US 20110238836A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2011/0238836 A1

HENDERSON 43) Pub. Date: Sep. 29, 2011
(54) NETWORK OPERATING SYSTEM AND (60) Provisional application No. 60/455,739, filed on Mar.
METHOD 18, 2003.
(75) Inventor: Charles E. HENDERSON, Publication Classification
Lexington, VA (US) (51) Int.CL
] GOG6F 15/173 (2006.01)
(73) Assignee: 8’;;‘1 Networks, Inc., Reston, VA LGP TR AT R 709/225
57 ABSTRACT
(21) Appl. No.: 13/155,061
The invention provides a system and method for a network
(22) Filed: Jun. 7, 2011 oper?ting system. The system includes a pgmplex data
medium that enables the continuous reconciliation of the
Related U.S. Application Data collaborative information process and product. The system
- APP generally increases productivity by enabling a network
(63) Continuation of application No. 12/714,094, filed on ~ dynamic among knowledge workers. The system unifies

Feb. 26, 2010, now Pat. No. 7,984,067, which is a
continuation of application No. 10/549,306, filed on
Sep. 16, 2005, now Pat. No. 7,698,346, filed as appli-
cation No. PCT/US2004/008406 on Mar. 18, 2004.

e-mail and shared file management, synchronous and asyn-
chronous collaboration, serial and parallel work flow, top-
down and bottom-up collaboration, and information lifecycle
management.

750
C s >
755
The user selects e
subsection S of
document D
l 760

The user createsa |~
subdocument entity
M containing the
content of
subsection S (as a
substitute for
subsection S)

!

765

D

The user inserts
subdocument M as a
nested/contained
elermnent of document

End

770

/

US 2011/0238836 Al

Sep. 29, 2011 Sheet 1 of 19

Patent Application Publication

ol

L FHN9Id
"T! Stl el aghi Bgll m
m 7y _ | w
" wesio ual W
| gel L 4 oo ;
] | H A :
! (weyniealag) 10ad jeuisiy| F 0zl m
” Gel m
| JOAIDS —oT] ;

US 2011/0238836 Al

Sep. 29, 2011 Sheet 2 of 19

Patent Application Publication

goe

¢ ainbi4

P awi} SHOMIBN |
0z¢e Gee
B]Ep Wo)SAS |0J]U0D SS800Y ejep Jesn
v ~
sog” L€ GIE
QO
Z 2inbi4
sdiysuonejey Goe
00— sepiug

SWHO gLe

g6 a.nbi4 Vs anbig

e GLG

US 2011/0238836 Al

G¥a
- "SOIIUS J8YI0 LIM
Ainue ay1 jo (erdn 3 Apjue Buosuuos
- splay Ajue ey o} : :
¥ diysuoneas
Buibuoieq) piay eiep | eseanopeu
/| esejepdn iope uy 015 v
ors i A
ajepdn 0}
AJue ue $8800U0 Uy lefal
/s o} seljijue Jo 188
51088 /7| e sesooyo sope uy
G0S

00§

Sep. 29,2011 Sheet 3 of 19

8nbi4
= 01974 Sy Qcy
= \
- p—
= \ \
m uﬁ@ﬁgﬁoom uﬁwﬂuﬁooa JUaUInao]
=
=
£ [i [
= = ” i ”
K= JUOUIUTBIIO)) 7” - 7 JUDIUIBIUO)) ” “ ” uqox::ﬁaou
~ L -
S /
= iy
=

19pio

m oov\
=
)
~N—
«
[~™

US 2011/0238836 Al

Sep. 29, 2011 Sheet 4 of 19

Patent Application Publication

g ainbi4

0cg
sannue jo Ayjeinid
au} Jo} Ajjjus ue

SOINJISANS Josn oy

oL 4
safjjus
jo Ayjeinid e spees
Aews Jasn oy

G0g

Go.L

g/ 8inbi

-2 D

044

a
WBLIN0OP JO JuUsIB|e
paUIRILIOY/palsaU
B SE |\ Jusinaopgns
SLIESUl Jasn 8y

A

v/ 8inbi

(g uonossgns
1o} anysgns
e SB) G UORI8sSqns
1O JUSU0D
ay} Butuiejuoo |y
Aus Juswnoopgns

P B S8leald lasn sy |

094

v Aus Jo Juswele
pauiejuoY/pejsaU

A

d Weswnoop
10 § uooasgns

e S109[0% JOSN By L

GGl

s D
052

mtmmmm_mmwm Mmr:. /m L2
A
m Aue
S)e0.d ABUL JBST 8y
: 1)
v Aljue ue
100(es Aew Jasn oy /mo\.

DN
00L

g ainbi4

3 D

G119

diysuone|sl sy Ul
8j0J B AjljU8 pejoses
yoes Buubisse

‘diysuoneied
| esejeaunsesn syy
0La 4
selpue aidynw
$108[9s 1asn ay|
/
G09
s D
009

US 2011/0238836 Al

Sep. 29,2011 Sheet 5 of 19

Patent Application Publication

JONuo™

$8000Y

1G]

/

gee

JOIIUO) SSA00Y

6 @4nbi4
096
183
/ JSWINSUO)
0c6
JOWINSUO)) / a6
\ 4 \ A4 \
1oprogd Ioprod > '
IOWNSUO)) S 4 Iowmnsuo) f—
\ JUSUHIIBITO) TUSWIUIBIUO.) ~
016 < S06
JoLunsuo)) . 10p[04 ————— Jowmnsuo)
/ 7 N
G626
006

\
0€6

US 2011/0238836 Al

Sep. 29,2011 Sheet 6 of 19

Patent Application Publication

dil F-4nNoid

A D
6oLl

8611

1611

g6l

0611

8Ll

3 Amue
abueyo jouueo g
‘7 Aue o3 abueyo
S, SOAIR001 VY Jas()

A

E|
Anus sbueyo g Jssn

4

ssa00e abueyo
jebeuew Jnoyjm
7 Josn Joj 3 Aiue
10 $S9008 paALap

$8188U0 g Jos

A

$59008
afeuew/aAISNOXS
suRqo g 408

A

ssaooe abueyo

/ ebeuew yum
g Jesn Joy 3 Aiue
40 SS800E POALSD

$81E8.0 VY IS

ow:\e

OLlL F3dNoid

- D
SLLL

OLLL

SoLL

/
09}t

3 Alpus 0}
abueyo ay] aAI98l
SIasn OM] JBUI0 |y

A

3 Aue sebueyo o
10 ‘g vy Josn Jaylg

4

$$8008 abueyo pue
Buinjors yum o pue
g sdosn Jof 3 Apus
JO SS800B POALIBD
se1B0I0 VY Jasn

s D
GGlLiL

dil 3dNold

SvLl e

3 Apue o)
sbueyo 8,0 sa8l
g dnolb 10 sisquisw

\ ue y 1es
orLi prE v een

h

3 Aigue
sobueys g dnoub
\ 10 O Jequis

geli 4

g no/dnoib
o} 3 Aue
10 SSBO0B POALSP
\ $0120.0 ¥ J9sn

0cLl

0L FHN9I4
0Z0 ﬁ m\:: o\:;
d5v Tov || ®ov
X

YOV

Vil 3dNoid

3 Ajue 01 abueyo
\ 8.4 SeAleoal VY 89S

ocit

GLil 7'y
3 Amue
/ sobueyo g les
Obbi c>m n

g 488 Jo} 3 Alua
\ 10 $S800E PBALSP
soleaI0 V¥ Jasn
GoLL

s
00LL

US 2011/0238836 Al

Sep. 29,2011 Sheet 7 of 19

Patent Application Publication

gcl 3dNoid
USWNOOPYNS
| @uisebueyo giesn
Gocl 4
UsWwNoopgns
M3U BUj} JO SS800R
abeuew eaisnOXa
s/ suleqo g Jesn
0ol i
USWINOOP 8y}
0} obuByD |RINjONIIS
s SBAIS0BI W Jos(
GGel »
JUsWINoopgns
08¢l udk noopqns € 0] Juswnoop ey} jo
S0 SUOI1309S BuileAuoD
malA pajepdn ‘Juswinoop
ue seAleoel sy (sezuenuelB)
Aljeoyewioine /| sepmpgns g sesn)
108
v osh 0s€l
GlEL E%t:uogsm ﬂ
hu__ L_D SS200R £8300B
sbeuew abueyoebeusw yum
OAISNOXS g Jasn Jo J Alus
soses|el 10 S82008 poALep
g Jesn $9}e810 VY J9S)
0LE—p d
Grel
s D
orel

Vel 3dNOld

'
ocel

geel

0cel

GLeL

oiel

G0l

3 Ajue oy ebueyo
$.g saneoel v 1esn

t

888008
sbeueW/eAISNOXS
spug/seis|dion
g Jasn

A

3 Aus
sabueyo g Jesn

t

$5300B
sbeuew/onsnPXs
sulejqo g Jasn

t

$88008
abueyoebeurw ypm
g Jesn Joj 3 Anue
10 $88008 paALep
$91B810 v J8s(

, s D

0oeL

/

¢l Fd4Noid
1 YA"
oLel
1A
e
Yov

US 2011/0238836 Al

Sep. 29,2011 Sheet 8 of 19

Patent Application Publication

gegl—

0egl —

diysuone|al
M3U Yl apnoul
01 .4, AIuUS JO malA
elep ayj sejepdn
uoneoldde Jasn

1

Gl @inbi4

Gesl

3 Amue o1 psyoepe
si diysuonejal mau e
1eU} uonesldde Jesn
B} SOIIIOU WIBISAS

POIBADOSID
diysuone|ay

3 Aus o}
payoeje sdiysuone|al
SISAQISIP WaISAS

3 Ajjue ue
awnsuoo 0} suibeg
voneoydde Jesn

1443

¥l JdNOId

o~ D

Gl&t

3 Aigue spnjoul
0] ¥ [0JJUOD 558308
40 dnoib sseooe sy
\ spuedxa walsAs ay

0LSE oLl ﬂ

¥ [041UOD 859008
ybnoJyl g Alue mau
/1 esoeaiesn oyl

GovlL

— G0%1
\e

00vL

00G1

US 2011/0238836 Al

Sep. 29,2011 Sheet 9 of 19

Patent Application Publication

9} 8inbi4

puz
029l

"UORBWLIOUI 38U}
_~| o1esuodses ui syiom
GLOL 1o spoe Jesh ey

1

UoljBuLIoIUl BY)
e sassanold Jasn sy

Lol %

wesAs
8y} Ag pesenlep
_~ | uocneuwuoul jeuogels.
cO9l SOAID08) Jasn oy

Wel
s D

0039l

US 2011/0238836 Al

Sep. 29,2011 Sheet 10 of 19

Patent Application Publication

g/l Fd4Noid

Gl
Alanoe

Syl Uiyim psjeslio
abueys Buimoys
UOBWIOL
[BNIX8]U0D A998l
abueyo Ayaioe
0} $S8008 9ABY

091 oym s19sn |1y

A

LIONNIONAR SS3208.

ybnouy sbueyo
AUANOR JO 195
|BJO} 8y} 0} §$0008
ueh siequiawl
GGLl -Uou Byio

A

Alanoe

ay; o1 BuiBuoyjeq
abueyo Jo 195 8y}
Buisesjal Ajeuss
‘ pas|duios,
0SZH s Apnoe ey

A

Aunigoe sy}
Jepun apew sbueyo
10198 [e]0) /L)
seAjgoal (9 dnoub jo
slaquisil) Jaquisw
Auanoe yoez

A

ABuiploooe saniue
ay} abueys pue
dnoub ssanoe ay)
o} BuiBuojeq ssiiue
J0 ss800e ebeuelu
BAISNOXS UIBIqO
oy dnouB jo slequisiy

Vi1 4dnNoid
oLLL
m aopds wy
L wonpuiofur TUU< <
L dpagoy

G041

A

$59208
joajuos/abeuew yum
o) dnoib 01 ss800E
panliap Ag Ajnioe
ue syse} vy Jas

N
Svil
Gl
“ ao0ds ﬁ
" uopruLIoful NOU<
N m. 7 Aanoy
0¥LL
N
Gell

oLl

A

HEIS

US 2011/0238836 Al

Sep. 29,2011 Sheet 11 of 19

Patent Application Publication

g8 aunbi4

G981

098l

Gegl

a
awnoop Buismoiq
SlIYM JE] XS0
BU} Uf UOIBULIOHUL
Jeuonele. se Y Ajdes
$BAI908I Y Jos

f

oiep Jole|
BB (] JUSLUNOOp
8y} Speo| v Jesn

1

N aBesssul sy}
10 WeLusje palseu
se pauesul sl o Aldau
BU) BI8YM JUBULUOD
ay} o} saydal g

%

1 Jswnoop
Buismolg sjum
JBq X202 8y} W
UoIIBWLIOLU| [BUOHEIS.
se o ebessalu
soalaoal g Jesn

0s81L ﬂ
(1 JUBWNI0P
UM pereroosse
N ebessow
SE JUSWIWOD
| esemeln viesn
Grel
e D
[0} 2514

0e8l

Vgl 8inbi4

10J}UCD S§220B puR

waidipel Bupgosuuo
ejep [BUOiE(8) 8}
ybnoiy susidioal

SUILIOJU LIBISAS By

Gz8l

A

UoRBULIOMUL
Jeucnejer se Aidss
oy} SBAIBD8) Y JOsh

0281

1

i ebBessow oy
O JuswWae peissu
SBE pajiesul si Ajdes

oy} sleum ‘abessou

sy 0) seydat g

S8l

A

abessowl
2y} saAR0BI g Josp

oLglL

%

GoslL

uolieALep
ss2008 AQ N

ebessouw [lew-o ue

g Jasn spues v JasM

s D

0081

US 2011/0238836 Al

5902

0z @Inbi4

Ge0T

alepdn
U} Sjiey WoisAs oy

0902

v uoilewoine
sejeAnoBap
AjeoijewioIne
WeYsAs alj

%

mch\

asuodsal
ut sfueyo e
SOYBW ¢ LUOHBWOINY

%

Sep. 29,2011 Sheet 12 of 19

0502

saje|dwog

pue abueus
ey} sesseoosd
v UoBwoTYy

1

Gvig

(sBueyoqsod)

3, Amus pabueyo
ay} Buiplebou
UopeULIoIU; SBAIBD8)
v uocjewoIny

%

Som\

sBueyn ey}
SMOJ[e Wa)sAs sy

Patent Application Publication

.

ou

sah

suondsoxe ue

MOIUL Y
uolewonY

%

A4

abueyo pasodoud
ay) sassaoosd
W UO[BUIOITY

00

t

{ebueyos-aud)

3, Awpus Buibueyo
ou Buiplebau
UOJBULIOJUI 38A18081
W UoneLony

%

v uolewoine
sesiel/soleAnoe
Alieoliewoine
LWBsAs ay |

™ oioz

+

obueyo o) suibsg
Y, uojewioine
AQ pswnsuoD
3, Ayue uy

™ o0z

000¢

61 @Inbi

0zl

WNao
ay) wioly peisjep
Ajjeonewiolne
s; 3 A ayy

™16l

f

Aoyjod
UOHUS]04 UOJBLLUIOY
0} snp sjep
Jsie| e je saudxe 3
Anue o) $59008 J8sN

™ o6t

i

sia)iom Jo

Anesnid e 0} g Alus
JO $S8008 paALep
SpugIxe Jesn sy

™ cos1

0061

US 2011/0238836 Al

Sep. 29,2011 Sheet 13 of 19

Patent Application Publication

LBISAS
9|l} paleys

(pozienual)

L2 @inbi4

lew-a

(poziienusosp)

—_—]

1onpoud syl

U

Ol1eJoge||od

ssa250.d sy}

US 2011/0238836 Al

Sep. 29,2011 Sheet 14 of 19

Patent Application Publication

dc¢c Jdnold

0céc

IROM
S8NUIUOD oS

gice

UOBULICUI jBUOHE|SI
yBnosy peuieb
1npoud pue ssaooud
ay} jo abpajmouy
\ paseq yiom ; abueyo

suuopad Jasn ayy
glee

4

elep jeuonejol
Buiwnsuoo Ag
1onpoJd uolBULIOLUL

\ 2AI109)j00 3}
sessecold Josn 8yl

qGee

o
[«

00ce

ez 8inbi4

%

(pezijenueo) (PAZIjBAUSSD)
1onpoid $8820.1d

US 2011/0238836 Al

Sep. 29,2011 Sheet 15 of 19

Patent Application Publication

€z @inbid4

@l oeez

859008
paAusp ybnouyy
Aljue paubisse
ayy sseooe dnoub
ay} Jo slaquisiy

A

dnoub syy
10} SS900E POALIBD
$o]ealD WelsAs oyl

i

(1squow)

Jasn paubisse
yoea Buiuiejuos (jun
{euoneziuebio mau)

dnouf e seeaio
pue siasn jo 18s 8y}

soye] Wweishs sy

™~

A

Aue ue o}
$S0008 SI9SN JO Jo8
oy} subisse Jasn ay

A

sissn Ayjesnid
e §]09|8s Jasn sy

™~

Geee

0cee

glee

oLee

q0ee

> e

US 2011/0238836 Al

Sep. 29,2011 Sheet 16 of 19

Patent Application Publication

0G¥Z

¢ 3d4Nold

]

abessaw
8U} Jo splay tsyjo
pue queidipal ‘Apog
8yl lipe o] Jesn sy}
Buimoje ‘eoepalul
Bumpe jlew-s sy}
swiasald walsAs ayj

™~ 1A 74

A

mx&\

Saljue palsau
pue Aujue abessow
2y} 404 $S8008
PSALIBD sayslgelss
walsAs sy

Aujuo obessaw
oy} Aq paulejuoo
ualpjiyo e se
S3IjjUs JuswWyoeyE
pejosles sy}
spesul WalsAs ay

~ 0zve

A

t

ovve

sannue payoene ay)
10} SS900B PBALSD
$0180J0 WS)SAS oyl

Amue
abessaw Aldwis ue
391800 We)SAs 8y

/m:&

A

1

geve

obessow
8y} spuas Jesn ey

y

JUSWIYOBJE |[BW-8
SE s8i|} pelosles ey}
puBs 0} LUBISAS B}
SJoNJISUL 18sn ey

owqw\

spiey
Jeyjo pue abessauw
oy sype Josn eyl

y

S8NIUS JO J88
e §100[es J8sn oy

™~ G0ve

A

a ~ 00¥Z

US 2011/0238836 Al

Sep. 29,2011 Sheet 17 of 19

Patent Application Publication

G¢ 34NOI4

P D
0¢Ge

|O4JUOD SS800E pue

wetdioas Bugosuuco
Blep |BUo)R|ol o)
yBnouyy sjugidioas

\ SWLIOLUI WRISAS By

GZ6e ﬂ

S8MIUS pejseu pue
Aiue oyl 4oy ssoo0e

paALSp saysljge;so
\ WwoIshs ay L

0cse

A

sjuaidioal sse0oe
181U JO 109198
0} Josn sy; spdwoid
\ 80BLIBIU| Josn By |

Gl6e
1

Anus

\ siy: aueys, uonoe
oy} s108}es Jesn oy

oLse

*

‘siesn

sidpjnwi 1o suo
Uim aleys o} Ajpue

\ UE S]08[8s Jasn sy |

§0gc

0ose

US 2011/0238836 Al

Sep. 29,2011 Sheet 18 of 19

Patent Application Publication

9¢ FdNoid

€92 e

abueyo ey} apnoul
O} M3JA Bjep sii

sajepdn uoieoidde
Buiwnsuoo yoes

t

abueyo sy}

O] SS900B BABY 0S|2
YoIYM 7 Jusnoop
Bupunsuoo
suoneoldde Jasn
jie 0} uoleuwIoUl
jeuohe|al spuss
pue abueyo auy
sisissed walsAs ayl

1

0Z9¢

 JUBWNOop
8y o} sbueyo
e savjew Jasn ay]

%

G192

(1 Wwswinoop
1O MBIA DILUBUAD
ay; soieibaul
wayshs ayl

A

ozm\

uojjenydde
ue ul (Juswnoop
susdo tesn sy

US 2011/0238836 Al

Sep. 29,2011 Sheet 19 of 19

Patent Application Publication

¢ FHNOI4

sziz”” a

owmw\

jusLlunoopgns
oy} 01 ssovoe
sbeuew saisnpoxe
Buiney se Jssn
alj3 BuIMOYS X800
|euonejel shejdsip
Ajlecnewoine
Jeq IXa1U00 8u]

%

mKN\

uswINoopgns ayl
0} ssoooe abeuew
aAlsnoxe ue Buleb
* abeuepy, ¥se]
By} s)osjes Iasn 8y

%

0142

$YSE] |eNIXajU00
[loM SE JUsWnoopgns
pelosles
a1 JO X800
jeuofiefel jje sAeidsip
Ajleonewsoe
Jeq X8jUod 8y |

1

JUsINoop
g AQ pauieluoD
Wewnoopgns e
ue $}00|9S Josn sy |

00iC

US 2011/0238836 Al

NETWORK OPERATING SYSTEM AND
METHOD

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention is directed to a system and method of
providing collaboration in computer environments and, more
specifically, to a system and method of collaborative knowl-
edge work in a computer or network environment.

[0003] 2. Background Description

[0004] In today’s world, the concept of collaboration has
many different meanings. In attempts to provide some mea-
sure of collaborative “knowledge work”, the marketplace has
fragmented data access systems so that composite and unified
sharing arrangements are essentially unachievable. For
example (but not limited to), the following technologies are
often used in attempts to implement collaborative knowledge
work: E-mail, Workflow Automation, Groupware, Peer-to-
Peer Collaboration, Enterprise Portal Services, Personal File
System, Data Grid.

[0005] One aim of collaboration technology may be to
increase the productivity of knowledge work. Available tech-
nologies have not accomplished this goal. Despite significant
investment in collaboration technology, such as those under-
taken to various degrees by Groove Networks, Lotus Notes,
and Microsoft SharePoint, a leading industry analyst still
asserts that “e-mail is used 90-95% of the time when people
engage in collaboration” A leading industry executive
summed up the problem as: “The best that can be done today
is simply using electronic mail where you’re just mailing out
things, and you get various people proposing edits on those
things, and you’re trying to pull it back together. There’s no
real sharing there; there’s just e-mail going back and forth.”
[0006] Anotherleading industry research group reports that
“e-mail is not an efficient interactive tool.” And finally, a
leading industry research group states that it “does not believe
vendors can perpetuate the value-added myth that groupware
is anything more than e-mail”. In this last quote, groupware is
referring to collaborative systems vis-s-vis e-mail. The group
concludes by suggesting that “there should be more to col-
laboration than e-mail ”

[0007] Two categories of technology currently capture the
substantial breadth of available collaboration systems: e-mail
and the shared file system. Whereas industry leaders peg
e-mail as “the problem” and offer solutions enabling a shared
file system, e-mail continues to dominate the market for col-
laboration. E-mail is not the problem, and the shared file
system is not the solution.

[0008] The general form of a data and software system
today may be a single, static, and hierarchical tree structure.
The file system and relational database both typically share
this structure.

[0009] Good system design today may involve reducing
complexity by normalizing data and object structures within
a single hierarchy, as a “uniform”. Stated simply, the current
medium of information work is discontinuous with this
result: workers store data, have knowledge, and exchange
information. Workers know what they store and retrieve in
data systems (pull). They receive what they do not know
(information) by explicit means of communication. Thus,
what is stored in data systems is not the information product,
but a data product. Its value is not stored, but known and
communicated by explicit means (such as e-mail and tele-
phone).

Sep. 29, 2011

[0010] Ifcollaboration is a function of information, and not
data, then collaboration today is performed by explicit means
only, and is not managed systematically. Users directly com-
municate information based on contextual knowledge of data
through e-mail, phone, and at the proverbial “water cooler”.
Explicit/direct information transfer is largely slow, ad-hoc,
unreliable, and incomplete.

[0011] Existing computer environments for knowledge
work, while frequently labeled information systems, are in
fact only data systems. The product of knowledge work is a
complex combination of content and context. Knowledge
workers currently store the content of data as a file, but
remember the data context, the informational component of
data. That is, the element of data that is information is not
stored in data systems today. Existing data mediums lack the
critical element of information: “context”.

[0012] This explains why the content of existing data sys-
tems is largely void of information. These data systems lack
the context required to convert data into information. Knowl-
edge workers remember data context, and store data content.
A “knowledge gap” then exists by definition between the
contextual knowledge of one worker and another (why
knowledge workers need knowledge). The knowledge gap is
the “unknown unknown” (versus a “known unknown”). The
knowledge gap makes information today largely invaluable
and unmanageable. The knowledge gap resultantly leads to
the hierarchical, top-down structure of knowledge work and
organizational hierarchy, and hence, its systematic ineffi-
ciency and unmanageability.

[0013] Stored data currently lacks the context/information
required to interpret data content. As such, the knowledge gap
accounts for a lack of knowledge transfer, and ultimately the
loss of core value in the knowledge economy. The reality of
knowledge work today was recently described by a well know
industry executive as “the cess pool that is the file system”. A
large volume of data, lacking information context, is mean-
ingless. Given the limitations of the human mind, stored data
is largely unmanageable and incapable of providing long-
term value.

[0014] The knowledge gap explains why data systems
today are “pull” oriented. Workers pull data out of the system
based on their (contextual) knowledge of its content. The
knowledge gap also explains why knowledge work is pull
oriented beyond computer data systems and is why individu-
als become information specialists, or contextual knowledge
repositories (such as, for example, an attorney with specific
knowledge of a client or matter). Knowledge work has
remained pull oriented because the only complex data
medium presently in existence is essentially the human mind.

[0015] As such, while data is managed, information today
isunmanaged. The fundamental limitation/flaw of each of the
above system as a technique of collaboration may be charac-
terized as follows e-mail:

[0016] E-mailis purely decentralized (a decentralized pro-
cess and product). Context is the central, enabling feature of
e-mail based collaboration. The inbox is a unique and private
store for each user. A message comprises a unique informa-
tion context (containing the message and file attachments) for
a specified group of recipients. Context may be considered a
private information space shared by a group of individuals
(context may also describe the component of knowledge cur-
rently uncaptured by data systems). E-mail provides superior
context by its ease of use and flexibility. Participating in a

US 2011/0238836 Al

private information context is simply a matter of creating or
replying to a message, with attached files.

[0017] However, its “explicit” mode of information trans-
fer induces overwhelming complexity in a collaborative set-
ting. The quantity of explicit information required to coordi-
nate a collaboration increases exponentially with the number
of workers (on the order of 2”, where ‘n’ is the number of
workers), resulting in information exchange that is slow, ad-
hoc, unreliable, and incomplete (and which grows increas-
ingly inefficient with the number of workers or volume of
managed information).

[0018] Finally, with each file exchanged by e-mail attach-
ment, the collaborative product becomes “dis-integrated”.
File sets and their constituent versions divide and exponenti-
ate in number across user inboxes and file systems, creating
an intellectually unmanageable product and process (work of
one individual is frequently lost, unknown, or conflicts with
others’ work).

[0019] The shared file system is purely centralized. As a
result, it provides only one context—itself. Pure centraliza-
tion thus sacrifices context in favor of a uniform and shared
file structure. But how can two users work on the same docu-
ment or stage a review cycle? Typically, users resort to e-mail.
A single, shared structure is incapable of supporting the req-
uisite context of interaction among workers in a collaborative
setting. For example, consider what occurs if a team creates
two shared spaces, and accessed by different members. By
creating multiple information spaces, the team has simply
fragmented, or disintegrated the information product. In gain-
ing collaborative “context” (e.g., for example, a private
shared information space), the team typically fragments the
collaborative information product and loses continuity.
Finally, allowing users to simultaneously edit to a file does not
in itself provide context, since there remains only one (albeit
shared) information context (e-mail remains the only medium
for contextual collaboration).

[0020] Serial and parallel work flow in current data man-
agement systems remain unreconciled. For example, assum-
ing an information space is currently embodied as a shared
file store, recent implementations automatically synchronize
a space (in a parallel work flow) by exchanging deltas among
members of the space in real-time. Such peer-to-peer systems
effectively enable parallel work flow, but miss the necessary
element of serial work flow. As a result, knowledge workers
resort to e-mail for serial work flow. E-mail allows the staged
transfer of files/versions, and as such, is the de facto standard
for serial work flow. In this way, work flow is bifurcated
between two systems: the shared file store/real-time confer-
encing technology (parallel work flow) and e-mail (serial
work flow).

[0021] Those technologies typically identified as “work
flow system” (such as, for example, Microsoft SQL Work
Flow Designer or InfoPath) require construction of a work
flow prior to execution. Such work flow is used to perform
repetitive tasks (e.g., billing, accounting, or surveys). How-
ever, this system class is effectively (and in practice) excluded
from use by knowledge workers, since neither the process nor
product of knowledge work can be known before it is per-
formed (that knowledge is required to construct an a priori
work flow).

[0022] Therefore, knowledge workers are at present stuck
with divergent and unreconciled methods of work flow, which
neither individually, nor collectively, provide a workable
solution. As a result, workers experience “information over-

Sep. 29, 2011

load” as they attempt to manually execute work flow, as they
attempt to integrate file versions forked and scattered across
hard drives distributed via e-mail.

[0023] The invention reconciles these deficiencies and
introduces a new paradigm for collaborative information
management.

SUMMARY OF THE INVENTION

[0024] In an aspect of the invention a system and method
for maximizing collaborative productivity of knowledge
workers is provided. The system and method may include at
least one component to logically decentralize a collaborative
information process of knowledge workers, to logically cen-
tralize a collaborative information product of knowledge
workers, and to continuously reconcile the decentralized col-
laborative information process and the centralized collabora-
tive information product.

[0025] In an aspect of the invention a computer program,
system, and method for maximizing collaborative productiv-
ity of knowledge workers is provided. The computer pro-
gram, system and method may include at least one component
to logically decentralize a collaborative information process
of' knowledge workers, to logically centralize a collaborative
information product of knowledge workers, and to continu-
ously reconcile the decentralized collaborative information
process and the centralized collaborative information prod-
uct.

[0026] In another aspect of the invention a complex data
medium is provided. The medium may include a means for
capturing relational continuity across user work, servers, and
networks.

[0027] Inanother aspect of the invention a system, method
and computer program of data evolution is provided. The
system, method and computer program may include a mecha-
nism and process of unifying change and state within a tem-
poral and relational complex data medium.

[0028] In another aspect of the invention an information
system, method, and computer program is provided. The
system, method, and computer program include an informa-
tion process that may deliver users the relational evolution
and context of data in real-time.

[0029] Inanother aspect of the invention a method, system,
and computer program of access evolution is provided. The
method, system, and computer program may include a means
of'derived access and a means of evolving access. The system
may provide temporal continuity in the “complex data
medium” (CDM) and collaborative work flow.

[0030] Inanother aspect of the invention a method, system,
and computer program of a dynamic view is provided. The
method, system, and computer program may include a
mechanism and process for integrating, mapping, and syn-
chronizing a dynamic view.

[0031] In another aspect of the invention a network appli-
cation architecture, system, and computer program is pro-
vided. The architecture, system, and computer program may
include an XML view and context bar. The application may
be driven bi-directionally by the system and user, which may
create a network dynamic among users through system appli-
cations.

[0032] In another aspect of the invention a unified system,
method, and computer program of e-mail and shared file
management is provided. The system, method, and computer

US 2011/0238836 Al

program may provide a natural mechanism for allowing indi-
vidual/group collaboration while maintaining data in a con-
tinuous and integrated form.

[0033] In another aspect of the invention a unified system,
method, and computer program of serial and parallel work
flow is provided. The unified system, method, and computer
program may provide continuous collaboration among users
over time and at the same time.

[0034] In another aspect of the invention a unified system,
method, and computer program of synchronous and asyn-
chronous collaboration is provided. The system, method, and
computer program may include a means of reconciling e-mail
and instant messaging.

[0035] In another aspect of the invention a method and
unified system, method, and computer program of security
context is provided. The system may provide a mechanism
and process of regulating information exchange and lifecycle.

BRIEF DESCRIPTION OF DRAWINGS

[0036] FIG.1 is a block diagram of an embodiment of the
environment of the invention;

[0037] FIG. 2 is a block diagram of the embodiment show-
ing a Venn diagram of entities typically included in the “com-
plex data medium” (CDM);

[0038] FIG. 3 is a logical block diagram showing compo-
nents and elements of a CDM;

[0039] FIG. 4 is a functional block diagram of an embodi-
ment showing data evolution;

[0040] FIG. 5A is a flow chart of an embodiment showing
steps of “changing” an entity by creating a relationship;
[0041] FIG. 5B is a flow chart of an embodiment showing
steps of “changing” an entity by updating a field of the entity;
[0042] FIG. 6 is a flow chart of an embodiment showing
steps of the process of linkage;

[0043] FIG. 7A is a flow chart of an embodiment showing
steps of the process of expansion/granularization;

[0044] FIG.7Bisaflow chart of an illustrative embodiment
showing steps of the process of expansion/granularization;
[0045] FIG. 8 is a flow chart of an embodiment showing
steps of the process of expansion/granularization;

[0046] FIG. 9 is a functional block diagram showing an
embodiment of compiling a unique view for a user;

[0047] FIG. 10 is an illustration showing a process of par-
allel access evolution;

[0048] FIG. 11A is a flowchart of an embodiment showing
steps of parallel workflow;

[0049] FIG. 11B is a flowchart of an embodiment showing
steps of parallel workflow;

[0050] FIG. 11C is a flowchart of an embodiment showing
steps of parallel workflow;

[0051] FIG. 11D is a flowchart of an embodiment showing
steps of parallel workflow;

[0052] FIG.12isan illustration of an embodiment showing
a process of serial access evolution;

[0053] FIG. 13A is a flowchart of an embodiment showing
steps of serial workflow;

[0054] FIG. 13B is a flowchart of an embodiment showing
steps of serial workflow;

[0055] FIG. 14 is a flow chart of an embodiment showing
the steps by which the access group of an access control may
be expanded;

[0056] FIG. 15 is a flowchart of an embodiment showing
steps of information delivery;

Sep. 29, 2011

[0057] FIG. 16 is a flowchart of an embodiment showing
steps of the user’s response to information;

[0058] FIG. 17A is a function block diagram of an embodi-
ment showing mixed serial/parallel work flow;

[0059] FIG. 17B is a flow chart of an embodiment showing
mixed serial/parallel work flow;

[0060] FIG. 18A is a flow chart of an embodiment showing
steps of the process of unified synchronous/asynchronous
messaging;

[0061] FIG. 18B is a flow chart of an embodiment showing
steps of the process of unified synchronous/asynchronous
messaging;

[0062] FIG. 19 is a flow chart of an embodiment showing
steps of the information lifecycle;

[0063] FIG. 20 is a flow chart of an embodiment showing
steps of in an instance of automation;

[0064] FIG. 21 is an illustration showing a centralized and
decentralized dichotomy;

[0065] FIG. 22A is an illustration of a process of reconcil-
ing centralization and decentralization;

[0066] FIG. 22B is a flowchart of an embodiment illustra-
tively showing steps in the collaborative cycle;

[0067] FIG. 23 is a flowchart of an embodiment showing
steps of creating derived for a group of recipients;

[0068] FIG. 24 is a flowchart of an embodiment showing
steps of creating derived access through e-mail;

[0069] FIG. 25 is a flowchart of an embodiment showing
steps of creating derived access to a complex data structure;
[0070] FIG. 26 is a flow chart of an embodiment showing
steps in the process of parallel work flow among users work-
ing in a shared document, and

[0071] FIG. 27 is a flow chart of an embodiment illustra-
tively showing steps of the application context bar.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

Complex Data Medium

[0072] FIG. 1 is a block diagram of an embodiment of the
environment of the invention, generally denoted by reference
numeral 100. However, one of ordinary skill in the art would
recognize that the invention may be used in other environ-
ments. The environment 100 includes a server 105 having an
associated database 110 and a plurality of clients 115 (a, b, ¢),
130, and 135. Further, the environment includes network 120,
which may be alocal area network (LAN), wide-area network
(WAN), or other network. The Internet 125 interconnects
network 120 with the client 130 and the peer 135, which also
may have a database 140.

[0073] The server 105 and associated database 110 may
together persist and manage information and data. The server
105 and database 110 may exist in other variations, as one
skilled in the art would recognize. The server may support
different network applications (e.g., for example, word pro-
cessor, enterprise applications, data base applications, or the
like). The server 105/135 typically contains the set of data and
information accessed by the client. The clients 115/130/135
typically provide the interface through which users (knowl-
edge workers) access a network application. The client may
also store and execute software belonging to the network
application (e.g., for example, thick client applications, such
as word processors) or may also provide the application

US 2011/0238836 Al

through a thin client interface (e.g., for example, the internet
browser, terminal services). Client firmware include the PC
or thin web client.

[0074] The Internet 125 may connect remote clients and
peers to the network 120. The remote client may access the
network 120 through security mechanisms, including a fire-
wall and virtual private network (VPN). The peer 135 is
typically both a server and a client, including the database
140, a server/client 135 within a in a single unit (e.g., a laptop,
having a database stored on its local hard drive, the server
stored and executed locally, and network applications stored
and executed locally). Servers 105 and 135 are typically
called “peers” when they are connected by Internet 125 and
network 120. As peers, servers 105 and 135 may jointly
manage the “data environment”.

[0075] The network application is typically driven by both
the server and user, enabling bi-directional managed infor-
mation and implicit collaboration among users, as described
further below.

[0076] The CDM 145 may logically exist across one or
more physical data repositories. (may physically reside but is
logically one thing) The CDM may be present and pervasive
throughout the entire network. The CDM is pervasive as
servers execute the method of information, pushing data
across the network (e.g., into user view), making it pervasive.
The data is complete and self describing within a continuum.
Encompassing the entire network and across users, networks,
system data, time.

Complex Data Medium

[0077] FIG. 2 s a block diagram of the embodiment show-
ing a Venn diagram of entities typically included in the CDM.
The diagram shows the set of entities 200 as containing the set
of relationships 205 and the set of forms 210. The form
(belonging to set 210) typically describes a “complex data
structure”. Typically, the form may itself be a complex data
structure defining the general structure of a form’s “instance”.
For example, a document form may be a complex data struc-
ture which defines a document instance as containing a set of
subdocuments. The form typically defines both a set of
“fields” contained by an instance of the form and a set of
“elements” contained by a form instance.

[0078] The set of fields typically comprises a k-tuple of
data components each having a textual identifier. A field is
typically defined as containing data of a given type, including
binary (e.g., an application image), boolean, date/time, deci-
mal, globally unique identifier (GUID), integer, reference,
string, time span, XML (Extensible Markup Language), or
the like. Each field may be considered an “attribute” or “prop-
erty” of a form’s instance.

[0079] The set of elements typically comprises the hierar-
chy of elements contained by a form. An element typically
defines the form of an instance as it is contained within the
hierarchy. The element is typically contained by the root form
or another element belonging to the hierarchy. Elements may
be used in combination to define the form of a complex data
structure. For example, a “subdocument” element of the
“document” form may allow or require a document instance
to contain a “subdocument”. The element may impose further
restrictions on the “content model” of the form, such as the
number of element occurrences allowed in an instance of the
form. The structure of a form may include certain “groups”,
such as choice and sequence, which allow the user to further
specify the content model.

Sep. 29, 2011

[0080] The CDM includes form derivation, which may
allow the structure of one form to derive one or more other
forms. In certain aspects, the derivation structure of the CDM
may be analogous to concepts of the object-oriented pro-
gramming model (OOP). Derivation typically allows a form
to inherit fields and elements of each base form. For example,
aform typically includes its fields and elements plus the fields
and elements of'its base form(s). The relationship may also be
specified, allowing an element of a form to override (or
replace) an element belonging to a base form.

[0081] The structure of an entity may typically be defined
by a form. The form of an entity typically includes a globally
unique identifier GUID field (identified as “Entity:UID”),
enabling continuity of the CDM across networks, including
the Internet.

[0082] As FIG. 2 illustrates, the relationship is typically a
kind of entity (deriving the form of the entity), since the set of
relationships 205 may belong to the set of entities 200. As
FIG. 2 also illustrates, the form is typically a kind of entity
(deriving the form of the entity), since the set of forms 210
may belong to the set of entities 200. In this way, the CDM is
self-describing, since the complex data structure defining a
form and the complex data structure of a form’s instance (e.g.
a document instance) may both exist within a common struc-
ture, the CDM.

[0083] The process of building up a form typically involves
building a new form out of existing ones. At the beginning of
the process, the user typically combines primitive types that
may be built into the system (e.g., for example, integer or
string). The system database typically has tables correspond-
ing to each element of the “System:Forms”, “System:Ele-
ments”, “System:Fields” (and other elements of the form),
since each instance is typically itself an entity. Therefore,
creating a new form typically results in a new instance of a
Form entity (typically stored as a record in the “System:
Forms” table), as well as additional Element entities that may
be contained by the Form (typically stored as records in the
“System:Elements” table), as well as additional Field entities
that may be contained by the Form (typically stored as records
in the “System:Fields” table), as well as other entities that
may be contained by the form structure (e.g., for example,
including the content groupings Choice and Sequence), as
well as containment relationships typically creating the com-
plex data structure of a form (typically stored as records in the
System:Containment™ table), as well as any base relation-
ships that may connect the form entity with base forms or
form elements with base elements (typically stored as a
record in the “System:Base” table), and so on.

[0084] Creating a new form typically also prompts the sys-
tem to create the database table that may contain entity
instances of the form. A database table typically embodies the
entity instance of a form. The database table typically com-
prises a set of columns corresponding to each field of the
form. The database table is typically automatically created by
the system when the new form is defined (e.g., for example,
when the complex data structure of a form and elements is
created). The table’s name typically adopts the qualified name
of the form (e.g., for example, “Systern:FormName”). An
entity instance of the form may then be contained as a record
in the table corresponding to the form. Elements of an the
instance of a form instance are typically connected to the
instance of a form by containment relationships. For example,
a containment relationship may connect a document instance

US 2011/0238836 Al

(whose form is document) with its nested subdocument(s)
(which may be defined as element(s) of the document’s form).
[0085] The CDM comprises a graph/network of entities
and relationships. The entity may be an anchor of reference,
or relationship target (the relationship may be implemented
as an entity subtype). The entity may have a set of properties/
fields/attributes. The relationship may be a k-tuple, wherein
each member may be a reference to a target entity or a literal
value. The meaning of an entity may typically be defined by
relationships connecting it with other entities. To this extent,
as an entity may be defined vis-a-vis other entities, the rela-
tionships defines both meaning and context of the entity.

Data Evolution

[0086] The CDM may be an evolving and temporal
medium. The medium reconciles change and state. The entity
may typically be the unit of state. The relationship may typi-
cally be a unit of change and time. To the extent that a
relationship may be an entity subtype, it becomes a part of the
data state. Entities and relationships are created but are not
necessarily destroyed; they may be immutable and cumula-
tive.

[0087] The “process of change” or “data evolution™ in the
CDM may be largely driven by the addition/negation of rela-
tionships. For example, an entity typically changes when a
relationship is added for which it is a member target/refer-
ence. In this exemplary case, the relationship is the change,
and the target entity, is that which is changed. The entity may
also be considered as changing by transitive association with
other entities, through association with any entity belonging
to the same graph (with which the entity is associated). The
process of change in the CDM may also be driven by the
creation/addition of entities.

[0088] The relationship may record the time at which it is
added to the graph. At the conclusion of a relationship
between entities, a relationship may be negated. Negation is
the additive inverse of creating a relationship, effectively
canceling out a relationship, while not necessarily deleting it
(an embodiment may structure negation as a property con-
taining the time at which negation occurs). If each relation-
ship is considered a term, and addition/negation the term’s
sign (positive or negative), then the state of an entity attime ‘t’
may be considered the sum of all relationships up to time “t’.
In other words, summing change yields state. This may be
considered the relational algebra. This captures the notion of
an “evolving data system”.

[0089] FIG. 3 is a logical block diagram showing compo-
nents and elements of a CDM, generally denoted by reference
numeral 300. The CDM encompasses, but not limited to,
system data 305, access controls 310, user data 315, time 320,
and networks 325. The CDM unifies and integrates at least
these various aspects.

[0090] FIG. 4 is a functional block diagram of an embodi-
ment showing “data evolution”, starting at step 400. By way
of'example, FIG. 4 illustratively shows the process of tempo-
ral, “data evolution” in the CDM of a folder as it changes over
the course of a week. According to this example, on Sunday,
folder 400, document 420, document 425, and document 430
exist as unrelated entities. On Monday, the document 420 is
“inserted” in the folder 400 via the containment relationship
405. On Tuesday, the document 425 is inserted in folder 400
via the containment relationship 410. On Wednesday, the
document 430 is inserted in folder 400 via the containment
relationship 415. In this case, each relationship stores the time

Sep. 29, 2011

at which it was “added” to the CDM. As FIG. 4 depicts, the
folder 400 “evolves™ over the cited period through relation-
ships, which capture both the change and state of the folder
system (whose root is folder 400). It is said that Folder 400
“changes” vis-a-vis documents 420, 425, and 430 through
relationships 405, 410, and 415.

[0091] If on Thursday, document 430 is removed from
folder 400, the relationship 415 is not necessarily deleted.
Rather, the negated bit of the relationship 415 is changed from
its default value (false) to true. To integrate the current state of
the folder 400, the system may treat each relationship/entity
pair in a way analogous to algebra, such that the current
“sum” of folder 400 is the document 420+document 425+
document 430-document 430, or by canceling out the
negated document 430, document 420+document 425 (or the
set {document 420, document 425}). Note that neither Docu-
ment 430 nor Relationship 415 has been deleted from the
CDM following the “removal” of Document 430. To compute
the state of the folder 400 immediately preceding the negation
of Document 430, the system “sums” the previous set of terms
(not including “~document 430”) arriving at document 420+
document 425+document 430 (or the set {document 420,
document 425, document 430}). One of ordinary skill in the
art would recognize that the example of FIG. 4 is not limiting,
and in fact, may easily include other varying scenarios which
may be very complex.

[0092] FIG. 5A is a flow chart of an embodiment showing
steps of “changing” an entity by creating a relationship, start-
ing at 500. FIG. 5A (as well as all flowcharts herein) may
equally represent high-level block diagrams of components
of the invention implementing the steps thereof. The steps of
FIG. 5A (as well as all flowcharts herein) may be imple-
mented on computer program code in combination with the
appropriate hardware. This computer program code may be
stored on storage media such as a diskette, hard disk, CD-
ROM, DVD-ROM or tape, as well as a memory storage
device or collection of memory storage devices such as, for
example, read-only memory (ROM) or random access
memory (RAM). Additionally, the computer program code
can be transferred to a workstation over the Internet or some
other type of network.

[0093] Continuing with FIG. 5A, at step 505, an actor may
choose a set of entities to relate. For example, the actor may
choose to instruct the system to insert a document in a given
folder. At step 510, the actor may instruct the system to insert
the containment relationship linking the folder as containing
entity (parent) and the document as the contained entity
(child). If this action is allowed, it causes a “change” to the
folder entity. At step 515, the process ends.

[0094] FIG. 5B is a flow chart of an embodiment showing
steps of “changing” an entity by updating a field of the entity,
starting at 530. At step 535, an actor may choose the entity and
field to update. For example, the actor may choose to instruct
the system to update the field “name” of a document entity. At
step 540, the actor may instruct the system to update the given
field with a given value. If this action is allowed, it causes the
entity’s field to update. At step 545, the process ends.

Reconciling Physical Centralization &
Decentralization

[0095] Prior to the invention, data systems fall under sev-
eral categories of physical data location. The client Client-
Server method is centralized, serving data from a central

US 2011/0238836 Al

server. The peer-to-peer (P2P) mechanism is decentralized,
replicating or sharing data across a distributed array of data
storage systems.

[0096] The invention may reconcile physical data central-
ization & decentralization by including a method of identify-
ing entities by a globally unique identifier. Unlike the World
Wide Web (prior to the invention), the entity’s unique identi-
fier (UID) is not typically based on the data’s physical loca-
tion. Rather, the UID may generated randomly with global
uniqueness (for example, an embodiment may be the System.
Guid.New() method included in Microsoft’s NET frame-
work). Each entity may then be identified by its associated
UID (an embodiment may include UID as a field in the
“form” definition of the entity).

[0097] The invention may provide for essentially any sys-
tem (e.g., a PC or a Server) to become a system site. System
sites may persist and manage data and participate in a distrib-
uted P2P configuration (decentralized). That site may simul-
taneously assume the role of server or client in the (central-
ized) client-server configuration (wherein the client accesses
data remotely managed by a server).

[0098] As aresult, the invention may decouple the logical
structure from the physical structure (i.e., location) of data.
This allows the platform to automate, fully, the physical
placement of data and its replication/synchronization. The
manner of data placement/replication/synchronization may
be optimized by the system on the basis of one or more:

[0099] (a) Security considerations: The system may hold
data behind a firewall for purposes of security, or estab-
lish one, trusted server as the access point for employees
accessing data remotely.

[0100] (b) Efficiency considerations: The system may
replicate and synchronize data across multiple platform
data sites, to reduce latency and guarantee quality of
service (QoS). The system may execute QoS constraints
specified by the administrator or automatically deter-
mined by a user work load requirements.

[0101] (c) On-line, Off-line: The system may replicate
data on sites which are expected to go off line. For
example, the system may automatically replicate data
onto a user’s laptop (participating as a system site), so
the user has access to files when disconnected from the
network.

The Process of Complexity and Data Continuum

[0102] The invention establishes and provides a “process of
complexity”. The process may be driven by a computer man-
aged environment (the “environment”, “operating environ-
ment”, “network operating system”, “system”, “platform”, or
“platform environment”) in which data and information con-
sumers (“actors”) participate (receive, process, and create

information/data) in CDM managed by the environment.

[0103] The invention defines complexity as relational den-
sity in a data structure. A function of the system, according to
the invention, may be to increase data complexity, on the basis
that data manageability is a function of complexity. The pro-
cess of complexity may have the effect of creating a “data
continuum” in the CDM. The process of complexity may
occur through following operations, including linkage,
expansion/granularization, and contraction/unification (con-
traction and expansion may considered symmetric elements

Sep. 29, 2011

of the process of complexity). These operations have the
effect of increasing complexity and continuity of a given
CDM, for example:

Linkage:

[0104] Relational linkage includes the process of creating
new relationships. The effect of linkage includes driving
information and data value transfer, since relationships may
serve as entity “attractors”. That is, the effect of linkage
includes maximizing the visibility of entities of perceived
value, while minimizing the visibility of little perceived
value. Linkage adds new relationships to the information
network, increasing relational density. Linkage may drive
information transfer, as relationships serve as entity “attrac-
tors”. Linkage promotes entities of value, and eliminates
entities of little value over time. Linkage may ultimately be a
process of contraction, increasingly collapsing the space
upon itself as a data continuum.

[0105] FIG. 6 is a flow chart of an embodiment showing
steps of the process of linkage, starting at step 600. At step
605, the user may select multiple entities to link relationally.
Atstep 610, the user may create a relationship, assigning each
selected entity a “role” in the relationship. For example, the
user may select a folder entity and a document entity and
create a containment relationship linking each entity as parent
and child (their role names), respectively. At step 615, the
process ends.

Entity Expansion/Granularization:

[0106] Entity “expansion” or “granularization” includes
the process of increasing the number of entities by subdivid-
ing an object/concept (such as, for example, labor, or a docu-
ment, or the like) as multiple entities, increasing the potential
linkage (and thereby increasing the relational density over
time). For example, a user may subdivide a document as a
collection of one hundred documents, each serving as a site
for relationships. Granularization increases the precision of
information. Granularization is also a logical extension of the
evolution of thoughts and ideas.

[0107] FIG. 7A is a flow chart of an embodiment showing
steps of the process of expansion/granularization, starting at
step 700. At step 705, the user may select an entity A. In step
710, the user may create an entity B. At step 720, the user may
insert entity B as a nested/contained element of entity A
(through a containment relationship). At step 720, the process
ends.

[0108] FIG. 7B isaflow chart of anillustrative embodiment
showing steps of the process of expansion/granularization,
starting at step 750. At step 755, the user selects subsection S
of document D. At step 760, the user creates a subdocument
entity M containing the content of subsection S (as a substi-
tute for subsection S). At step 765, the user inserts subdocu-
ment M as a nested/contained element of document D. At step
770, the process ends. This example shows expansion/granu-
larization by dividing the document into multiple logical
components.

Entity Contraction/Unification:

[0109] Unification, according to the invention, includes the
process of the entity contracting, or collapsing upon itself.
This may occur as multiple entities are combined as one. For
example, if attorneys discover that several legal documents
serve the same function, they may substitute the group of

US 2011/0238836 Al

documents with a single instance. Unification includes the
effect of increasing the data continuity.

[0110] FIG. 8 is a flow chart of an embodiment showing
steps of the process of unification/contraction, starting at step
800. At step 805, the user may select an entity A. In step 810,
The user may substitute an entity for the plurality of entities.
At step 820, the process ends. When the user “substitutes™ an
entity A for a plurality of entities, the relationships linking the
plurality of entities are typically remapped to the entity A.
This remapping causes the unification of entities.

[0111] The process of complexity may substantially con-
tribute to the formation of a “data continuum”. Prior to the
invention, the simple structure of existing data systems frag-
ments and dis-integrates data (for example, file copies, ver-
sions, messages, stand-alone data stores, networks). The
invention allows the complex medium to evolve as a network
of information that typically becomes (with increasing con-
tinuity) increasingly consistent, complete, correct, self-de-
scribing, and closed (engulfing network externalities). The
process may also include the effect of eliminating data incon-
sistency and redundancy.

[0112] An aspect of the “data continuum” is its effect on
productivity. The continuum includes the effect of driving
implicit collaboration among knowledge workers; a dimen-
sional “force feedback”, induced by the “intersection” of
information product and process. For example, as users work
within the same space, the intersection of data through rela-
tionships may force the alignment and normalization of their
individual processes and work product, dramatically increas-
ing productivity.

Access Evolution

[0113] An “evolving access” model provided by the inven-
tion may allow “actors” (e.g. users, groups, components,
organizational units) to gain access to data and information
through “access derivation”. “Access derivation” typically
includes a hierarchy along which access permission is created
and flows/evolves. Each node in the hierarchy may be an
“access control”, providing an actor (e.g., user) access to a set
of entities (the “access group”). An access control may
“derive” access through a relationship connecting to a “base”
access control. An embodiment of the invention may create
the system as the root actor in the hierarchy of derived access.
[0114] Access derivation typically includes a process of
extension. For example, a user A may extend his/her access to
another users/group B. User B may in turn extend access to
other users/groups, if the user A set a transfer bit allowing her
to do so. The bits the user A may have set include “change”,
“manage”, “evolving”, “transfer’:

[0115] Change: Specifies whether the consumer is
allowed to change an entity belonging to the access
group.

[0116] Manage Access: Specifies whether the consumer
is allowed to gain exclusive access of one or all members
of the access group (e.g. the consumer gets an “exclu-
sion” on entity A).

[0117] Evolving Access: Specifies whether the con-
sumer receives change from the base

[0118] Transfer: Specifies whether the user is allowed to
extend access, creating derived access controls

The derivation hierarchy may exist as a data structure within
the CDM (as a part of the “data continuum™) and may be
constructed as a set of the following entities and relationships:

Sep. 29, 2011

[0119] Access Control (entity): The access control
entity, including in its form a base access control, flags/
bits specifying access permissions, and the actor to
which access may be granted.

[0120] Consumer (relationship): The consumer relation-
ship connects the entity with access control (creating the
link between consumed entity and consuming actor/
organizational unit).

[0121] Base (relationship): Creates the link of derivation
between the base access control and derived access con-
trol.

[0122] Knowledge work is largely a process of change. The
flow of change includes two forms: in parallel and serially.
Serial work flow includes the staged transfer of change along
a linear path, i.e., from one space to the next. Parallel work
flow includes the transfer of change within a space (typically
among members of the space).

[0123] The invention provides a method of reconciling/
unifying serial and parallel workflow. Such unification
includes an evolving access control model (or “evolving
access”) built within the CDM. The method of unification
includes the coupling of evolving access and evolving data.
Members of an information space participate in parallel work
flow as the environment automatically propagates work
among member views in real-time. Users and groups
sequence work (staging information flow) in an automated
process of serial work flow. The following sections describe
embodiments that perform parallel and serial work flow.
[0124] Access may evolve parallel and serially. Parallel
evolution may occur as members of an information space
create change (the product of work). Those changes (relation-
ships with attached entities) may then automatically become
available to other members of the space, and their views
continuously updated in real-time. The space in which paral-
lel evolution occurs may be called an “information space”,
since a user may share access to all change made in the
information space. Serial evolution may occur as members
“complete” work they have been assigned or have obtained by
derived access. Those changes made by the member, which
typically belong to the access group of the member’s access
control, may then automatically be transferred to base access
controls and derived access controls according to the ‘exclu-
sion’ and ‘evolving’ bit. The ‘exclusion’ bit typically prevents
the flow of change to a base access control until the work is
completed (when the exclusion bit is reset). However, change
typically continues to flow to derived access controls during
that period (or when the exclusion bit is false) if the ‘evolving’
bit of those derived access controls is set as true.

[0125] A recursive mechanism enables combinations of
serial and parallel work flow that are powerfully complex,
while systematically automated by the invention.

[0126] FIG. 10 is an illustration showing a process of par-
allel access evolution. By way of example, a user A, having
access to an entity through access control (AC ;) 1005, creates
derived access for three individuals (B, C, and D). Those
individuals (i.e., B, C, and D) obtain access through access
controls 1010 (ACy), 1015 (AC_), and 1020 (AC,,), which
each derive access control 1005. User B gains access to the
entity through access control 1010. User C gains access to the
entity through access control 1015. User D gains access to the
entity through access control 1020. User A may specify that
access controls 1010, 1015, and 1020 have “evolving” access.
The four users then belong to an information space including
access controls 1005, 1010, 1015, 1020, since every change

US 2011/0238836 Al

made by any given user of the group (A,B,C,D) immediately
becomes available to the other three. The flow or evolution of
access in this example may occur as follows: user B makes a
change to the entity through access control 1010. Because no
exclusion may exist for access control 1010 on the given
entity, the change may evolve its derived access control 1005.
When the access group of access control 1005 expands to
include the user B’s change, the system checks whether
derived access controls “evolve”. Since user A set access
controls 1015 and 1020 as evolving (“evolve” bit), the access
group of access controls 1015 and 1020 may immediately
expand to include user B’s, change. The views ofuser A, C, D
may immediately update to include user B’s change, illustrat-
ing parallel work flow.

[0127] FIG. 11A is a flowchart of an embodiment showing
steps of parallel workflow, starting at step 1100. At step 1105,
user A may create derived access of entity E for user B. At step
1110, user B may change entity E. At step 1115, user A may
automatically receive B’s change to entity E. The change is
typically received in real-time by the dynamic view through
the process of access and data evolution. The view will typi-
cally automatically update to reflect the change. At step 1120,
the process ends.

[0128] FIG. 11B is a flowchart of an embodiment showing
steps of parallel workflow, starting at step 1125. At step 1130,
user A may create derived access of entity E for group (orga-
nizational unit) B. At step 1135, a member C of group B may
change entity E. At step 1140, user A and members of group
B may automatically receive C’s change to entity E. Members
of a group (B) typically receive any access granted to the
group (B). At step 1145, the process ends.

[0129] FIG. 11C is a flowchart of an embodiment showing
steps of parallel workflow, starting at 1155. At step 1160, user
A may create derived access of entity E for users B and C with
evolving and change access. At step 1165, either user A, B, or
C may change entity E. At step 1170, the other two users may
receive the change to entity E. Users B and C may typically
receive each other’s change since access may freely/bi-direc-
tionally evolves in the three containing access controls A, B,
C. For example, when B makes a change, the change typically
expands the access group of the derived access control (X),
since no managed exclusion is held by access control B in the
example. Access control C would then typically evolve to
include the change since the ‘evolving’ bit of access control C
is true in this example, thus demonstrating parallel work flow.
At step 1175, the process ends.

[0130] FIG. 11D is a flowchart of an embodiment showing
steps of parallel workflow, starting at 1180. At step 1185, user
A may create derived access of entity E for user B with
manage/change access. At step 1190, user B may obtain
exclusive/manage access. At step 1195, user B may create
derived access of entity E for user A without manage/change
access. At step 1197, user B may change entity E. At step
1198, user A may receive B’s change to entity E, but cannot
change entity E At step. In this example of parallel workflow,
the recipient of derived access to an entity may obtain exclu-
sive access of the entity, which may typically deny other users
(e.g. user A) evolving access to the entity. Butin this example,
the user may provide read-only access back to user A (e.g. for
purposes of review by user A), which may demonstrate par-
allel workflow. At step 1199, the process ends.

[0131] FIG.12isan illustration of an embodiment showing
a process of serial access evolution. By way of example, a
user A, having access to an entity through access control

Sep. 29, 2011

1205, creates derived access for user B through access control
1210 (deriving access control 1205). User A specifies that
user B through access control 1210 has “manage” access.
Upon receiving access, user B uses manage access to gain
exclusive access (an exclusion) of the given entity. User B
then, having access to an entity through access control 1210,
creates derived access for user C through access control 1215
(deriving access control 1210). User B specifies that user C
through access control 1215 has “manage” access. Upon
receiving access, user C uses manage access to gain exclusive
access (an exclusion) of the given entity. User C then may
change the given entity. Since an exclusion exists on the given
entity, the change does not immediately evolve, expanding
access by controls 1210 and 1205. Rather, the user C may
continue to make change until work is completed, at which
point the user C stops managing the entity (releasing the
exclusion). At this point, the system may automatically
expand the access of control 1210 through serial work flow,
including all change made by user C to the given entity. The
access control’s access group may be “expanded” to include
all entities created by user C in the course of doing work.
However, in the same way, access control 1205 does not
immediately expand, since an exclusion still exists on the
given entity by access control 1210. Only after user B has
reviewed/altered user C’s work (which was tasked to user C)
does user B release the manage exclusion, at which point
access control 1205 expands to include the serial effort (sum
change) of users C and B, illustrating serial work flow.

[0132] FIG. 13A is a flowchart of an embodiment showing
steps of serial workflow, starting at 1300. At step 1305, user A
may create derived access of entity E for user B with manage/
change access. At step 1310, user B may obtain exclusive/
manage access. At step 1315, user B may change entity E. At
step 1320, user B may complete/end exclusive/manage
access. The user may “complete” manage access by releasing
the exclusion. At step 1325, user A may automatically receive
B’s change to entity E. The relation change is typically
received in real-time. At step 1330, the process ends.

[0133] FIG. 13B is a flowchart of an embodiment showing
steps of serial workflow, starting at 1340. At step 1345, user A
may create derived access of entity E for user B with manage/
change access. Atstep 1350, user B may granularize an entity,
expanding the entity into a collection of multiple entities
(from a conceptual standpoint). For example, a document
may be “subdivided” as a set of contained subdocuments. At
step 1355, user A may automatically receive structural
change to the entity (e.g., the user may receive an updated
view showing the granularization). At step 1360, user B may
obtain exclusive/manage access of the new granular subenti-
ties of the entity (e.g. a subdocument). At step 1365, user B
may change the granular subentity. At step 1370, user B may
release exclusive manage access of the granular subentity. At
step 1375, user A may automatically receive an updated view
of the subdocument. At step 1380, the process ends.

[0134] Creating change (in the form of new entities)
through derived access may automatically expand the access
group (under the access control used to make the change).
FIG. 14 is a flow chart of an embodiment showing the steps by
which the access group of an access control may be expanded,
starting with step 1400. In step 1405, the user may create a
new entity E through access control A. At step 1410, the
system may automatically expand the access group (G) of
access control (A) to include entity E. For example, if user
changes entity Y by first creating and then “inserting” entity E

US 2011/0238836 Al

(via a containment relationship R also created through access
control A), the system may typically expand the access group
to include both relationship R and entity E. At step 1420, the
process ends.

Process of Information

[0135] The personal computer (PC) is often considered the
domain of knowledge work, which is complex. The distinc-
tion between structured and unstructured remains because no
data structure has yet achieved the requisite complexity to
store the complex product of knowledge work. While the
relational database is structured, its structure is too simple to
contain the product of knowledge work (“simple data
medium”). It is also static relational structure, vs. the dynamic
relational structure that may capture the product of knowl-
edge work. Existing (simple) data systems may contain
“unmanaged information”, but do not include “managed
information”. An example of managed information is actual
relationships stored in the data medium which capture the
relational context and meaning of data.

[0136] The invention establishes “context” as the relational
component of data that may capture and convey contextual
information. This is the meaning of “information-bearing
data”. Prior to the invention, such contextual data is not typi-
cally stored; it is remembered by knowledge workers and
communicated by explicit means of information, such as, for
example, e-mail.

[0137] Anaspectoftheinvention includes a computer man-
aged “complex data medium” (CDM), a network of informa-
tion-bearing data. The invention dramatically increases pro-
ductivity on the basis of the relational complexity that
becomes the informational component of data. Such “com-
plexity” becomes the relational data “context™ of data con-
tent. The invention maintains “relationships” (or “managed
relationships™) as the vehicle of complexity, and by exten-
sion, managed information. The invention serves to increase
data complexity through interaction by multiple knowledge
workers within a common information space. The invention
fosters the cumulative effect of complex data, that is, com-
pound value creation through a scalable information process.
[0138] The invention provides an “information system”
(the “platform” or “platform environment”) as a mechanism
for managing and delivering stored information. The infor-
mation system establishes “implicit information™ as the cata-
lyst of collaborative knowledge work. Implicit information
includes relationships delivered to the user as they are cre-
ated. For example, when a user inserts a document into a
folder, a new containment relationship typically connects the
parent folder with child document. The new relationship may
be delivered as implicit information to any user “consuming”
(e.g., viewing, accessing, updating, or the like) the folder,
whose view of the folder is updated. When a user sends e-mail
within the information system, an access relationship may be
created associating the message and recipient. The informa-
tion system may deliver implicit information when it notifies
the recipient of the new message received.

[0139] Prior to the invention, knowledge workers commu-
nicate information and coordinate the process of knowledge
through direct and explicit means of information. The inter-
action is direct, worker-to-worker. However, the invention
provides indirect coordination (worker-“information sys-
tem”-worker) of knowledge workers through implicit infor-
mation. As a result, to work in the complex data medium is to
collaborate. For example, since users share a common infor-

Sep. 29, 2011

mation space, relationships created by one user may impact
the process of another user, hence aligning their view of the
information product, or allowing them to collaborate implic-
itly. Or, since user action is induced by his view of the infor-
mation product—by allowing users to occupy the same infor-
mation space, they become aligned implicitly in their
collaboration. Information transfer is the “consumption” of
relational information created by other users, allowing the
alignment and efficient collaboration to exist between users.
By making information transfer an implicit/inherent part of
working with the CDM, the invention establishes knowledge
work as inherently and systematically collaborative. Man-
aged information becomes the catalyst of collaboration, prod-
uct coherency, efficient process coordination, and organiza-
tional productivity.

[0140] FIG. 15 is a flowchart of an embodiment showing
steps of information delivery (a component of the process of
information), starting at 1500. At step 1505, the user applica-
tion may begin to “consume” an entity E. For example, the
user may select, browse, or begin to edit the entity. The
“consumer” may be considered the recipient of the process of
information. At step 1510, the system may discover relation-
ships attached to entity E. At step 1515, if the system discov-
ers arelationship (including any new or existing relationship),
it typically proceed to step 1520; otherwise, it typically
returns to step 1410. For example, the system may discover a
relationship (or relationships) associating a document con-
sumed by the user with a comment/message, providing this
comment/message as relational information. 1510. At step
1525, the system may notify the user application that a new
relationship is attached to entity. The system typically pro-
vides this notification in real-time or near real-time. The
system typically “pushes” information to the consumer (e.g.,
for example, the application/user). At step 1525, a parallel
process (marked by a dotted line) may automatically return to
step 1510, awaiting further relational information. At step
1530, the user application may automatically update the data
view of entity ‘E’ to include the new relationship. At step
1535, the process ends. An actor may also “discover” rela-
tional information through a mechanism providing relation-
ships connected to a given entity. The invention include this
form of discovery as a component of the information process.
For example, a user may instruct the system to discover
relationships connected to a certain entity (and may apply
parameters to the search). The user may receive back a set of
relationships, for example, showing every folder which con-
tains the specified document through a containment relation-
ship.

[0141] FIG. 16 is a flowchart of an embodiment showing
steps of the user’s response to information (a component of
the process of information), starting at 1600. At step 1605, the
user may receive relational information delivered by the sys-
tem. For example, the user may receive contextual informa-
tion showing the working subdocument as associated with a
set of notes recorded as metadata (describing the meaning of
the subdocument). At step 1610, the user may process the
information. At step 1615, the user may act or work in
response to the information (including browsing target enti-
ties of relational information). On the basis of information
provided (as a component of the information process), the
user may typically become more aligned with the collective
product and process of collaborative knowledge work. As a

US 2011/0238836 Al

result, the system may substantially increase the productivity
of knowledge workers. The process ends at step 1620.

Network Application Rearchitecture

[0142] The invention provides for a computer application
(such as, for example, a word processor) to evolve from a
unidirectional (one-way) to a bidirectional (two-way) data
processor. The application may become a bidirectional
medium since it is driven by both the user and the platform.
Applications currently reach into a platform through the plat-
form’s application programming interface (API) (pull). How-
ever, the invention establishes the bidirectional channel, such
that platform may also reach into the application, delivering
information/direction (push). As such, the platform API may
become a bidirectional data environment. In this way, the
environment allows, in effect, the work of all users to reach
into the environment of any single user.

[0143] An embodiment of the bidirectional interface may
include the dynamic view. An embodiment of the dynamic
view may be an XML projection (“XML View”) of the CDM
that. The XML View is typically consumed by an application.
The XML View may present a flat, hierarchical projection of
relational data of the CDM. The XML View may use the
document object model (DOM) as a universal representation
for the XML View. The XML View typically maps entities to
XML Elements and the relationships to the parent/child con-
tainment structure. The view is typically automatically inte-
grated by the environment along a set of axes (such as con-
tainment and time), typically as a dynamic view, and is
typically synchronized with the CDM real-time. The XML
View may provide an efficient process communication with
the server by sending incremental updates between bulk
updates. For example, if a user changes element E in the Xml
element hierarchy of an XML View, the XML View class (or
system) may determine which entity the element corresponds
to. If the user has created a new relationship with the given
entity, the XML View/system may send an incremental
update in the form of a message, which may indicate the kind
of relationship created and entities connected by the relation-
ship. If the user updates the data of an entity (e.g., for
example, a field), the XML View/system may send an incre-
mental update in the form of a message, indicating the entity
to update, field name, and new field value. An embodiment of
the XML View is explained more fully in U.S. Provisional
Application No. 60/455,739 entitled “Network File System
and Method”, which is incorporated by reference herein, in its
entirety, including the computer program listings of the
appendix.

[0144] In embodiments, the relational “context bar” (or
“information bar” or “side bar” or “information side bar”)
may deliver contextual information to the user in real-time. It
is typically positioned as a window within or beside the
window of the application. Contextual information is typi-
cally considered relational information for entities a user/
application “consumes” at any given moment (e.g., for
example, entities a user is browsing, editing, selecting, work-
ing with, and so on). As the user “consumes” an entity, a
relationship may be established between the entity and user,
allowing the platform to deliver relational information asso-
ciated with the entity. For example, the user may receive a list
of messages/comments associated with the section of a docu-
ment, see who else is editing the section, or browse its seman-
tic web of association. The context bar includes all tasks
which apply to specific entities consumed by the user at any

Sep. 29, 2011

given moment. For example, the task “share document”
allows the user to share the document the user is currently
editing with other users.

[0145] By way of example, FIG. 27 is a flow chart of an
embodiment illustratively showing steps of the application
context bar, starting at step 2700. At step 2705, the user may
browse or select an entity(s). The user may be considered as
actively “consuming” the entity(s) while the entity is
selected. At step 2710, the context bar may automatically
display all relational context of the selected entity(s) as well
contextual tasks applying to the entity(s) or other entities. At
step 2715, the user may select the task “Manage” (or any other
task), gaining exclusive manage access to the entity. At step
2720, the context bar may automatically displays relational
context showing the user as having exclusive manage access
to the entity(s). Such automatic, relational “discovery” (of
contextual information or data related to entity(s) consumed
by the user) and presentation is typically a component of the
process of information. At step 2725, the process is complete.

The Dynamic View

[0146] The process of access evolution, in combination
with the evolving data medium, may fulfill the level of com-
plexity required to support complex work flow and dynamic
interaction among knowledge workers. The process includes
relational context, which may provide users an entirely per-
sonal view of the information space, depending upon the
groups, activities, and other information contexts of which
they are a member. That is, two users may receive an entirety
different view of the same document entity. The system
includes a “dynamic view” (typically of the CDM) which is
typically custom integrated for a specific user (or any actor/
consumer in the system).

[0147] By way of example, FIG. 9 is a functional block
diagram showing an embodiment of compiling a unique view
for the user. FIG. 9 illustrates a folder 900, containing folders
915 and 920 through containment relationships 905 and 910.
Access control 930 may consume through relationships 925
and 935 the folders 900 and 915. Access control 945 may
consume through relationships 940, 950, 960 the folders 900,
915, and 920. That is, access control 945 may grant access to
folder 920 which is not granted by access control 930. The
state may be the result of the following scenario. For example,
User A, who may have access to folders 900 and 915 through
access control 530, may create 930, creates derived access
(perhaps by “attaching” folder 900 to an e-mail message)
through access control 945 for user B. User A may also grant
manage access to access control 945, user B. User B subse-
quently obtains an exclusive manage access (an exclusion on
folder entity 900). User B then “inserts” folder 920 in folder
900 by way of the containment relationship 910. User A does
not at that point gain access to the newly inserted folder 920,
since user B holds an exclusion on folder 900. Therefore,
when users A and B view the folder 900, the system may
typically generates two separate views for each user. User A’s
view may show folder 900 as containing folder 915. User B’s
view may show folder 900 as containing folder 915 and folder
920. In this way, each user may receive a dynamic view based
on their typically unique set of information contexts of which
they are a member. When user B releases the exclusion, the
system typically updates user A’s view in real-time based on
the access evolution, which creates a new “consumer” rela-
tionship 960 connecting access control 930 and folder 920. In
this way, user B may work “ahead” of user A in time (e.g.,

US 2011/0238836 Al

from user A’s frame of reference) and B may sit “behind” user
A in time (e.g., from user A’s perspective), illustrating tem-
poral continuity in the CDM, process of access evolution, and
work flow.

[0148] Real-time updating provides an example of how
implicit information (or managed information) may be con-
sumed by an application (in this case, the file explorer). When
the relationship 960 is created, the system typically responds
to the change (in the form relationship 960) by looking at all
entities affected by the change. These entities may include
folder 900. The system typically then notifies the application
consuming folder 900 (i.e., both instances of file explorer, run
by users A and B) of the change, or relationship 960. The
application may respond by automatically updating the view
to include Folder 920.

[0149] FIG.9 also provides an example of contextual infor-
mation. As user B holds exclusive manage access of the
Folder 900, user A may receive in the “context bar” informa-
tion to the effect “user B is currently managing the selected
folder” when folder 900 is selected.

[0150] Referring again to FIG. 4, the integration of a
dynamic view at a specific point in time is demonstrated. To
integrate the hierarchy at a specific time, the system typically
filters the containment relationships along the time dimen-
sion, such that only those relationships (and by extension, the
contained entities) existing at or before the specified time are
(typically) included in the dynamic view. FIG. 4 may illus-
trate the process of generating a dynamic view at time ‘t’. If
containment relationships 405 and 410 were created before
time ‘t” and 415 after time ‘t’, the system may include in the
dynamic view of folder 400 documents 420 and 425 (via
relationships 405 and 410) but would not typically include
document 430 (via relationship 415).

[0151] Generally, the dynamic view may be considered a
“2D” representation (typically flat, such as XML View) and
mapping of “3D” relational data (typically the CDM). The
dynamic view may be further considered by its typical pro-
cess of real-time, bi-directional synchronization. The
dynamic view may be further be considered by its typical
ability to reflect access evolution. The dynamic view may
further be considered by its typical ability to link the infor-
mation process (e.g., for example, including contextual infor-
mation) to the representation (e.g., for example, allowing a
user to navigate relationships attached to entities contained in
the view). The dynamic view my further be considered by its
typical ability to provide a standard “2D” view of relational
data to an application.

Automation

[0152] The invention may provide “automation” as the
autonomous actor in the system, typically comprising a com-
puter program. The automation typically interacts with plat-
form in the same way an application interacts with the plat-
form (and typically interacts through the same interface used
by an application), except that automation is typically self-
governed and may be considered an actor in the system (com-
pared with an application which typically acts on behalf of a
user, where the user is typically an actor in the system).

[0153] The invention may automatically “raise” (or load)
the automation to process an event. For example, the system
may raise the component automatically to process new infor-
mation relating to data consumed by the automation. The
automation may be considered a “component” of the system.
For example, a user may “automate” a semantic web, allow-

Sep. 29, 2011

ing the automation to respond to interaction users have with
members of the semantic web.

[0154] The automation may receive several events, includ-
ing “before change” and “after change”. These events may
belong to the general interface provided by the system as a
component of the information process. The “before change”
(or “pre change”) event typically allows automation to
respond to a change before it is made. The automation may be
allowed to preempt the change by throwing an exception
(which is typically captured by the platform). The “after
change” (or “post change”) event typically allows automation
to respond to a change after it is made. The before and after
change events may be a standard element of the platform API
(e.g., forexample, applications may process the same events).
[0155] The platform may “manage” automation as data
persisted within the CDM. When managing automation, the
system typically automatically toads and terminates automa-
tion based on data the automation may be known to consume
(e.g., forexample, through “consumer/access” relationships).
[0156] FIG. 20 is a flow chart of an embodiment showing
steps of in an instance of automation, starting at 2000. At step
2005, an entity ‘E’ consumed by automation ‘A’ may begin to
change. For example, a user may have issued the system to
create a relationship for which E is a target or have issued the
system to update data belonging to the entity. At step 2010,
the system may automatically activate/raise automation A. At
step 2015, automation A may receive information regarding a
change in entity ‘E’ (e.g., for example, pre-change). At step
2020, automation A processes the proposed change. For
example, the automation may analyze the proposed structure
to maintain a constraint. At step 2025, automation A may or
may not throw an exception (which may be captured by the
system). An exception may indicate that the automation sug-
gests the system fail the change. For example, the automation
may automate a constraint, which it may seek to enforce by
throwing an exception. If “yes’, then at step 2030, the system
may fail the update. At step 2035, the process ends. If ‘no’,
then at step 2040, the system may allow the change (the
system may also fail the change for other reasons). At step
2045, automation A may receive information regarding the
changed entity ‘E’ (post-change). At step 2050, automation A
may process the change (for example, checking a data struc-
ture) and may then signal the system that processing is “com-
plete”. At step 2055, automation A may make a change in
response. For example, the automation may insert a new
relationship in response, or may create information for the
user who attempted to make the change (e.g., for example,
providing notification). At step 2060, the system may auto-
matically deactivate automation A. At step 2065, the process
ends.

Reconciliation

[0157] Marketplace fragmentation is largely due to polar-
ization. A natural tension exists along the real dimensions of
knowledge work, including centralization/decentralization
and synchronous/asynchronous, but which the current data
paradigm is incapable of reconciling. Systems have swung to
the polar extrema of each dimension in an effort to gain a
uniform design. As a result, the market is fragmented among
many systems, which neither individually nor collectively
provide a workable solution. The invention reconciles the
major axes of collaboration, which currently exist as a frag-
mented set of disparate technologies.

US 2011/0238836 Al

[0158] Information management largely lies in the recon-
ciliation of centralization and decentralization. The invention
enables information management by reconciling two forces
of collaboration: the decentralized information process and
the centralized information product.

[0159] Knowledge work includes a continuous cycle of
information “product” and “process”. The process of knowl-
edge work is change, which may feed a collective information
product. Product feeds process as knowledge workers allo-
cate work based on their knowledge of their collective work
product. Process may then feed product as workers execute
work/change.

[0160] The process is necessarily decentralized, since
knowledge work is at any moment an individual effort. But
the product is necessary centralized, as a collective and inte-
grated work effort. Thus, reconciliation of a decentralized
information process and centralized information product is a
necessary element of collaboration.

[0161] FIG. 22A is an illustration of a process of reconcil-
ing centralization and decentralization, according to the
invention. The illustration shows a fundamental cycle of col-
laborative knowledge work, continuously reconciling the
information process (typically through the evolving access
model) and information product (typically through the evolv-
ing data model). The cycle is substantially the basis of pro-
ductivity.

[0162] FIG. 22B is a flowchart of an embodiment illustra-
tively showing steps in the collaborative cycle, starting at
2200. At step 2210, the user may process the collective infor-
mation product by consuming relational data. At step 2215,
the user may perform change/work based knowledge of the
process and product gained through relational information.
At step 2215, the user may continue knowledge work, return-
ing to step 2205. Otherwise, at step 2220, the process ends.
Every knowledge worker belonging to an information net-
work may simultaneously and collectively participate in the
collaborative cycle through the invention.

[0163] FIG. 21 is an illustration showing a centralized and
decentralized dichotomy. Prior to the invention, systems are
divided at opposite ends of the spectrum of logical central-
ization and decentralization. Systems currently occupy logi-
cal extrema on the spectrum of collaboration. E-mail is a
model of absolute decentralization. The shared file system is
a model of absolute centralization. They typically act in fun-
damental opposition of one another. On one end, e-mail pro-
vides context but eliminates structure. On the other end, the
shared file system provides structure but eliminates context.
As a result, the collaborative cycle has been grossly ineffi-
cient. A void exists between pure centralization and decen-
tralization. The decentralized system (e.g., e-mail), typically
oriented with a process, is shown on the left, the centralized
system (e.g., shared file system), typically oriented to a prod-
uct, is shown on the right with a void between these two
systems as far as collaboration is concerned.

[0164] However, the CDM, according to the invention, is
sufficiently complex to contain a process of contextual work-
flow (“information process”) within a single, continuous, and
integrated information product repository (“information
product”). The invention includes the effect of maximizing
worker productivity by continuously reconciling the collabo-
rative process with a collective work product through
implicit, relational information. The invention may push to
the user (in real-time) the relational context of entities which
are “consumed” by the user’s data view ata given moment. As

Sep. 29, 2011

the user works with a given entity (e.g., browsing or editing),
the environment may present the set of information which
exists through relationships connecting the given entity.
Those relationships may not only provide the entity’s context,
but may also control the context in which the user works with
the entity.

[0165] The context controlled by relationships includes, for
example, a user’s view of a given entity, control of the entity,
and action taken upon the entity. Such control may include the
evolving access model, which may give two users different
views of the same entity (e.g., document) based on their role
in aprocess of serial work flow. For example, the environment
may display the draft version of a document to one user (e.g.,
who may be working on the latest set of best practices), and a
previous version of the document to another user (who needs
to review the working set of best practices). Another example
of contextual control is the “activity”, which contains set of
work/change contained across a set of files. The access con-
straints of the activity prevent any user who is not a member
of the activity from seeing or editing document sections/
changes belonging to the activity. But, for those members of
the activity, the environment may display work/change in
real-time across the set of files, or allow the user to browse and
review the set of change. The context provided by relation-
ships may illustrate the meaning and appropriate interpreta-
tion of a given entity. For example, the activity previously
illustrated also comprises a “semantic web” of association
linking work/change belonging to the activity. As a result, a
user who browses the content of a document containing such
a change (assuming required access) is notified (e.g. in a side
view) that the change was created as part of the activity, and
for its stated purpose of the activity, in association with all
other changes belonging to the activity (which the user may
browse and review). Also associated with the change, and
pushed into the users’ side view, may include discussions and
messages exchanged by users in course of making the change,
which allow the user to understand the exact wording of the
change. If the user decides to edit the section (containing the
change), the environment may automatically block other
users from editing other members of the semantic association
(protecting consistency of the association). The mechanism
of collaboration—reconciling centralization and decentrali-
zation—may be analogous to the industrial revolution’s
assembly line, which continuously reconciled the division of
labor among workers and individual stations (a decentralized
process) and the integrated, collective product of their work (a
centralized product). The invention may be considered as
transferring collaborative complexity (typically managed in
the minds of knowledge workers) into data and data relation-
ships (within the managed CDM). Mitigating complexity by
this mechanism may typically allow the invention to manage
and enable collaboration on a large scale (e.g., for example,
enterprise-wide or inter-enterprise collaboration and knowl-
edge management).

Network File System

[0166] The invention provides a network file system
(NETFS) as a method of collaboration for file-oriented (or
traditionally unstructured and PC-centric) knowledge work.
The file system is built within the CDM. The file may be
implemented as an entity, its structure defined by a “form”.
Every entity managed by the user in the file system is of a
form which derives the file. For example, the ‘message’ and
‘folder’ and ‘activity” are typically files (deriving the file’s

US 2011/0238836 Al

form). The relational structure of the network file system is
built using a variety of relationships, including the contain-
ment relationship, access/consumer relationship.

[0167] A mechanism of access control and sharing in
NETFS includes e-mail, built directly within the network file
system. Users may create derived access to a message and
attached files in an e-mail interface, thereby “sending” the
message. The e-mail infrastructure of NETFS may be inte-
grated with existing client applications, such as Microsoft
Outlook. Users may also access messages as files through the
NETFS file explorer.

[0168] An embodiment of the explorer contains, at the root
level, My Documents and My Inbox. My Documents contains
files accessed/managed by the user, providing a folder in
which the user can organize his/her data. My Inbox contains
messages “sent” to the user through derived access. When
derived access may be created, the new relational data con-
necting the user with the message automatically updates the
user’s Inbox view.

Reconciling E-Mail & Shared File System

[0169] The invention embraces the e-mail paradigm as a
powerful mechanism for creating collaborative context. The
work flow model of the invention unifies e-mail and shared
file management within a single, continuous information
space. The invention may provide e-mail as an element of the
network file system, reconstituting the infrastructure of
e-mail within the CDM/platform. Messaging becomes an
integrating factor (prior to the invention it is a “dis-integrat-
ing” factor), as users draw one another into shared informa-
tion spaces, which belong to the continuous CDM. The access
control model is able to allow a user to exchange e-mail in a
way that is consistent with the current e-mail paradigm, while
synchronizing and streamlining the subsequent process in
real-time.

[0170] The e-mail message may be a vehicle for creating
derived access, sharing the message and its contained file
hierarchy. Contained files may include submessages, for
example, a reply to the entire message, or an “in line” reply to
a section of a message. Contained files may also include file
“attachments”. Since the folder may be implemented as a file
subtype, users may exchange an entire folder system by
e-mail. By the process of data complexity and continuity, the
folder system may remain fully synchronized and integrated
regardless of how it is accessed and updated in serial and
parallel work flow.

[0171] In the same way groups organize work in a single
document by multiple activities, groups may organize inter-
nal discussions within a common message. Therefore, while
two users may have different views of the same discussion,
the discussion remains an integrated body of messages. Users
may invite others into a discussion by forwarding them the
message containing the discussion. The e-mail “forward” in
NETFS includes other messages or files, involving users in a
shared space by invite.

[0172] By way of example, FIG. 24 is a flowchart of an
embodiment showing steps of creating derived access
through e-mail, starting at 2400. At step 2405, the user may
select a set of entities to send via e-mail attachment. At step
2410, the user may instruct the system to send the selected
files as e-mail attachment. At step 2415, the system may
create an empty message entity. The user may alternatively
send the message with no attachment. At step 2420, if the user
made attachments, the system may insert the selected attach-

Sep. 29, 2011

ment entities as a children contained by the message entity. At
step 2425, the system may present the e-mail editing inter-
face, allowing the user to edit the body, recipient, and other
fields of the message. At step 2430, the user may edit the
message and other fields. At step 2435, the user may instruct
the system to send the message. At step 2440, the system may
create derived access for the message and other contained or
attached entities (e.g., the set E). In creating derived access,
the system may typically include in the access group the
containment hierarchy of every entity belonging to the set E.
For example, attaching a folder system F to message M may
typically include all files contained by F (e.g., for example,
the folder hierarchy) in the access group. At step 2445, the
system may automatically established derived access for the
message entity and nested entities for recipients of the mes-
sage. The system may establish derived access for recipients
individually. The system may establish derived access for
recipients as a group. At step 2450, the process ends.

[0173] The invention may include a hierarchical structure
containing “organizational units” (OU’s). The organizational
unit typically contains other organizational units and users (in
some implementations, the user may be considered an OU).
The “group” is typically implemented as an organizational
unit. Access control may designate the organizational unit as
a recipient of shared access. For example, a group may
receive shared access to an entity. Any member of the group
may then receive access to the entity. The scope of an orga-
nizational unit in terms of security policy typically includes
its membership (typically any user or organizational it con-
tains carries access the OU derives).

[0174] By way of example, FIG. 23 is a flowchart, of an
embodiment showing steps of creating derived access for a
group of recipients, starting at 2300. At step 2305, the user
may select a plurality of users. At step 2310, the user may
assign the set of users access to one or multiple entities. At
step 2315, the system may automatically take the set of users
and create a group (a new organizational unit) containing
each assigned user (group member). At step 2320, the system
may automatically create derived access for the group. At step
2325, members of the group may automatically receive
access to the entity(s) as a group. At step 2330, the process
ends. Prior to the invention, setting up groups for purposes of
collaboration typically involved an central, administrative
procedure (creating a static group). The invention may thus
allow knowledge workers to self-organize in groups dynami-
cally and easily perform group work (white preserving and
remaining within a continuous and integrated data medium),
as FIG. 23 may illustrate.

[0175] FIG. 25 is a flowchart of an embodiment showing
steps of creating derived access to a complex data structure,
starting at 2500. Creating derived access to an entity’s con-
tained complex data structure typically assigns the contain-
ment hierarchy of which the entity is root as the access group.
In other words, the entity and its descendents (contained or
nested entities) may typically comprise the access group. At
step 2505, the user may select an entity to share with one or
multiple users. At step 2510, the user may select the action
“share this entity”. For example, the user may select a folder
which contains an entire folder system (that folder system
comprising a complex data structure). At step 2515, the user
may be prompted to select the set of users to receive shared
access (recipients), or the set recipients may be implied con-
textually. At step 2520, the system may typically establish
derived access where the entity and nested/contained entities

US 2011/0238836 Al

comprise the access group. At step 2525, the system would
then typically inform recipients of derived access (in this
case, new e-mail) by the method of relational information. At
step 2530, the process ends.

[0176] Reconciling Synchronous & Asynchronous Col-
laboration
[0177] The invention includes a mechanism of reconciling

synchronous and asynchronous collaboration within the
CDM. The mechanism is based on the transformation from
explicit to implicit information. The invention establishes a
powerful mechanism of asynchronous information collabo-
ration based on the relational structure of the CDM. The
invention may enable asynchronous information by pushing
relational information that is “in context™ to the user in real-
time (typically entities consumed by the user at a given
moment are “in context”). The method of asynchronous col-
laboration may then subsume synchronous collaboration,
allowing reconciliation of synchronous and asynchronous
collaboration.

[0178] The system provides “structured messaging” as a
mechanism of unifying synchronous and asynchronous mes-
saging. The mechanism may unify e-mail, instant messaging,
and threaded discussions as a single, relational structure. The
common container used is the “message” entity, which may
be, for example, an ordinary file.

[0179] The message may extend the file as a unified method
of communication among workers. It may be a recursive
structure enabling the Message to become a threaded discus-
sion among multiple workers, either synchronously (e.g., as
an instant message discussion) or asynchronously (e.g., as an
e-mail message). The user may insert an attachment (e.g., any
file) within the body of the Message. The application may
display the attachment in-line and/or as belonging to a set of
attachments.

[0180] The mechanism of “structured messaging” may
thus be hierarchical. The mechanism is described in further
detail for various elements of messaging, including:

[0181] The existing e-mail paradigm fits and is well
behaved within the unified structure. The invention improves
the e-mail paradigm by adding structure to a medium which is
presently flat. Whereas the inbox is typically a list of mes-
sages (i.e., prior to the invention), the invention now includes
the ability to create structure in a message store (such as My
Inbox). The structure may be applied as, for example: A
“reply” (message A) to message B inserts message A as the
child of message B, as though B were a folder containing a
document, A “forward” (message C) of message A inserts
message A as a child of message C. A file (F) “attached” to a
message (D) inserts file F as a child of message D. The CDM
allows and provides for a user to attach an entire folder system
(since the root folder is file). The body of a message may also
include “in-line” comments, or messages which are related to
sections of the body of the message. This allows a user to
respond to sections of a message individually.

[0182] Theexisting instant message (IM) paradigm also fits
and is well behaved within the unified structure. The inven-
tion improves the paradigm by allowing IM to become a part
of a persisted structured (prior to the invention, IM lacks the
relational context in which to persist a transient message). As
a result, the invention may allow a discussion to occur and
continue synchronously and/or asynchronously. The inven-
tion may also allow a member of a discussion to spawn
subdiscussions. A subdiscussion (B) of message A may be
comprised of messages S1 to Sn (where n is some positive

Sep. 29, 2011

number greater than one). Each message Sx (where x is a
positive integer number) may be inserted as a child of mes-
sage A. In this way, message A may become a discussion
“thread”. The user view of a same-time instant messaging
discussion may include a header (showing the containing
message, or discussion thread) and a list of discussion points
(content of messages contained by the discussion thread).
[0183] The invention provides for establishing messaging
as the “comment” mechanism in the document review pro-
cess. This allows a user to insert a comment by selecting a
range of document content and clicking “insert comment™. A
window or sidebar (entry point) appears, in which the user
may enter his or her comment. The comment is a message (in
one implementation, the document contains a range object,
which is contained by the message). The environment may
immediately integrate the comment into the document views
of users who are also working on that document (and who
have access to the message). The message may then become
a group discussion as users create submessages within the
comment (by e-mail reply or instant message). The same
mechanism may enable a user to select-and-reply to sections
of an e-mail (e.g., in a manner similar to embedding com-
ments between carated sections of a traditional e-mail mes-
sage).

[0184] A structured message hierarchy may include mes-
sages created in same-time and asynchronous format. Users
may create an e-mail message in the e-mail editor for asyn-
chronous communication, while other users may create a
same-time discussion where the e-mail message may become
a discussion thread (each IM message becomes a child of the
e-mail message, in the same way an e-mail reply is inserted as
achild of the message). In this way, users are able to select the
appropriate medium (synchronous or asynchronous) and an
associated user interface (e.g., e-mail editor, IM discussion
viewer, or other interface), while creating an unified message
space.

[0185] Therefore, whether the user selects, for example, an
e-mail interface or IM interface to create a message, the
environment delivers the message in real-time (by relational
association with documents or other entities which other
users consume). As a result, each user consuming an entity
associated with the message may respond synchronously. Or,
a user may respond asynchronously (e.g., as he/she browses
the document at a later date), the message automatically
appearing in the relational context/side bar (assuming read
access). By relating messages to other entities, communica-
tion among workers becomes implicit.

[0186] FIG. 18A is a flow chart of an embodiment showing
steps of the process of unified synchronous/asynchronous
messaging, starting at step 1800. At step 1805, user A may
send user B an e-mail message M by access derivation. At step
1810, user B may receive the message. At step 1815, B may
reply to the message, where the reply is typically inserted as
nested element of the message M. At step 1820, user A typi-
cally receives the reply as relational information. At step
1825, the system informs recipients through the relational
data connecting recipient and access control. At step 1830,
the process ends.

[0187] FIG. 18B is a flow chart of an embodiment showing
steps of the process of unified synchronous/asynchronous
messaging, starting at step 1840. At step 1845, user A may
create a comment as message M associated with document D.
At step 1850, user B may automatically receive message M as
relational information in the context bar while browsing

US 2011/0238836 Al

document D. At step 1855, B may reply to the comment,
where the reply R is typically inserted as nested element of the
message M. At step 1860, user A may load the document D at
a later date. At step 1865, user A typically receives reply R as
relational information in the context bar while browsing
document D. At step 1870, the process ends.

Reconciling Top-Down & Bottom-Up Collaboration

[0188] The ‘knowledge gap’ created by direct and explicit
information may include the following organizational effect.
The organization manages the exponential difficulty of man-
aging a process through direct coordination (due to the expo-
nential growth of explicit information in a network) by insti-
tuting top-down hierarchy. As a group expands, it becomes
increasingly subdivided and hierarchical, in an effort to gain
manageability. Managers assume positions in the hierarchy.
Hierarchy is required in the context of explicit information,
but has the effect of making the organization static and unre-
sponsive to change.

[0189] A principle of knowledge work established by the
invention is that knowledge work is fundamentally dynamic.
Neither the product nor process of information work can be
known before the work is performed. Otherwise, the infor-
mation product would already exist. Unlike a manufactured
good, there typically is only value in creating information
once. There is value in creating the same automobile many
times; there is typically no value in creating the same infor-
mation twice. This is the fundamental difference between the
new, knowledge economy and the old, manufacturing
economy. Knowledge work is fundamentally dynamic,
manufacturing work is fundamentally static.

[0190] The principle of knowledge work explains why hier-
archy fails in the knowledge economy. It also explains why
attempts to apply static workflow automation in knowledge
environments, such as Microsoft’s SQL. Workflow or Lotus
Notes™ appear to be insufficient, and why “a priori” process
management software, such as Microsoft Project® appear to
be in limited use. The principle also explains why central,
statically ordered file sharing systems have failed to capture
market share, while personal file systems and flexible e-mail
transfer have become ubiquitous as knowledge work. These
systems have failed because they are static and linear. Knowl-
edge work is dynamic and non-linear.

[0191] In contrast, the invention establishes a mechanism
of' knowledge work from the “bottom-up”, and as a “network
dynamic”. Individuals, groups, activities may self-organize
based on the relational information which fuels implicit col-
laboration. Workers do not need to coordinate their work
explicitly, or even know they are working with one another.
To work in the space is to collaborate. Processes of individu-
als, groups, and groups of groups become aligned, and effi-
cient, as a product of individual work within the shared envi-
ronment.

[0192] The invention may also reconcile bottom-up and
top-down collaboration by allowing users to assign work to
others (top-down) or to self-assign work (bottom-up) based
on relational information. The environment may allow an
organization to roll up activities (creating from the bottom-
up) into atop-down hierarchy to assess productivity, an evolv-
ing product, or evolving process. Executives may receive a
continuously integrated view of the process and product of
knowledge work.

[0193] The environment provided by the invention estab-
lishes a framework for maximizing bottom-up collaborative

Sep. 29, 2011

productivity and top-down decision support/business intelli-
gence. Data systems manage state. The information system of
the invention establishes managed change. Prior to the inven-
tion, change is unmanaged. An example is Microsoft Word’s
document format, which captures change only until it is
absorbed by document state (e.g., when a user accepts a
change). Prior to the invention, systems may have the ability
to capture change, but users manage change. Those users
manage the reconciliation of data change, they manage the
transfer of changed data via e-mail, they communicate and
direct the process of change by e-mail and other explicit
means, and they manage the subsequent meaning of change.

[0194] The invention enables the fundamental reconcilia-
tion of state and change within the CDM, as the confluence of
managed process/change and managed product/state. Several
constructs built upon the mechanism of relational change
further illustrate the reconciliation.

[0195] The invention provides for establishing the “activ-
ity” as a natural container of work (change). The activity may
be implemented as a file, for example. The activity’s mem-
bership may be determined by derived access, an access con-
trol granting view and/or manage access to members of the
activity. A group is typically created to contain the member-
ship of the activity. This group is typically the recipient of
derived access. The activity may include a summary, or state-
ment of purpose, a set of threaded discussions, a set of shared
tasks, a set of working documents, and a structure called a
“semantic web” which captures work performed by activity
members. The structure of the activity may be recursive,
containing sub-activities. In combination with the shared task
set, the activity may provide a data structure corresponding to
the task hierarchy of project management software (such as,
for example, Microsoft Project), enabling fluid integration of
project tasks and shared data.

[0196] The invention provides for establishing the “seman-
tic web” (or semantic association) as a mechanism of man-
aging and maintaining the correctness, completeness, and
consistency of data (“3C”). Semantic association may capture
the linkage which exists in the embedded meaning of data.
The semantic web includes the ability to capture that mean-
ing. The web may relationally link data within a structure,
such that members of the structure are considered elements of
a whole. The web may exist on multiple levels, as in a hier-
archy. Automation may allow a semantic web to respond
dynamically and in real-time to the “consumption” (view,
change) of member data. Automation may allow the web to
maintain 3C. Action taken by a web may be governed by its
access to member data. For example, the web may preempt
change being made by a consumer, or provide information to
a consumer.

[0197] An activity may capture work as a semantic asso-
ciation. Each change to a file belonging to the working file set
contained by activity may become part of the association (if
the change to the file is made under the activity). If several
activities contain the same file, the user may choose the activ-
ity under which the work is performed. The activity and its
semantic web may allow groups to work in the same docu-
ment or set of documents under different activities. Access to
work performed within one activity may then be restricted to
members of the activity. If a user belongs to several activities
which produced change in the same document, the user’s
view of that document may then automatically contain both
changes.

US 2011/0238836 Al

[0198] The activity enables data atomicity and consistency
by releasing (to evolution) the set of change only when the
activity has been “completed”. The semantic web controls the
subsequent correctness and consistency (3C) of the change
set. For example, if a user browses a section containing a
change which belongs to the web, the relational information
sidebar will display the association, explaining the context in
which the change was made. The information provided may
include the activity, allowing the user to understand the pur-
pose and meaning of the change. For example, consider a set
of documents containing a set of changes made to satisfy a
certain provision of an employment agreement (perhaps as
part of an activity delegated and carried out by several attor-
neys). Eliminating or changing any element can destroy the
force or meaning of a provision. The semantic web may allow
each attorney reviewing the document to understand its
meaning. Each attorney typically receives contextual infor-
mation in the context bar showing the relations that exist
among changes/sections across a set of documents. In this
way, the semantic web may allow a group of collaborators to
protect the meaning, consistency, and correctness of data
content.

[0199] The semantic web may also have automatic trigger
logic, tied to a specific data element. Therefore, if the element
changes, the web executes the automation. For example, the
semantic web may target a section of California law, which, if
changed by the California legislature, may impact the cor-
rectness and/or force of a document. Event-driven logic is
triggered when the section of law is updated, notifying the
appropriate attorney, such as, for example, the attorney who
drafted the document. As a result, the automation sends a
message to the appropriate attorney.

[0200] The semantic web may implicitly link the work of
users and enforce constraints. For example, if two users work-
ing in separate documents begin to edit different members of
the same semantic association, its automation may send each
user information in real-time, enabling same-time collabora-
tion (and allowing them to discuss consistency). Or, if a user
begins to update any document content contained by a seman-
tic association (as an example), relationship logic may auto-
matically extend the exclusion (making the section read-only
to other users) to other members of the association for the
duration of editing.

[0201] The semantic web may be used to link other related
data, such as the section of a document describing a graph and
the graph itself. If the graph changes, the text explaining the
graph may be incorrect, or visa versa. If the graph automati-
cally updates, as a result of linking within the graph, the
association may automatically notify the appropriate user.
[0202] Inthese ways, the invention enables an organization
to manage change. Once a knowledge worker understands the
meaning of an information product, he/she is prepared to
deploy its value. In a shared environment, the effect of self-
describing, relational information includes the creation of
compound value. The environment of the invention drives
traffic (e.g., changes) to the entities via relationships. There-
fore, the relational density surrounding an entity may quickly
recognize its value to the organization or, alternatively, elimi-
nates the entity from view if of deminimus value. In this way,
information value may be continually reinvested and redis-
tributed throughout the organization, enabling knowledge
management.

[0203] FIG. 17A is a functional block diagram of an
embodiment showing mixed serial/parallel work flow. In the

Sep. 29, 2011

example, the invention enables users to collaborate in any
combination of serial and parallel work flow. In this example,
auser U assigns two groups G1 and G2 a set of files contained
by activity through access derivation from access control
1705. While both groups are working in the same activity file
set, their work is separated by context, or as two information
spaces. The first information space may be associated with
access control 1710, corresponding to activity 1. The second
information space may be associated with access control
1715, corresponding to activity 2. Work (change) done as part
of activity 1 or 2 can then be accessed only by members of
each activity, since access exclusion exists for each access
control (1710 and 1715) assigned to groups G1 and G2. In this
example, then, the activities provide multiple context in
which group work is performed. Each activity may include a
set of changes made by members, allowing members to navi-
gate and consider the set of change as a whole (the sum group
work effort). And each information space automates parallel
workflow among members of an activity.

[0204] Referring again to FIG. 4, the “dynamic view” pro-
vided to each user browsing or editing (consuming) the set of
documents is constructed based on her activity membership
(more specifically, the access control her granting access to
the activity and member content). If the user belongs to only
one ofthe activities, a document belonging to the file typically
includes only change belonging to that activity. That is, the
dynamic view may integrate all change belonging to activities
of which the user is a member. For example, if the user
belongs to both activities 410 and 415, the dynamic typically
integrates the sum change of each activity.

[0205] As additional contextual information, the relational
context bar may automatically display which sections of a
document are controlled by which activities. Ifan activity (via
access control) holds a manage exclusion on a part of the
document (e.g., a subdocument), and the user is not a member
of the activity, the application may display the content as
read-only, allowing the user to understand which sections are
controlled by other activities.

[0206] In the same example, when a group “completes” an
activity, the system may typically lift the manage exclusion of
the associated access control. For example, when group 1
completes activity 1 (associated with access control 401), and
the access exclusion of 401 is reset, the system may immedi-
ately evolve access in the views of members of activity 2 (that
is, members of access control 415, who were not members of
access control 410, but who share access to the evolving
content through access control 405). In this example, the
activity may allow a group to perform a set of change/work as
an atomic and isolated whole, maintaining the integrity and
consistency of the unit of work, while hiding/protecting the
change/work from non-members of the activity until the
activity is “completed”.

[0207] FIG. 17B is a flow chart of an embodiment showing
mixed serial/parallel work flow, starting at step 1730. At step
1735, user A may task an activity by derived access to group
G with manage/control access. At step 1740, members of
group G may obtain exclusive manage access of entities
belonging to the access group and change the entities accord-
ingly. At step 1745, each activity member (members of group
(G) may receive the total set of change made under the activity.
At step 1750, the activity may be “completed”, typically
serially releasing the set of change belonging to the activity.
At step 1755, other non-members may gain automatic access
to the total set of activity change through access evolution.

US 2011/0238836 Al

They may typically receive that information set in real-time
and within their application view. At step 1760, all users who
have access to activity change typically receive contextual
information showing change created within the activity. At
step 1765, the process ends.

[0208] The system may also provide “data reuse” through
the temporal data medium. The system may implement data
reuse in NETFS as a form of temporal containment. For
example, a user may specify that a legal document contain
another document at some time in the past. As a result, the
system typically provides a view of the legal document
embedding the “old” version of the contained document, even
as other users may update the contained document.

[0209] The system may typically also provide multiple
containment of an entity by multiple entities. The system may
include multiple containment as a feature of NETFS. For
example, several folders may contain the same document.
The feature may allow, as an example, a user to cross-index
files in folder hierarchies.

[0210] Multiple containment may allow several entities to
contain a common part. For example, two documents may
contain a common subdocument. As the subdocument is
changed, both documents are, in effect, updated with the
latest subdocument version. As users discover valuable con-
tent, they may reuse or share the content in new documents.
Each instance of reuse may create a new relationship con-
necting the desired content, which increases the probability
that the content is in the future found and leveraged by other
users. “Relational search” allows a user to search for content
based on a mechanism which may value content by its “rela-
tional density” or relational connectivity.

[0211] The system typically provides “association” as a
feature of NETFS, allowing users to associate one entity with
another. An “association” relationship may capture the asso-
ciation.

[0212] The system may typically provide a file explorer
application as part of NETFS, which may allow users to
browse and manage all files within a single application (e.g.,
for example, documents, folders, messages, activities). The
file explorer may provide a hierarchical view of files (illus-
trating the file containment structure). The file explorer may
respond to the user’s selection of a file by displaying a read-
only view of the file in a pane or other window.

[0213] The system may also allow users to access files
remotely. An example includes accessing, searching, brows-
ing, and managing files (and their relational structure)
through a web browser. The system may provide a clean
mapping of managed datato HTML, given its relational struc-
ture. The system may provide a method of managing web
content. The system may act as a world-wide-web server. For
example, the system may provide a web server through
HTTP. The system may provide HTML or XML as a repre-
sentation of system managed data. The system may allow
users to consider system-managed data the “working” data
medium and HTML or XML a representation or view.
[0214] The system may capture change in a word process-
ing document in the following way. Each change to the docu-
ment may become an entity. Inserting a change may corre-
spond to adding a containment relationship that inserts an
entity (bearing data of the change) as a child of a document,
subdocument, or other contained element of the document.
Removing a change may correspond to negating the contain-
ment relationship. The sequence of entities contained the
entity may be recorded by the containment relationship

Sep. 29, 2011

(which may store the child’s position in the sequence con-
tained by the parent entity). In this way, the document may
comprise a large set of evolving entities, including subdocu-
ments, changes, and other contained elements of the docu-
ment. The document’s evolution may be viewed as a process
of granularization/unification. The user may unify change as
whole sections of a document (may be considered the process
of contraction/unification), and may granularize the docu-
ment by change (may be considered the process of expansion/
granularity). The word processing environment typically
receives and updates change in real-time. For example, user
A’s view of'a document may receive change being made to the
document by other users, and visa versa. The following
example illustratively shows this process.

[0215] FIG. 26 is a flow chart of an embodiment showing
steps in the process of parallel work flow among users work-
ing in a shared document, starting at step 2600. At step 2610,
the user may opens document D in an application. In step
2615, the system may integrate the dynamic view of docu-
ment D. In step 2620, the user may make a change to the
document D. In step 2625, the system may persist the change
and may send relational information to all user applications
consuming document D which also have access to the change.
In step 2630, each consuming application may automatically
update its data view to include the change. In step 2635, the
process ends.

[0216] Prior to the invention, files are typically managed in
a“compound document format”. XML may also be viewed as
a compound document format. Whereas the compound docu-
ment format compels data into a strict tree/hierarchy, the
invention may levy no such requirement. Whereas the com-
pound document format compels one entity to subsume
another, the invention may make no such requirement. For
example, the CDM may allow a document and comment to
exist as separate and autonomous entities joined by “associa-
tion” or an other means of relation.

[0217] Inabroader class, “hierarchy” imposed prior to this
invention carries into many realms of computer data and
systems management. The invention may free computer sys-
tems from this limitation. For example, the security model
prior to the invention typically require that spaces fit within a
tree. The result of the security model prior to the invention
makes a lateral relationship impossible (or if a solution exists,
it exists typically as a work around). For example, two com-
panies would have extreme difficulty prior to the invention
creating a shared data system (between servers regularly used
to manage data in each organization, e.g., not a special pur-
pose entity) during the course of an alliance, since neither
security space may subsume the other. This holds for B2B and
extranet relationships of many verities.

[0218] The invention solves the problem at a fundamental
level by establishing what may be in part a lateral network
dynamic. For example, two firms may easily and quickly
establish a working collaborative relationship using the
invention, since the data/information/security space may be
considered continuous across each organization (when paired
as a network). For example, a user in firm A may send an
e-mail message to a user in partner/client B. The system
typically creates a unique information context for that spe-
cific collaboration (with entity E), imposing no static hierar-
chy (at the level of the film) in the security relationship
between A and B, while allowing A to control B’s access to
entity E. In this sense, the context generated by an individual
e-mail (or any greater collaborative construct) may be con-

US 2011/0238836 Al

sidered a dynamic virtual private network (VPN), which may
enable powerful, lateral collaborative relations between enti-
ties (e.g., for example, including enterprises and universities,
or autonomous governmental agencies in the context of intel-
ligence sharing).

Unifying Security Context

[0219] The invention’s access model may also enable an
organization to create guaranteed file retention policies,
simultaneously applied to documents and e-mail. As a result
of e-mail, prior to the invention, file replication across hard
drives is uncertain and unmanageable. Prior to the invention,
the content of an e-mail message is duplicated every time the
message is downloaded, copied into other folders, forwarded
to other users, or included as part of a reply. The same is true
for attachments, prior to the invention. NETFS may provide a
managed system of file/e-mail lifecycle management. Fea-
tures of the invention enabling lifecycle management include:
(a) each message/file as a global entity, (b) the continuous
data structure, preventing entity duplication.

[0220] Prior to the invention, about 90-95% of collabora-
tion takes place via email, allowing information to spin out of
control. Prior to the invention, email transfer is not secure or
regulated, files may typically be copied everywhere as attach-
ments, and there is no concept of centralized storage and
organization. The invention, however, includes the ability to
enforce information boundaries and regulate how informa-
tion is exchanged. Whereas systems prior to the invention
only manage how information is accessed, the invention per-
mits an organization to manage how the information is
exchanged (and its access subsequently revoked) within a
fully controlled environment. Under the invention’s security
paradigm, workers still use email (which they are comfort-
able with) as the primary mechanism of exchanging informa-
tion. However, according to the invention, email and attach-
ments may now be managed and may remain within a single
and secure information context. In this way, the invention
establishes a “secure information environment”, as shown
above.

[0221] The access model of the invention may enable an
organization to control information exchange via the inven-
tion’s security model and rules/policies/best-practices. The
invention may allow an organization to define “information
boundaries”. Information boundaries may exist within a
single organization or span multiple organizations. The infor-
mation boundary may provide a container in which informa-
tion exchange is limited. For example, a container may exist
surrounding members of an organizational unit, or enclose a
client and/or matter in the context of legal work (e.g., for
example, including certain members of a law firm, a client
enterprise, and an investment bank). As a part of the inven-
tion’s file system, e-mail may be subject to additional security
provided by an enterprise security implementation, such as,
for example, Microsoft’s ActiveDirectory. Since e-mail and
files may remain in the single information space, users are not
able to bypass security by moving data between systems. For
example, a user may not be able to e-mail a file to a user who
would not otherwise have file access. Prior to the invention,
even if access to a file is restricted by the security model to a
select group of users, a member can simply e-mail the file to
unauthorized users. The invention may allow an organization
to contain data within a single, secure space, while preserving

Sep. 29, 2011

the end-user experience (e.g., the user typically cannot unin-
tentionally or maliciously move data out of the security con-
text or boundaries).

[0222] The invention may provide a dynamic “virtual pri-
vate network” for any context in which users collaborate
across distributed sites (of the platform). Those sites may
belong to one or multiple organizations. Since each context
may be managed individually, the method does not require
that one organization “contain” the other from a top-down
perspective. The trusted information model of the invention
may provide secure, peer-to-peer exchange, connecting peers
over the intranet, extranet, or Internet. Today, security
requires public-key cryptography to be managed individually
by e-mail sender and recipient. The invention may enable
secure, public-key exchange between sites, freeing individual
users from the security implications of data transfer. In this
way, the invention may provide a superior implementation of
DRM (Digital Rights Management).

[0223] FIG. 19 is a flow chart of an embodiment showing
steps of the information lifecycle, starting at step 1900. At
step 1905, the user may extend derived access of entity E to a
plurality of workers, beginning an information lifecycle. At
step 1910, the users who received access may lose their access
due to security policy. For example, a security policy may
allow only two weeks of access to the shared entity. Or, for
example, a security policy may allow the users to retain
access to the shared entity only while a business relationship
exists between the firm of the user(s) extending access and
user(s) receiving access (which may have ended). At step
1910, all users may lose access to the entity due to a file
retention policy. For example, a file retention policy may
automatically revoke access to data at a trigger point, such as
three months after creation. At step 1920, the entity E may be
automatically deleted from the CDM (e.g., for example, as an
part of file retention policy). At step 1925, the process ends.
The entity may be cleanly removed from the system because
the CDM typically prevents duplication of an entity (prior to
the invention, files and messages scattered throughout user
inboxes and hard drives make the enforcement of file reten-
tion policy nearly impossible). The invention may be consid-
ered as having a rope attached to an entity at all times, which
it may retract at any moment (for security, information life-
cycle, or other purposes).

[0224] While the invention has been described in terms of
embodiments, those skilled in the art will recognize that the
invention can be practiced with modifications and in the spirit
and scope of the appended claims.

1-11. (canceled)

12. A computer implemented method of access evolution
for automating the sharing of access rights in a computer
environment having one or more access sharing relationships,
comprising the steps of:

a) creating an access sharing relationship in which an
access provider having a first set of access rights shares
at least a subset of the first set of access rights with an
access receiver having a second set of access rights, so
that the second set of access rights evolves as an auto-
mated function of the first set of access rights by way of
the shared subset, wherein the access sharing relation-
ship is one of one or more access sharing relationships in
a network of access control;

b) defining the subset based on constraints of the access
sharing relationship; and

¢) sharing the subset with the access receiver,

US 2011/0238836 Al

whereby the steps of defining and sharing comprise an

iteration of access evolution, and

wherein the steps of creating, defining, and sharing are

performed by a computer.

13. The computer implemented method of claim 12,
wherein the sharing is implemented by derived access con-
trol, such that the access receiver derives access from the
provider.

14. The computer implemented method of claim 12,
wherein the access sharing relationship is a first access shar-
ing relationship further comprising creating a second access
sharing relationship in the computer environment, wherein
the access receiver of the first access sharing relationship is
also the access provider in the second access sharing relation-
ship.

15. The computer implemented method of claim 12,
wherein the access sharing relationship is a first access shar-
ing relationship further comprising creating a second access
sharing relationship in the computer environment, wherein
the access provider of the first access sharing relationship is
also the access receiver in the second access sharing relation-
ship.

16. The computer implemented method of claim 12, fur-
ther comprising creating another access sharing relationship
that is symmetrical to the access sharing relationship, such
that an access provider in the another access sharing relation-
ship is the access receiver in the access sharing relationship
and an access receiver in the another access sharing relation-
ship is the access provider in the access sharing relationship,
creating a bi-directional access sharing relationship.

17. The computer implemented method of claim 12,
wherein the step for sharing shares access to at least one of an
entity and a file.

18. The computer implemented method of claim 12, fur-
ther comprising evolving the access rights of the receiver over
time in response to changes in the access rights of the pro-
vider.

19. The computer implemented method of claim 12,
wherein the access rights include access constraints.

20. The computer implemented method of claim 12,
wherein the step of defining the subset includes removing
from the subset another subset of access, wherein the another
subset contains access for which a manage exclusion is
applied, so that the evolution is deferred by the manage exclu-
sion for a limited or unlimited period time during serial work-
flow.

21. The computer implemented method of claim 12,
wherein the step of defining the subset includes adding to the
subset another subset of access, wherein the another subset
contains access for which a manage exclusion is released; so
that access automatically evolves as a result of the completion
of an iteration of serial workflow.

22. The computer implemented method of claim 12,
wherein the access sharing relationship is defined between
autonomous peers in a distributed network.

23. The computer implemented method of claim 22,
wherein the access sharing relationship is defined between
one company and another company.

24. The computer implemented method of claim 12, fur-
ther comprising deferring an iteration of access evolution for
some limited or unlimited period of time by a manage exclu-
sion, providing serial workflow.

25. The computer implemented method of claim 12, fur-
ther including executing parallel workflow if access evolution

Sep. 29, 2011

is not deferred for some limited or unlimited period of time by
a manage exclusion, providing parallel workflow.

26-93. (canceled)

94. The computer implemented method of claim 17,
wherein the entity comprises a tuple.

95. The computer implemented method of claim 12,
wherein the access receiver having a second set of access
rights evolving as an automated function of the first set of
rights by way of the shared subset, becomes a second access
provider and shares at least a subset of the evolving second set
of access rights with a second access receiver having a third
set of access rights evolving as an automated function of the
second set of access rights, wherein the access sharing rela-
tionship is at least one access sharing relationship in a net-
work of access control.

96. The computer implemented method of claim 12,
wherein the access receiver is one of a plurality of access
receivers and the access provider is one of a plurality of access
providers, any access receiver becoming one of the plurality
of access providers by granting access rights to any of the
plurality of access receivers.

97. The computer-implemented method of claim 96,
wherein the step of granting access rights to any of the plu-
rality of access receivers creates a hierarchical tree of derived
and evolving access.

98. The computer-implemented method of claim 12,
wherein after the step of sharing the subset with the access
receiver, any changes made by the access receiver to the entity
or the file related to the subset automatically flow back to the
access provider as long as the manage exclusion remains
released.

99. The computer-implemented method of claim 12,
wherein the step of sharing the subset with the access receiver
shares the entity or file in real-time, subject to the evolving
access rights of the access receiver.

100. A computer program product embodied in a computer
readable storage medium as computer executable instructions
for implementing access evolution for automating the sharing
of access rights in a computer environment having one or
more access sharing relationships, the instructions when
executed by a computer performing the steps of:

a) creating an access sharing relationship in which an
access provider having a first set of access rights shares
at least a subset of the first set of access rights with an
access receiver having a second set of access rights, so
that the second set of access rights evolves as an auto-
mated function of the first set of access rights by way of
the shared subset, wherein the access sharing relation-
ship is one of one or more access sharing relationships in
a network of access control;

b) defining the subset based on constraints of the access
sharing relationship; and

¢) sharing the subset with the access receiver,

whereby the steps of defining and sharing comprise an
iteration of access evolution, and

wherein the steps of creating, defining, and sharing are
performable by a computer.

101. The computer program product of claim 100, wherein
the sharing is implemented by derived access control, such
that the access receiver derives access from the provider.

102. The computer program product of claim 100, wherein
the access sharing relationship is a first access sharing rela-
tionship further including creating a second access sharing
relationship in the computer environment, wherein the access

US 2011/0238836 Al

receiver, of the first access sharing relationship is also the
access provider in the second access sharing relationship.

103. The computer program product of claim 100, wherein
the access sharing relationship is a first access sharing rela-
tionship further comprising creating a second access sharing
relationship in the computer environment, wherein the access
provider of the first access sharing relationship is also the
access receiver in the second access sharing relationship.

104. The computer program product of claim 100, further
comprising the step of creating another access sharing rela-
tionship that is symmetrical to the access sharing relationship,
such that an access provider in the another access sharing
relationship is the access receiver in the access sharing rela-
tionship and an access receiver in the another access sharing
relationship is the access provider in the access sharing rela-
tionship, creating a bi-directional access sharing relationship.

105. The computer program product of claim 100, wherein
the step for sharing shares access to at least one of the entity
and the file.

106. The computer program product of claim 100, further
comprising the step of evolving the access rights of the
receiver over time in response to changes in the access rights
of the provider.

107. The computer program product of claim 100, wherein
the access rights include access constraints.

108. The computer program product of claim 100, wherein
the step of defining the subset includes removing from the
subset another subset of access, wherein the another subset
contains access for which a manage exclusion is applied, so
that the evolution is deferred by the manage exclusion for a
limited or unlimited period time during serial workflow.

109. The computer program product of claim 100, wherein
the step of defining the subset includes adding to the subset
another subset of access, wherein the another subset contains
access for which a manage exclusion is released, so that
access automatically evolves as a result of the completion of
an iteration of serial workflow.

110. The computer program product 100, wherein the
access sharing relationship is defined between autonomous
peers in a distributed network.

111. The computer program product of claim 110, wherein
the access sharing relationship is defined between one com-
pany and another company.

112. The computer program product of claim 100, further
comprising the step of deferring an iteration of access evolu-
tion for some limited or unlimited period of time by a manage
exclusion, providing serial workflow.

113. The computer program product of claim 100, further
including executing parallel workflow if access evolution is
not deferred for some limited or unlimited period of time by
a manage exclusion, providing parallel workflow.

114. The computer program product of claim 105, wherein
the entity comprises a tuple.

Sep. 29, 2011

115. The computer program product of claim 100, wherein
the access receiver having a second set of access rights evolv-
ing as an automated function of the first set of rights by way
of the shared subset, becomes a second access provider and
shares at least a subset of the evolving second set of access
rights with a second access receiver having a third set of
access rights evolving as an automated function of the second
set of access rights, wherein the access sharing relationship is
at least one access sharing relationship in a network of access
control.

116. The computer program product of claim 100, wherein
the access receiver is one of a plurality of access receivers and
the access provider is one of a plurality of access providers,
any access receiver becoming one of the plurality of access
providers by granting access rights to any of the plurality of
access receivers.

117. The computer program product of claim 116, wherein
the step of granting access rights to any of the plurality of
access receivers creates a hierarchical tree of derived and
evolving access.

118. The computer program product of claim 100, wherein
after the step of sharing the subset with the access receiver,
any changes made by the access receiver to the entity or the
file related to the subset automatically flow back to the access
provider as long as the manage exclusion remains released.

119. The computer program product of claim 100, wherein
the step of sharing the subset with the access receiver shares
the entity or file in real-time, subject to the evolving access
rights of the access receiver.

120. The computer implemented method of claim 12, fur-
ther comprising creating a hierarchy of access sharing based
on a plurality of access evolution iterations.

121. The computer program product of claim 100, wherein
the instructions perform the step of creating a hierarchy of
access sharing based on a plurality of access evolution itera-
tions.

122. The computer implemented method of claim 12,
wherein the access provider comprises one of: auser, a group,
a task, a document, a file, a relation, a function.

123. The computer implemented method of claim 12,
wherein the access receiver comprises one of: a user, a group,
a task, a document, a file, a relation, a function.

124. The computer implemented method of claim 12,
wherein the access provider and the access receiver are enti-
ties linked together in a specific order or combination to
establish one of: a serial work flow, a parallel work flow, and
a combination of serial and parallel work flow.

125. The computer implemented method of claim 17,
wherein the entity comprises one of: a form, a relationship, an
access provider and an access receiver.

126. The computer program product of claim 105, wherein
the entity comprises one of: a form, a relationship, an access
provider and an access receiver.

sk sk sk sk sk

