are designed to resemble a traditional cigarette and are cylindrical in form with a mouthpiece at one end.

[0008] The popularity and use of smoking substitute systems has grown rapidly in the past few years. Although originally marketed as an aid to assist habitual smokers wishing to quit tobacco smoking, consumers are increasingly viewing smoking substitute systems as desirable lifestyle accessories.

[0009] There are a number of different categories of smoking substitute systems, each utilising a different smoking substitute approach.

[0010] One approach for a smoking substitute system is the so-called "heat not burn" ("HNB") approach in which tobacco (rather than an "e-liquid") is heated or warmed to release vapour. The tobacco may be leaf tobacco or reconstituted tobacco. The vapour may contain nicotine and/or flavourings. In the HNB approach the intention is that the tobacco is heated but not burned, i.e. the tobacco does not undergo combustion.

[0011] A typical HNB smoking substitute system may include a device and a consumable. The consumable may include the tobacco material. The device and consumable may be configured to be physically coupled together. In use, heat may be imparted to the tobacco material by a heating element of the device, wherein airflow through the tobacco material causes moisture in the tobacco material to be released as vapour. A vapour may also be formed from a carrier in the tobacco material (this carrier may for example include propylene glycol and/or vegetable glycerine) and additionally volatile compounds released from the tobacco. The released vapour may be entrained in the airflow drawn through the tobacco.

[0012] As the vapour passes through the consumable (entrained in the airflow) from an inlet to a mouthpiece (outlet), the vapour cools and condenses to form an aerosol for inhalation by the user. The aerosol will normally contain the volatile compounds.

[0013] In HNB smoking substitute systems, heating as opposed to burning the tobacco material is believed to cause fewer, or smaller quantities, of the more harmful compounds ordinarily produced during smoking. Consequently, the HNB approach may reduce the odour and/or health risks that can arise through the burning, combustion and pyrolytic degradation of tobacco.

[0014] WO2017/178394 discloses an aerosol-generating article

[0015] WO2015/177247 discloses an aerosol forming article comprising magnetic particles

[0016] EP2885983 discloses a method of forming wax encapsulated flavor delivery system for tobacco EP2394520 discloses a non-combustion smoking jig

[0017] There is a need for improved design of HNB consumables to enhance the user experience and improve the function of the HNB smoking substitute system.

[0018] The present disclosure has been devised in the light of the above considerations.

55

Summary of the Disclosure

[0019] At its most general, the present disclosure re-

lates to an aerosol-forming article e.g. a smoking substitute article such as an HNB consumable comprising two different aerosol-forming materials.

[0020] According to a first aspect, the present invention provides an aerosol-forming article e.g. a smoking substitute article such as an HNB consumable as set forth in claim 1.

[0021] By providing an aerosol-forming substrate having discrete regions of a first aerosol-forming material within a matrix of a second aerosol-forming material, the user experience can be tailored and thereby enhanced. The two different aerosol-forming materials can be selected such that during the smoking of a single article/consumable the user is exposed to a mix of two vapours/aerosols having different properties e.g. different flavours and/or different strengths of volatile compounds.

[0022] Optional features will now be set out. These are applicable singly or in any combination with any aspect.

[0023] In some embodiments, there is a plurality of discrete regions of the first aerosol-forming material dispersed within the matrix of the second aerosol-forming material.

[0024] Reference to "discrete region(s)" of the first aerosol-forming material means that the concentration/dispersion of the first aerosol-forming material within the second aerosol-forming material is not uniform. This is in contrast to substrates formed from homogenised blends of two different types of aerosol-forming materials. Instead of being homogenised, the first aerosol-forming material is concentrated into one or more discrete regions within the second aerosol-forming material matrix.

[0025] The plurality of discrete regions of first aerosol-forming material may be evenly spaced within the matrix of the second aerosol-forming material. At least some and possibly all of the plurality of discrete regions of first aerosol-forming material may be entirely embedded within i.e. entirely surrounded by the matrix of the second aerosol-forming material.

[0026] The aerosol-forming substrate is capable of being heated to release at least one volatile compound that can form an aerosol. The aerosol-forming substrate may be located at the upstream end of the article/consumable.

[0027] As used herein, the terms "upstream" and "downstream" are intended to refer to the flow direction of the vapour/aerosol i.e. with the downstream end of the article/consumable being the mouth end or outlet where the aerosol exits the article/consumable for inhalation by the user. The upstream end of the article/consumable is the opposing end to the downstream end.

[0028] In order to generate an aerosol, each of the first and second aerosol-forming materials comprises at least one volatile compound that is intended to be vaporised/aerosolised and that may provide the user with a recreational and/or medicinal effect when inhaled. Suitable chemical and/or physiologically active volatile compounds include the group consisting of: nicotine, cocaine, caffeine, opiates and opioids, cathine and cathinone, kavalactones, mysticin, beta-carboline alkaloids, salvinorin

A together with any combinations, functional equivalents to, and/or synthetic alternatives of the foregoing.

[0029] The first aerosol-forming material and the second aerosol-forming material each comprise tobacco which will contain nicotine as a volatile compound. Any type of tobacco may be used. This includes, but is not limited to, flue-cured tobacco, burley tobacco, Maryland Tobacco, dark-air cured tobacco, oriental tobacco, dark-fired tobacco, perique tobacco and rustica tobacco. This also includes blends of the above-mentioned tobaccos.

[0030] Any suitable parts of the tobacco plant may be used. This includes leaves, stems, roots, bark, seeds and flowers.

[0031] The first aerosol-forming material comprises pellets, granules or chips of extruded tobacco. The extruded tobacco will provide a vapour having a higher nicotine content than the reconstituted tobacco.

[0032] Each pellet/chip/granule may form one of the plurality of discrete regions within the matrix of the first aerosol-forming material. In contrast to blends of different types of powdered tobacco, each pellet/chip/granule is of macroscopic size.

[0033] Extruded tobacco can be produced by forming a liquid mixture of powdered tobacco and a binding agent such as a gum (e.g. xanthan, guar, arabic and/or locust bean gum). The liquid mixture is heated and then extruded through a die. The extrudate is dried and then may be subsequently cut into pellets, chips or granules.

[0034] The aerosol-forming substrate e.g. the second aerosol-forming material may comprise one or more additives selected from humectants, flavourants, fillers, aqueous/non-aqueous solvents and binders.

[0035] Humectants are provided as vapour generators - the resulting vapour helps carry the volatile active compounds and increases visible vapour. Suitable humectants include polyhydric alcohols (e.g. propylene glycol (PG), triethylene glycol, 1,2-butane diol and vegetable glycerine (VG)) and their esters (e.g. glycerol mono-, di- or tri-acetate). They may be present in the aerosol-forming substrate in an amount between 1 and 50 wt%.

[0036] The humectant content of the aerosol-forming substrate may have a lower limit of at least 1 % by weight of the plant material, such as at least 2 wt %, such as at least 5 wt %, such as at least 10 wt %, such as at least 20 wt %, such as at least 30 wt %, or such as at least 40 wt %.

[0037] The humectant content of the aerosol-forming substrate may have an upper limit of at most 50 % by weight of the plant material, such as at most 40 wt %, such as at most 30 wt %, or such as at most 20 wt %.

[0038] Preferably, the humectant content is 1 to 40 wt % of the aerosol-forming substrate, such as 1 to 20 wt %

[0039] Suitable binders are known in the art and may act to bind together the components forming the aerosol-forming substrate. Binders may comprise starches and/or cellulosic binders such as methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose and methyl cellulose, gums such as xanthan, guar, arabic and/or locust bean gum, organic acids and their

salts such as alginic acid/ sodium alginate, agar and pectins.

[0040] Preferably the binder content is 5 to 10 wt% of the aerosol-forming substrate e.g. around 6 to 8 wt%.

[0041] Suitable fillers are known in the art and may act to strengthen the aerosol-forming substrate. Fillers may comprise fibrous (non-tobacco) fillers such as cellulose fibres, lignocellulose fibres (e.g. wood fibres), jute fibres and combinations thereof.

[0042] Preferably, the filler content is 5 to 10 wt% of the aerosol-forming substrate e.g. around 6 to 9 wt%.

[0043] The aerosol-forming substrate may comprise an aqueous and/or non-aqueous solvent. In some embodiments, the aerosol forming substrate has a water content of between 5 and 10 wt% e.g. between 6-9 wt% such as between 7-9 wt%.

[0044] The flavourant may be provided in solid or liquid form. It may include menthol, liquorice, chocolate, fruit flavour (including e.g. citrus, cherry etc.), vanilla, spice (e.g. ginger, cinnamon) and tobacco flavour. The flavourant may be evenly dispersed throughout the aerosol-forming substrate (e.g. throughout the second aerosol-forming material) or may be provided in isolated locations and/or varying concentrations throughout the aerosol-forming substrate/second aerosol-forming substrate.

[0045] The aerosol-forming substrate may be formed in a substantially cylindrical shape such that the article/consumable resembles a conventional cigarette. It may have a diameter of between 5 and 10mm e.g. between 6 and 9mm or 6 and 8mm e.g. around 7 mm. It may have an axial length of between 10 and 15mm e.g. around 12mm.

[0046] The aerosol-forming substrate may be circumscribed by a wrapping layer e.g. a paper wrapping layer. The wrapping layer may overlie an inner foil layer or may comprise a paper/foil laminate (with the foil innermost). The article/consumable may comprise at least one filter element. There may be a terminal filter element at the downstream/mouth end of the article/consumable.

[0047] The or at least one of the filter element(s) (e.g. the terminal filter element) may be comprised of cellulose acetate or polypropylene tow. The at least one filter element (e.g. the terminal filter element) may be comprised of activated charcoal. The at least one filter element (e.g. the terminal element) may be comprised of paper. The or each filter element may be at least partly (e.g. entirely) circumscribed with a plug wrap e.g. a paper plug wrap.

[0048] The or each filter element may have a substantially cylindrical shape with a diameter substantially matching the diameter of the aerosol-forming substrate (with or without its associated wrapping layer). The axial length of the or each filter element may be less than 20mm, e.g. between 8 and 15mm, for example between 9 and 13 mm e.g. between 10 and 12mm.

[0049] The or at least one of the filter element(s) may be a solid filter element. The or at least one of the filter element(s) may be a hollow bore filter element. The or each hollow bore filter may have a bore diameter of be-

tween 1 and 5 mm, e.g. between 2 and 4 mm or between 2 and 3 mm.

[0050] There may be a plurality of e.g. two filter elements which may be adjacent one another or which may be spaced apart. Any filter element(s) upstream of the terminal filter element may be circumscribed by the (paper) wrapping layer.

[0051] The terminal filter element (at the downstream end of the article/consumable) may be joined to the upstream elements forming the article/consumable by a circumscribing tipping layer e.g. a tipping paper layer. The tipping paper may have an axial length longer than the axial length of the terminal filter element such that the tipping paper completely circumscribes the terminal filter element plus the wrapping layer surrounding any adjacent upstream element.

[0052] The or at least one of the filter elements e.g. the terminal filter element may include a capsule e.g. a crushable capsule (crush-ball) containing a liquid flavourant e.g. a liquid flavourant as described above. The capsule can be crushed by the user during smoking of the article/consumable to release the flavourant. The capsule may be located at the axial centre of the terminal filter element.

[0053] In some embodiments, the article/consumable may comprise an aerosol-cooling element which is adapted to cool the aerosol generated from the aerosol-forming substrate (by heat exchange) before being inhaled by the user.

[0054] The aerosol-cooling element will be downstream from the aerosol-forming substrate. For example, it may be between the aerosol-forming substrate and a/the filter element and/or between two filter elements. The aerosol cooling element may be at least partly (e.g. entirely) circumscribed by the (paper) wrapping layer.

[0055] The aerosol-cooling element may be formed of a plastics material selected from the group consisting of polylactic acid (PLA), polyvinyl chloride (PVC), polyethylene (PE) and polyethylene terephthalate (PET). The aerosol-cooling element may be formed of a crimped/gathered sheet of material to form a structure having a high surface area with a plurality of longitudinal channels to maximise heat exchange and cooling of the aerosol.

[0056] The article/consumable may comprise a spacer element that defines a space or cavity between the aerosol-forming substrate and the downstream end of the article/consumable. The spacer element may comprise a cardboard tube. The spacer element may be circumscribed by the (paper) wrapping layer.

[0057] The spacer element may have an external diameter of between 5 and 10mm e.g. between 6 and 9mm or 6 and 8mm e.g. around 7 mm. It may have an axial length of between 10 and 15mm e.g. between 12 and 14 mm or 13 and 14mm e.g. around 14mm.

[0058] In a second aspect, there is provided a smoking substitute system comprising an article/consumable according to the first aspect and a device comprising a heat-

ing element.

[0059] The device may be a HNB device i.e. a device adapted to heat but not combust the aerosol-forming substrate.

[0060] The device may comprise a main body for housing the heating element. The heating element may comprise an elongated e.g. rod, tube-shaped or blade heating element. The heating element may project into or surround a cavity within the main body for receiving the article/consumable.

[0061] The device (e.g. the main body) may further comprise an electrical power supply e.g. a (rechargeable) battery for powering the heating element. It may further comprise a control unit to control the supply of power to the heating element.

[0062] In a third aspect, there is provided a method of using a smoking substitute system according to the second aspect, the method comprising:

inserting the article/consumable into the device; and heating the article/consumable using the heating element.

[0063] In some embodiments, the method comprises inserting the article/consumable into a cavity within the main body and penetrating the article/consumable with the heating element upon insertion of the article/consumable. For example, the heating element may penetrate the aerosol-forming substrate in the article/consumable.

[0064] The skilled person will appreciate that except where mutually exclusive, a feature or parameter described in relation to any one of the above aspects may be applied to any other aspect. Furthermore, except where mutually exclusive, any feature or parameter described herein may be applied to any aspect and/or combined with any other feature or parameter described herein.

Summary of the Figures

[0065] So that the invention may be understood, and so that further aspects and features thereof may be appreciated, embodiments illustrating the principles of the invention will now be discussed in further detail with reference to the accompanying figures, in which:

Figure 1 shows a first embodiment of an HNB consumable;

Figure 2 shows a second embodiment of an HNB consumable

Figure 3 shows a third embodiment of an HNB consumable; and

Figure 4 shows the first embodiment within a device forming an HNB system.

Detailed Description of the Figures

[0066] As shown in Figure 1, the HNB consumable 1 comprises an aerosol-forming substrate 2 at the upstream end of the consumable 1.

[0067] The aerosol-forming substrate 2 comprises a matrix of reconstituted tobacco 13 throughout which discrete regions 14 of extruded tobacco are interspersed. The extruded tobacco is in the form of macroscopic granules/chips/pellets 14.

[0068] The extruded tobacco granules/chips/pellets 14 are evenly spaced and entirely embedded within the matrix of reconstituted tobacco 13.

[0069] The aerosol-forming substrate 2 is dosed with 20 wt% of a humectant such as propylene glycol (PG) or vegetable glycerine (VG) and has a moisture content of between 7-9 wt%. The aerosol-forming substrate further comprises cellulose pulp filler and guar gum binder.

[0070] The aerosol-forming substrate 2 is formed in a substantially cylindrical shape such that the consumable resembles a conventional cigarette. It has diameter of around 7mm and an axial length of around 12 mm.

[0071] The aerosol-forming substrate 2 is circumscribed by a paper wrapping layer 3.

[0072] The consumable 1 comprises an upstream filter element 4 and a downstream (terminal) filter element 5. The two filter elements 4, 5 are spaced by a cardboard spacer tube 6. Both filter elements 4, 5 are formed of cellulose acetate tow and wrapped with a respective paper plug layer (not shown).

[0073] Both filter elements have a substantially cylindrical shape. The diameter of the upstream filter 4 matches the diameter of the aerosol-forming substrate 2. The diameter of the terminal filter element 5 is slightly larger and matches the combined diameter of the aerosol-forming substrate 2 and the wrapping layer 3. The upstream filter element is slightly shorter in axial length than the terminal filter element at an axial length of 10mm compared to 12mm for the terminal filter element.

[0074] The cardboard tube spacer is longer than each of the two filter portions having an axial length of around 14mm.

[0075] Each filter element 4, 5 is a hollow bore filter element with a hollow, longitudinally extending bore. The diameter of the bore in the upstream filter is slightly larger than the diameter of the bore in the terminal filter having a diameter of 3mm compared to 2 mm for the terminal filter element.

[0076] The cardboard spacer tube 6 and the upstream filter portion 4 are circumscribed by the wrapping layer 3.

[0077] The terminal filter element 5 is joined to the upstream elements forming the consumable by a circumscribing paper tipping layer 7. The tipping layer 7 encircles the terminal filter portion and has an axial length of around 20mm such that it overlays a portion of the cardboard tube spacer 6.

[0078] Figure 2 shows a second embodiment of a consumable 1' which is the same as that shown in Figure 1

except that the terminal filter element 5 comprises a crushable capsule 8 (crush-ball) having a shell wall containing a liquid menthol or cherry or vanilla flavourant. The capsule 8 is spherical and has a diameter of 3.5mm. It is positioned within the axial centre of the terminal filter portion 5.

[0079] Figure 3 shows a third embodiment of a consumable 1" which is the same as the first embodiment except that the wrapping layer 3 does not completely circumscribe the cardboard spacer tube 6 such that there is an annular gap 9 between the tipping layer 7 and the cardboard spacer tube 6 downstream of the end of the wrapping layer 3.

[0080] Figure 4 shows the first embodiment inserted into an HNB device 10 comprising a rod-shaped heating element (not shown). The heating element projects into a cavity 11 within the main body 12 of the device.

[0081] The consumable 1 is inserted into the cavity 11 of the main body 12 of the device 10 such that the heating rod penetrates the aerosol-forming substrate 2. Heating of the reconstituted tobacco in the aerosol-forming substrate 2 is effected by powering the heating element (e.g. with a rechargeable battery (not shown)). As the tobacco is heated, moisture and volatile compound (e.g. nicotine) within the tobacco and the humectant are released as a vapour and entrained within an airflow generated by inhalation by the user at the terminal filter portion 5.

[0082] As the vapour cools within the upstream filter element 4 and the cardboard spacer tube 6, it condenses to form an aerosol containing the volatile compounds for inhalation by the user.

[0083] The features disclosed in the foregoing description, or in the following claims, or in the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for obtaining the disclosed results, as appropriate, may, separately, or in any combination of such features, be utilised.

[0084] Accordingly, the exemplary embodiments of the invention set forth above are considered to be illustrative and not limiting.

[0085] Throughout this specification, including the claims which follow, unless the context requires otherwise, the words "have", "comprise", and "include", and variations such as "having", "comprises", "comprising", and "including" will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

[0086] It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by the

use of the antecedent "about," it will be understood that the particular value forms another embodiment. The term "about" in relation to a numerical value is optional and means, for example, +/- 10%.

[0087] The words "preferred" and "preferably" are used herein refer to embodiments of the invention that may provide certain benefits under some circumstances. It is to be appreciated, however, that other embodiments may also be preferred under the same or different circumstances. The recitation of one or more preferred embodiments therefore does not mean or imply that other embodiments are not useful.

15 Claims

1. An aerosol-forming article (1) comprising an aerosol-forming substrate (2) wherein the aerosol-forming substrate (2) comprises at least one discrete region (14) of a first aerosol-forming material within a matrix (13) of a second aerosol-forming material; **characterised in that** the first aerosol-forming material comprises pellets, granules or chips of extruded tobacco (14) and the second aerosol-forming material comprises reconstituted tobacco.
2. An article (1) according to claim 1 comprising a plurality of discrete regions (14) of the first aerosol-forming material dispersed within the matrix (13) of the second aerosol-forming material.
3. An article (1) according to claim 2 wherein the plurality of discrete regions (14) of first aerosol-forming material is evenly spaced within the matrix (13) of the second aerosol-forming material.
4. An article (1) according to claim 2 or 3 wherein the plurality of discrete regions (14) of first aerosol-forming material are entirely embedded within the matrix (13) of the second aerosol-forming material.
5. An article (1) according to any one of the preceding claims wherein the aerosol-forming substrate (2) comprises one or more additives selected from humectants, flavourants and/or binders.
6. A smoking substitute system comprising an article (1) according to any one of the preceding claims and a device (10) comprising a heating element.
7. A system according to claim 6 wherein the device (10) comprises a main body (12) for housing the heating element and the heating element comprises an elongated heating element.
8. A method of using the system according to claim 6 or 7, the method comprising:

inserting the article (1) into the device (10); and heating the article (1) using the heating element.

9. A method according to claim 8 comprising inserting the article (1) into a cavity (11) within a main body (12) of the device and penetrating the article (1) with the heating element upon insertion of the article (1).

Patentansprüche

1. Aerosolbildender Artikel (1), umfassend ein aerosolbildendes Substrat (2), wobei das aerosolbildende Substrat (2) zumindest einen diskreten Bereich (14) eines ersten aerosolbildenden Materials innerhalb einer Matrix (13) eines zweiten aerosolbildenden Materials umfasst;
dadurch gekennzeichnet, dass das erste aerosolbildende Material Pellets, Granulat oder Späne von extrudiertem Tabak (14) umfasst und das zweite aerosolbildende Material rekonstituierten Tabak umfasst.
2. Artikel (1) nach Anspruch 1, umfassend eine Vielzahl von diskreten Bereichen (14) des ersten aerosolbildenden Materials, das innerhalb der Matrix (13) des zweiten aerosolbildenden Materials dispergiert ist.
3. Artikel (1) nach Anspruch 2, wobei die Vielzahl von diskreten Bereichen (14) des ersten aerosolbildenden Materials gleichmäßig innerhalb der Matrix (13) des zweiten aerosolbildenden Materials beabstandet ist.
4. Artikel (1) nach Anspruch 2 oder 3, wobei die Vielzahl von diskreten Bereichen (14) von erstem aerosolbildendem Material vollständig innerhalb der Matrix (13) des zweiten aerosolbildenden Materials eingebettet ist.
5. Artikel (1) nach einem der vorangegangenen Ansprüche, wobei das aerosolbildende Substrat (2) ein oder mehrere Additive umfasst, die aus Befeuungsmitteln, Geschmacksstoffen und/oder Bindemitteln ausgewählt sind.
6. Rauchersatzsystem, umfassend einen Artikel (1) nach einem der vorangegangenen Ansprüche und eine Vorrichtung (10), umfassend ein Heizelement.
7. System nach Anspruch 6, wobei die Vorrichtung (10) einen Hauptkörper (12) zum Einhauen des Heizelements umfasst und wobei das Heizelement ein längliches Heizelement umfasst.
8. Verfahren zur Verwendung eines Systems nach Anspruch 6 oder 7, wobei das Verfahren Folgendes umfasst:

Einführen des Artikels (1) in die Vorrichtung (10); und Erhitzen des Artikels (1) unter Verwendung des Heizelements.

5 9. Verfahren nach Anspruch 8, umfassend das Einführen des Artikels (1) in einen Hohlraum (11) innerhalb eines Hauptkörpers (12) der Vorrichtung und Durchstoßen des Artikels (1) mit dem Heizelement beim Einführen des Artikels (1).

Revendications

15. Article de formation d'aérosol (1) comprenant un substrat de formation d'aérosol (2), dans lequel le substrat de formation d'aérosol (2) comprend au moins une région distincte (14) d'un premier matériau de formation d'aérosol dans une matrice (13) d'un second matériau de formation d'aérosol ; **caractérisé en ce que** le premier matériau de formation d'aérosol comprend des pastilles, des granules ou des copeaux de tabac extrudé (14) et le second matériau de formation d'aérosol comprend du tabac reconstitué.
20. 2. Article (1) selon la revendication 1, comprenant une pluralité de régions distinctes (14) du premier matériau de formation d'aérosol dispersées dans la matrice (13) du second matériau de formation d'aérosol.
25. 3. Article (1) selon la revendication 2, dans lequel la pluralité de régions distinctes (14) du premier matériau de formation d'aérosol est espacée uniformément à l'intérieur de la matrice (13) du second matériau de formation d'aérosol.
30. 4. Article (1) selon la revendication 2 ou 3, dans lequel la pluralité de régions distinctes (14) du premier matériau de formation d'aérosol est entièrement intégrée dans la matrice (13) du second matériau de formation d'aérosol.
35. 5. Article (1) selon l'une quelconque des revendications précédentes, dans lequel le substrat de formation d'aérosol (2) comprend un ou plusieurs additifs choisis parmi des humectants, des aromatisants et/ou des liants.
40. 40. 6. Système à fumer de substitution comprenant un article (1) selon l'une quelconque des revendications précédentes et un dispositif (10) comprenant un élément chauffant.
45. 55. 7. Système selon la revendication 6, dans lequel le dispositif (10) comprend un corps principal (12) destiné à loger l'élément chauffant, et l'élément chauffant comprend un élément chauffant allongé.

8. Procédé d'utilisation du système selon la revendication 6 ou 7, le procédé comprenant les étapes consistent à :

insérer l'article (1) dans le dispositif (10) ; et 5
chauffer l'article (1) en utilisant l'élément chauffant.

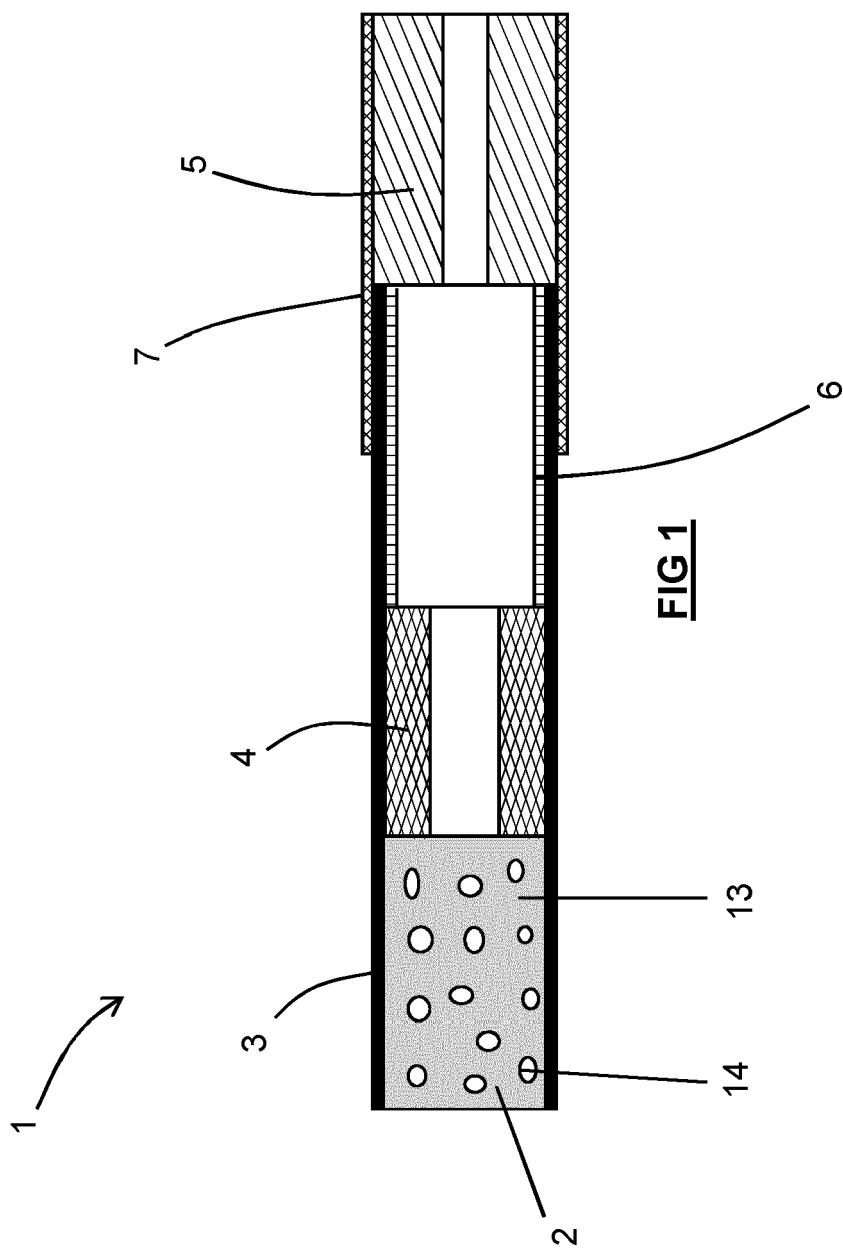
9. Procédé selon la revendication 8, comprenant une insertion de l'article (1) dans une cavité (11) à l'intérieur d'un corps principal (12) du dispositif et une pénétration de l'article (1) avec l'élément chauffant lors de l'insertion de l'article. 10

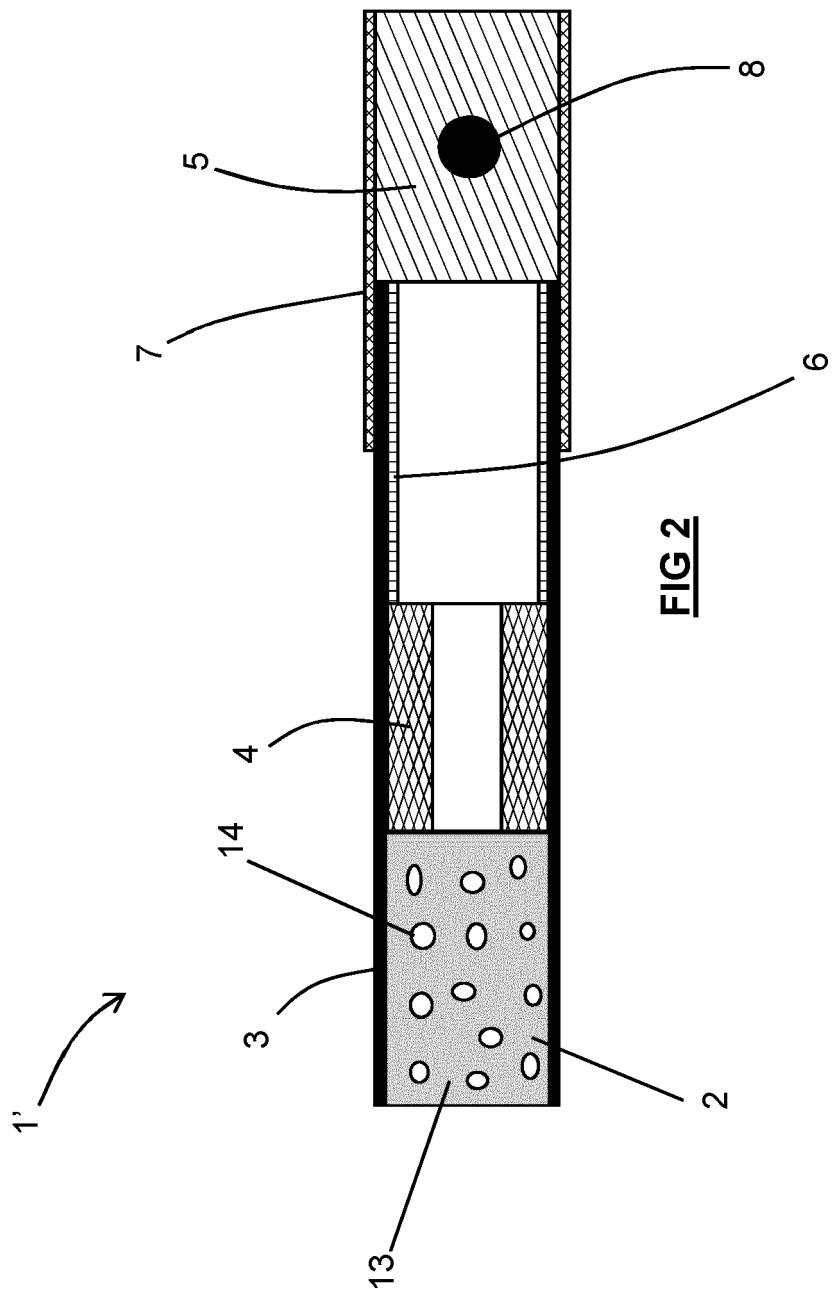
15

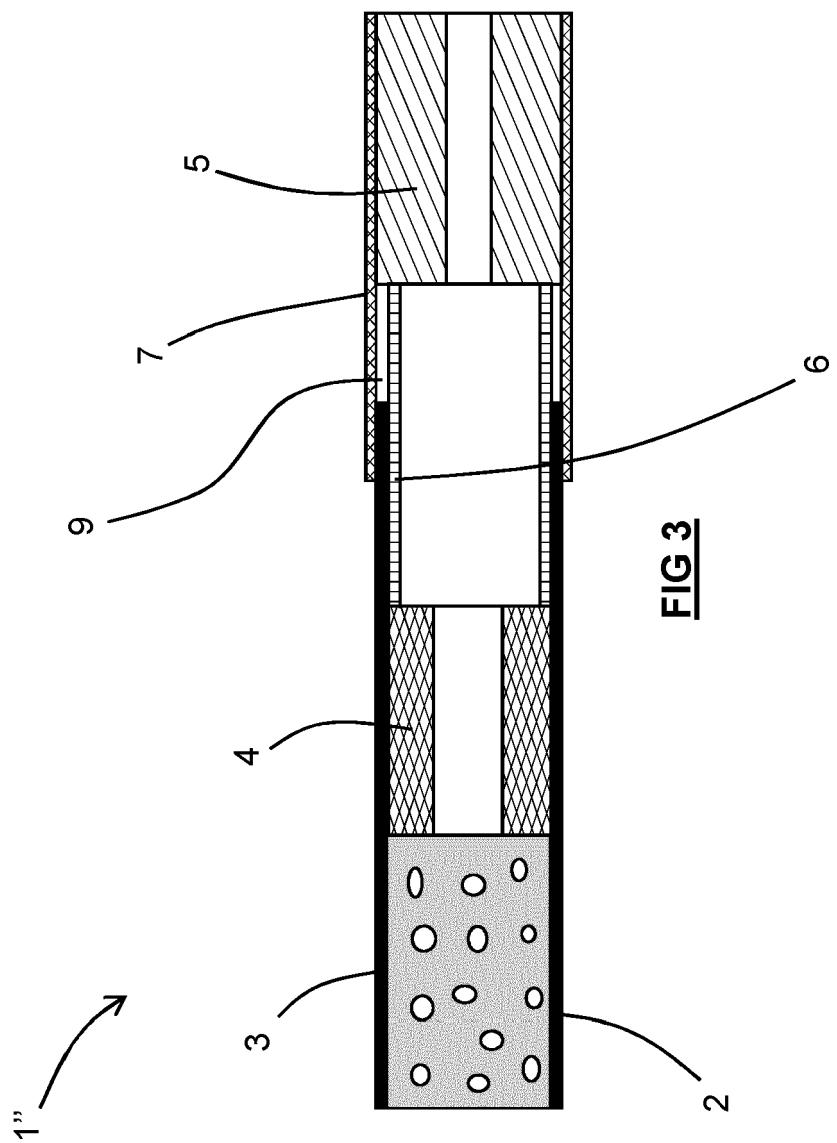
20

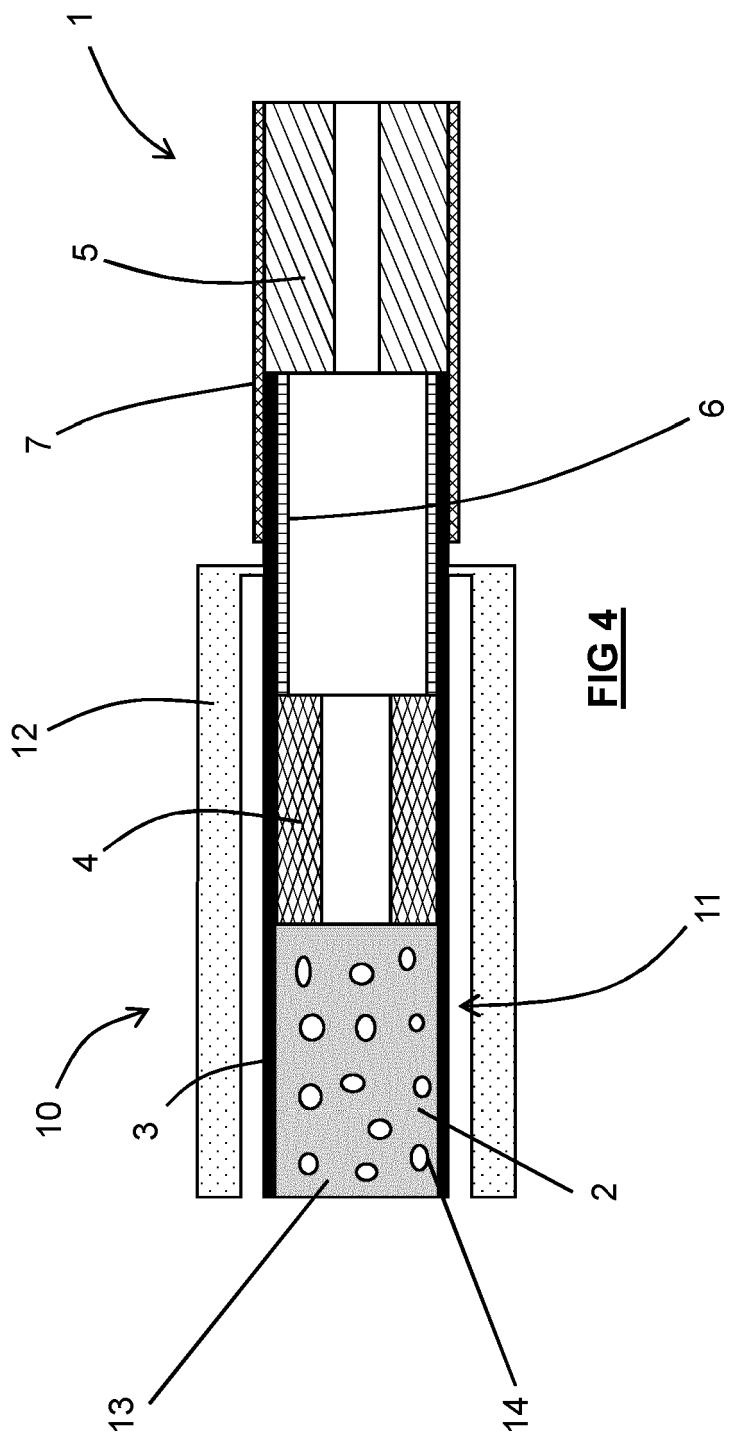
25

30


35


40


45


50

55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2017178394 A [0014]
- WO 2015177247 A [0015]
- EP 2885983 A [0016]
- EP 2394520 A [0016]