woO 2009/091369 A1 |10V 00 OO0 AT O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 July 2009 (23.07.2009)

L IR
PO |00 0 0 A A

(10) International Publication Number

WO 2009/091369 Al

(51) International Patent Classification:
GO6T 15/50 (2006.01)

(21) International Application Number:
PCT/US2008/000787

(22) International Filing Date: 18 January 2008 (18.01.2008)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): AD-
VANCED MICRO DEVICES [US/US]; 1 AMD Place,
Sunnyvale, CA 94088-3453 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US ornly): POON, Elaine
[CA/US]; 3281 Vineyard Park Way, San Jose, CA 95135
(US). XIAOLING, (sherry) Xu [US/US]; 1712 Harrison
St., Santa Clara, CA 95060 (US).

(74) Agent: HAVERSTOCK, Thomas, B.; Haverstock &
Owens Llp, 162 North Wolfe Road, Sunnyvale, CA 94086
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: CONFIGURABLE SHADER ALU UNITS

(57) Abstract: A shader unit is configured to

provide an increased and dynamically changeable

100
\ Tnput Data Stream amount' of ALU processing bandwidth Each' of the
ALUs is configurable to be enabled and disabled
10 il When disabled, the ALU is powered off, thereby
12 14 16 22 24 26 reducing the power consumption of the shader
[avros] - faons) famo] [prvws] [acus] [acue] unit In one embodiment, the plurality of ALUs are
Iif pipetbcllect i1 | be Pipe_tbcfg R I logically configured into groups called ALU-pipes,
T T each of which can be enabled and disabled When
1)8 28 an ALU-pipe is disabled, each ALU associated
with the disabled ALU-pipe is disabled The shader
- 52 - unit includes a sequencer that executes the shader
7——L_ﬁ uffer .
66 P program, determines the number of ALUs to be
Texture . . .
Cantext - 64 M enabled, receives an input data stream of pixel data,
1 LA 38 assigns groups of pixel data to each enabled ALU,
501 60 sends the assigned pixel data to their respective
Scheduler _"WC""‘“’] Sequeneer ALUs, and sends ALU instructions to the ALUs
Memory 62 . . .
<—>?W| to process the received pixel data according to the
6% shader program.
54
EE————— Output Buffer
30 40~
32 34 36 42~ 44~ 46~
ALU30_a ALU30_b ALU30_c | ALUA40_a | ‘ ALU40_b | | ALU40_e I
1 It i1 i} i
Ii pipe-abe seleot l L pipe-abo select
T ry T)
T | | 1
38 48
Output Data Stream
Fig. 1

WO 2009/091369 PCT/US2008/000787

Configurable Shader ALU Units

Field of the Invention

The present invention relates to a method of and an apparatus for processing graphics
data. In particular, the present invention relates to a method of and apparatus for processing

graphics data using configurable shader arithmetic logic units.

Background of the Invention

In graphics processing, data is grouped as pixels, which are processed according to a
series of processing instructions referred to as shader instructions. Each shader instruction
defines a mathematical operation to be performed on the pixel. By applying a shader
instruction to a pixel, the pixel value is changed according to the mathematical operation
defined by the shader instruction. Application software defines the specific shader
instructions that are to be applied to the pixel data.

Shader units are used to apply shader instructions to pixel data. Shader units utilize
arithmetic logic units (ALUs) to carry out the arithmetic and logic operations defined by the
shader instructions. Graphics intensive applications, such as high-end video games, require
shader units that can execute a large number of shader instructions. However, lower-end
graphics applications, such as playing a DVD, include fewer shader instructions and therefore
do not require a shader unit with as much processing power. Since additional processing
power requires additional ALUs, which correspondingly increases cost and power
consumption, there is a design trade-off to be made when configuring a shader unit, especially

when the shader unit is for general use.

Summary of the Invention

A shader unit is configured to provide an increased and dynamically changeable
amount of ALU processing bandwidth. The shader unit includes a plurality of ALUs for
processing pixel data according to a shader program. Each of the ALUs is preferably
configurable to be enabled and disabled. When disabled, the ALU is powered off, thereby
reducing the power consumption of the shader unit. In one embodiment, the plurality of
ALUs are logically configured into groups called ALU-pipes, each of which can be enabled
and disabled. When an ALU-pipe is disabled, each ALU associated with the disabled ALU-
pipe is disabled. The shader unit includes a sequencer that executes the shader program,

determines the number of ALUs to be enabled, receives an input data stream of pixel data,

WO 2009/091369 PCT/US2008/000787

-assigns groups of pixel data to each enabled ALU, sends the assigned pixel data to their
respective ALUs, and sends ALU instructions to the ALUs to process the received pixel data
according to the shader program.

In one aspect of the present invention, a shader unit includes a sequencer to provide
control instructions, and multiple arithmetic logic units coupled to the sequencer, wherein
each arithmetic logic unit is dynamically configurable to be enabled or disabled according to
the control instructions provided by the sequencer such that the séquencer dynamically
configures a number of enabled arithmetic logic units. The sequencer includes an input
buffer to receive an input stream of pixel data and a scheduler to direct a block of the received
pixel data to each of the number of enabled arithmetic logic units. The sequencer also
includes an arithmetic logic unit sequencer that generates an arithmetic logic unit instruction,
wherein the arithmetic logic unit sequencer sends the arithmetic logic unit instruction to the
multiple arithmetic logic units in response to a control instruction sent by the scheduler. Each
arithmetic logic unit instruction corresponds to a processing instruction within a software
program being executed by the shader unit. The arithmetic logic units that are disabled are

* powered off. The multiple arithmetic logic units can be logically configured into a plurality

of groups, each group including a clock enable circuit. The arithmetic logic units within a

first logical group can be powered off by disabling a corresponding first clock enable circuit.

In another aspect of the present invention, a shader unit includes a sequencer to
provide control instructions, and a plurality of processing integrated circuit chips coupled to
the sequencer, each integrated circuit chip includes a plurality of arithmetic logic units,
wherein each processing integrated circuit chip includes at least one defective arithmetic logic
unit, further wherein each of the plurality of arithmetic logic units is dynamically
configurable to be enabled or disabled according to the control instructions provided by the
sequencer, thereby increasing a yield for processing integrated circuit chips. The sequencer
can dynamically configure a number of enabled arithmetic logic units. Each processing
integrated circuit chip preferably includes a same number of defective arithmetic logic units,
and each processing integrated circuit chip includes a same number of arithmetic logic units.

The arithmetic logic units within the shader unit can be logically configured into a plurality of

groups, wherein each group includes one arithmetic logic unit from each processing

integrated circuit chip. When a first arithmetic logic unit on a first processing integrated
circuit chip is defective, then each arithmetic logic unit within the group that includes the first
arithmetic logic unit is also defective. The arithmetic logic units included within a group

comprising defective arithmetic logic units are disabled and powered off. Each group can be
2

WO 2009/091369 PCT/US2008/000787

coupled to a clock enable circuit. The arithmetic logic units within a first logical group can
be powered off by disabling a corresponding first clock enable circuit. The sequencer
includes an input buffer to receive an input stream of pixel data and a scheduler to direct a
block of the received pixel data to each enabled arithmetic logic unit. The sequencer also
includes an arithmetic logic unit sequencer that generates an arithmetic logic unit instruction,
wherein the arithmetic logic unit sequencer sends the arithmetic logic unit instruction to each
enabled arithmetic logic unit in response to a control instruction sent by the scheduler.

In yet another aspect of the present invention, a shader unit processes an input data
stream of pixel data. The shader unit includes a sequencer to provide control instructions to
execute a graphics shader program including shader instructions, and multiple arithmetic
logic units coupled to the sequencer, wherein each arithmetic logic unit is dynamically
configurable to be enabled or disabled according to the control instructions provided by the
sequencer such that the sequencer dynamically configures a number of enabled arithmetic
logic units. The sequencer includes an input buffer to receive the input data stream of pixel
data and a scheduler to direct a block of the received pixel data to each of the number of
enabled arithmetic logic units. The sequencer also includes an arithmetic logic unit sequencer
that generates an arithmetic logic unit instruction corresponding to each shader instruction,
wherein the arithmetic logic unit sequencer sends the arithmetic logic unit instruction to the

multiple arithmetic logic units in response to a control instruction sent by the scheduler.

Brief Description of the Several Views of the Drawings

Figure 1 illustrates one embodiment of a configurable shader unit.

Figure 2 illustrates a timing diagram related to the shader unit of Figure 1.

The present invention is described relative to the several views of the drawings.

Detailed Description of the Invention

Embodiments of a shader unit are directed to a dynamically configurable apparatus
that processes a selectable and programmable number of pixels per clock cycle. Using the
dynamically configurable shader unit, one ALU instruction is executed for a selectable
number of pixels per clock cycle.

Figure 1 illustrates one embodiment of a configurable shader unit 100. The shader
unit 100 includes processing units 10, 20, 30, and 40, a sequencer 50, and a texture unit 70.

The sequencer 50 includes an input buffer 52, an output buffer 54, a scheduler 56, a texture
3

WO 2009/091369 PCT/US2008/000787

.sequencer 38, a flow control sequencer 60, an ALU sequencer 62, a texture buffer 64, a
context memory 66, and a mask memory 68. The shader unit 100 is configured to receive an
input data stream, where the data stream includes a series of pixel data. Alternatively, the
input data stream can be of any conventional data type. The shader unit 100 performs
mathematical operations to manipulate the received pixel data, and outputs processed pixel
values. The mathematical operations correspond to shader instructions specified by an
external software application. The shader unit 100 includes four processing units 10, 20, 30,
and 40. Each processing unit includes three ALUs. Specifically, the processing unit 10
includes ALUs 12, 14, and 16, the processing unit 20 includes ALUs 22, 24, and 26, the
processing unit 30 includes ALUs 32, 34, and 36, and the processing unit 40 includes ALUs
42, 44, and 46. In alternative embodiments, the shader unit can include more or less than four
processing units, and each processing unit can include more or less than three ALUs.
Preferably, each of the ALUs is a floating point unit. Alternatively, each ALU can be a
floating point unit or a fixed point unit. Each of the ALUs preferably includes the same logic
circuitry.

The sequencer 50 receives the input data stream of pixel data. The sequencer 50
determines what pixel data is to be loaded and when to execute the shader program
instructions. The sequencer 50 includes a scheduler 56 to schedule the necessary functions
for loading data and executing the shader program instructions within the shader unit 100.

Figure 2 illustrates a timing diagram related to the shader unit 100 of Figure 1. The
shader unit 100 receives the input data stream of pixel data. By convention, groups of four
pixels are referred to as a quad. The shader unit 100 is configured to process quads.
Referring to the timing diagram of Figure 2, quad 0 is a group of four pixels, quad 1 is a
group of the next four pixels, and so on. As pixels are input to the sequencer 50, each
successive group of four pixels (a quad) is assigned to a specific ALU. The first 4 pixels are
grouped as quad O in phase a, which is assigned to ALU 12, designated ALU10_a in Figure 1.
Each quad is loaded into its assigned ALU per clock cycle. The next group of 4 pixels are
grouped as quad 1 in phase a, which is assigned to ALU 22, designated as ALU20_a. The
next group of 4 pixels are grouped as quad 2 in phase a, which is assigned to ALU 32,
designated as ALU30_a. This pattern cycles through each of three phases, phase a , phase b,
and phase c, such that 12 quads of pixel data are assigned and loaded into the 12 ALUs over a
period of 12 clock cycles. After 12 clock cycles, 12 quads are loaded into the 12 ALUs, one
quad per each ALU.

The quads stored in the ALUs are then processed according to ALU instructions. The
.

WO 2009/091369 PCT/US2008/000787

ALU instructions correspond to the shader instructions. Processing begins simultaneously on
all 12 quads loaded in the ALUs during the 13th clock cycle. In other words, a quad is loaded
into each ALU, and only after each ALU has been loaded with a quad does processing begin.
In this manner, parallel processing of the 12 quads is acheived.

Also during the 13" cycle, as processing begins on the 12 quads previously loaded
into the 12 ALUs, loading begins for the next set of 12 quads. For example, referring to the
timing diagram of Figure 2, on the 13" clock cycle, quad 0 in phase a is loaded into the ALU
12. This process repeats similarly as to the first set of 12 quads assigned and loaded into the
12 ALUs as described above.

Conventional processing units typically include one ALU, such that execution of one
shader instruction is applied to one quad of pixel data. In contrast, the shader unit 100
inlcudes three ALUs per processing unit, such that execution of one shader instruction is
applied to three quads, thereby tripling the the ALU procesing power of a single ALU
processing unit. If an application is shader intensive, meaning the application includes a long
shader program with many shader instructions to be executed, and pixels are to be
manipulated based on those shader instructions, then the increased ALU processing
bandwidth provides faster execution of the shader program. Such a configuration increases
the performance aspect of the shader unit 100.

In addition to increasing performance, the shader unit is dynamically re-configurable.
In one embodiment, the ALUs within the shader unit 100 are logically configured into groups,
called ALU-pipes. Each ALU-pipe includes one ALU from each processing unit 10, 20, 30,
and 40. For example, an ALU-pipe_a includes ALU 12, ALU 22, ALU 32, and ALU 42.
Similarly, an ALU-pipe_b includes ALU 14, ALU 24, ALU 34, and ALU 44. An ALU-
pipe_c includes ALU 16, ALU 26, ALU, 36, and ALU 46. Each of the ALU-pipes can be
enabled or disabled. In the shader unit 100 shown in Figure 1, each processing unit 10, 20,
30, and 40 can be configured such that 1, 2, or all 3 of the ALUs within each processing unit
are enabled. If ALU pipe_a is enabled, then the ALU in each processing unit 10, 20, 30, and
40 that corresponds to pipe “a” is enabled, specifically ALU 12, ALU 22, ALU 32, and ALU
42. Similarly, if ALU pipe_b is enabled, then the ALUs 14, 24, 34, and 44 are enabled, and if
ALU pipe_c is enabled, then the ALUs 16, 26, 36, and 46 are enabled. The shader unit 100 is
configured such that any combination of ALU pipe_a, ALU pipe_b, and ALU pipe_c can be
enabled. This combination can be dynamically changed at any time such that a new
combination of ALUs are enabled. In this manner, the shader unit 100 is dynamically

configurable to have 4, 8, or 12 ALUs enabled at any given time. Alternatively, the ALUs
5

WO 2009/091369 PCT/US2008/000787

.can be logically configured into groups other than ALU-pipes. Still alternatively, the ALUs
can be logically configured as individual ALUs, and each ALU can be individually enabled or
disabled in various combinations.

The shader unit 100 includes individual clock enables for each ALU pipe. If the
shader unit 100 is confgiured such that one or two of the ALU pipes are enabled, then the
ALUs corresponding to the disabled ALU pipe(s) can be shut down to save power. To shut
down the ALUs, the clock enable for the disabled ALU pipe(s) is disabled. Disabling one or
more ALU pipes is useful when running applications that are not shader intensive, for
example playing DVDs or older generation video games, because the additional ALU
bandwidth used for executing shader instructions is not needed. ALU bandwidth can be
increased by enabling previously disabled ALU pipes.

The shader unit 100 operates according to driver software loaded in the sequencer 50.
The driver software operates in conjunction with the application software and determines the
number of ALU pipes to enable based on the requirments of the application software. The
sequencer 50 enables or disables the appropriate ALU-pipes according to control instructions
provided by the driver software. The shader unit hardware, including multiple ALU pipes, is
provided so that the driver software can dynamically enable or disable ALU pipes as
necessary.

The scheduler 56 enables the configurable aspect of the shader unit 100 in that the
scheduling activities are determined based on the number of ALU pipes currently enabled. If
the number of ALU pipes enabled is changed, then the scheduler 56 also changes the
scheduling activities necessary to accommodate the changed number of enabled ALU pipes.
In this manner, the logic circuitry within the sequencer 50 is considered dynamically
configurable to meet the changing activities associated with a dynamically changing number
of enabled ALUs.

Where the application software is a graphics application, the application software
includes a shader program that is to be executed by the shader unit 100. Shader programs
include multiple shader instructions, which are executed as ALU instructions on the pixel
data.

Subsequent discussion is based on all three ALU pipes within the shader unit 100
being enabled. In this case, 12 quads are assigned and loaded into the 12 enabled ALUs
during a 12 cycle period. It should be noted that where reference is made to 12 quads, any
corresponding functionality can equally be applied to 8 quads or 4 quads, depending on the

number of ALU pipes enabled. On the 13™ clock cycle, processing begins in each of the
6

WO 2009/091369 PCT/US2008/000787

ALU:s according to a current shader program. The ALU sequencer 62 issues an ALU
instruction for each shader instruction. Each ALU instruction is issued to all ALUs every 4
clock cycles. Since there are 12 quads loaded into the 12 ALUs, the shader unit 100 executes
one ALU instruction on 12 quads every 4 clock cycles. As such, 3 ALU instructions can be
executed on the same 12 quads during a 12 clock cycle period. Where only one ALU pipe is
enabled, the shader unit 100 executes one ALU instruction on 4 quads every 4 clock cycles.
A shader program with many shader instructions 1s applied.to a set of quads (12 quads in this
case) faster when 3 ALU pipes are enabled than if only one or two ALU pipes are enabled.
As used in this context, faster means execution of ALU instructions.

The sequencer 50 outputs data every 12 clock cycles. Since one ALU instruction is
executed every 4 clock cycles, 3 ALU instructions can be executed by each ALU every 12
clock cycles. In other words, 3 ALU instructions can be executed on a given quad of pixel
data before the quad is output from the shader unit 100. The shader unit 100 is still executing
1 ALU instruction per 4 clock cycles, however, with 3 ALU pipes enabled, each ALU
instruction is used to process more pixel data, in this case 12 quads. In general, the shader
unit 100 is dynamically configurable to process 4, 8, or 12 quads for every 4 clock cycles,
depending on the number of ALU pipes enabled.

The context memory 66 is a 3—bit register that defines the current ALU pipe
configuration. There are three modes: a single ALU mode, a double ALU mode, and a triple
ALU mode. Each mode is specified in the context memory 66 register field. Each bit in the
register field represents a physical ALU pipe. For example, if all three bits in the context
memory 66 are set, as in the triple ALU mode, then all 3 ALU pipes are enabled. In the case
of enabling a single ALU pipe or a double ALU pipe, any combination of the ALU pipes can
be enabled. The sequencer 50 includes individual clock enables for each ALU pipe. Shutting
down an ALU pipe is accomplished by disabling the clock associated with the ALU pipe to
be disabled.

Each ALU includes an input buffer to store the loaded quad of pixel data. After the
ALU processes the quad according to three ALU instructions within a 12 clock cycle period,
the processed quads are stored in an output buffer 54 within the sequencer 50. During a
subsequent execution of an output instruction, which occurs every 12 clock cycles, the
processed quad within the output buffer 54 is output from the shader unit 100.

Execution of certain types of ALU instructions requires the use of texture data which
is stored external to the shader unit 100. To retrieve the texture data, the texture sequencer 58

issues a texture instruction to the texture unit 70. In response to the texture instruction, the
7

WO 2009/091369 PCT/US2008/000787

texture unit 70 fetches the texture data from memory (not shown). The retrieved texture data
is stored in the texture buffer 64, The texture sequencer 58 executes one texture instruction
for a set of 12 quads every 4 clock cycles. However, the texture unit 70 fetches four quads
every four clock cycles. Since there are 12 quads being simultaneously processed in the
shader unit 100, two re-issued texture instructions are needed to accommodate all 12 quads.
Therefore, when 3 ALU pipes are enabled, which results in 12 quads being simultaneously
processed in the shader unit 100, a texture instruction is issued three times every 12 clock
cycles.

A thread is a unit of measure that refers to the number of quads that are
simulataneously processed within the sequencer 50. For example, when three ALU pipes are
enabled, a thread is 12 quads. Therefore, a 12 quad thread indicates that 12 quads are being
processed simultaneously. Similarly, when two ALU pipes are enabled, a thread is eight
quads. When a single ALU pipe is enabled, a thread is four quads.

The context memory 66 is a 3-bit memory for storing a current state for the thread
currently being processed in the shader unit 100. The current state value is used by the flow
control sequencer 60 and by the ALU sequencer 58 to generate their respective instructions.
The meaning of the 3-bit value stored in the context storage memory 66 is different for the
partial flow control mode than for the full flow control mode.

Inconsistencies in the input data stream may result in occurrences where there are not
12 quads loaded into the 12 ALUs, although all 3 ALU pipes are enabled. Such an
occurrence often happens at the end of a data stream. This also happens because the
architecture upstream from the shader unit 100 is functioning in 4 quad blocks. Therefore,
there are situations in which only 4 quads or 8 quads are loaded into 12 enabled ALUs. The
dynamic configurability of the shader unit 100 enables the thread to be changed from 12

quads to 4 or 8 quads if a full 12 quads are not received within a predetermined time period.

A thread becomes a partial thread when it has less than 12 quads. A partial thread can
occur at the end of a data stream, or when a state change within the shader unit 100 is
received in the middle of a thread being processed. When a partial thread is issued to the
shader unit 100 without an accompanying state change, a deadlock situation could occur.
There are two ways to resolve this deadlock. First, a shader unit flush can be done by
inserting a shader register. Second, a shader unit autoflush can be configured in an autoflush
control register (not shown). Once enabled, the shader unit 100 flushes out partial threads

based on a programmable timeout value. The timeout value indicates the number of empty
8

WO 2009/091369 PCT/US2008/000787

cycles to wait at the input before flushing out the partial thread.

The flow control sequencer 60 operates according to either a partial flow control mode
or a full flow control mode. In the partial flow control mode, the flow control sequencer 60
executes one flow control instruction for a set of 12 quads every 4 clock cycles. In the full
flow control mode, the flow control sequencer 60 executes one flow control instruction for a
set of 12 quads every 8 clock cycles. The flow control sequencer 60 works in conjunction
with the ALU sequencer 58. The flow control sequencer 60, the texture sequencer 58, and the
ALU sequencer 62 issue their corresponding instructions in response to control instructions
provided by the scheduler 56.

Within the shader unit 100, each processing unit 10, 20, 30, and 40 is an integrated
circuit manufactured according to conventional methodologies. Yield is a well known
concept in the art of manufacturing integrated circuits. The configurable nature of the ALU
units provides an increase in yield for the processing units. For example, if during
manufacturing, one of the ALUs on a3 ALU processing unit is determined to be faulty and
unusable, then the processing unit can still be used as a 2-ALU processing unit. In this case, a
shader unit can be configured using processing units that each have one faulty ALU. As part
of an assembled shader unit, the non-operable ALU unit within each processing unit is
configured as the same ALU pipe, such as ALU10_a, ALU20_a, ALU30_a, and ALU40_a in
Figure 1, and the ALU pipe including the faulty ALUs is disabled by the sequencer so that
there are 2 enabled ALU pipes.

The shader unit 100 provides expanded ALU processing bandwidth while maintaining
a single input and a single output. This enables all ALU processing to be performed locally,
as opposed to distributing the ALU processing over multiple shader units, which would
require the management of input data distribution to the multiple shader units and
coordination of the output from each shader unit. The dynamic configurability of the shader
unit 100 promotes high-end performance for graphics applications including many ALU
instructions and power savings capabilities for lower-end graphics applications that do not
require as much ALU processing bandwidth. The configurable nature enables a determined
number of ALUs to be shut down, thereby conserving power. Enabling a specific number of
ALU pipes can be integrated with an operating mode of the computer. For example, if a
laptop computer is currently configured in a “performance mode”, then all ALU pipes are
enabled to play, for example, a 3-D intensive video game. If a laptop computer is currently
configured in a “power saving mode”, then one or more ALU pipes are disabled to reduce

power.

WO 2009/091369 PCT/US2008/000787

. The shader unit 100 has been described above as including four processing units, each
processing unit including three ALUs. Alternatively, the configurable shader unit can be
configured to include more, or less, than four processing units, and each processing unit can
be configured to include more, or less, than three ALUs. In general, the shader unit of the
present invention is scalable to include more, or less, than the twelve ALUs described in
relation to the shader unit 100. Additionally, the ALUs are described as bein g grouped by
processing unit for convention only. Itis a design consideration as to how many ALUs are
included within each processing unit. Further, the ALUs have been organized as logical
groups called ALU-pipes, and in general the shader unit is configurable to include N ALU-
pipes. However, organizing the ALUs into ALU pipes is for convention only, and different
types of logical groups can be utilized to dynamically configure a number of enabled ALUs.

The present invention has been described in terms of specific embodiments
incorporating details to facilitate the understanding of the principles of construction and
operation of the invention. As such, references herein to specific embodiments and details
thereof are not intended to limit the scope of the claims appended hereto. It will be apparent
to those skilled in the art that modifications can be made to the embodiments chosen for

illustration without departing from the spirit and scope of the invention.

10

WO 2009/091369 PCT/US2008/000787

Claims
We claim:
1. A shader unit to process an input data stream, the shader unit comprising:
a. a sequencer to provide control instructions; and
b. multiple arithmetic logic units coupled to the sequencer, wherein each
arithmetic logic unit is dynamically configurable to be enabled or disabled
according to the control instructions provided by the sequencer such that the
sequencer dynamically configures a number of enabled arithmetic logic units.
2. The shader unit of claim 1 wherein the sequencer comprises an input buffer to receive

an input stream of pixel data and a scheduler to direct a block of the received pixel

data to each of the number of enabled arithmetic logic units.

3. The shader unit of claim 2 wherein the sequencer further comprises an arithmetic
logic unit sequencer that generates an arithmetic logic unit instruction, wherein the
arithmetic logic unit sequencer sends the arithmetic logic unit instruction to the
multiple arithmetic logic units in response to a control instruction sent by the

scheduler.

4. The shader unit of claim 3 wherein each arithmetic logic unit instruction corresponds
to a processing instruction within a software program being executed by the shader

unit.

5. The shader unit of claim 1 wherein any arithmetic logic units that are disabled are

powered off.

6. The shader unit of claim 1 wherein the multiple arithmetic logic units are logically

configured into a plurality of groups, each group including a clock enable circuit.

7. The shader unit of claim 6 wherein the arithmetic logic units within a first logical

group are powered off by disabling a corresponding first clock enable circuit.

11

WO 2009/091369 PCT/US2008/000787

10.

11.

12.

13.

14.

15.

- The shader unit of claim 1 wherein the multiple arithmetic logic units comprises

twelve arithmetic logic units.

The shader unit of claim 1 wherein each arithmetic logic unit processes four pixels of

data per four clock cycles.

The shader unit of claim 9 wherein each arithmetic logic unit executes one arithmetic

logic unit instruction per four clock cycles.

A shader unit to process an input data stream, the shader unit comprising:

a. a sequencer to provide control instructions; and

b. multiple arithmetic logic units coupled to the sequencer, wherein each
arithmetic logic unit is dynamically configurable to be enabled or disabled
according to the control instructions provided by the sequencer such that the
sequencer dynamically configures a first number of enabled arithmetic logic
units and a second number of disabled arithmetic logic units, wherein the

second number of arithmetic logic units that are disabled are powered off.

The shader unit of claim 11 wherein the sequencer comprises an input buffer to
receive an input stream of pixel data and a scheduler to direct a block of the received

pixel data to each of the first number of enabled arithmetic logic units.

The shader unit of claim 12 wherein the sequencer further comprises an arithmetic
logic unit sequencer that generates an arithmetic logic unit instruction, wherein the
arithmetic logic unit sequencer sends the arithmetic logic unit instruction to the
multiple arithmetic logic units in response to a control instruction sent by the

scheduler.

The shader unit of claim 13 wherein each arithmetic logic unit instruction corresponds
to a processing instruction within a software program being executed by the shader

unit.

The shader unit of claim 11 wherein the multiple arithmetic logic units are logically

configured into a plurality of groups, each group including a clock enable circuit.
12

WO 2009/091369 PCT/US2008/000787

16.

17.

18.

19.

20.

21

22.

23.

24,

The shader unit of claim 15 wherein the arithmetic logic units within a first logical

group are powered off by disabling a corresponding first clock enable circuit.

The shader unit of claim 11 wherein the multiple arithmetic logic units comprises

twelve arithmetic logic units.

The shader unit of claim 11 wherein each arithmetic logic unit processes four pixels of

data per four clock cycles.

The shader unit of claim 18 wherein each arithmetic logic unit executes one arithmetic

logic unit instruction per four clock cycles.

A shader unit to process an input data stream, the shader unit comprising:

a. a sequencer to provide control instructions; and

b. a plurality of processing integrated circuit chips coupled to the sequencer, each
integrated circuit chip includes a plurality of arithmetic logic units, wherein
each processing integrated circuit chip includes at least one defective
arithmetic logic unit, further wherein each of the plurality of arithmetic logic
units is dynamically configurable to be enabled or disabled according to the
control instructions provided by the sequencer, thereby increasing a yield for

processing integrated circuit chips.

The shader unit of claim 20 wherein the sequencer dynamically configures a number

of enabled arithmetic logic units.

The shader unit of claim 20 wherein each processing integrated circuit chip includes a

same number of defective arithmetic logic units.

The shader unit of claim 22 wherein each processing integrated circuit chip includes a

same number of arithmetic logic units.

The shader unit of claim 23 wherein all of the arithmetic logic units within the shader

unit are logically configured into a plurality of groups, wherein each group includes
13

WO 2009/091369 PCT/US2008/000787

25.

26.

27.

28.

29.

30.

31.

32.

33.

-one arithmetic logic unit from each processing integrated circuit chip.

The shader unit of claim 24 wherein when a first arithmetic logic unit on a first
processing integrated circuit chip is defective, then each arithmetic logic unit within

the group that includes the first arithmetic logic unit is also defective.

The shader unit of claim 25 wherein the arithmetic logic units included within a group

comprising defective arithmetic logic units are disabled and powered off.
The shader unit of claim 24 wherein each group is coupled to a clock enable circuit.

The shader unit of claim 27 wherein the arithmetic logic units within a first logical

group are powered off by disabling a corresponding first clock enable circuit.

The shader unit of claim 20 wherein the sequencer comprises an input buffer to
receive an input stream of pixel data and a scheduler to direct a block of the received

pixel data to each enabled arithmetic logic unit.

The shader unit of claim 27 wherein the sequencer further comprises an arithmetic
logic unit sequencer that generates an arithmetic logic unit instruction, wherein the
arithmetic logic unit sequencer sends the arithmetic logic unit instruction to each

enabled arithmetic logic unit in response to a control instruction sent by the scheduler.

The shader unit of claim 30 wherein each arithmetic logic unit executes one arithmetic

logic unit instruction per four clock cycles.

The shader unit of claim 28 wherein each arithmetic logic unit instruction corresponds
to a processing instruction within a software program being executed by the shader

unit.

The shader unit of claim 20 wherein the plurality of processing integrated circuit chips
comprises four processing integrated circuit chips and each processing integrate

circuit chip includes three arithmetic logic units.

14

WO 2009/091369 PCT/US2008/000787

34, .The shader unit of claim 20 wherein each arithmetic logic unit processes four pixels of

data per four clock cycles.

35. A shader unit to process an input data stream of pixel data, the shader unit
comprising:
a. a sequencer to provide control instructions to execute a graphics shader
program including shader instructions; and
b. multiple arithmetic logic units coupled to the sequencer, wherein each
arithmetic logic unit is dynamically configurable to be enabled or disabled
according to the control instructions provided by the sequencer such that the

sequencer dynamically configures a number of enabled arithmetic logic units.

36. The shader unit of claim 35 wherein the sequencer comprises an input buffer to
receive the input data stream of pixel data and a scheduler to direct a block of the

received pixel data to each of the number of enabled arithmetic logic units.

37. The shader unit of claim 36 wherein the sequencer further comprises an arithmetic
logic unit sequencer that generates an arithmetic logic unit instruction corresponding
to each shader instruction, wherein the arithmetic logic unit sequencer sends the
arithmetic logic unit instruction to the multiple arithmetic logic units in response to a

control instruction sent by the scheduler.

15

WO 2009/091369 PCT/US2008/000787
1/2
100
\ Input Data Stream
~10 20
12 rl4 16 22 24 26
ALU10_a ALU10_b ALU10 ¢ ALU20 a ALU20_b ALU20 ¢
A A
\ Y Y 1 { Y ! Y 1 \
pipe-abc select pipe-abe select
{ (U
))
18 28
\ f52
> A lL Input Buffer }— > [70
66 P N Texture
Context 6 4J‘I . Texture Buffer I——f Unit
Memory r 56 58~
A <——>| Texture Sequencer l
20~ > 60~
Mash Scheduler <———>Flow Control Sequencer I
ask |
Memory | 62~
S <———>| ALU Sequencer |
68
54
{ Output Buffer |-——————
b | A
30 40~
32 34 36 42~ 44 46~
ALU30_a ALU30_b ALU30_c ALU40 a ALU40_b ALU40_c
v ! I J A \ !
pipe-abc select pipe-abc select
{)
) — :
38 48
Y
Output Data Stream

Fig. 1

PCT/US2008/000787

WO 2009/091369

ri T |

:xo*ﬂ:%ﬂ@#o:xmgﬁxexmxmfﬁo*mXNxHH

R ‘D Y%) ST S

penb

oqe odid

AR

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 08/00787

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6T 15/50 (2008.04)
USPC - 345/426

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC: 345/426

Minimum documentation searched (classification system followed by classification symbols)

345/426, 501, 506, 559, 561

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPTO WEST (PGPB, USPT, EPAB, JPAB), GOOGLE

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

Search Terms Used: shader$, ALU, arithmetic, logic, disable$, power, off, clock, cpu, cycle, processor, integrat$, pixel$, unit$, sequenc$

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2006/0053189 A1 (MANTOR) 09 March 2006 (09.03.2006), entire document, especially 1-37
para [0023}-{0036), [0043), [0047], {0052], [0056]-{0075} and Figs 1,5, 6, 7
A US 2006/0152519 A1 (HUTCHINS et al.) 13 July 2006 (13.07.2006) 1-37
A US 7,298,375 B1 (HUTCHINS) 20 November 2007 (20.11.2007) 1-37

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the intemnational
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the a;:gllcation but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

wyer

wy”

“&” document member of the same patent family

Date of the actual completion of the international search

09 June 2008 (09.06.2008)

Date of mailing of the international search report

19 JUN 2008

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. §71-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (April 2007)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

