发明名称
微组装LED显示器

摘要
所揭示技术提供使用微型LED阵列的微组装微型LED显示器及照明元件，所述微型LED过小（例如，具有10μm到50μm的宽度或直径的微型LED），众多或易碎而无法通过常规手段来组装。所揭示技术提供使用微印制印刷技术组装的微型LED显示器及照明元件，所述微型LED可制备于同质衬底上且印刷到显示器衬底（例如，塑料、金属、玻璃或其它材料），借此避免在所述显示器衬底上制造所述微型LED。在某些实施例中，所述显示器衬底是透明的及/或柔性的。
1. 一种无机发光二极管显示器，所述显示器包括：
多个无机发光二极管，其在非同质子所内所述多个发光二极管的显示器衬底上组装成列阵，其中所述列阵的每一发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一金属端子与所述同一发光二极管的所述第一侧上的第二金属端子水平分离达一水平距离，其中所述水平距离是从100nm到20微米。

2. 根据权利要求1所述的显示器，其中所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

3. 根据权利要求1或2所述的显示器，其中多个光发射器中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

4. 根据权利要求1到3中任一权利要求所述的显示器，其中所述多个光发射器中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。

5. 根据权利要求1到4中任一权利要求所述的显示器，其中所述多个光发射器中的每一者具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。

6. 根据权利要求1到5中任一权利要求所述的显示器，其中所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

7. 根据权利要求1到6中任一权利要求所述的显示器，其中每一发光二极管包括：
导电层；及
无机发光层，其安置于所述导电层的一部分上，所述导电层包括延伸超过所述无机发光层的边缘的悬臂延伸部，其中所述第一金属端子安放于所述无机发光层的一部分上且所述第二金属端子安放于所述导电层的所述悬臂延伸部上，其中在所述第一金属端子与所述第二金属端子之间供电的电流致使所述无机发光层发光。

8. 根据权利要求1到7中任一权利要求所述的显示器，其中所述横向导电层包括选自由以下各项组成的群组的至少一个部件：金属层、电介质层、高折射率半导体及对所述发光二极管发射的所述光基本上透明的半导体，借此形成向上发射显示器。

9. 根据权利要求1到7中任一权利要求所述的显示器，其中所述横向导电层包括选自由以下各项组成的群组的至少一个部件：对所述LED发射的所述光基本上透明的半导体、透明导电氧化物及薄金属网。

10. 根据权利要求1到9中任一权利要求所述的显示器，其中所述第一金属端子及所述第二金属端子是透明的。

11. 根据权利要求1到9中任一权利要求所述的显示器，其中所述第一金属端子及所述第二金属端子包括选自由以下各项组成的群组的至少一个部件：ITO、ZnO、碳纳米管膜、铝、银、金、镍、铜、钛及钢金属网。

12. 根据权利要求1到11中任一权利要求所述的显示器，其中所述显示器是向下发射微型LED显示器，使得由所述多个发光二极管发射的光的大部分是穿过所述显示器衬底发射出。

13. 根据权利要求12所述的显示器，其包括多个光学反射结构，每一光学反射结构与所述第一金属端子位于所述多个发光二极管中的对应发光二极管的同一侧上。

14. 根据权利要求12或13所述的显示器，其中所述第一金属端子及所述第二金属端子
权利要求书

是至少部分反射性的，借此允许从相应发光二极管发射的光至少部分地从所述第一金属端子及所述第二金属端子反射且穿过每一分光二极管的与第一面相对的第二面。

15. 根据权利要求12到14中任一权利要求所述的显示器，其中直接位于每一发光二极管的至少一部分下面的材料是至少部分透明的。

16. 根据权利要求1到11中任一权利要求所述的显示器，其中所述显示器是向上发射微型LED显示器，使得由所述多个发光二极管发射的光的大部分是沿远离所述显示器衬底的方向发射。

17. 根据权利要求16所述的显示器，其包括多个光学反射结构，每一光学反射结构位于所述多个发光二极管中的对应发光二极管下方在所述发光二极管的与所述第一金属端子相对的一侧上。

18. 根据权利要求16到17中任一权利要求所述的显示器，其中所述第一金属端子及所述第二金属端子是至少部分成镜子的，借此允许从相应发光二极管发射的光至少部分地穿过所述第一金属端子及所述第二金属端子。

19. 根据权利要求1到18中任一权利要求所述的显示器，其包括：
多个第一互连件，每一第一互连件连接到对应发光二极管的所述第一金属端子；及
多个第二互连件，每一第二互连件连接到对应发光二极管的所述第二金属端子，其中所述多个第一互连件及所述多个第二互连位于所述第一面上。

20. 根据权利要求19所述的显示器，其中所述多个第一互连特征及所述多个第二互连特征位于单个光刻层级中。

21. 根据权利要求19或20所述的显示器，其中所述多个第一互连件中的每一者拥有绝缘体中的多个通孔中的一通孔而电耦合多个列电极中的一个列电极，每一通孔与所述多个发光二极管中的一发光二极管相关联。

22. 根据权利要求21所述的显示器，其中所述多个列电极、所述多个第一互连件及所述多个第二互连件是通过具有比用于形成所述第一金属端子及所述第二金属端子的光刻粗糙分辨率的光刻而形成。

23. 根据权利要求1到22中任一权利要求所述的显示器，其中所述发光二极管中的每一者具有大于或等于其宽度的两倍的长度。

24. 根据权利要求1到23中任一权利要求所述的显示器，其中针对所述多个发光二极管中的每一发光二极管，所述对应第一金属端子及所述对应第二金属端子覆盖所述对应发光二极管的横向占用面积的至少一半、三分之一或四分之三。

25. 根据权利要求1到24中任一权利要求所述的显示器，其中所述多个发光二极管是经由转移印刷而组装。

26. 根据权利要求1到25中任一权利要求所述的显示器，其中所述显示器衬底是选自自由以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

27. 根据权利要求1到26中任一权利要求所述的显示器，其中显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

28. 根据权利要求1到27中任一权利要求所述的显示器，其中所述显示器衬底具有包含所述多个发光二极管的连续显示器衬底区域，所述多个发光二极管中的每一发光二极管具
有发光区域，且所述多个发光二极管的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

29. 根据权利要求28所述的显示器，其中所述多个发光二极管的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两万分之一或万分之一。

30. 根据权利要求1至29中任一权利要求所述的显示器，其中针对所述多个无机发光二极管中的每一无机发光二极管，所述水平距离是从500nm到1μm、从1μm到5μm、从5μm到10μm或从10μm到20μm。

31. 根据权利要求1至30中任一权利要求所述的显示器，其中针对所述多个无机发光二极管中的每一无机发光二极管，所述第一金属端子的表面与第二金属端子的表面共享平面。

32. 根据权利要求1至31中任一权利要求所述的显示器，其包括：
多个微型集成电路，其位于所述显示器衬底上，每一微型集成电路与所述多个发光二极管中的一组发光二极管电连接。

33. 根据权利要求32所述的显示器，其中每一集成电路用于控制发射特定色彩的光的LED。

34. 根据权利要求32或33所述的显示器，其中所述多个发光二极管中的由相应集成电路驱动的每一组发光二极管形成独立子显示器。

35. 根据权利要求1至34中任一权利要求所述的显示器，其包括：
多个第二无机发光二极管，其在非同质于所述多个第二发光二极管的第二显示器衬底上组装成第二阵列，其中所述多个第二发光二极管中每一第二发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一金属端子与所述单一发光二极管的所述第一侧上的第二金属端子水平分离达一水平距离，其中所述水平距离是从100nm到20微米，其中第一显示器衬底与所述第二衬底是堆叠的。

36. 根据权利要求1至34中任一权利要求所述的显示器，其包括：
多个第二无机发光二极管，其在所述显示器衬底的与所述多个无机发光二极管相对的一侧上组装成第二阵列，其中所述多个第二发光二极管中每一第二发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一金属端子与所述单一发光二极管的所述第一侧上的第二金属端子水平分离达一水平距离，其中所述水平距离是从100nm到20微米，其中所述第一显示器衬底与所述第二衬底是堆叠的。

37. 根据权利要求35或36所述的显示器，其中所述多个无机发光二极管的所述阵列具有不同于所述多个第二无机发光二极管的所述第二阵列的分辨率。

38. 根据权利要求35至37中任一权利要求所述的显示器，其中所述多个无机发光二极管中的每一者具有第一大小，所述多个第二无机发光二极管中的每一者具有第二大小，且所述第一大小不同于所述第二大小。

39. 一种形成发光二极管显示器的方法，所述方法包括：
在衬底上形成多个列线；
将绝缘体沉积在所述列线上；
将多个发光二极管微转移印刷到所述绝缘体上，其中每一微型发光二极管在所述发光
二极管的第一面上包括第一金属端子及第二金属端子，其中所述衬底非同质于所述多个发光二极管；

在所述绝缘体中形成多个孔，借此暴露所述多个列线中的每一者的部分；及

将多个导电互连件沉积于所述第一面上，所述多个导电互连件包括多个行电极及多个列互连件，其中所述多个互连件中的每一者将列线电连接到对应发光二极管的所述第一金属端子。

40. 根据权利要求39所述的方法，其中针对所述多个发光二极管中的每一发光二极管，所述第一金属端子与所述同一发光二极管的所述第一面上的所述第二金属端子水平分离达从100nm到5微米的水平距离。

41. 根据权利要求39或40所述的方法，其中所述第一金属端子及所述第二金属端子是透明的。

42. 根据权利要求39到41中任一权利要求所述的方法，其中所述第一金属端子及所述第二金属端子是至少部分透明的，借此允许从相应发光二极管发射的光至少部分地穿过所述第一金属端子及所述第二金属端子。

43. 根据权利要求39到42中任一权利要求所述的方法，其中所述显示器是向下发射微型LED显示器，使得由所述多个发光二极管发射的光的大部分是穿过所述显示器衬底而发射出。

44. 根据权利要求43所述的方法，其包括：沉积多个光学反射结构，每一光学反射结构位于所述多个发光二极管中的一发光二极管上面在所述发光二极管的与所述显示器衬底相对的一侧上。

45. 根据权利要求43或44所述的方法，其中直接位于每一发光二极管的至少一部分下面的材料是至少部分透明的。

46. 根据权利要求43到45中任一权利要求所述的方法，其中所述第一金属端子及所述第二金属端子是至少部分反射性的，借此允许从相应发光二极管发射的光至少部分地从所述第一金属端子及所述第二金属端子反射且穿过每一发光二极管的与所述第一面相对的第二面。

47. 根据权利要求43到46中任一权利要求所述的方法，其中所述第一金属端子及所述第二金属端子包括选自由以下各项组成的组的至少一个部件：ITO、ZnO、碳纳米管簇、铝、银、金、镍、铂、钛及细金属网。

48. 根据权利要求39到42中任一权利要求所述的方法，其中所述显示器是向上发射微型LED显示器，使得由所述多个发光二极管发射的光的大部分是沿远离所述显示器衬底的方向发射。

49. 根据权利要求48所述的方法，其包括：

在微转移印刷所述多个发光二极管之前，沉积多个光学反射结构，每一光学反射结构位于所述多个发光二极管中的对应发光二极管下方。

50. 根据权利要求39到49中任一权利要求所述的方法，其中每一发光二极管包括：

导电层；及

无机发光层，其安置于所述导电层的一部分上，所述导电层包括延伸超过所述无机发光层的边缘的悬臂延伸部，其中所述第一金属端子安放于所述无机发光层的一部分上且所
述第二金属端子安置于所述导电层的所述悬臂延伸部上，其中在所述第一金属端子与所述第二金属端子之间供应的电流致使所述无机发光层发光。

51. 根据权利要求50所述的方法，其中所述横向导电层包括选自由以下各项组成的群组的至少一个部件：金属膜、电介质膜、高折射率半导体及对从所述发光二极管发射的所述光基本上透明的半导体，借此形成向上发射显示器。

52. 根据权利要求50中任一权利要求所述的方法，其中所述横向导电层包括选自由以下各项组成的群组的至少一个部件：对从所述LED发射的所述光基本上透明的半导体、透明导电氧化物及薄金属网。

53. 根据权利要求39到52中任一权利要求所述的方法，其中微转移印刷所述多个发光二极管包括：

提供转印服装，所述多个发光二极管的一部分以可移除方式附接到所述转印装置，其中所述转印装置包括与所述多个发光二极管的所述部分至少部分接触的三维特征；

使以可移除方式附接到所述转印装置的所述多个发光二极管的所述部分与所述衬底的接纳表面接触；及

在所述多个发光二极管的所述部分与所述接纳表面的所述接触之后，使所述转印装置与所述多个发光二极管的所述部分分离，其中所述多个发光二极管的所述部分被转印到所述接纳表面上。

54. 根据权利要求39到53中任一权利要求所述的方法，其包括：

多个列电极，每一列电极电连接到多个第一互连件中的相应一部分；及

绝缘体，其介于所述多个列电极与所述多个发光二极管之间，其中多个第二互连件包括电连接到所述多个发光二极管中的至少一部分的所述第二金属端子的多个行电极。

55. 根据权利要求54所述的方法，其中所述多个第一互连件中的每一者通过所述绝缘体中的多个通孔中的一通孔而电耦合所述多个列电极中的所述列电极中的一者。

56. 根据权利要求54到55中任一权利要求所述的方法，其中所述多个列电极，所述多个第一互连件及所述多个第二互连件是通过具有比用于形成所述第一金属端子及所述第二金属端子的光刻胶的分辨率的光刻而形成。

57. 根据权利要求54到56中任一权利要求所述的方法，其中所述多个列电极，所述多个第一互连件及所述多个第二互连件具有2微米到2毫米的最小线与间隔尺寸范围。

58. 根据权利要求39到57中任一权利要求所述的方法，其中所述发光二极管中的每一者具有大干或等于其宽度的两倍的长度。

59. 根据权利要求39到58中任一权利要求所述的方法，其中所述多个第一互连特征及所述多个第二互连特征处于单个光刻层级中。

60. 根据权利要求39到59中任一权利要求所述的方法，其中针对所述多个发光二极管中的每一发光二极管，所述对应第一金属端子及所述对应第二金属端子覆盖所述对应发光二极管的横向占用面积的至少一半、三分之二或四分之三。

61. 根据权利要求39到60中任一权利要求所述的方法，其中所述多个发光二极管中的每一者的所述第一面位于每一二极管的远离所述显示器衬底的一侧上。

62. 根据权利要求39到61中任一权利要求所述的方法，其中所述非同质衬底是选自由以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET，金属、金属箔、玻璃、
半导体及蓝宝石。

63. 根据权利要求39到62中任一权利要求所述的方法，所述多个发光二极管中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。

64. 根据权利要求39到63中任一权利要求所述的方法，所述多个发光二极管中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

65. 根据权利要求39到64中任一权利要求所述的方法，所述多个发光二极管中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。

66. 根据权利要求39到65中任一权利要求所述的方法，所述显示器衬底具有可见光大于或等于50%、80%、90%或95%的透明度。

67. 根据权利要求39到66中任一权利要求所述的方法，所述显示器衬底具有包含多个发光二极管的连续显示器衬底区域，所述多个发光二极管中的每一发光二极管具有发光区域，且所述多个发光二极管的组合发光区域小于或等于所述连续显示器衬底区域的二分之一。

68. 根据权利要求67所述的方法，所述连续显示器衬底区域的二分之一，十分之一，二十分之一，五百分之一，百分之一，五百分之一，千分之一，两千分之一或万分之一。

69. 根据权利要求39到68中任一权利要求所述的方法，所述多个导电互连件是通过多个步骤中沉积。

70. 根据权利要求39到69中任一权利要求所述的方法，其包括：

将多个微型集成电路微转移印刷于所述显示器衬底上，每一微型集成电路与所述多个发光二极管中的一组发光二极管电连接。

71. 根据权利要求70所述的方法，所述每一集成电路用于控制发射特定色彩的光的LED。

72. 根据权利要求39到71中任一权利要求所述的方法，其包括：

在非同质于所述多个第二发光二极管的第二显示器衬底上将多个第二无机发光二极管微转移印刷成第二阵列，所述多个第二发光二极管中的每一第二发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一金属端子与所述同一发光二极管的所述第一侧上的第二金属端子水平分离达一水平距离，其中所述水平距离是从100nm到20微米，其中第一显示器衬底与所述第二衬底是堆叠的。

73. 根据权利要求72所述的方法，其包括：

在所述显示器衬底的与所述多个无机发光二极管相对的一侧上将多个第二无机发光二极管微转移印刷成第二阵列，所述多个第二发光二极管中的每一第二发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一金属端子与所述同一发光二极管的所述第一侧上的第二金属端子水平分离达一水平距离，其中所述水平距离是从100nm到20微米，其中所述第一显示器衬底与所述第二衬底是堆叠的。

74. 根据权利要求72或73所述的方法，所述多个无机发光二极管的所述阵列具有不同于所述多个第二无机发光二极管的所述第二阵列的分辨率。

75. 根据权利要求72到74中任一权利要求所述的方法，所述多个无机发光二极管中的每一者具有第一大小，所述多个第二无机发光二极管中的每一者具有第二大小，且所述
述第一大小不同于所述第二大小。

76. 一种显示器，其包括：
显示器衬底；
第一经图案化金属层，其位于所述显示器衬底的表面上；
电介质层，其位于所述显示器衬底及所述第一经图案化金属层上；
聚合物层，其位于所述电介质层上；
多个光发射器，其位于所述聚合物层的表面上，所述多个光发射器中的每一光发射器在所述所述光发射器的一侧上具有阳极及阴极，其中所述显示器衬底非同质于所述多个光发射器；
多个通孔，其是穿过所述聚合物层及所述电介质层而形成，每一通孔与所述多个光发射器中的对应光发射器相联；及
第二经图案化金属层，所述第二经图案化金属层在单个层中包括多个阳极互连件及多个阴极互连件，每一阳极互连件通过所述多个通孔将所述多个光发射器中的对应光发射器的所述阳极连接到所述第一经图案化金属层，且每一阴极互连件电接触所述多个光发射器中的对应光发射器的所述阴极。

77. 根据权利要求76所述的显示器，其中所述光发射器的所述阳极与所述阴极水平分离达一水平距离，其中所述水平距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

78. 根据权利要求76或77所述的显示器，其中所述多个光发射器包括多个无机发光二极管。

79. 根据权利要求76到78中任一权利要求所述的显示器，其中所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

80. 根据权利要求76到79中任一权利要求所述的显示器，其中所述多个光发射器中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

81. 根据权利要求76到80中任一权利要求所述的显示器，其中所述多个光发射器中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。

82. 根据权利要求76到81中任一权利要求所述的显示器，其中所述多个光发射器中的每一者具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的厚度。

83. 根据权利要求76到82中任一权利要求所述的显示器，其中显示器衬底具有针对可见光大于或等于50％、80％、90％或95％的透明度。

84. 根据权利要求76到83中任一权利要求所述的显示器，其中所述显示器衬底具有连续显示器衬底区域，所述多个光发射器各自具有发光区域，且所述多个光发射器的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

85. 根据权利要求84所述的显示器，其中所述多个光发射器的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千万之一或万分之一。

86. 根据权利要求76到85中任一权利要求所述的显示器，其中显示器衬底具有针对可
见光大于或等于50%、80%、90%或95%的透明度。
87.根据权利要求76到86中任一权利要求所述的显示器，其中所述显示器衬底是选自由以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。
88.根据权利要求76到87中任一权利要求所述的显示器，其中所述第一经图案化金属层包括金属堆叠。
89.根据权利要求88所述的显示器，其中所述金属堆叠包括铝及钛。
90.根据权利要求89所述的显示器，其中所述钛位于所述铝上。
91.根据权利要求76到90中任一权利要求所述的显示器，其中所述聚合物层是光敏负性作用半导体级环氧树脂。
92.根据权利要求76到91中任一权利要求所述的显示器，所述多个光发射器已使用印刷工具移印于所述聚合物层的所述表面上。
93.根据权利要求92所述的显示器，其中所述印刷工具是粘弹性弹性体印模。
94.根据权利要求76到93中任一权利要求所述的显示器，其中所述第二经图案化金属层包括金属堆叠。
95.根据权利要求94所述的显示器，其中所述金属堆叠包括Ti/Al/Ti。
96.根据权利要求76到95中任一权利要求所述的显示器，其中所述第二经图案化金属层包括在所述显示器衬底上的多个衬垫。
97.根据权利要求76到96中任一权利要求所述的显示器，其中所述多个光发射器包括多个发射红色光的红色光发射器、多个发射绿色光的绿色光发射器及多个发射蓝色光的蓝色光发射器。
98.根据权利要求76到97中任一权利要求所述的显示器，其中所述多个光发射器中的每一光发射器的所述阳极及阴极中的至少一者形成于光发射器介质层上。
99.根据权利要求76到98中任一权利要求所述的显示器，其中所述介质层是氮化硅。
100.根据权利要求76到99中任一权利要求所述的显示器，其中所述显示器衬底是柔性的。
101.一种形成显示器的方法，所述方法包括：
将第一金属层沉积于显示器衬底上；
图案化所述第一金属层以形成第一经图案化金属层；
将电介质层沉积到所述第一经图案化金属层上以形成绝缘层；
应用未固化聚合物层；
将多个光发射器自衬底转移印刷到所述聚合物上，其中所述衬底同质于所述多个光发射器的至少一部分，且所述光发射器各自具有用于作为所述光发射器提供电力的阴极及阴极；
将所述聚合物暴露于紫外线以使所述聚合物固化；
穿过所述经固化聚合物层及所述电介质层形成多个通孔以暴露所述第一经图案化金属层的一部分；
沉积第二金属层，其中所述第二金属层接触所述多个光发射器中的每一光发射器的阳极及阴极；
权利要求书

图案化所述第二金属层以形成第二经图案化金属层，其中所述第二经图案化金属层包括多个阳极互连件及多个阴极互连件，每一阳极互连件通过所述多个通孔中的对应通孔将所述多个光发射器中的对应光发射器的所述阳极电连接到所述第一经图案化金属层，且每一阴极互连件电接触所述多个光发射器中的对应光发射器的所述阴极。

102. 根据权利要求101所述的方法，其中所述多个光发射器包括多个无机发光二极管。

103. 根据权利要求101或102所述的方法，其包括：
将所述显示器衬底切割成多个显示器。

104. 根据权利要求103所述的方法，其包括：
在将非同质晶片切割成所述多个显示器之前，用保护性光致抗蚀剂层涂覆所述晶片；及

在将所述显示器衬底切割成所述多个显示器之后，在将所述显示器衬底切割成所述多个显示器之后将所述保护性光致抗蚀剂层从所述多个显示器中的每一显示器移除。

105. 根据权利要求101到104中任一权利要求所述的方法，其包括：
在所述非同质晶片的表面上的接纳衬垫上提供无源矩阵驱动器集成电路。

106. 根据权利要求101到105中任一权利要求所述的方法，其包括：
预烧所述多个光发射器中的每一光发射器。

107. 根据权利要求101到106中任一权利要求所述的方法，其中相应光发射器的所述阳极与阴极水平分离达一水平距离，其中所述水平距离是100nm到1000微米。

108. 根据权利要求101到107中任一权利要求所述的方法，其中所述聚合物是光敏性作用半导体级环氧树脂。

109. 根据权利要求101到108中任一权利要求所述的方法，其中所述第一金属层是使用金属物理气相沉积而沉积。

110. 根据权利要求101到109中任一权利要求所述的方法，其中所述第一金属层是使用光刻而图案化。

111. 根据权利要求101到110中任一权利要求所述的方法，其中图案化所述第一金属层包括：
在沉积所述第一金属层之前，将负性作用光致抗蚀剂应用于所述第一金属层，使所述光致抗蚀剂选择性暴露于光（例如，使用掩模），及使所述光致抗蚀剂显影以形成剥离模板；及

在沉积所述第一金属层之后，将所述剥离模板移除，借此形成所述第一经图案化金属层。

112. 根据权利要求101到111中任一权利要求所述的方法，其中所述第一金属层包括钛-铝-钛的金属堆叠。

113. 根据权利要求101到112中任一权利要求所述的方法，其中沉积所述第一金属层包括：使用电子束蒸镀来沉积所述第一金属层。

114. 根据权利要求101到113中任一权利要求所述的方法，其中图案化所述第二金属层包括：
在负性作用光致抗蚀剂中图案化剥离掩模；
沉积金属堆叠；及
权利要求书

剥离所述光致抗蚀剂掩模以留下所述第二经图案化金属层。

115. 根据权利要求101到114中任一权利要求所述的方法，其中所述第二金属层包括金属堆叠。

116. 根据权利要求115所述的方法，其中所述金属堆叠包括Ti/A1/Ti。

117. 根据权利要求107到116中任一权利要求所述的方法，其包括：使用一或多个热处理来将一或多个溶剂从所述聚合物移除。

118. 根据权利要求107到117中任一权利要求所述的方法，其中微转移印刷所述多个光发射器包括：使用印刷工具来微转移印刷所述多个光发射器。

119. 根据权利要求118所述的方法，所述印刷工具包括粘弹性弹性体印模。

120. 根据权利要求101到119中任一权利要求所述的方法，其中微转移印刷所述多个光发射器包括：在所述多个光发射器与粘弹性弹性体表面之间使用运动可调粘附。

121. 根据权利要求101到120中任一权利要求所述的方法，其中微转移印刷所述多个光发射器包括：

通过以下操作来从前述同质衬底拾取所述多个光发射器的至少一部分：使粘弹性弹性体印模接触到所述多个光发射器的所述部分中的所述光发射器中的每一者的第一表面；及以第一速率使所述粘弹性弹性体印模移动远离所述同质衬底，所述第一速率导致所述弹性体与所述多个光发射器的所述部分之间的粘附性的有效增加；及

通过以下操作来将所述多个光发射器的所述部分印刷到所述非同质衬底：使由所述粘弹性弹性体印模拾取的所述光发射器中的每一者的第二表面接触到所述聚合物；及以第二速率使所述粘弹性弹性体印模移动远离所述显示器衬底，借此使由所述粘弹性弹性体印模拾取的所述光发射器留在所述聚合物上，其中所述第二速率小于所述第一速率。

122. 根据权利要求101到121中任一权利要求所述的方法，其包括：在所述微转移印刷过程期间使所述印模横向剪切移动。

123. 根据权利要求101到122中任一权利要求所述的方法，其中所述多个光发射器包括多个发射红色光的红色光发射器、多个发射绿色光的绿色光发射器及多个发射蓝色光的蓝色光发射器。

124. 根据权利要求101到123中任一权利要求所述的方法，其中所述显示器的分辨率是120×90，1440×1080，1920×1080，1280×720，3840×2160，7680×4320或15360×8640。

125. 根据权利要求101到124中任一权利要求所述的方法，其中所述多个光发射器从同质衬底微转移印刷到所述聚合物上包括：执行至少两个微转移印刷操作。

126. 根据权利要求101到125中任一权利要求所述的方法，其中所述多个光发射器从同质衬底微转移印刷到所述聚合物上包括：

从红色光发射器同质衬底微转移印刷多个发射红色光的红色光发射器；
从绿色光发射器同质衬底微转移印刷多个发射绿色光的绿色光发射器；及
从蓝色光发射器同质衬底微转移印刷多个发射蓝色光的蓝色光发射器，其中所述多个光发射器包括所述多个红色光发射器、所述多个绿色光发射器及所述多个蓝色光发射器。

127. 根据权利要求101到126中任一权利要求所述的方法，其中所述显示器衬底是柔性的。

128. 一种无机发光二极管，其包括：
导电层：
无机发光层，其安置于所述导电层的一部分上，所述导电层包括延伸超过所述无机发光层的边缘的悬臂延伸部；
第一金属端子，其安置于所述无机发光层的一部分上；
第二金属端子，其安置于所述导电层的所述悬臂延伸部上，其中在所述第一金属端子与所述第二金属端子之间供应的电流致使所述无机发光层发光；及
电介质层，其安置于所述无机发光层的至少一部分上，其中所述电介质层将所述第一金属端子与所述第二金属端子电隔离，其中所述第一金属端子及所述第二金属端子位于所述无机发光二极管的同一侧上且分离距离从100μm到20μm的水平距离。
129.根据权利要求1所述的无机发光二极管，其中所述无机发光二极管具有从0.5μm到2μm、从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。
130.根据权利要求128或129所述的无机发光二极管，其中所述无机发光二极管具有从0.5μm到2μm、从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。
131.根据权利要求128到130中任一权利要求所述的无机发光二极管，所述无机发光二极管具有从0.5μm到2μm、从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的高度。
132.根据权利要求128到131中任一权利要求所述的无机发光二极管，其中所述水平距离是从500μm到1μm、从1μm到5μm、从5μm到10μm或从10μm到20μm。
133.根据权利要求128到132中任一权利要求所述的无机发光二极管，其中所述第一金属端子的表面与第二金属端子的表面共享平面。
134.根据权利要求128到133中任一权利要求所述的无机发光二极管，其中针对所述多个发光二极管中的每一发光二极管，所述对应第一金属端子及所述对应第二金属端子覆盖所述对应发光二极管的横向占用面积的至少一半、三分之二或四分之三。
135.根据权利要求128到134中任一权利要求所述的无机发光二极管，其中所述横向导电层包括选自由以下各项组成的群组的至少一个部件：金属数、电介质层、高折射率半导体及对从所述发光二极管发射的所述光基本上透明的半导体，借此形成向上发射显示器。
136.根据权利要求128到135中任一权利要求所述的无机发光二极管，其中所述横向导电层包括选自由以下各项组成的群组的至少一个部件：对从所述LED发射的所述光基本上透明的半导体、透明导电氧化物及薄金属网。
137.根据权利要求128到136中任一权利要求所述的无机发光二极管，其中所述第一金属端子及所述第二金属端子是透明的。
138.根据权利要求128到137中任一权利要求所述的无机发光二极管，其中所述第一金属端子及所述第二金属端子包括选自由以下各项组成的群组的至少一个部件：ITO、ZnO、碳纳米管膜、铝、银、金、镍、铂、钛及细金属网。
139.一种无机发光二极管显示器，其包括多个权利要求128到138中任一权利要求所述的无机发光二极管，其中所述多个无机发光二极管安置于衬底上。
140.根据权利要求139所述的无机发光二极管显示器，其中所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。
141. 根据权利要求139或140所述的无机发光二极管显示器，其中所述显示器的分辨率是120×90, 1440×1080, 1920×1080, 1280×720, 3840×2160, 7680×4320或15360×8640。

142. 根据权利要求141所述的无机发光二极管显示器，其包括多个光学反射结构，每一光学反射结构与所述第一金属端子位于所述多个发光二极管中相对应发光二极管的同一侧上。

143. 根据权利要求141所述的无机发光二极管显示器，其包括多个光学反射结构，每一光学反射结构位于所述多个发光二极管中的对应发光二极管下方在所述发光二极管的与所述第一金属端子相对的一侧上。

144. 根据权利要求139到143中任一权利要求所述的无机发光二极管显示器，其包括：
 多个第一互连件，每一第一互连件电连接到对应发光二极管的所述第一金属端子；及
 多个第二互连件，每一第二互连件电连接到对应发光二极管的所述第二金属端子，其中所述多个第一互连件及所述多个第二互连件位于第一面上。

145. 根据权利要求144所述的无机发光二极管显示器，其中所述多个第一互连特征及所述多个第二互连特征处于单个光刻层级中。

146. 根据权利要求144或145所述的无机发光二极管显示器，其中所述多个第一互连件中的每一者通过绝缘体中的多个通孔中的一通孔而电耦合到多个列电极中的一列电极，每一通孔与所述多个发光二极管中的一发光二极管相关联。

147. 根据权利要求146所述的无机发光二极管显示器，其中所述多个列电极、所述多个第一互连件及所述多个第二互连件是通过具有比用于形成所述第一金属端子及所述第二金属端子的光刻的分辨率的光刻而形成。

148. 根据权利要求139到147中任一权利要求所述的无机发光二极管显示器，其中所述发光二极管中的每一者具有大于或等于其宽度的两倍的长度。

149. 根据权利要求139到148中任一权利要求所述的无机发光二极管显示器，其中所述显示器衬底是选自以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

150. 根据权利要求139到149中任一权利要求所述的无机发光二极管显示器，其中显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

151. 根据权利要求139到150中任一权利要求所述的无机发光二极管显示器，其中所述显示器衬底具有包含所述多个发光二极管的连续显示器衬底区域，所述多个发光二极管中的每一发光二极管具有发光区域，且所述多个发光二极管的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

152. 根据权利要求151所述的无机发光二极管显示器，其中所述多个发光二极管的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。

153. 一种无机发光二极管LED显示器，所述显示器包括：
 显示器衬底；
 多个像素，每一像素包括连接到显示器电路的一组主要无机LED及未连接到所述显示器电路的一组冗余无机LED，其中所述冗余无机LED中的每一者可电连接到所述显示器电路以替换是所述主要无机LED中的一者的对应有缺陷的LED，其中；
每一主要及冗余无机LED形成于与所述显示器衬底相异且分离的同质衬底中或同质衬底上；且
所述同质衬底位于所述显示器衬底上。
154. 根据权利要求153所述的显示器，其包括电连接到所述显示器电路的冗余LED。
155. 根据权利要求153或154所述的显示器，其包括将冗余LED电连接到所述显示器电路的导电跨接线。
156. 一种无机发光二极管LED显示器，所述显示器包括：
显示器衬底；
多个像素，每一像素包括一组主要无机LED及一组冗余无机LED，其中；
每一主要及冗余无机LED形成于与所述显示器衬底相异且分离的同质衬底中或同质衬底上；
所述同质衬底位于所述显示器衬底上；且
所述冗余组中的每一无机LED与电阻器串联连接以形成LED-电阻器对，且每一LED-电阻器对与所述主要组中的无机LED并联布线。
157. 一种无机发光二极管LED显示器，所述显示器包括：
显示器衬底；
多个像素，每一像素包括一组主要无机LED及一组冗余无机LED，其中；
每一主要及冗余无机LED形成于与所述显示器衬底相异且分离的同质衬底中或同质衬底上；
所述同质衬底位于所述显示器衬底上；且
所述冗余组中的每一无机LED与二极管串联连接以形成LED-二极管对，且每一LED-二极管对与所述主要组中的无机LED并联布线。
158. 根据权利要求153到157中任一权利要求所述的显示器，其中；
所述组主要无机LED包括多个发射红色光的红色无机LED，多个发射绿色光的绿色无机LED及多个发射蓝色光的蓝色无机LED，且
所述组冗余无机LED包括多个冗余的发射红色光的红色无机LED，多个冗余的发射绿色光的绿色无机LED及多个冗余的发射蓝色光的蓝色无机LED。
159. 根据权利要求153到158中任一权利要求所述的显示器，其中所述组主要无机LED包括多个发射黄色光的黄色无机LED，且所述组冗余无机LED包括多个冗余的发射黄色光的黄色无机LED。
160. 根据权利要求153到159中任一权利要求所述的显示器，其中所述组主要无机LED及所述组冗余无机LED直接位于所述显示器衬底上。
161. 根据权利要求153到160中任一权利要求所述的显示器，其中每像素包括电连接到相应像素中的每一无机LED的无机集成电路。
162. 根据权利要求153到161中任一权利要求所述的显示器，其中每像素包括主要微型集成电路及冗余微型集成电路。
163. 根据权利要求153到162中任一权利要求所述的显示器，其中所述显示器衬底是选自以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。
164. 根据权利要求153到163中任一权利要求所述的显示器，其中每一无机LED具有从
2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。
165. 根据权利要求153到164中任一权利要求所述的显示器，其中每一无机LED具有从
2μm到5μm、从5μm到10μm、从10μm到20μm的长度。
166. 根据权利要求153到165中任一权利要求所述的显示器，其中每一无机LED具有从
2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。
167. 根据权利要求153到166中任一权利要求所述的显示器，其中显示器衬底具有针对
可见光大于或等于50％、80％、90％或95％的透明度。
168. 根据权利要求153到167中任一权利要求所述的显示器，其中所述显示器衬底具有
包含所述组主要无机LED及所述组冗余无机LED的连续显示器衬底区域,每一LED具有发光
区域,且LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。
169. 根据权利要求168所述的显示器,其中所述LED的所述组合发光区域小于或等于所
述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分
之一、千分之一、两千分之一或万分之一。
170. 一种无机组装无机发光二极管LED显示器的方法，所述方法包括：
在或多个同质衬底中或同质衬底上形成多个可印刷无机LED；
将所述多个可印刷无机LED转移印刷到与所述一或多个同质衬底分离且相异的显示器
衬底上以形成多个像素，其中每一像素包括一組主要无机LED及一组冗余无机LED；
将所述主要无机LED连接到显示器电路；及
测试所述显示器以识别有缺陷的主要无机LED。
171. 根据权利要求170所述的方法，其中
所述组主要无机LED包括多个发射红色光的红色无机LED、多个发射绿色光的绿色无机
LED及多个发射蓝色光的蓝色无机LED。
所述组冗余无机LED包括多个冗余的发射红色光的红色无机LED、多个冗余的发射绿
色光的绿色无机LED及多个冗余的发射蓝色光的蓝色无机LED。
172. 根据权利要求170到171中任一权利要求所述的方法，其中所述组主要无机LED包
括多个发射黄色光的黄色无机LED；且所述组冗余无机LED包括多个冗余的发射黄色光的黄
色无机LED。
173. 根据权利要求170到172中任一权利要求所述的方法，其包括：
将所述有缺陷的主要无机LED与所述显示器电路断开连接。
174. 根据权利要求170到173中任一权利要求所述的方法，其包括：
建立到紧密接近于所述有缺陷的主要无机LED中的每一者的冗余无机LED的电连接，使
得所述冗余无机LED中的每一者连接到所述显示器电路。
175. 根据权利要求174所述的方法，其中建立到所述冗余LED中的每一者的电连接包
括：
直接且物理地写入电迹线。
176. 根据权利要求174所述的方法，其中建立到所述冗余LED中的每一者的电连接包
括：
通过微组装在所述冗余LED中的每一者与所述相应有缺陷的LED之间放置导电跨接线。
177. 根据权利要求174所述的方法，其中建立到所述冗余LED中的每一者的电连接包括：
在清洁金属表面之间通过焊料回流或触点建立电连接。
178. 根据权利要求170到177中任一权利要求所述的方法，其包括：
在测试所述显示器之前，使每一冗余无机LED与电阻器串联地连接到所述显示器电路
以形成LED-电阻器对，使得每一LED-电阻器对与主要无机LED并联连接。
179. 根据权利要求170到178中任一权利要求所述的方法，其包括：
在测试所述显示器之前，使每一冗余无机LED与二极管串联地连接到所述显示器电路
以形成LED-二极管对，使得每一LED-二极管对与主要无机LED并联连接。
180. 根据权利要求170到179中任一权利要求所述的方法，其中测试所述显示器包括：
使所述主要无机LED中的一或多者照亮；及
识别有缺陷的主要LED。
181. 根据权利要求170到180中任一权利要求所述的方法，其中所述显示器衬底是选自由
以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻
璃、半导体及蓝宝石。
182. 根据权利要求170到181中任一权利要求所述的方法，其中所述多个可印刷无机
LED是直接微转移印刷到所述显示器衬底上。
183. 根据权利要求170到182中任一权利要求所述的方法，其中每一无机LED具有从2μm
到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。
184. 根据权利要求170到183中任一权利要求所述的方法，其中每一无机LED具有从2μm
到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。
185. 根据权利要求170到184中任一权利要求所述的方法，其中每一无机LED具有从2μm
到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。
186. 根据权利要求170到185中任一权利要求所述的方法，其中所述显示器衬底具有针对
可见光大于或等于50%、80%、90%或95%的透明度。
187. 根据权利要求170到186中任一权利要求所述的方法，其中所述显示器衬底具有包
含所述组主要无机LED及所述组冗余无机LED的连续显示器衬底区域，每一LED具有发光区
域，且LED的组合发光区域小于或等于所述连续显示器衬底区域的十分之一。
188. 根据权利要求187所述的方法，其中所述LED的所述组合发光区域小于或等于所述
连续显示器衬底区域的十分之一、百分之一、五分之一、百分之一、五分之一、千分之一、
千分之一或万分之一。
189. 一种微型LED显示器，其包括：
显示器衬底，其是至少部分透明的；
色彩转换结构阵列，其位于所述显示器衬底上，每一色彩转换结构包括色彩转换材料；及
微型LED阵列，其与所述色彩转换结构分离，所述微型LED阵列中的每一微型LED位于所
述色彩转换结构阵列中的所述色彩转换结构中的对应一者上。
190. 根据权利要求189所述的显示器，其中所述显示器衬底包括凹部阵列，所述色彩转
换材料位于所述凹部中。
191. 根据权利要求190所述的显示器，其中所述凹部填充有所述色彩转换材料。

192. 根据权利要求189到191中任一权利要求所述的显示器，其中所述微型LED位于所述色彩转换材料上方在所述色彩转换材料的与所述显示器衬底相对的一侧上，使得从所述微型LED发射的光的大部分或全部向下穿过所述色彩转换材料及所述显示器衬底而发射。

193. 根据权利要求189到192中任一权利要求所述的显示器，其包括基本上覆盖所述微型LED的与所述显示器衬底相对的一侧的多个反射结构，使得所述微型LED将所发射光朝向所述显示器衬底反射。

194. 根据权利要求193所述的显示器，其中所述一或多反射结构包括阵列连接金属或微型LED触点。

195. 一种微型LED显示器，其包括：

显示器衬底；

微型LED阵列，其位于所述显示器衬底上；及

色彩转换结构阵列，其与微型LED结构分离，所述色彩转换结构阵列中的每一色彩转换结构位于所述微型LED阵列中的所述微型LED中的对应一者上，其中每一色彩转换结构包括色彩转换材料。

196. 根据权利要求195所述的显示器，其中所述色彩转换材料位于所述微型LED的顶部上或至少部分地环绕所述微型LED在所述微型LED的与所述显示器衬底相对的一侧上。

197. 根据权利要求189到196中任一权利要求所述的显示器，其中所述色彩转换材料包括含磷光体凝胶或树脂、磷光体陶瓷或单晶磷光体。

198. 根据权利要求189到197中任一权利要求所述的显示器，其中所述色彩转换材料是直接带隙半导体的芯片。

199. 根据权利要求189到198中任一权利要求所述的显示器，其中所述色彩转换材料至少部分地环绕所述微型LED。

200. 根据权利要求189到199中任一权利要求所述的显示器，其包括所述显示器衬底上的反射镜结构。

201. 根据权利要求189到200中任一权利要求所述的显示器，其中每一微型LED具有与所述显示器衬底分离的LED衬底。

202. 根据权利要求189到201中任一权利要求所述的显示器，其中所述微型LED形成于与所述显示器衬底相异且分离的同质衬底中。

203. 根据权利要求189到202中任一权利要求所述的显示器，其中所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5毫米、从0.5毫米到1毫米、从1毫米到5毫米、从5毫米到10毫米或从10毫米到20毫米的厚度。

204. 根据权利要求189到203中任一权利要求所述的显示器，其中每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的宽度。

205. 根据权利要求189到204中任一权利要求所述的显示器，其中每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的长度。

206. 根据权利要求189到205中任一权利要求所述的显示器，其中每一微型LED具有从2微米到5微米、从4微米到10微米、从10微米到20微米或从20微米到50微米的高度。
207. 根据权利要求189到206中任一权利要求所述的显示器，其中所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

208. 根据权利要求189到207中任一权利要求所述的显示器，其中所述显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

209. 根据权利要求189到208中任一权利要求所述的显示器，其中所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

210. 根据权利要求209所述的显示器，其中所述微型LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。

211. 根据权利要求189到210中任一权利要求所述的显示器，其中每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。

212. 根据权利要求211所述的显示器，其中相应光发射器的所述阳极与阴极水平分离达一水平距离，其中所述水平距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

213. 根据权利要求189到212中任一权利要求所述的显示器，其中所述显示器衬底是选自自由以下各项组成的群组的部件：聚合物、塑料树脂、聚酰胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

214. 根据权利要求189到213中任一权利要求所述的显示器，其中所述微型LED阵列包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，且每一像素包括所述多个红色微型LED中的一红色微型LED，所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微型LED中的一蓝色微型LED。

215. 根据权利要求189到214中任一权利要求所述的显示器，其中所述微型LED是有机微型LED。

216. 一种微组装微型LED光发射器阵列的方法，所述方法包括：
在第一衬底上形成多个微型LED；
提供显示器衬底，所述显示器衬底是至少部分透明的；
在所述显示器衬底上将多个色彩转换结构提供成阵列，每一色彩转换结构包括色彩转换材料；
将所述多个微型LED微组装到显示器衬底上使得所述多个微型LED中的每一微型LED位于所述多个色彩转换结构的所述色彩转换结构中的对应者上，其中将所述多个微型LED微组装到显示器衬底上包括；
使所述多个微型LED的一部与具有接触表面的第一转印装置接触，借此将所述多个微型LED的所述部分暂时粘结到所述接触表面使得所述接触表面上暂时安置有所述多个微型LED的所述部分；
使安置于所述第一转印装置的所述接触表面上的所述多个微型LED的所述部分与所述多个色彩转换结构的一部分接触；及
使所述第一转印装置的所述接触表面与所述多个微型LED的所述部分分离，
其中所述多个微型LED的部分被转印到色彩转换结构的所述部分上，借此将所述多个
微型LED的所述部分组装于所述色彩转换结构的所述部分上。

217. 根据权利要求216所述的方法，其中提供位于所述显示器衬底上方成阵列的多个色彩转换结构，包括：在所述多个微型LED微组装到显示器衬底上之前；

在所述显示器衬底中形成多个凹部；及

用色彩转换材料填充所述多个凹部，在所述色彩转换材料上方印刷多个可印刷LED。

218. 根据权利要求216或217所述的方法，其中提供位于所述显示器衬底上方成阵列的多个色彩转换结构，包括：在所述多个微型LED微组装到显示器衬底上之前；

将色彩转换材料的芯片微组装到所述显示器衬底上。

219. 根据权利要求216到218中任一权利要求所述的方法，其中所述微型LED位于所述色彩转换材料上方在所述色彩转换材料的与所述显示器衬底相对的一侧上，使所述微型LED发射的光的大部分或全部向上穿过所述色彩转换材料及所述显示器衬底而发射。

220. 根据权利要求216到219中任一权利要求所述的方法，其包括基于所述色彩转换材料的与所述显示器衬底相对的一侧的一或多个反射结构，使得所述微型LED将所述光朝向所述显示器衬底反射。

221. 根据权利要求220所述的方法，其中所述一或多个反射结构包括阵列连接金属或微型LED触点。

222. 一种微组装微型LED光发射器阵列的方法，所述方法包括：

在第一衬底上形成多个微型LED；

提供显示器衬底；

将所述多个微型LED微组装到显示器衬底上，其中将所述多个微型LED微组装到所述显示器衬底上包括；

使所述多个微型LED的一部分与具有接触表面的第一转印装置接触，借此将所述多个微型LED的所述部分临时粘结到所述接触表面使得所述接触表面上暂时设置有所述多个微型LED的所述部分；

使所述第一转印装置的所述接触表面上的所述多个微型LED的所述部分与多个色彩转换结构的一部分接触；

使所述第一转印装置的所述接触表面与所述多个微型LED的所述部分分离，其中所述多个微型LED的所述部分被转印到色彩转换结构的所述部分上，借此将所述多个微型LED的所述部分组装于所述色彩转换结构的所述部分上；及

在所述显示器衬底上将多个色彩转换结构提供成阵列，使得所述多个色彩转换结构中的所述色彩转换结构位于所述多个微型LED的所述微型LED中的对应一者上，其中每一色彩转换结构包括色彩转换材料。

223. 根据权利要求222所述的方法，其中所述色彩转换材料位于所述微型LED的顶部上或至少部分地环绕所述微型LED在所述微型LED的与所述显示器衬底相对的一侧上。

224. 根据权利要求216到223中任一权利要求所述的方法，其中所述色彩转换材料包括含磷光体凝胶或树脂，磷光体陶瓷或单晶磷光体。

225. 根据权利要求216到224中任一权利要求所述的方法，其中所述色彩转换材料是直接带隙半导体的芯片。

226. 根据权利要求216到225中任一权利要求所述的方法，其中所述色彩转换材料至少
部分地环绕所述微型LED。

227. 根据权利要求216到226中任一权利要求所述的方法，其包括所述显示器衬底上的补偿镜结构。

228. 根据权利要求216到227中任一权利要求所述的方法，其中每一微型LED具有与所述显示器衬底分离的LED衬底。

229. 根据权利要求216到228中任一权利要求所述的方法，其中所述微型LED形成于与所述显示器衬底相异且分离的同质衬底中。

230. 根据权利要求216到229中任一权利要求所述的方法，其中所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5毫米、从0.5毫米到1毫米、从1毫米到5毫米、从5毫米到10毫米或从10毫米到20毫米的厚度。

231. 根据权利要求216到230中任一权利要求所述的方法，其中每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的宽度。

232. 根据权利要求216到231中任一权利要求所述的方法，其中每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的长度。

233. 根据权利要求216到232中任一权利要求所述的方法，其中每一微型LED具有从2微米到5微米、从4微米到10微米、从10微米到20微米或从20微米到50微米的高度。

234. 根据权利要求216到233中任一权利要求所述的方法，其中显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

235. 根据权利要求216到234中任一权利要求所述的方法，其中所述显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

236. 根据权利要求216到235中任一权利要求所述的方法，其中所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

237. 根据权利要求216到236所述的方法，其中所述微型LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一，十分之一，二十分之一，五十分之一，百分之一，五百分之一，千分之一，万分之一或万分之一。

238. 根据权利要求216到237中任一权利要求所述的方法，其中每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。

239. 根据权利要求238所述的方法，其中相应光发射器的所述阳极与阴极水平分离达到水平距离，其中所述水平距离是从100纳米到500纳米、从500纳米到1微米，从1微米到20微米，从20微米到50微米或从50微米到100微米。

240. 根据权利要求216到239中任一权利要求所述的方法，其中所述显示器衬底是选自由以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

241. 根据权利要求216到240中任一权利要求所述的方法，其中所述多个微型LED包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，且每一像素包括所述多个红色微型LED中的一红色微型LED、所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微型LED中的一蓝色微型LED。
242. 根据权利要求216到241中任一权利要求所述的方法，其中所述微型LED是有机微型LED。

243. 一种多功能显示器，其包括：
显示器衬底；
微型LED阵列，其位于所述显示器衬底上；及
功能元件阵列，其位于所述显示器衬底上，所述微型LED交错于所述功能元件之间，其中所述显示器衬底非同质于所述微型LED及所述功能元件。

244. 根据权利要求243所述的多功能显示器，其中所述功能元件是传感器或收发器。

245. 根据权利要求243所述的多功能显示器，其中所述功能元件包括自以下各项组成的群组的至少一个部件：图像捕获装置、光学传感器、光电二极管、红外传感器、姿势传感器、红外传感器、温度传感器、电力接收装置、太阳能电池、运动能收集装置、压电装置、电容器、天线及无线发射装置。

246. 根据权利要求243到245中任一权利要求所述的多功能显示器，其中所述功能元件在所述显示器衬底上具有不同于所述微型LED的空间密度。

247. 根据权利要求243到246中任一权利要求所述的多功能显示器，其中所述微型LED形成于与所述显示器衬底分离且相异的同质衬底中。

248. 根据权利要求243到247中任一权利要求所述的多功能显示器，其中所述功能元件形成于与所述显示器衬底分离且相异的同质衬底中。

249. 根据权利要求243到248中任一权利要求所述的多功能显示器，其中在所述显示器中，功能元件的数目小于或等于微型LED的数目。

250. 根据权利要求243到249中任一权利要求所述的多功能显示器，其中在所述显示器中，功能元件的所述数目小于或等于微型LED的所述数目的三分之一。

251. 根据权利要求243到250中任一权利要求所述的多功能显示器，其中所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

252. 根据权利要求243到251中任一权利要求所述的多功能显示器，其中每一微型LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

253. 根据权利要求243到252中任一权利要求所述的多功能显示器，其中每一微型LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。

254. 根据权利要求243到253中任一权利要求所述的多功能显示器，其中每一微型LED具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

255. 根据权利要求243到254中任一权利要求所述的多功能显示器，其中每一功能元件具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的宽度、长度及高度中的至少一者。

256. 根据权利要求243到255中任一权利要求所述的多功能显示器，其中所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

257. 根据权利要求243到256中任一权利要求所述的多功能显示器，其中显示器衬底具
有针对可见光大于或等于50%、80%、90%或95%的透明度。

258. 根据权利要求243到257中任一权利要求所述的多功能显示器，其中所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

259. 根据权利要求258所述的多功能显示器，其中所述微型LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十一分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。

260. 根据权利要求243到259中任一权利要求所述的多功能显示器，其中每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。

261. 根据权利要求260所述的显示器，其中相应光发射器的所述阳极与阴极水平分离达一水平距离，其中所述水平距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

262. 根据权利要求243到261中任一权利要求所述的显示器，其中所述显示器衬底是选自以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET金属、金属箔、玻璃、半导体及蓝宝石。

263. 根据权利要求243到262中任一权利要求所述的多功能显示器，其中所述微型LED阵列及所述功能元件阵列位于共同平面上。

264. 根据权利要求243到263中任一权利要求所述的多功能显示器，其包括：
多个微型集成电路，每一微型集成电路连接到所述微型LED阵列中的至少一个微型LED及所述功能元件阵列中的至少一个功能元件。

265. 根据权利要求243到264中任一权利要求所述的多功能显示器，其包括：
聚合物层，其位于所述显示器衬底上，其中所述微型LED阵列及所述功能元件阵列位于所述聚合物层上使得所述聚合物层介于所述显示器衬底与所述微型LED阵列及所述功能元件阵列之间。

266. 根据权利要求265所述的多功能显示器，其包括：
第一电介质层及所述所述显示器衬底的表面上；
第二电介质层，其位于所述显示器衬底及所述第一电介质层及所述所述显示器衬底上，其中所述聚合物层位于所述显示器衬底上；
多个通孔，其中穿过所述聚合物层及所述电介质层而形成，每一通孔与相对微型LED相关联；及
第二电介质层，所述第二电介质层包括多个阳极互连件及多个阴极互连件，每一阳极互连件通过所述多个通孔中的对应通孔将对应微型LED的所述阴极电连接到所述第一电介质层及所述所述显示器衬底，且每一阴极互连件电接触对应微型LED的所述阴极。

267. 根据权利要求243到266中任一权利要求所述的多功能显示器，其包括：
多个像素，每一像素包括所述微型LED阵列中的至少一个微型LED及所述功能元件阵列中的至少一个功能元件。

268. 根据权利要求267所述的多功能显示器，其中所述微型LED阵列包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，且每一像素包括所述多个红色微型LED中的一红色微型LED、所述多个绿色微型LED中的一绿色
微型LED及所述多个蓝色微型LED中的一蓝色微型LED。

269. 根据权利要求243到268中任一权利要求所述的多功能显示器，其中所述微型LED是有机微型LED。

270. 一种微组装交错有功能元件的发光二极管LED显示器的方法，所述方法包括：
在第一衬底上形成多个微型LED；
在第二衬底上形成多个功能元件；
将所述多个微型LED微组装成非同质于所述多个微型LED及所述多个功能元件的显示器衬底上，其中所述多个微型LED微组装成所述显示器衬底上包括：
使所述多个微型LED的一部分与具有接触表面的第一转印装置接触，借此将所述多个微型LED的所述部分暂时粘结到所述接触表面使得所述接触表面上暂时安置有所述多个微型LED的所述部分；
使安置于所述第一转印装置的所述接触表面上的所述多个微型LED的所述部分与所述显示器衬底的所述接触面接触；
使所述第一转印装置的所述接触面与所述多个微型LED的所述部分分离，其中所述多个微型LED的所述部分被转印到所述显示器衬底上，借此将所述多个微型LED的所述部分组装于所述显示器衬底的所述接触面上；及
将所述多个功能元件微组装成显示器衬底上，其包括：
使所述多个功能元件的所述部分与所述多个微型LED的所述部分与所述第二转印装置接触，借此将所述多个功能元件的所述部分粘结到所述接触表面使得所述接触表面上安置有所述多个功能元件的所述部分；
使安置于所述第二转印装置的所述接触表面上的所述多个功能元件的所述部分与所述显示器衬底的所述接触面接触；及
将所述第二转印装置的所述接触面与所述多个功能元件的所述部分分离，其中所述多个功能元件的所述部分被转印到所述显示器衬底的所述接触面上，借此将所述多个功能元件的所述部分组装于所述显示器衬底的所述接触面上。

271. 根据权利要求270所述的方法，其中所述多个功能元件是传感器或收发器。

272. 根据权利要求270所述的方法，其中所述多个功能元件包括选自由以下各项组成的群组的至少一个部件：图像捕获装置、光学传感器、光电二极管、红外传感器、姿势传感器、红外传感器、温度传感器、电力收发装置、太阳能电池、运动能收集装置、压电装置、电容器、天线及无线发射装置。

273. 根据权利要求270到272中任一权利要求所述的方法，其中所述多个功能元件在所述显示器衬底上方具有不同于所述微型LED的空间密度。

274. 根据权利要求270到273中任一权利要求所述的方法，其中所述微型LED形成于与所述显示器衬底分离且相异的同质衬底中。

275. 根据权利要求270到274中任一权利要求所述的方法，其中所述多个功能元件形成于与所述显示器衬底分离且相异的同质衬底中。

276. 根据权利要求270到275中任一权利要求所述的方法，其中在所述显示器中，功能元件的数目小于或等于微型LED的数目。

277. 根据权利要求270到276中任一权利要求所述的方法，其中在所述显示器中，功能
元件的所述数目小于或等于微型LED的所述数目的三分之一。

278. 根据权利要求270到277中任一权利要求所述的方法，其中所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

279. 根据权利要求270到278中任一权利要求所述的方法，其中每一微型LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

280. 根据权利要求270到279中任一权利要求所述的方法，其中每一微型LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。

281. 根据权利要求270到280中任一权利要求所述的方法，其中每一微型LED具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。

282. 根据权利要求270到281中任一权利要求所述的方法，其中每一功能元件具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的宽度、长度及高度中的至少一者。

283. 根据权利要求270到282中任一权利要求所述的方法，其中所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

284. 根据权利要求270到283中任一权利要求所述的方法，其中显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

285. 根据权利要求270到284中任一权利要求所述的方法，其中所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

286. 根据权利要求285所述的方法，其中所述显示二极管的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十一分之一、二十一分之一、五十一分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。

287. 根据权利要求270到286中任一权利要求所述的方法，其中每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。

288. 根据权利要求287所述的方法，其中所述光发射器的所述阳极与阴极水平分离达到水平距离，其中所述水平距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

289. 根据权利要求270到288中任一权利要求所述的方法，其中所述显示器衬底是选自由以下组成群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

290. 根据权利要求270到289中任一权利要求所述的方法，其中所述多个微型LED及所述多个功能元件位于共同平面上。

291. 根据权利要求270到290中任一权利要求所述的方法，其包括：
多个微型集成电路，每一微型集成电路连接到所述多个微型LED中的至少一个微型LED及多个功能元件中的至少一个功能元件。

292. 根据权利要求270到291中任一权利要求所述的方法，其包括：
聚合物层，其位于所述显示器衬底上，其中所述多个微型LED及所述多个功能元件位于聚合物层上使得所述聚合物层介于所述显示器衬底与所述多个微型LED及所述多个功能元
根据权利要求292所述的方法，其包括；
第一经图案化金属层，其位于所述显示器衬底的表面上；
电介质层，其位于所述显示器衬底及所述第一经图案化金属层上，其中所述聚合物层
位于所述显示器衬底上；
多个通孔，其是穿过所述聚合物层及所述电介质层而形成，每一通孔与对应微型LED相
关联；及
第二经图案化金属层，所述第二经图案化金属层在单个层中包括多个阳极互连件及多
个阴极互连件，每一阳极互连件通过所述多个通孔中的对应通孔将对应微型LED的所述阳
极电连接到所述第一经图案化金属层，且每一阴极互连件电接触对应微型LED的所述阴极。
根据权利要求293中任一权利要求所述的方法，其包括；
多个像素，每一像素包括所述多个微型LED中的至少一个微型LED及所述多个功能元件
中的至少一个功能元件。
根据权利要求294所述的方法，其中所述多个微型LED包括多个不同颜色的微型LED，
且每一像素包括所述多个微型LED中的一红色微型LED、所述多个微型LED中的一绿色微型LED
及所述多个微型LED中的一蓝色微型LED。
根据权利要求295中任一权利要求所述的方法，其中所述多个微型LED是有机微型LED。
根据权利要求296中任一权利要求所述的方法，其中所述第二转印装置是所述第一转印装置。
根据权利要求297所述的方法，其中所述第二转印装置包括弹性体印模。
一种多模式显示器，其包括；
显示器衬底；
第一发射式有机微型LED显示器，其形成于所述显示器衬底上方；及
第二显示器，其形成于所述显示器衬底上方，所述第二显示器是不同于所述第一发射
式微型LED显示器的类型。
根据权利要求299所述的多模式显示器，其中所述第二显示器是非发射反射式显示
器。
根据权利要求300所述的多模式显示器，其中所述第二显示器是电泳或基于MEM的
显示器。
根据权利要求301中任一权利要求所述的多模式显示器，其中所述第一显示器
包括多个第一像素且所述第二显示器包括多个第二像素，其中所述多个第一像素中的每一
者小于所述多个第二像素中的每一者。
根据权利要求302中任一权利要求所述的多模式显示器，其包括用于在所述
第一显示器与所述第二显示器之间切换的控制器。
根据权利要求303中任一权利要求所述的多模式显示器，其包括蜂窝式电
话、智能电话或平板计算装置。
根据权利要求304中任一权利要求所述的多模式显示器，其中所述第一显示
器。
器与所述第二显示器位于所述显示器衬底的不同部分上方。

306. 根据权利要求299到305中任一权利要求所述的多模式显示器，其中所述第一显示器及所述第二显示器位于所述显示器衬底的同一部分上方。

307. 根据权利要求306所述的多模式显示器，其中所述第一显示器位于所述第二显示器的顶部上在所述第二显示器的与所述显示器衬底相对的一侧上。

308. 根据权利要求306所述的多模式显示器，其中所述第一显示器的光控制元件与所述第二显示器的光控制元件交错于所述显示器衬底上。

309. 根据权利要求299到308中任一权利要求所述的多模式显示器，其中所述微型LED形成为与所述显示器衬底相异且分离的同质衬底中。

310. 根据权利要求299到309中任一权利要求所述的多模式显示器，其中所述第一显示器及所述第二显示器形成于所述显示器衬底上。

311. 根据权利要求299到309中任一权利要求所述的多模式显示器，其中所述第一显示器位于所述显示器衬底的第一侧上，且所述第二显示器位于所述显示器衬底的与所述第一侧相对的第二侧上。

312. 根据权利要求299到309中任一权利要求所述的多模式显示器，其中所述第二显示器位于所述显示器衬底上，且所述第一显示器位于微型LED显示器衬底上，所述微型LED显示器衬底与所述显示器衬底分离并位于所述显示器衬底上方。

313. 根据权利要求299到312中任一权利要求所述的显示器，其中所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5毫米、从0.5毫米到1毫米、从1毫米到5毫米、从5毫米到10毫米或从10毫米到20毫米的厚度。

314. 根据权利要求299到313中任一权利要求所述的显示器，其中每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的宽度。

315. 根据权利要求299到314中任一权利要求所述的显示器，其中每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的长度。

316. 根据权利要求299到315中任一权利要求所述的显示器，其中每一微型LED具有从2微米到5微米、从4微米到10微米、从10微米到20微米或从20微米到50微米的长度。

317. 根据权利要求299到316中任一权利要求所述的显示器，其中所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

318. 根据权利要求299到317中任一权利要求所述的显示器，其中显示器衬底具有针对可见光大于或等于50％、80％、90％或95％的透明度。

319. 根据权利要求299到318中任一权利要求所述的显示器，其中所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

320. 根据权利要求319所述的显示器，其中所述微型LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十二分之一、二十分之一、三十分之一、五十分之一、百分之一、五百分之一、千分之一或万分之一。

321. 根据权利要求299到320中任一权利要求所述的显示器，其中每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。
322. 根据权利要求321所述的显示器，其中相应光发射器的所述阳极与阴极水平分离
达一水平距离，其中所述水平距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、
从20微米到50微米或从50微米到100微米。

323. 根据权利要求299到322中任一权利要求所述的显示器，其中所述显示器衬底是选
自以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻
璃、半导体及蓝宝石。

324. 根据权利要求299到323中任一权利要求所述的显示器，其中所述第一发射式微型
LED显示器包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发
射蓝色光的蓝色微型LED，且所述第一发射式微型LED显示器的每一像素包括所述多个红色
微型LED中的一红色微型LED，所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微
型LED中的一蓝色微型LED。

325. 根据权利要求299到324中任一权利要求所述的显示器，其中所述微型LED是有机
微型LED。

326. 根据权利要求299到325中任一权利要求所述的显示器，其中所述第一发射式无机
微型LED显示器包括形成于与所述显示器衬底分离且相异的LED衬底中的多个无机微型
LED，且所述第二显示器形成于所述显示器衬底上或所述显示器衬底中且与所述显示器衬
底同质，其中所述LED衬底粘附到所述显示器衬底。

327. 一种微组装微型LED光发射器阵列的方法，所述方法包括：
在第一衬底上形成多个微型LED；
提供显示器衬底；
将所述多个微型LED微组装于所述显示器衬底上方，借此将第一发射式微型LED显示器
形成于所述显示器衬底上方；及
将第二显示器形成于所述显示器衬底上方，所述第二显示器是不同于所述第一发射式
微型LED显示器的类型。

328. 根据权利要求327所述的方法，其中所述第二显示器是非发射反射式显示器。

329. 根据权利要求328所述的方法，其中所述第二显示器是电泳或基于MEM的显示器。

330. 根据权利要求327到329中任一权利要求所述的方法，其中所述第一显示器包括多
个第一像素且所述第二显示器包括多个第二像素，其中所述多个第一像素中的每一者小于
所述多个第二像素中的每一者。

331. 根据权利要求327到330中任一权利要求所述的方法，其包括用于在所述第一显示
器与所述第二显示器之间切换的控制器。

332. 根据权利要求327到331中任一权利要求所述的方法，其包括蜂窝式电话、智能电
话或平板计算装置。

333. 根据权利要求327到332中任一权利要求所述的方法，其中所述第一显示器与所述
第二显示器位于所述显示器衬底的不同部分上方。

334. 根据权利要求327到333中任一权利要求所述的方法，其中所述第一显示器及所述
第二显示器位于所述显示器衬底的同一部分上方。

335. 根据权利要求334所述的方法，其中所述第一显示器位于所述第二显示器的顶点
上在所述第二显示器的与所述显示器衬底相对的一侧上。
336. 根据权利要求334所述的方法，其中所述第一显示器的光控制元件与所述第二显示器的光控制元件交错于所述显示器衬底上。

337. 根据权利要求327到336中任一项权利要求所述的方法，其中所述微型LED形成于与所述显示器衬底相异且分离的同质衬底中。

338. 根据权利要求327到337中任一项权利要求所述的方法，其中所述第一显示器及所述第二显示器形成于所述显示器衬底上。

339. 根据权利要求338所述的方法，其中所述第一显示器位于所述显示器衬底的第一侧上，且所述第二显示器位于所述显示器衬底的与所述第一侧相对的第二侧上。

340. 根据权利要求327到339中任一项权利要求所述的方法，其中所述第二显示器位于所述显示器衬底上，且所述第一显示器位于微型LED显示器衬底上，所述微型LED显示器衬底与所述显示器衬底分离并位于所述显示器衬底上方。

341. 根据权利要求327到340中任一项权利要求所述的方法，其中所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5毫米、从0.5毫米到1毫米、从1毫米到5毫米、从5毫米到10毫米或从10毫米到20毫米的厚度。

342. 根据权利要求327到341中任一项权利要求所述的方法，其中每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的宽度。

343. 根据权利要求327到342中任一项权利要求所述的方法，其中每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的长度。

344. 根据权利要求327到343中任一项权利要求所述的方法，其中每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的高度。

345. 根据权利要求327到344中任一项权利要求所述的方法，其中所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

346. 根据权利要求327到345中任一项权利要求所述的方法，其中显示器衬底具有针对可见光大于或等于50％、80％、90％或95％的透明度。

347. 根据权利要求327到346中任一项权利要求所述的方法，其中所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

348. 根据权利要求347所述的方法，其中所述微型LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。

349. 根据权利要求327到348中任一项权利要求所述的方法，其中每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。

350. 根据权利要求349所述的方法，其中相应光发射器的所述阳极与阴极水平分离一定水平距离，其中所述水平距离是从100微米到500微米、从500微米到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

351. 根据权利要求327到350中任一项权利要求所述的方法，其中所述显示器衬底是选自下列各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。
352. 根据权利要求327到351中任一权利要求所述的方法，其中所述多个微型LED包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，且每一像素包括所述多个红色微型LED中的一红色微型LED、所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微型LED中的一蓝色微型LED。

353. 根据权利要求327到352中任一权利要求所述的方法，其中所述微型LED是有机微型LED。

354. 一种微组装置，其包括：
装置衬底；
第一电导体，其位于所述装置衬底上；
第二电导体，其位于所述装置衬底上；
导电跨越元件，其与所述装置衬底相异且分离，具有一个或多个跨越导体；且
其中所述导电跨越元件位于所述装置衬底上，其中所述一个或多个跨越导体中的一个跨越导体与所述第一电导体及所述第二电导体电接触。

355. 根据权利要求354所述的装置，其中所述导电跨越元件是导电无源装置。

356. 根据权利要求354或355所述的装置，其中所述导电跨越元件是有源装置。

357. 根据权利要求356所述的装置，其中所述有源装置是CMOS装置。

358. 根据权利要求356或357所述的装置，其中所述有源装置包括驱动电路及非易失性存储器中的至少一者。

359. 根据权利要求354到358中任一权利要求所述的装置，其中所述导电跨越元件容纳于适合于进行微转移印刷的结构内。

360. 根据权利要求354到359中任一权利要求所述的装置，其中所述导电跨越元件包括半导体、硅、绝缘体上硅、玻璃、金属及电介质中的一或多者。

361. 根据权利要求354到360中任一权利要求所述的装置，其中所述导电跨越元件包括半导体、金属、贵金属、金、银、铂、铜、不锈钢、镍、铬、焊料、PbSn、AgSn或AgSn。

362. 根据权利要求354到361中任一权利要求所述的装置，其中所述导电跨越元件的邻近于导体衬底的一部分是凹入的。

363. 根据权利要求362所述的装置，其在所述导体衬底上包括与所述第一电导体及所述第二电导体电隔离的第三电导体，其中所述第三电导体位于所述导电跨越元件的凹部下方。

364. 根据权利要求362所述的装置，其中凹部包括暴露绝缘体。

365. 根据权利要求354到361中任一权利要求所述的装置，其中所述导电跨越元件包括电连接到第二端子的第一端子，其中在所述第一端子与所述第二端子之间具有暴露绝缘体，其中所述第一端子、第二端子及所述暴露绝缘体在所述导电跨越元件的至少一个侧上形成平面表面。

366. 根据权利要求364或365所述的装置，其在所述导体衬底上包括与所述第一电导体及所述第二电导体电隔离的第三电导体，其中所述第三电导体由所述暴露绝缘体接触。

367. 根据权利要求354所述的装置，其中所述导电跨越元件中的至少一者的一部分覆盖有绝缘体。

368. 根据权利要求354所述的装置，其中所述导电跨越元件中的至少一者的中心部分覆盖
有分离所述跨接导体的暴露端的绝缘体。

369. 根据权利要求354到368中任一权利要求所述的装置，其中所述衬底是显示器衬底，且所述跨接导体元件将冗余光发射器电连接到显示器电路。

370. 根据权利要求354到369中任一权利要求所述的装置，其中所述冗余光发射器取代有缺陷的主要光发射器而连接到所述显示器电路。

371. 根据权利要求354到370中任一权利要求所述的装置，其中所述第一电导体与所述第二电导体之间的距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

372. 根据权利要求354到371中任一权利要求所述的装置，其中所述装置衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

373. 根据权利要求354到372中任一权利要求所述的装置，其中导电跨接元件具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

374. 根据权利要求354到373中任一权利要求所述的装置，其中导电跨接元件具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。

375. 根据权利要求354到374中任一权利要求所述的装置，其中导电跨接元件具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。

376. 根据权利要求354到375中任一权利要求所述的装置，其中装置衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

377. 根据权利要求354到376中任一权利要求所述的装置，其中所述装置衬底是选自由以下所组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

378. 根据权利要求354到377中任一权利要求所述的装置，其中所述导电跨接元件是交叉线。

379. 根据权利要求354到378中任一权利要求所述的装置，其包括：

多个第一电导体，其位于所述装置衬底上，其中所述多个第一电导体包括所述第一电导体；

多个第二电导体，其位于所述装置衬底上，其中所述多个第二电导体包括所述第二电导体；

导电跨接元件，其与所述装置衬底相异且分离，具有多个跨接导体，其中所述多个跨接导体包括所述一或多个跨接导体；且

所述多个跨接导体中的每一跨接导体与所述多个电导体中的第一电导体及所述多个第二电导体中的第二电导体电接触。

380. 一种提供微组装装置的方法，其包括：

提供装置，所述装置包括

装置衬底；

第一电导体，其位于所述装置衬底上；

第二电导体，其位于所述装置衬底上；及
权利要求书

将具有一个或多个跨接导体的导电跨接元件组装于所述装置衬底上，其中所述导电跨接元件位于所述装置衬底上，所述所述跨接导体与所述第一电导体及所述第二电导体电接触。

381. 根据权利要求380所述的方法，其中所述导电跨接元件是导电无源装置。
382. 根据权利要求380或381所述的方法，其中所述导电跨接元件是导电有源装置。
383. 根据权利要求382所述的方法，其中所述有源装置是CMOS装置。
384. 根据权利要求382或383所述的方法，其中所述有源装置包括驱动电路及非易失性存储器中的至少一者。
385. 根据权利要求380到384任一权利要求所述的方法，其中所述导电跨接元件容纳于适于进行微转移印刷的结构内。
386. 根据权利要求380到385任一权利要求所述的方法，其中所述导电跨接元件包括半导体、硅、绝缘体上硅、玻璃、金属及电介质中的一或多者。
387. 根据权利要求380到386任一权利要求所述的方法，其中所述跨接导体包括半导体、金属、贵金属、金、银、铜、不锈钢、镍、铬、焊料、PbSn、AgSn或AgSn。
388. 根据权利要求380到387任一权利要求所述的方法，其中所述导电跨接元件的邻近于导体衬底的一部分是凹入的。
389. 根据权利要求388所述的方法，其在所述导体衬底上包括与所述第一电导体及所述第二电导体电隔离的第三电导体，其中所述第三电导体位于所述导电跨接元件的凹部下方。
390. 根据权利要求388所述的方法，其中凹部包括暴露绝缘体。
391. 根据权利要求380到387任一权利要求所述的方法，其中所述导电跨接元件包括电连接到第二端子的第一端子，其中在所述第一端子与所述第二端子之间具有暴露绝缘体，其中所述第一端子、第二端子及所述暴露绝缘体在所述导电跨接元件的至少一个侧上形成平面表面。
392. 根据权利要求390或391所述的方法，其在所述导体衬底上包括与所述第一电导体及所述第二电导体电隔离的第三电导体，其中所述第三电导体由所述暴露绝缘体接触。
393. 根据权利要求380所述的方法，其中所述跨接导体中的至少一者的一部分覆盖有绝缘体。
394. 根据权利要求380所述的方法，其中所述跨接导体中的至少一者的中心部分覆盖有分离所述跨接导体的暴露端的绝缘体。
395. 根据权利要求380到394任一权利要求所述的方法，其中所述衬底是显示器衬底，且所述导电跨接元件将冗余光发射器电连接到显示器电路。
396. 根据权利要求380到395任一权利要求所述的方法，其中所述冗余光发射器取代有缺陷的主要光发射器并连接到所述显示器电路。
397. 根据权利要求380到396任一权利要求所述的方法，其中所述第一电导体与所述第二电导体之间的距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。
398. 根据权利要求380到397任一权利要求所述的方法，其中所述装置衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米
到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

399. 根据权利要求380到398中任一权利要求所述的方法，其中导电跨越元件具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

400. 根据权利要求380到399中任一权利要求所述的方法，其中导电跨越元件具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。

401. 根据权利要求380到400中任一权利要求所述的方法，其中导电跨越元件具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。

402. 根据权利要求380到401中任一权利要求所述的方法，其中装置衬底具有针对可见光大于或等于50％、80％、90％或95％的透明度。

403. 根据权利要求380到402中任一权利要求所述的方法，其中所述装置衬底是选自由以下各组成的合组的部件：聚合物、塑料、树脂、聚酰胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

404. 根据权利要求380到403中任一权利要求所述的方法，其中所述导电跨越元件是交叉线。

405. 根据权利要求380到404中任一权利要求所述的方法，其包括：

多个第一电导体，其位于所述装置衬底上，所述电导体包括所述第一电导体；

多个第二电导体，其位于所述装置衬底上，所述电导体包括所述第二电导体；

导电跨越元件，其与所述装置衬底相异且分离，具有多个跨越导体，所述电导体包括所述一或多个跨越导体；且

所述多个跨越导体中的每一跨越导体与所述多个电导体中的第一电导体及所述多个第二电导体中的第二电导体电接触。

406. 根据权利要求380到405中任一权利要求所述的方法，其中微组装所述导电跨越元件包括：

使所述导电跨越元件与具有接触表面的转印装置接触，借此将所述导电跨越元件暂时粘结到所述接触表面上使得所述接触表面上暂时安置有所述导电跨越元件；

使安置于所述转印装置的所述接触表面上的所述导电跨越元件与所述装置衬底的接纳表面接触；及

使所述转印装置的所述接触表面与所述导电跨越元件分离，其中导电跨越元件被转印到所述接纳表面上，借此将所述导电跨越元件的所述部分转装于所述装置衬底的所述接纳表面上。

407. 根据权利要求380所述的方法，其中转印装置包括弹性体印模。
微组装LED显示器

[0001] 相关申请案

技术领域

[0003] 本文中描述以过小、过多或过于易碎而无法通过常规手段组装的微型LED阵列为特征的微组装无机发光二极管(即，微型LED)显示器及照明元件。

背景技术

[0004] 平板显示器通常构造有分布于扁平衬底表面上方的光发射器阵列。除等离子电视外，发射式平板显示器通常依赖于 (i) 具有由液晶及彩色滤光器提供的像素光控制的背光(例如，液晶显示器)、(ii) 有机彩色光发射器(例如，有机发光二极管显示器)，或 (iii) 具有彩色滤光的有机白色光发射器(例如，白色有机发光二极管显示器)。重要地，所有这三种平板显示器技术均是区域发射器，即，每一像素的整个区域填充有光发射器或光控制器。这些显示器中的大部分是依赖于形成于衬底上的局部电路以控制像素的有源矩阵显示器。这些电路(针对液晶显示器的单个晶体管及针对有机发光二极管显示器的两个或于两个晶体管)在衬底上需要显著区域，这减少可用于光发射的区域。有机发光二极管显示器通常具有60％填充因子(还称作为有源发光区域或孔径比)，且液晶显示器可取决于显示器大小及分辨率而具有甚至更大填充因子。

[0005] 无机发光二极管(LED)通常是使用需要使用各种化学品及材料的半导体过程而制造。此制造方法需要使用在高温制造过程期间不熔化的刚性衬底(例如，蓝宝石衬底或硅衬
底）。在将LED制作于刚性衬底上之后，通常将晶片切割以形成用于显示器中的个别LED。

【0006】显示器中的早期LED应用包含具有数值LED显示器的持手式计算器。最近，LED已经集成成为显示器的背光。将LED集成于较大显示器（例如显示器或面板）中涉及对显示器面板中的每一个LED的复杂布线。将LED用于显示器（例如RGB LED显示器）中继续呈现众多挑战，包括增加的复杂性、有限的显示器格式、增加的制造成本及减小的制造合格率。举例来说，具有分辨率1280×720的显示器包含921,600个像素。针对RGB LED显示器，每一像素通常必须包含多个LED（红色、绿色及蓝色LED）。因此，显示器在此实例中必须使用2,764,800个LED。在一些情形中，尽管这些LED必须布置于对角线测量为数英寸的显示器中。这些LED不仅必须较小，而且所述LED必须布置成具有适当布线及驱动电路的阵列。此外，用于形成每一色彩LED的材料不同。针对RGB显示器视需要在制造期间布置不同色彩LED是极其困难的。半导体芯片或裸片自动化组装设备通常使用真空操作放置头（例如真空抓持器或取放工具）以拾取装置并将装置应用于衬底。使用此技术来拾取及放置超薄且小型装置是困难的。

【0007】此外，LED通常在微型LED的不同面上形成有端子。这些垂直LED在互连过程中期在电隔离期及排布方面遇到挑战。此需要在（例如）LED显示器的组合在端子之间沉积垂直绝缘体。举例来说，如果一个端子位于底部上且一个端子在顶部上，那么端子在x-y平面中占据相同空间且需要稳健绝缘体。在LED中的两个端子之间面板级形成垂直电绝缘向显示器添加额外步骤及层，从而在显示器应用中增加添加的复杂性。

【0008】由于这些原因以及其它原因，为消费者提供高分辨率RGB LED显示器是困难且昂贵的。因此，需要使用提供低成本制造、经改善合格率及经改善系统可靠性的LED来制造显示器的系统及方法。

发明内容

【0009】本文中描述以过小、过多或过于易碎而无法通过常规手段组装的微型LED阵列（例如，微型LED具有0.5μm到50μm的宽度、长度、高度及/或直径；例如，1μm到50μm的宽度、5μm到500μm的长度及0.5μm到50μm的高度）为特征的微组装无机发光二极管（例如，微型LED）显示器及照明元件。确切来说，这些显示器是使用微转移印刷技术组装。所述微型LED可使用高温制造技术于同质衬底上如被印刷到非同质显示器衬底（例如，与微型LED原本制成于其上的同质衬底分离且相异的聚合物、塑料、树脂、聚酰胺、聚氨二甲酸乙二酯、聚对苯二甲酸乙二酯、金属、金属箔、玻璃以及蓝宝石、透明材料或柔性材料），借此避免将所述微型LED制造于所述显示器衬底上，所述显示器衬底除其它事项外还无法耐受构成半导体元件所需的温度。

【0010】微转移印刷的微型LED是明亮的（例如，从300W/cm²到700W/cm²的强度）且实现低电力消耗。显示器可利用透明的（例如，塑料、蓝宝石或玻璃）衬底，且可经制成为轻量或柔性或者两者。由于所述微型LED占据显示器区域的小部分，且由于所述微型LED布线可能是细或透明的，因此显示器自身可被透明或半透明的。显示器可从侧边、背侧或两侧发射光。在一些实施例中，显示器在侧边具有粘附层，从而产生粘纸状显示器。

【0011】稀疏分布的微型LED允许包含微型传感器、电力收获装置、姿势传感器（接触式及非接触式两者）、图像捕获装置等新功能。显示器还可包含微转移印刷的微型集成电路，所
述微型集成电路提供CMOS性能及(在某些实施例中)嵌入式存储器(例如,非易失性存储器)。

[0012] LED像素的有源发射区域是小的且相对于其中半导体材料占据整个显示器面板或其量大的部分的常规显示器而占据像素数量区域。举例来说，仅有源元件的位置中需要所揭示显示器中的半导体材料，例如，在某些实施例中，其覆盖不大于显示器的观察区域的40％、30％、20％、10％、5％、3％、1％、0.5％或0.1％。因此，部分地由于微型LED的亮度、结晶半导体衬底的效率及使用本文中所描述的制造技术将微型LED组装成阵列的能力，可能在不危及显示器质量的情况下以低填充因数(例如，不大于40％、30％、20％、10％、5％、3％、1％、0.5％或0.1％)制造显示器。

[0013] 举例来说，在一些实施例中，驱动电路位于一或多个像素中(例如，在与微型LED相同的层上)。举例来说，驱动电路可仅使用像素的小部分(例如，举例来说，10μm到60μm×5μm到50μm的区域)。驱动微型LED所需的电路可消耗(举例来说)小于像素区域的10％、5％、1％、0.5％或0.1％，借此允许空间可用于其它用途及/或经改善透明度。举例来说，更复杂电路或多个发射器可放置在像素位置处而无光发射或效率的损失。相比来说，如果多个发射器及/或其它有源元件包含于使用其它平板显示器技术的每个像素位置处，那么可用于每个像素的区域将减少，借此导致减少的光输出或使用寿命。因此，包含(举例来说)在显示器衬底上利用微型LED的显示器的所揭示微型LED显示器允许更多复杂性，额外光发射器或欲放置于每个像素中的额外功能性而不显著地影响(例如，无任何图像)显示器质量。

[0014] 在某些实施例中，通过将微型LED转移印刷到显示器衬底实现99.99％或更大的合格率。在每一像素位点处定位多个无机微型LED实现数个可能技术优点。此外，可通过将冗余无机微型LED定位于每一光发射器或像素位点处来增加显示器合格率。举例来说，在一些实施例中，通过在每一像素位点处使用两个或多于两个完全相同光发射器而改善显示器合格率，因为(举例来说)即使每一像素位点处的一个光发射器(举例来说)是故障的，显示器仍呈现为恰当的起作用。在某些实施例中，在确定主要微型LED出故障(例如，在制造期间或在显示器分布之前)时，冗余微型LED电连接到显示器。

[0015] 此外，在一些实施例中，不同色彩的额外发射器以衬底区域或像素性能中无显著成本提供于像素内。额外色彩可(举例来说)通过将黄色或青色添加到常规红色、绿色及蓝色发射器而加宽色域。在一些实施例中，使用所揭示技术提供3D显示器。举例来说，在一些实施例中，显示器利用两个稍微不同的红色、绿色及蓝色发射器，借此提供3D显示器而不减小显示器帧速率。更复杂控制方案是可能的，例如，举例来说，视需要更新。此外，在一些实施例中，局部光传感器可用于局部(或全局)校准微型LED(例如，实时)。在某些实施例中，除微型LED之外，其它微型装置还可放置于每一像素内。举例来说，微型检测及微型集成电路(例如，微型显示器驱动器)可放置于像素内。在某些实施例中，天线位于每一像素内。所述天线可用于使用无线信号/通信来将电力或数据流式传输到显示器中。

[0016] 在某些实施例中，所揭示技术包含微型LED显示器(举例来说，经由微转移印刷组装的显示器)的有利互连架构。

[0017] 通常，LED在微型LED的不同面上形成有端子。垂直LED在互连的过程期间在电离隔离阳极及阴极方面遇到挑战。此需要在(例如)LED显示器的机器人组装中在端子之间沉积垂直绝缘体。举例来说，如果一个端子位于底部且一个端子位于顶部上，那么端子在x-y平
面中占据相同空间且需要稳健绝缘体。

[0018] 另外，接触衬垫的水平分离允许到每一微型LED的端子的连接形成于单个层级上，借此减少显示器中的层级的数目且改善放置准确度。在某些实施例中，微型LED组装（例如，经由微转移印刷）到绝缘体上，且在所述绝缘体中形成孔以接达所述绝缘体下面的列线。因此，此架构减少形成绝缘体所需的层级的数目。

[0019] 此外，微型LED上的接触衬垫的水平分离提供从垂直LED结构不可获得的益处。举例来说，使用垂直LED结构的显示器需要在LED的两个端子（接触衬垫）之间形成面板级垂直电绝缘。相比之下，在某些实施例中，所述技术通过将端子放置在微型LED的同一面上来避免此问题。LED接触衬垫的水平分离凭借导体的水平分离促进电隔离，借此避免垂直电绝缘要求。

[0020] 在某些实施例中，所述技术提供具有水平分离接触衬垫的伸长微型LED（例如，具有大纵横比的矩形LED）。此配置减小将微型LED组装到显示器面板所需的显示器面板导体的放置准确度。此外，LED构造过程中的精细光刻可用于使端子与LED结构中的其它元件之间的分离距离（例如，100nm到200微米的距离的分离距离）最小化，因此增加微型LED端子的可能大小。减小端子与LED结构元件之间的横向分离，增加端子的大小（在LED的尺寸的限制内）及水平分离端子增加对电组装的微型LED与用于电连接显示器衬底上的电组装微型LED的相对导电线之间的对齐及光刻误差的制造容限。

[0021] 此外，本文中描述堆叠式透明（或半透明）显示器，所述显示器允许可调谐亮度、缺陷补偿、增加的清晰度及/或2.5D或3D观看。

[0022] 本文中还描述：由占据与独立驱动芯片相同的观看区域的多个集成显示形成显示器，具有补充RGB无机微型LED的显示器，在同一像素中具有反射式显示元件及微型LED发射器的多模式显示器、具有包含用于视觉上更完美装置的黄色微型LED（及/或其它非传统RGB色彩，例如青色）的像素的显示器，及具有（举例来说）每像素多达9个微型LED的微型LED显示器。所述技术还促进微组装微型LED的光致发光或功能测试。

[0023] 在某些实施例中，所述技术利用微转移印刷技术来形成成像装置，例如微型LED显示器装置。举例来说，在某些实施例中，电子源组件从同质衬底（例如，无机半导体材料、单晶硅片、绝缘体上硅片、多晶硅片及GaAs晶片、Si（1 1 1）、GaN、蓝宝石、InP、InAlP、InGaAs、AlGaAs、GaSb、AlSb、InSb、InGaAsSbAs、InAlSb及InGaP）转印到显示器衬底（例如，用于（举例来说）在非同质衬底上形成有源组件的阵列的非同质衬底，例如玻璃、塑料或金属）。在一些实施例中，使用弹性体印模及/或静电印模执行转印。有源组件的释放经控制且可预测，借此实现使用微转移印刷技术生产本文中所描述的微型LED显示器。

[0024] 举例来说，微结构印模（例如弹性体印模或静电印模（或其它转印装置））可用于拾取微型装置（例如，微型LED、传感器或集成电路），将微型装置输送到目的地显示器衬底并将微型装置印刷到显示器衬底上。表面粘附力可用于控制对这些装置的选择并将其印刷到显示器衬底上。此过程可大规模并行执行，从而在单个拾取及印刷操作中转印数百到数千个离散结构。

[0025] 在一个方面中，本文发明是针对一种无机发光二极管显示器，所述显示器包括多个无机发光二极管，其在非同质于所述多个发光二极管的显示器衬底上组装成阵列，其中所述阵列的每一发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一
金属端子与所述同一发光二极管的所述第一侧上的第二金属端子水平分分离达一水平距离，其中所述水平距离是从100μm到20微米。

[0026] 在某些实施例中，所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。在某些实施例中，所述光发射器中的每一者具有从2μm到5μm、从5μm到10μm或从10μm到20μm的宽度。在某些实施例中，所述多个光发射器中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm的长度。在某些实施例中，所述多个光发射器中的每一者具有从2μm到5μm、从4μm到10μm、从10μm到20μm的宽度。

[0027] 在某些实施例中，所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

[0028] 在某些实施例中，每一发光二极管包括：导电层、及有机发光层，其安置于所述导电层的一部分上，所述导电层包括延伸超过所述有机发光层的边缘的悬臂延伸部，其中所述第一金属端子安置于所述有机发光层的一部分上且所述第二金属端子安置于所述导电层的所述悬臂延伸部，其中在所述第一金属端子与所述第二金属端子之间供应的电流致使所述有机发光层发光。

[0029] 在某些实施例中，所述横向导电层包括选自由下所列各项组成的群相的至少一个部件：金属层、电介质层、高折射率半导体及对所述所选发光二极管发射的所述光基本上透明的半导体，借此形成向上发射显示器。

[0030] 在某些实施例中，所述横向导电层包括选自由下所列各项组成的群相的至少一个部件：对所述LED发射的所述光基本上透明的半导体、透明导电氧化物及薄金属网。

[0031] 在某些实施例中，所述第一金属端子及所述第二金属端子是透明的。在某些实施例中，所述第一金属端子及所述第二金属端子包括选自由下所列各项组成的群相的至少一个部件：ITO、ZnO、碳纳米管膜、铝、银、金、镍、铂及钛金属网。

[0032] 在某些实施例中，所述显示器是向下发射微型LED显示器，使得由所述多个发光二极管发射的光的大部分是穿过所述显示器衬底发射出。

[0033] 在某些实施例中，所述显示器包括多个光学反射结构，每一光学反射结构与所述第一金属端子位于所述多个发光二极管中的对应发光二极管的同一侧上。

[0034] 在某些实施例中，所述第一金属端子及所述第二金属端子是至少部分反射性的，借此允许从相应发光二极管发射的光至少部分地从所述第一金属端子及所述第二金属端子反射且穿过每一发光二极管的与第一侧相对的第二面。

[0035] 在某些实施例中，直接位于每一发光二极管的至少一部分下面的材料是至少部分透明的。

[0036] 在某些实施例中，所述显示器是向上发射微型LED显示器，使得由所述多个发光二极管发射的光的大部分是沿远离所述显示器衬底的方向发射。

[0037] 在某些实施例中，所述显示器包括多个光学反射结构，每一光学反射结构位于所述多个发光二极管中的对应发光二极管下方在所述发光二极管的与所述第一金属端子相对的一侧上。

[0038] 在某些实施例中，所述第一金属端子及所述第二金属端子是至少部分透明的，借
此允许从相应发光二极管发射的光至少部分地穿过所述第一金属端子及所述第二金属端子。

在某些实施例中，所述显示器包括：多个第一互连件，每个第一互连件电连接到对应发光二极管的所述第一金属端子；及多个第二互连件，每个第二互连件电连接到对应发光二极管的所述第二金属端子，其中所述多个第一互连件及所述多个第二互连件位于所述第一面上。

在某些实施例中，所述多个第一互连特征及所述多个第二互连特征处于单个光刻层中。

在某些实施例中，所述多个第一互连件中的每一者通过绝缘体中的多个通孔中的一个通孔而电耦合到多个列电极中的一个列电极，每一通孔与所述多个发光二极管中的一发光二极管相关联。

在某些实施例中，所述多个列电极、所述多个第一互连件及所述多个第二互连件是通过具有比用于形成所述第一金属端子及所述第二金属端子的光刻胶的分辨率的光刻胶而形成。

在某些实施例中，所述发光二极管中的每一者具有大于或等于其宽度的两倍的长度，在某些实施例中，针对所述多个发光二极管中的每一发光二极管，所述对应第一金属端子及所述对应第二金属端子覆盖所述对应发光二极管的横向占用面积的至少一半、三分之二或四之三。在某些实施例中，所述多个发光二极管是经由微转移印刷而组装。

在某些实施例中，所述显示器衬底是选自由以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属层、玻璃、半导体及蓝宝石。

在某些实施例中，所述显示器衬底具有可见光光大或等于50%、80%、90%或95%的透明度。在某些实施例中，所述显示器衬底具有包含所述多个发光二极管的连续显示器衬底区域，所述多个发光二极管中的每一发光二极管具有发光区域，且所述多个发光二极管的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

在某些实施例中，所述多个发光二极管的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十五分之一、五十分之一、百份之一、五百分之一、千分之一、两千分之一或万分之一。

在某些实施例中，针对所述多个无机发光二极管的每一无机发光二极管，所述水平距离是从500nm到1μm、从1μm到5μm、从5μm到10μm或从10μm到20μm。在某些实施例中，针对所述多个无机发光二极管的每一无机发光二极管，所述第一金属端子的表面与第二金属端子的表面共享平面。

在某些实施例中，所述显示器包括：多个微型集成电路，其位于所述显示器衬底上，每一微型集成电路与所述多个发光二极管中的一组发光二极管电连接。

在某些实施例中，每一集成电路用于控制发射特定色彩的光的LED。

在某些实施例中，所述多个发光二极管的由相应集成电路驱动的每一组发光二极管形成独立子显示器。

在某些实施例中，所述显示器包括：多个第二无机发光二极管，其在非同质于所述多个第二发光二极管的第二显示器衬底上组装成第二阵列，其中所述多个第二发光二极管中的每一第二发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一
金属端子与所述同一发光二极管的所述第一侧上的第二金属端子水平分离达一水平距离，
其中所述水平距离是从100nm到20微米，其中第一显示器衬底与所述第二衬底是堆叠的。

在某些实施例中，所述显示器包括：多个第二无机发光二极管，其在所述显示器衬底的与所述多个无机发光二极管相对的一侧上组装成第二阵列，其中所述多个第二发光二极管中的每一第二发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一金属端子与所述同一发光二极管的所述第一侧上的第二金属端子水平分离达一水平距离，其中所述水平距离是从100nm到20微米，其中所述第一显示器衬底与所述第二衬底是堆叠的。

在某些实施例中，所述多个无机发光二极管的所述阵列具有不同于所述多个第二无机发光二极管的所述第二阵列的分辨率。

在某些实施例中，所述多个无机发光二极管中的每一者具有第一大小，所述多个第二无机发光二极管中的每一者具有第二大小，且所述第一大小不同于所述第二大小。

在另一方面中，本发明是针对一种形成发光二极管显示器的方法，所述方法包括：
在衬底上形成多个列线；将绝缘体沉积于所述列线上；将多个发光二极管转移印刷到所述绝缘体上，其中每一微型发光二极管在所述发光二极管的第一面上包括第一金属端子及第二金属端子，其中所述衬底非同一质于所述多个发光二极管；在所述绝缘体中形成多个孔，借此暴露所述多个列线中的每一者的部分；及将多个导电连结件沉积于所述第一面上，所述多个导电连结件包括多个中电极及多个列电连结点，其中所述多个列电连结点中的每一者将列电连接到对应发光二极管的所述第一金属端子。

在某些实施例中，针对所述多个发光二极管中的每一发光二极管，所述第一金属端子与所述同一发光二极管的所述第一面上的所述第二金属端子水平分离达从100nm到5微米的水平距离。

在某些实施例中，所述第一金属端子及所述第二金属端子是透明的。在某些实施例中，所述第一金属端子及所述第二金属端子是至少部分透明的，借此允许从相应发光二极管发射的光至少部分地穿过所述第一金属端子及所述第二金属端子。

在某些实施例中，所述显示器是向下发射微型LED显示器使得由所述多个发光二极管发射的光的大部分是穿过所述显示器衬底发射出。

在某些实施例中，所述方法包括：沉积多个光学反射结构，每一光学反射结构位于所述多个发光二极管中的一发光二极管上面在所述发光二极管的与所述显示器衬底相对的一侧上。

在某些实施例中，直接位于每一发光二极管的至少一部分下面的材料是至少部分透明的。

在某些实施例中，所述第一金属端子及所述第二金属端子是至少部分反射性的，
借此允许从相应发光二极管发射的光至少部分地从所述第一金属端子及所述第二金属端子反射且穿过每一发光二极管的与所述第一面相对的第二面。在某些实施例中，所述第一金属端子及所述第二金属端子包括选自由以下各项组成的群组的至少一个部件：ITO、ZnO、碳纳米管膜、铝、银、金、镍、钼、钛及铟金属网。

在某些实施例中，所述显示器是向上发射微型LED显示器，使得由所述多个发光二极管发射的光的大部分是远离所述显示器衬底的方向发射。
在某些实施例中，所述方法包括：在微转移印刷所述多个发光二极管之前，沉积多个光学反射结构，每一光学反射结构位于所述多个发光二极管中的对应发光二极管下方。

在某些实施例中，每一发光二极管包括：导电层及无机发光层，其安置于所述导电层的一部分上，所述导电层包括延伸超过所述无机发光层的边缘的悬臂延伸部，其中所述第一金属端子安置于所述无机发光层的一部分上且所述第二金属端子安置于所述导电层的所述悬臂延伸部上，其中在所述第一金属端子与所述第二金属端子之间供应的电流致使所述无机发光层发光。

在某些实施例中，所述横向导电层包括选自由以下各项组成群组的至少一个部件：金属钯、电介质钯、高折射率半导体及对从所述发光二极管发射的所述光基本上透明的半导体，借此形成向上发射显示器。

在某些实施例中，所述横向导电层包括选自由以下各项组成群组的至少一个部件；对从所述LED发射的所述光基本上透明的半导体，透明导电氧化物及薄金属网。

在某些实施例中，微转移印刷所述多个发光二极管包括：提供转印装置，所述多个发光二极管的一部分可移除方式附接到所述转印装置，其中所述转印装置包括与所述多个发光二极管的所述部分至少部分接触的三维特征；使以可移除方式附接到所述转印装置的所述多个发光二极管的所述部分与所述衬底的接纳表面接触；及在所述多个发光二极管的所述部分与所述接纳表面的所述接触之后，使所述转印装置与所述多个发光二极管的所述部分分离，其中所述多个发光二极管的所述部分被转印到所述接纳表面上。

在某些实施例中，所述方法包括：多个列电极，每一列电极电连接到多个第一互连件中的相应一者；及绝缘体，其介于所述多个列电极与所述多个发光二极管之间，其中多个第二互连件包括电连接到所述多个发光二极管中的至少一者所述第一二金属端子的多个行电极。

在某些实施例中，所述多个第一互连件中的每一者通过所述绝缘体中的多个通孔中的一通孔而电耦合到所述多个列电极中的所述列电极中的一者。

在某些实施例中，所述多个列电极、所述多个第一互连件及所述多个第二互连件是通过具有比用于形成所述第一金属端子及所述第二金属端子的光刻胶的分辨率的光刻而形成。

在某些实施例中，所述多个列电极、所述多个第一互连件及所述多个第二互连件具有2微米到2毫米的最小线与间隔尺寸范围。

在某些实施例中，所述发光二极管中的每一者具有大于或等于其宽度的两倍的长度。

在某些实施例中，所述多个第一互连特征及所述多个第二互连特征处于单个光刻层级中。

在某些实施例中，针对所述多个发光二极管中的每一发光二极管，所述对应第一金属端子及所述对应第二金属端子覆盖所述对应发光二极管的横向占用面积的至少一半、三分之二或四分之三。

在某些实施例中，所述多个发光二极管中的每一者的所述第一面位于每一二极管的远离所述显示器衬底的一侧上。

在某些实施例中，所述非同质衬底是选自由以下各项组成群组的部件：聚合物、
塑胶、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

在某些实施例中，所述多个发光二极管中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。在某些实施例中，所述多个发光二极管中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。在某些实施例中，所述多个发光二极管中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。在某些实施例中，所述多个发光二极管中的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

在某些实施例中，所述显示器衬底具有针对可见光大于或等于50％、80％、90％或95％的透明度。

在某些实施例中，所述显示器衬底具有包含多个发光二极管的连续显示器衬底区域，所述多个发光二极管中的每一发光二极管具有发光区域，且所述多个发光二极管的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

在某些实施例中，光发射器的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一或万分之一。

在某些实施例中，所述多个导电互连件是在单个步骤中沉积。

在某些实施例中，所述方法包括：将多个微型集成电路微转移印制于所述显示器衬底上，每一微型集成电路与所述多个发光二极管中的一组发光二极管电连接。在某些实施例中，每一集成电路用于控制发射特定色彩的光的LED。

在某些实施例中，所述方法包括：在非同质于所述多个第二无机发光二极管的第二显示器衬底上将多个第二无机发光二极管微转移印制第二阵列，其中所述多个第二无机发光二极管中的每一第二无机发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一金属端子与所述同一发光二极管的所述第一侧上的第二金属端子水平分离达一水平距离，其中所述水平距离是从100nm到20微米，其中第一显示器衬底与所述第二衬底是堆叠的。

在某些实施例中，所述方法包括：在所述显示器衬底的与所述多个无机发光二极管相对的一侧上将多个第二无机发光二极管微转移印制第二阵列，其中所述多个第二发光二极管中的每一第二发光二极管在所述对应发光二极管的第一侧上包括第一金属端子，所述第一金属端子与所述同一发光二极管的所述第一侧上的第二金属端子水平分离达一水平距离，其中所述水平距离是从100nm到20微米，其中所述第一显示器衬底与所述第二衬底是堆叠的。

在某些实施例中，所述多个无机发光二极管的所述阵列具有不同于所述多个第二无机发光二极管的所述第二阵列的分辨率。

在某些实施例中，所述多个无机发光二极管中的每一者具有第一大小，所述多个第二无机发光二极管中的每一者具有第二大小，且所述第一大小不同于所述第二大小。

在另一方面中，本发明是针对一种显示器，其包括：显示器衬底；第一电极金属层，位于所述显示器衬底的表面上；电介质层，位于所述显示器衬底及所述第一电极金属层上；聚合物层，其位于所述电介质层上；多个光发射器，其位于所述聚合物层的表面上，所述多个光发射器中的每一光发射器在所述相应光发射器的同一侧上具有阳极及阴极，其中所述显示器衬底非同质于所述多个光发射器；多个通孔，其是穿过所述聚合物层。
及所述电介质层而形成，每一通孔与所述多个光发射器中的对应光发射器相关联。及所述第二段模块化金属层，所述第二段模块化金属层在单个层中包括多个阳极互连件及多个阴极互连件，每一阳极互连件通过所述多个通孔的对应通孔将所述多个光发射器中的对应光发射器的所述阳极电连接到所述第一段模块化金属层且每一阴极互连件电接触所述多个光发射器中的对应光发射器的所述阴极。

[0088] 在某些实施例中，相应光发射器的所述阳极与阴极水平分离达一水平距离，其中所述水平距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

[0089] 在某些实施例中，所述多个光发射器包括多个无机发光二极管。

[0090] 在某些实施例中，所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

[0091] 在某些实施例中，所述多个光发射器的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。在某些实施例中，所述多个光发射器的每一者具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。在某些实施例中，所述多个光发射器的每一者具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。

[0092] 在某些实施例中，所述显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

[0093] 在某些实施例中，所述显示器衬底具有连续显示器衬底区域，所述多个光发射器各自具有发光区域，且所述多个光发射器的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

[0094] 在某些实施例中，所述多个光发射器的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。

[0095] 在某些实施例中，所述显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

[0096] 在某些实施例中，所述显示器衬底是选自由以下各组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

[0097] 在某些实施例中，所述第一段模块化金属层包括金属堆叠。在某些实施例中，所述金属堆叠包括铝及钛。在某些实施例中，所述钛位于所述铝上。

[0098] 在某些实施例中，所述聚合物层是光敏感性作用半导体级环氧树脂。

[0099] 在某些实施例中，所述多个光发射器已使用印刷工具微转移印刷于所述聚合物层的所述表面上。

[0100] 在某些实施例中，所述印刷工具是粘弹性弹性体印模。

[0101] 在某些实施例中，所述第二段模块化金属层包括金属堆叠。在某些实施例中，所述金属堆叠包括Ti/Al/Ti。

[0102] 在某些实施例中，所述第二段模块化金属层包括在所述显示器衬底上的多个衬垫。
在某些实施例中，所述多个光发射器包括多个发射红色光的红色光发射器、多个发射绿色光的绿色光发射器及多个发射蓝色光的蓝色光发射器。

在某些实施例中，所述多个光发射器中的每一光发射器的所述阳极及阴极中的至少一者形成于光发射器电介质层上。

在某些实施例中，所述电介质层是氮化硅。

在某些实施例中，所述显示器衬底是柔性材料。

在另一方面中，本发明是针对一种形成显示器的方法，所述方法包括：将第一金属层沉积于显示器衬底上；图案化所述第一金属层以形成第一电极与电介质层；将电介质层沉积到所述第一电极图案化金属层上以形成电介质层；应用非固化聚合物层；将多个光发射器从同质衬底转移并印刷到所述聚合物层上，其中所述同质衬底同质于所述多个光发射器的至少一部分，且所述光发射器各自具有用于所述光发射器供电的阳极及阴极；将所述聚合物暴露于紫外光以使所述聚合物固化；穿过所述经固化聚合物层及所述电介质层形成多个通孔以暴露所述第一电极图案化金属层的至少一部分；沉积第二金属层，其在所述第二金属层接触所述多个光发射器中的每一光发射器的阳极及阴极；及图案化所述第二金属层以形成第二电极图案化金属层，其中所述第二电极图案化金属层包括多个电极互连件及多个电极互连件，每一电极互连件通过所述多个通孔中的对应通孔将所述多个光发射器的所述阳极电连接到所述第一电极图案化金属层，且每一电极互连件电接触所述多个光发射器中的所述阳极的所述阴极。

在某些实施例中，所述多个光发射器包括多个无机发光二极管。

在某些实施例中，所述方法包括：将所述显示器衬底切割成多个显示器。

在某些实施例中，所述方法包括：在所述非同质晶片切割成所述多个显示器之前，以保护性光致抗蚀剂层涂覆所述晶片；及在将所述显示器衬底切割成所述多个显示器之后，在所述显示器衬底切割成所述多个显示器之后将所述保护性光致抗蚀剂层从所述多个显示器中的每一显示器移除。

在某些实施例中，所述方法包括：在所述非同质晶片的表面上的接纳衬垫上提供无源矩阵驱动器集成电路。

在某些实施例中，所述方法包括：预烧所述多个光发射器中的每一光发射器。

在某些实施例中，相应光发射器的所述阳极与阴极水平分离，其中所述水平距离在100nm到100微米。

在某些实施例中，所述聚合物是光敏负性作用半导体层环氧树脂。

在某些实施例中，所述第一金属层是使用金属物理气相沉积而沉积。在某些实施例中，所述第一金属层是使用光刻而图案化。

在某些实施例中，图案化所述第一金属层：在沉积所述第一金属层之后，将负性作用光致抗蚀剂应用于所述第一金属层，使所述光致抗蚀剂选择性暴露于光（例如，使用掩模），及使所述光致抗蚀剂显影以形成剥离模板；及在沉积所述第一金属层之后，将所述剥离模板移除，借此形成所述第一电极图案化金属层。

在某些实施例中，所述第一金属层包括钛/铝/钛的金属堆叠。

在某些实施例中，沉积所述第一金属层，使用电子束蒸发镀来沉积所述第一金属层。
在某些实施例中，图案化所述第二金属层包括：在负性作用光致抗蚀剂中图案化剥离掩模；沉积金属堆叠；及剥离所述光致抗蚀剂掩模以留下所述第二金属层。在某些实施例中，所述第二金属层包括金属堆叠。

在某些实施例中，所述金属堆叠包括Ti/Al/Ti。

在某些实施例中，所述方法包括：使用一或多个热处理来将一或多个溶剂从所述聚合物移除。

在某些实施例中，胶转移印刷所述多个光发射器包括：使用印刷工具来胶转移印刷所述多个光发射器。

在某些实施例中，所述印刷工具包括粘弹性弹性体印模。

在某些实施例中，胶转移印刷所述多个光发射器包括：在所述多个光发射器与粘弹性弹性体表面之间使用运动可调粘附。

在某些实施例中，胶转移印刷所述多个光发射器包括：通过以下操作来从所述同质衬底拾取所述多个光发射器的至少一部分：使粘弹性弹性体印模接触到所述多个光发射器的所述部分中的所述光发射器中的每一者的第二表面；及以第一速率使所述粘弹性弹性体印模移动远离所述同质衬底，所述第一速率导致所述粘弹性体与所述多个光发射器的所述部分之间的粘附性的有效增加；及通过以下操作来将所述多个光发射器的所述部分印刷到所述非同质衬底；使由所述粘弹性弹性体印模拾取的所述光发射器中的每一者的第一表面接触到所述聚合物；及以第二速率使所述粘弹性弹性体印模移动远离所述显示器衬底，借此使由所述粘弹性弹性体印模拾取的所述光发射器留在所述聚合物上，其中所述第二速率小于所述第一速率。

在某些实施例中，所述方法包括：在所述胶转移印刷过程期间使所述印模横向剪切移动。

在某些实施例中，所述多个光发射器包括多个发射红色光的红色光发射器、多个发射绿色光的绿色光发射器及多个发射蓝色光的蓝色光发射器。

在某些实施例中，所述显示器的分辨率是$120 \times 90, 1440 \times 1080, 1920 \times 1080, 1280 \times 720, 3840 \times 2160, 7680 \times 4320$或$15360 \times 8640$。

在某些实施例中，将所述多个光发射器从同质衬底胶转移印刷到所述聚合物上包括：执行至少两个胶转移印刷操作。

在某些实施例中，将所述多个光发射器从同质衬底胶转移印刷到所述聚合物上包括：从红色光发射器同质衬底胶转移印刷多个发射红色光的红色光发射器；从绿色光发射器同质衬底胶转移印刷多个发射绿色光的绿色光发射器；及从蓝色光发射器同质衬底胶转移印刷多个发射蓝色光的蓝色光发射器，其中所述多个光发射器包括所述多个红色光发射器、所述多个绿色光发射器及所述多个蓝色光发射器。

在某些实施例中，所述显示器衬底是柔性的。

在另一方面中，本发明是针对一种无机发光二极管，其包括导电层；无机发光层，其安置于所述导电层的一部分上；所述导电层包括延伸超过所述无机发光层的边缘的悬臂延伸部；第一金属端子，其安置于所述无机发光层的一部分上；第二金属端子，其安置于所述导电层的所述悬臂延伸部上，其中在所述第一金属端子与所述第二金属端子之间供应的电流致使所述无机发光层发光；及电介质层，其安置于所述无机发光层的至少一部分上，其
中所述电介质层将所述第一金属端子与所述第二金属端子电隔离，其中所述第一金属端子及所述第二金属端子位于所述无机发光二极管的同一侧上且分离达从100nm到20μm的水平距离。

[0134] 在某些实施例中，所述无机发光二极管具有从0.5μm到2μm、从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。在某些实施例中，所述无机发光二极管具有从0.5μm到2μm、从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。在某些实施例中，所述无机发光二极管具有从0.5μm到2μm、从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的高度。在某些实施例中，所述水平距离是从500nm到1μm、从1μm到5μm、从5μm到10μm或从10μm到20μm。

[0135] 在某些实施例中，所述第一金属端子的表面与所述第二金属端子的表面共享平面。

[0136] 在某些实施例中，针对所述多个发光二极管中的每一发光二极管，所述对应第一金属端子及所述对应第二金属端子覆盖所述对应发光二极管的横向占用面积的至少一半、三分之一或四分之一。

[0137] 在某些实施例中，所述横向导电层包括选自由以下各项组成的群组的至少一个部件：金属层、电介质层、高折射率半导体及对从所述发光二极管发射的所述光基本上透明的半导体，借此形成向上发射显示器。在某些实施例中，所述横向导电层包括选自由以下各项组成的群组的至少一个部件：对从所述LED发射的所述光基本上透明的半导体、透明导电氧化物及薄金属网。

[0138] 在某些实施例中，所述第一金属端子及所述第二金属端子是透明的。在某些实施例中，所述第一金属端子及所述第二金属端子包括选自由以下各项组成的群组的至少一个部件：ITO、ZnO、碳纳米管膜、铝、银、金、铱、铂及硅金属网。

[0139] 在另一方面中，本发明是针对一种包括多个无机发光二极管的无机发光二极管显示器，其中所述多个无机发光二极管安置于衬底上。

[0140] 在某些实施例中，所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

[0141] 在某些实施例中，所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

[0142] 在某些实施例中，所述方法进一步包括多个光学反射结构，每一光学反射结构与所述第一金属端子位于所述多个发光二极管中的对应发光二极管的同一侧上。

[0143] 在某些实施例中，所述方法进一步包括多个光学反射结构，每一光学反射结构位于所述多个发光二极管中的对应发光二极管下方在所述发光二极管的与所述第一金属端子相对的一侧上。

[0144] 在某些实施例中，所述方法进一步包括多个第一互连件，每一第一互连件电连接到对应发光二极管的所述第一金属端子；及多个第二互连件，每一第二互连件电连接到对应发光二极管的所述第二金属端子，其中所述多个第一互连件及所述多个第二互连件位于第一面上。

[0145] 在某些实施例中，所述多个第一互连特征及所述多个第二互连特征处于单个光刻层级中。
说明书

[0146] 在某些实施例中，所述多个第一互连件中的每一者通过绝缘体中的多个通孔中的一个通孔而电耦合到多个列电极中的一个列电极，每列电极与所述多个发光二极管中的一发光二极管相关联。

[0147] 在某些实施例中，所述多个列电极、所述多个第一互连件及所述多个第二互连件是通过具有比用于形成所述第一金属端子及所述第二金属端子的光刻机的分辨率的倍水平的长度。

[0148] 在某些实施例中，所述发光二极管中的每一者具有大于其宽度的两倍的长度。

[0149] 在某些实施例中，所述显示器衬底是选自以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石

[0150] 在某些实施例中，所述显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

[0151] 在某些实施例中，所述显示器衬底具有包含所述多个发光二极管的连续显示器衬底区域，所述多个发光二极管的每一发光二极管具有发光区域，且所述多个发光二极管的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

[0152] 在某些实施例中，所述多个发光二极管的组合发光区域小于或等于所述连续显示器衬底区域的八分之一，十分之一，二十分之一，五十分之一，百分之一，五百分之一，千分之一，两千分之一或万分之一。

[0153] 在另一方面中，本发明是针对一种无机发光二极管(LED)显示器，所述显示器包括：显示器衬底；多个像素，每一像素包括连接到显示器电路的一组主要无机LED及未连接到所述显示器电路的一组冗余无机LED，其中所述冗余无机LED中的每一者可电连接到所述显示器电路以替换是所述主要无机LED中的一者的对应有缺陷的LED，其中；每一主要及冗余无机LED形成，与所述显示器衬底相异且分离的同质衬底中或同质衬底上；且所述同质衬底位于所述显示器衬底上。

[0154] 在某些实施例中，所述显示器包括电连接到所述显示器电路的冗余LED。

[0155] 在某些实施例中，所述显示器包括将冗余LED电连接到所述显示器电路的导电路径。

[0156] 在另一方面中，本发明是针对一种无机发光二极管(LED)显示器，所述显示器包括：显示器衬底；多个像素，每一像素包括一组主要无机LED及一组冗余无机LED，其中；每一主要及冗余无机LED形成于与所述显示器衬底相异且分离的同质衬底中或同质衬底上；所述同质衬底位于所述显示器衬底上；且所述冗余组中的每一无机LED与电阻器串联连接以形成LED-电阻器对，且每一LED-电阻器对与所述主要组中的无机LED并联布线。

[0157] 在另一方面中，本发明是针对一种无机发光二极管(LED)显示器，所述显示器包括：显示器衬底；多个像素，每一像素包括一组主要无机LED及一组冗余无机LED，其中；每一主要及冗余无机LED形成于与所述显示器衬底相异且分离的同质衬底中或同质衬底上；所述同质衬底位于所述显示器衬底上；且所述冗余组中的每一无机LED与二极管串联连接以形成LED-二极管对，且每一LED-二极管对与所述主要组中的无机LED并联布线。

[0158] 在某些实施例中，所述组主要无机LED包括多个发射红色光的红色无机LED、多个发射绿色光的绿色无机LED及多个发射蓝色光的蓝色无机LED，且所述组冗余无机LED包括
说明书

多个冗余的发射红色光的红色无机LED、多个冗余的发射绿色光的绿色无机LED及多个冗余的发射蓝色光的蓝色无机LED。

[0159] 在某些实施例中，所述组主要无机LED包括多个发射黄色光的黄色无机LED，且所述组冗余无机LED包括多个冗余的发射黄色光的黄色无机LED。

[0160] 在某些实施例中，所述组主要无机LED及所述组冗余无机LED直接位于所述显示器衬底上。

[0161] 在某些实施例中，每一像素包括电连接到相应像素中的每一无机LED的无机集成电路。

[0162] 在某些实施例中，每一像素包括主要微型集成电路及冗余微型集成电路。

[0163] 在某些实施例中，所述显示器衬底是选自由以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

[0164] 在某些实施例中，每一无机LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。在某些实施例中，每一无机LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。在某些实施例中，每一无机LED具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。

[0165] 在某些实施例中，所述显示器衬底具有针对可见光大于或等于50％、80％、90％或95％的透明度。

[0166] 在某些实施例中，所述显示器衬底具有包含所述组主要无机LED及所述组冗余无机LED的连续显示器衬底区域，每一LED具有发光区域，且LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

[0167] 在某些实施例中，所述LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两干分之一或万分之一。

[0168] 在另一方面中，本发明是针对一种无机组装无机发光二极管（LED）显示器的方法，所述方法包括：在第一或多个同质衬底上或上形成多个可印刷无机LED；将所述多个可印刷无机LED转移印刷到与所述第一或多个同质衬底分离且相应显示器衬底上以形成多个像素，其中每一像素包括一组主要无机LED及一组冗余无机LED；将所述主要无机LED连接到显示器电路；及测试所述显示器以识别有缺陷的主要无机LED。

[0169] 在某些实施例中，所述组主要无机LED包括多个发射红色光的红色无机LED、多个发射绿色光的绿色无机LED及多个发射蓝色光的蓝色无机LED，且所述组冗余无机LED包括多个冗余的发射红色光的红色无机LED、多个冗余的发射绿色光的绿色无机LED及多个冗余的发射蓝色光的蓝色无机LED。

[0170] 在某些实施例中，所述组主要无机LED包括多个发射黄色光的黄色无机LED；且所述组冗余无机LED包括多个冗余的发射黄色光的黄色无机LED。

[0171] 在某些实施例中，所述方法包括：将所述有缺陷的主要无机LED与所述显示器电路断开连接。

[0172] 在某些实施例中，所述方法包括：建立到紧密接近于所述有缺陷的主要无机LED中的每一者的冗余无机LED的电连接，使得所述冗余无机LED中的每一者连接到所述显示器电路。
在某些实施例中，建立到所述冗余LED中的每一者的电连接包括：直接且物理地写入电迹线。

在某些实施例中，建立到所述冗余LED中的每一者的电连接还包括：通过微组装在所述冗余LED中的每一者与所述相应有缺陷的LED之间放置导电跨接线。在某些实施例中，建立到所述冗余LED中的每一者的电连接包括：在清洁金属表面之间通过焊接回流或触点建立电连接。

在某些实施例中，所述方法还包括：在测试所述显示器之前，使每一冗余无机LED与电阻器串联地连接到所述显示器电路以形成LED-电阻器对使得每一LED-电阻器对与主要无机LED并联连接。

在某些实施例中，所述方法还包括：在测试所述显示器之前，使每一冗余无机LED与二极管串联地连接到所述显示器电路以形成LED-二极管对使得每一LED-二极管对与主要无机LED并联连接。

在某些实施例中，测试所述显示器包括：使所述主要无机LED中的一或多者照亮；及识别有缺陷的主要LED。

在某些实施例中，所述显示器衬底是选自由以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PET、PET、金属、金属箔、玻璃、半导体及蓝宝石。

在某些实施例中，所述多个可印刷无机LED是直接微转移印刷到所述显示器衬底上。

在某些实施例中，每一无机LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm、或从20μm到50μm的宽度。在某些实施例中，每一无机LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm，或从20μm到50μm的长度。在某些实施例中，每一无机LED具有从2μm到5μm、从4μm到10μm，从10μm到20μm，或从20μm到50μm的高度。

在某些实施例中，所述显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

在某些实施例中，所述显示器衬底具有包含所述组主要无机LED及所述组冗余无机LED的连续显示器衬底区域，每一LED具有发光区域，且LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

在某些实施例中，所述LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。

在另一方面中，本发明是针对一种微型LED显示器，其包括：显示器衬底，其是至少部分透明的；色彩转换结构阵列，其位于所述显示器衬底上，每一色彩转换结构包括色彩转换材料；及微型LED阵列，其与所述色彩转换结构分离，所述微型LED阵列中的每一微型LED位于所述色彩转换结构阵列中的所述色彩转换结构中的对应者上。

在某些实施例中，所述显示器衬底包括凹部阵列，所述色彩转换材料位于所述凹部中。

在某些实施例中，所述凹部填充有所述色彩转换材料。

在某些实施例中，所述微型LED位于所述色彩转换材料上方在所述色彩转换材料的与所述显示器衬底相对的一侧上，使得从所述微型LED发射的光的大部分或全部向下穿
过所述色彩转换材料及所述显示器衬底而发射。
[0188] 在某些实施例中，所述方法包括基本上覆盖所述微型LED的与所述显示器衬底相对的一侧的一或多个反射结构，使得所述微型LED将所发射光朝向所述显示器衬底反射。
[0189] 在某些实施例中，所述一对一或多个反射结构包括阵列连接金属或微型LED触点。
[0190] 在另一方面中，本发明是针对一种微型LED显示器，其包括：显示器衬底；微型LED阵列，其位于所述显示器衬底上；及色彩转换结构阵列，其与微型LED结构分离，所述色彩转换结构阵列中的每一色彩转换结构位于所述微型LED阵列中的所述微型LED中的对应者上，其中每一色彩转换结构包括色彩转换材料。
[0191] 在某些实施例中，所述色彩转换材料位于所述微型LED的顶部上或至少部分地环绕所述微型LED的所述微型LED与所述显示器衬底相对的一侧上。
[0192] 在某些实施例中，所述色彩转换材料包括含磷光体凝胶或树脂、磷光体陶瓷或单晶磷光体。在某些实施例中，所述色彩转换材料是直接带隙半导体的芯片。在某些实施例中，所述色彩转换材料至少部分地环绕所述微型LED。
[0193] 在某些实施例中，所述显示器包括在所述显示器衬底上的补偿镜结构。
[0194] 在某些实施例中，每一微型LED具有与所述显示器衬底分离的LED衬底。
[0195] 在某些实施例中，所述微型LED形成于与所述显示器衬底相异且分离的同质衬底中。
[0196] 在某些实施例中，所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm，从0.5mm到1mm，从1mm到5mm，从5mm到10mm或从10mm到20mm的厚度。在某些实施例中，每一微型LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。在某些实施例中，每一微型LED具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。在某些实施例中，每一微型LED具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。
[0197] 在某些实施例中，所述显示器的分辨率为120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。
[0198] 在某些实施例中，所述显示器衬底具有针对可见光大于或等于50％、80％、90％或95％的透明度。
[0199] 在某些实施例中，所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。
[0200] 在某些实施例中，所述微型LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。
[0201] 在某些实施例中，每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。
[0202] 在某些实施例中，所述光发射器的所述阳极与阴极水平分离或一水平距离，其中所述水平距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。
[0203] 在某些实施例中，所述显示器衬底是选自由以下各项组成的群组的部件：聚合物、
在某些实施例中，所述微型LED阵列包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，且每一像素包括所述多个红色微型LED中的一红色微型LED、所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微型LED中的一蓝色微型LED。

在某些实施例中，所述微型LED是有机微型LED。

在另一方面中，本发明是针对一种微组装微型LED光发射器阵列的方法，所述方法包括：在第一衬底上形成多个微型LED；提供显示器衬底，所述显示器衬底是至少部分透明的；在所述显示器衬底上将多个色彩转换结构提供成阵列，每一色彩转换结构包括色彩转换材料；将所述多个微型LED微组装到显示器衬底上使得所述多个微型LED中的每一微型LED位于所述多个色彩转换结构的所述色彩转换结构中的对应一者上，其中将所述多个微型LED微组装到所述显示器衬底上包括：使所述多个微型LED的一部分与具有接触表面的第一转印装置接触，借此将所述多个微型LED的所述部分暂时粘结到所述接触表面使得所述接触表面上暂时安置有所述多个微型LED的所述部分；使安置于所述第一转印装置的所述接触表面于所述多个微型LED的所述部分与所述多个色彩转换结构的一部分接触；及使所述第一转印装置的所述接触表面与所述多个微型LED的所述部分分离，其中所述多个微型LED的所述部分被转印到色彩转换结构的所述部分上，借此将所述多个微型LED的所述部分组装于所述色彩结构的所述部分上。

在某些实施例中，提供位于所述显示器衬底上方成阵列的多个色彩转换结构包括：在所述多个微型LED微组装到显示器衬底上之前，在所述显示器衬底中形成多个凹部；及用色彩转换材料填充所述多个凹部，在所述色彩转换材料上方印刷多个可印刷LED。

在某些实施例中，提供位于所述显示器衬底上方成阵列的多个色彩转换结构包括：在将所述多个微型LED微组装到显示器衬底上之前，将色彩转换材料的芯片微组装到所述显示器衬底上。

在某些实施例中，所述微型LED位于所述色彩转换材料上方在所述色彩转换材料的与所述显示器衬底相对的一侧上，使得所述微型LED发射的光的大部分或全部向下穿过所述色彩转换材料及所述显示器衬底而发射。

在某些实施例中，所述方法包括基本上覆盖所述微型LED的与所述显示器衬底相对的一侧的一或多个反射结构，使得所述微型LED将所发射光朝向所述显示器衬底反射。

在某些实施例中，所述一或多个反射结构包括阵列连接金属或微型LED触点。

在另一方面中，本发明是针对一种微组装微型LED光发射器阵列的方法，所述方法包括：在第一衬底上形成多个微型LED；提供显示器衬底；将所述多个微型LED微组装到显示器衬底上，其中将所述多个微型LED微组装到所述显示器衬底上包括：使所述多个微型LED的一部分与具有接触表面的第一转印装置接触，借此将所述多个微型LED的所述部分暂时粘结到所述接触表面使得所述接触表面上暂时安置有所述多个微型LED的所述部分；使安置于所述第一转印装置的所述接触表面于所述多个微型LED的所述部分分离，其中所述多个微型LED的所述部分被转印到色彩转换结构的所述部分上，借此将所述多个微型LED的所述部分组装于所述色彩转换结构的所述部分上；及在所述显示器衬底上将多个
色彩转换结构提供成列使得所述多个色彩转换结构中的每一色彩转换结构位于所述多个微型LED的所述微型LED中的对应一侧上，其中每一色彩转换结构包括色彩转换材料。

【0213】在某些实施例中，所述色彩转换材料位于所述微型LED的顶部上或至少部分地环绕所述微型LED在所述微型LED的与所述显示器衬底相对的一侧上。

【0214】在某些实施例中，所述色彩转换材料包括含磷光体凝胶或树脂、磷光体陶瓷或单晶磷光体。

在某些实施例中，所述色彩转换材料是直接带隙半导体的芯片。在某些实施例中，所述色彩转换材料至少部分地环绕所述微型LED。

【0215】在某些实施例中，所述方法包括在所述显示器衬底上的补偿镜结构。

【0216】在某些实施例中，每一微型LED具有与所述显示器衬底分离的LED衬底。

【0217】在某些实施例中，所述微型LED形成于与所述显示器衬底相异且分离的同质衬底中。

【0218】在某些实施例中，所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。在某些实施例中，每一微型LED具有从2um到5um、从5um到10um、从10um到20um或从20um到50um的宽度。在某些实施例中，每一微型LED具有从2um到5um、从5um到10um、从10um到20um或从20um到50um的长度。在某些实施例中，每一微型LED具有从2um到5um、从4um到10um、从10um到20um或从20um到50um的长度。

【0219】在某些实施例中，显示器的分辨率是 120 × 90、1440 × 1080、1920 × 1080、1280 × 720、3840 × 2160、7680 × 4320或15360 × 8640。

【0220】在某些实施例中，所述显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

【0221】在某些实施例中，所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

【0222】在某些实施例中，所述微型LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。

【0223】在某些实施例中，每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。

【0224】在某些实施例中，光源发射器的所述阳极与阴极水平分离达一水平距离，其中所述水平距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

【0225】在某些实施例中，所述显示器衬底是选自由以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PET、PET、金属；金属箔、玻璃、半导体及蓝宝石。

【0226】在某些实施例中，所述多个微型LED包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，且每一像素包括所述多个红色微型LED中的一红色微型LED、所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微型LED中的一蓝色微型LED。

【0227】在某些实施例中，所述微型LED是有机微型LED。
在另一方面中，本发明是针对一种多功能显示器，其包括：显示器件主体；微型LED阵列，其位于所述显示器主体上；及其功能元件阵列，其位于所述显示器主体上，所述微型LED交错于所述功能元件之间，其中所述显示器主体并非同质于所述微型LED及所述功能元件。

在某些实施例中，所述功能元件是传感器或收发器。在某些实施例中，所述功能元件包括选自由以下项目组成的至少一者：图像捕获装置，光学传感器，光电二极管，红外传感器，声感传感器，红外传感器，湿度传感器，电力收集装置，太阳能电池，运动装置，收集装置，电容器，天线及无线电发射装置。

在某些实施例中，所述功能元件在所述显示器主体上方具有不同于所述微型LED的空间密度。

在某些实施例中，所述微型LED形成于与所述显示器主体分离且相异的同质衬底中。

在某些实施例中，所述功能元件形成于与所述显示器主体分离且相异的同质衬底中。在某些实施例中，在所述显示器中，功能元件的数目小于或等于微型LED的数目。在某些实施例中，在所述显示器中，功能元件的所述数目小于或等于微型LED的所述数目的三分之一。

在某些实施例中，所述显示器衬底具有从5微米到10微米，从10微米到50微米，从50微米到100微米，从100微米到200微米，从200微米到500微米，从500微米到0.5毫米，从0.5毫米到1毫米，从1毫米到5毫米，从5毫米到10毫米，或从10毫米到20毫米的厚度。

在某些实施例中，每一微型LED具有从2微米到5微米，从5微米到10微米，从10微米到20微米或从20微米到50微米的宽度。在某些实施例中，每一微型LED具有从2微米到5微米，从5微米到10微米，从10微米到20微米或从20微米到50微米的长度。在某些实施例中，每一微型LED具有从2微米到5微米，从4微米到10微米，从10微米到20微米或从20微米到50微米的宽度。在某些实施例中，每一微型LED具有从2微米到5微米，从4微米到10微米，从10微米到20微米或从20微米到50微米的长度，其宽度及长度中的至少一者。

在某些实施例中，所述显示器的分辨率是120x120，1440x1080，1920x1080，1280x720，3840x1080，7680x4320或15360x8640。

在某些实施例中，所述显示器衬底具有针对可见光大于或等于50％、80％、90％或95％的透明度。

在某些实施例中，所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

在某些实施例中，所述微型LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一，十分之一，二十分之一，五十分之一，百分之一，五百分之一，千分之一，两千分之一或万分之一。

在某些实施例中，每一微型LED在所述显示器衬底的同一侧上具有阳极及阴极。

在某些实施例中，光发射器的所述阳极与阴极水平分离达一水平距离，其中所述水平距离是从100纳米到500纳米，从500纳米到1微米，从1微米到20微米，从20微米到50微米或从50微米到100微米。

在某些实施例中，所述显示器衬底是选自由以下项目组成的群组的部件：聚合物，塑料，树脂，聚酰胺，PEN，PET，金属，金属箔，玻璃，半导体及蓝宝石。
在某些实施例中，所述微型LED阵列及所述功能元件阵列位于共同平面上。

在某些实施例中，所述多功能显示器包括：多个微型集成电路，每一微型集成电路连接到所述微型LED阵列中的至少一个微型LED及所述功能元件阵列中的至少一个功能元件。

在某些实施例中，所述多功能显示器包括：聚合物层，其位于所述显示器衬底上，其中所述微型LED阵列及所述功能元件阵列位于所述聚合物层上使得所述聚合物层介于所述显示器衬底与所述微型LED阵列及所述功能元件阵列之间。

在某些实施例中，所述多功能显示器包括：第一经图案化金属层，其位于所述显示器衬底的表面上；电介质层，其位于所述显示器衬底及所述第一经图案化金属层上；其中所述聚合物层位于所述显示器衬底上；多个通孔，其是穿过所述聚合物层及所述电介质层而形成；每一通孔与对应微型LED相关联；及第二经图案化金属层，所述第二经图案化金属层在单个层中包括多个阳极互连件及多个阴极互连件，每一阳极互连件通过所述多个通孔中的对应通孔将对应微型LED的所述阳极电连接到所述第一经图案化金属层且每一阴极互连件电接触对应微型LED的所述阴极。

在某些实施例中，所述多功能显示器包括：多个像素，每一像素包括所述微型LED阵列中的至少一个微型LED及所述功能元件阵列中的至少一个功能元件。

在某些实施例中，所述微型LED阵列包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，且每一像素包括所述多个红色微型LED中的一红色微型LED、所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微型LED中的一蓝色微型LED。

在某些实施例中，微型LED是有机微型LED。

在另一方面中，本发明是对一种微组装交错有功能元件的发光二极管(LED)显示器的方法，所述方法包括：在第一衬底上形成多个微型LED；在第二衬底上形成多个功能元件；及所述多个微型LED微组装到非同质于所述多个微型LED及所述多个功能元件的显示器衬底上，其中将所述多个微型LED微组装到所述显示器衬底上包括：使所述多个微型LED的一部分与具有接触表面的第一转印装置接触，借此将所述多个微型LED的所述部分暂时粘结到所述接触表面使得所述接触表面上暂时安置有多个微型LED的所述部分；及安置于所述第一转印装置的所述接触表面上的所述多个微型LED的所述部分与所述显示器衬底的接纳表面接触；及使第一转印装置的所述接触表面与所述多个微型LED的所述部分分离，其中所述多个微型LED的所述部分被转印到所述接纳表面上，借此将所述多个微型LED的所述部分组装于所述显示器衬底的所述接纳表面上；及将所述多个功能元件微组装到显示器衬底上，包括：使所述多个功能元件的所述部分中的所述多个功能元件的一部分与第二转印装置接触，借此将所述多个功能元件的所述部分粘结到接触表面使得所述接触表面上安置有多个功能元件的所述部分；及安置于所述第二转印装置的所述接触表面上的所述多个功能元件的所述部分与所述显示器衬底的所述接纳表面接触；及将所述第二转印装置的所述接触表面与所述多个功能元件的所述部分分离，其中所述多个功能元件的所述部分被转印到所述显示器衬底的所述接纳表面上，借此将所述多个功能元件的所述部分组装于所述显示器衬底的所述接纳表面上。

在某些实施例中，所述多个功能元件是传感器或收发器。
[0251] 在某些实施例中，所述多个功能元件包括但不限于以下各项组成的群组的至少一个部件：图像捕获装置、光通信器、光电二极管、红光传感器、激光传感器、姿势传感器、红外传感器、温度传感器、电力收集装置、太阳能电池、运动传感器、电源收集装置、电池装置、电容器、天线及无线发射装置。

[0252] 在某些实施例中，所述多个功能元件在所述显示器衬底上方具有不同于所述微型LED的长度密度。

[0253] 在某些实施例中，所述微型LED形成于与所述显示器衬底分离且相异的同质衬底中。

[0254] 在某些实施例中，所述多个功能元件形成与所述显示器衬底分离且相异的同质衬底中。

[0255] 在某些实施例中，在所述显示器中，功能元件的数目小于或等于微型LED的数目。

[0256] 在某些实施例中，在所述显示器中，功能元件的所述数目小于或等于微型LED的所述数目的三分之一。

[0257] 在某些实施例中，所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5毫米、从0.5毫米到1毫米、从1毫米到5毫米、从5毫米到10毫米或从10毫米到20毫米的厚度。在某些实施例中，每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的宽度。在某些实施例中，每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的长度。在某些实施例中，每一微型LED具有从2微米到5微米、从4微米到10微米、从10微米到20微米或从20微米到50微米的高度。在某些实施例中，每一功能元件具有从2微米到5微米、从4微米到10微米、从10微米到20微米或从20微米到50微米的宽度、长度及高度中的至少一者。

[0258] 在某些实施例中，所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

[0259] 在某些实施例中，所述显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。

[0260] 在某些实施例中，所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

[0261] 在某些实施例中，所述多个发光二极管的组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两万分之一或万分之一。

[0262] 在某些实施例中，每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。

[0263] 在某些实施例中，相应光发射器的所述阳极与阴极水平方向及一水平距离，其中所述水平距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

[0264] 在某些实施例中，所述显示器衬底是选自由以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰胺、PET、金属、金属箔、玻璃、半导体及蓝宝石。

[0265] 在某些实施例中，所述多个微型LED及其所述多个功能元件位于同一平面上。

[0266] 在某些实施例中，所述方法包括：多个微型集成电路，每一微型集成电路连接到所
述多个微型LED中的至少一个微型LED及多个功能元件中的至少一个功能元件。

[0267] 在某些实施例中，所述方法包括：聚合物层，其位于所述显示器衬底上，其中所述多个微型LED及所述多个功能元件位于聚合物层上使得所述聚合物层介于所述显示器衬底与所述多个微型LED及所述多个功能元件之间。

[0268] 在某些实施例中，所述方法包括：第一经图案化金属层，其位于所述显示器衬底的表面上；电介质层，其位于所述显示器衬底及所述第一经图案化金属层上，其中所述聚合物层位于所述显示器衬底上；多个通孔；其是穿过所述聚合物层及所述电介质层而形成，每一通孔与对应微型LED相关联；及

[0269] 第二经图案化金属层，所述第二经图案化金属层在单个层中包括多个阳极互连件及多个阴极互连件，每一阴极互连件通过所述多个通孔中的对应通孔将对应微型LED的所述阳极电连接到所述第一经图案化金属层，且每一阴极互连件电接触对应微型LED的所述阴极。

[0270] 在某些实施例中，所述方法包括：多个像素，每一像素包括所述多个微型LED中的至少一个微型LED及所述多个功能元件中的至少一个功能元件。

[0271] 在某些实施例中，所述多个微型LED包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，且每一像素包括所述多个红色微型LED中的一红色微型LED、所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微型LED中的一蓝色微型LED。

[0272] 在某些实施例中，所述微型LED是有机微型LED。
[0273] 在某些实施例中，所述第二转印装置是所述第一转印装置。
[0274] 在某些实施例中，所述第一转印装置包括弹性体印模。

[0275] 在另一方面中，本发明是针对一种多模式显示器，其包括：显示器衬底；第一发射式无机微型LED显示器，其形成于所述显示器衬底上方；及第二显示器，其形成于所述显示器衬底上方，所述第二显示器是不同于所述第一发射式微型LED显示器的类型。

[0276] 在某些实施例中，所述第二显示器是发射反射式显示器，在某些实施例中，所述第二显示器是电泳或基于MEM的显示器。

[0277] 在某些实施例中，所述第一显示器包括多个第一像素且所述第二显示器包括多个第二像素，其中所述多个第一像素中的每一者介于所述多个第二像素中的每一者。

[0278] 在某些实施例中，所述多模式显示器包括用于在所述第一显示器与所述第二显示器之间切换的控制器。

[0279] 在某些实施例中，所述多模式显示器包括蜂窝式电话、智能电话或平板计算装置。

[0280] 在某些实施例中，所述第一显示器与所述第二显示器位于所述显示器衬底的不同部分上方。

[0281] 在某些实施例中，所述第一显示器及所述第二显示器位于所述显示器衬底的同一部分上方。在某些实施例中，所述第一显示器位于所述第二显示器的顶部上在所述第二显示器的与所述显示器衬底相对的一侧上。

[0282] 在某些实施例中，所述第一显示器的光控制单元与所述第二显示器的光控制单元交错于所述显示器衬底上。

[0283] 在某些实施例中，所述微型LED形成于与所述显示器衬底相异且分离的同质衬底
中。

[0284] 在某些实施例中，所述第一显示器及所述第二显示器形成于所述显示器衬底上。在某些实施例中，所述第一显示器位于所述显示器衬底的第一侧上且所述第二显示器位于所述显示器衬底的与所述第一侧相对的第二侧上。

[0285] 在某些实施例中，所述第二显示器位于所述显示器衬底上，且所述第一显示器位于微型LED显示器衬底上，所述微型LED显示器衬底与所述显示器衬底分离并位于所述显示器衬底上方。

[0286] 在某些实施例中，所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5毫米、从0.5毫米到1毫米、从1毫米到5毫米、从5毫米到10毫米或从10毫米到20毫米的厚度。在某些实施例中，每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的宽度。在某些实施例中，每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的长度。在某些实施例中，每一微型LED具有从2微米到5微米、从4微米到10微米、从10微米到20微米或从20微米到50微米的高度。

[0287] 在某些实施例中，所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。

[0288] 在某些实施例中，所述显示器衬底具有针对可见光大于或等于50％、80％、90％或95％的透明度。在某些实施例中，所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。

[0289] 在某些实施例中，所述微型LED的所述组合发光区域小于或等于所述连续显示器衬底区域的八分之一、十分之一、十二分之一、五十分之一、百分之一、千分之一、两千分之一或万分之一。

[0290] 在某些实施例中，每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。

[0291] 在某些实施例中，相应光发射器的所述阳极与阴极水平分离达一水平距离，所述所述水平距离是从100纳米到500纳米、从500纳米到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

[0292] 在某些实施例中，所述显示器衬底是选自由以下各项组成的组：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

[0293] 在某些实施例中，所述第一发射器式微型LED显示器包括多个发射红色光的红色微型LED、多个发射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，所述第一发射器式微型LED显示器的每一像素包括所述多个红色微型LED中的一红色微型LED、所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微型LED中的一蓝色微型LED。

[0294] 在某些实施例中，所述微型LED是有机微型LED。

[0295] 在某些实施例中，所述第一发射器式有机微型LED显示器包括形成于与所述显示器衬底分离且相异的LED衬底中的多个有机微型LED且所述第二显示器形成于所述显示器衬底上或所述显示器衬底中且与所述显示器衬底同质，其中所述LED衬底粘附到所述显示器衬底。

[0296] 在另一方面中，本发明是针对一种微组装微型LED光发射器阵列的方法，所述方法
包括：在第一衬底上形成多个微型LED；提供显示器衬底；将所述多个微型LED微组装于所述显示器衬底上方，借此将第一发射式微型LED显示器形成于所述显示器衬底上方；及将第二显示器形成于所述显示器衬底上方，所述第二显示器是不同于所述第一发射式微型LED显示器的类型。

[0297] 在某些实施例中，所述第二显示器是非发射反射式显示器。
[0298] 在某些实施例中，所述第二显示器是电泳或基于MEM的显示器。
[0299] 在某些实施例中，所述第一显示器包括多个第一像素而所述第二显示器包括多个第二像素，其中所述多个第一像素中的每一者小于所述多个第二像素中的每一者。
[0300] 在某些实施例中，所述方法进一步包括用于在所述第一显示器与所述第二显示器之间切换的控制器。
[0301] 在某些实施例中，所述方法进一步包括蜂窝式电话、智能电话或平板计算装置。
[0302] 在某些实施例中，所述第一显示器与所述第二显示器位于所述显示器衬底的不同部分上方。在某些实施例中，所述第一显示器及所述第二显示器位于所述显示器衬底的同一部分上方。在某些实施例中，所述第一显示器位于所述第二显示器的顶部上在所述第二显示器的与所述显示器衬底相对的一侧上。
[0303] 在某些实施例中，所述第一显示器的光控制元件与所述第二显示器的光控制元件交错于所述显示器衬底上。
[0304] 在某些实施例中，所述微型LED形成于与所述显示器衬底相异且分离的同质衬底中。
[0305] 在某些实施例中，所述第一显示器及所述第二显示器形成于所述显示器衬底上。
[0306] 在某些实施例中，所述第一显示器位于所述显示器衬底的第一侧上且所述第二显示器位于所述显示器衬底的与所述第一侧相对的第二侧上。
[0307] 在某些实施例中，所述第二显示器位于所述显示器衬底上，且所述第一显示器位于所述微型LED显示器衬底上，所述微型LED显示器衬底与所述显示器衬底分离并位于所述显示器衬底上方。
[0308] 在某些实施例中，所述显示器衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5毫米、从0.5毫米到1毫米、从1毫米到5毫米、从5毫米到10毫米或从10毫米到20毫米的厚度。在某些实施例中，每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的宽度。在某些实施例中，每一微型LED具有从2微米到5微米、从5微米到10微米、从10微米到20微米或从20微米到50微米的长度。在某些实施例中，每一微型LED具有从2微米到5微米、从4微米到10微米、从10微米到20微米或从20微米到50微米的高度。
[0309] 在某些实施例中，所述显示器的分辨率是120×90、1440×1080、1920×1080、1280×720、3840×2160、7680×4320或15360×8640。
[0310] 在某些实施例中，所述显示器衬底具有针对可见光大于或等于50%、80%、90%或95%的透明度。在某些实施例中，所述显示器衬底具有包含所述微型LED的连续显示器衬底区域，每一微型LED具有发光区域，且所述微型LED的组合发光区域小于或等于所述连续显示器衬底区域的四分之一。
[0311] 在某些实施例中，所述微型LED的所述组合发光区域小于或等于所述连续显示器
衬底区域的八分之一、十分之一、二十分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万分之一。

[0312] 在某些实施例中，每一微型LED在所述相应微型LED的同一侧上具有阳极及阴极。
[0313] 在某些实施例中，相光阴极器的所述阳极与阴极水平分离达一水平距离，其中
所述水平距离是从100μm到500μm，从500μm到1微米，从1微米到20微米，从20微米到50微米
或从50微米到100微米。
[0314] 在某些实施例中，所述显示器衬底是选自由以下各项组成的群组的部件：聚合物、
塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。
[0315] 在某些实施例中，所述多个微型LED包括多个发射红色光的红色微型LED、多个发
射绿色光的绿色微型LED及多个发射蓝色光的蓝色微型LED，且每一像素包括所述多个红色
微型LED中的一红色微型LED、所述多个绿色微型LED中的一绿色微型LED及所述多个蓝色微
型LED中的一蓝色微型LED。
[0316] 在某些实施例中，所述微型LED是有机微型LED。
[0317] 在另一方面中，本发明是针对一种微组装装置，其包括：装置衬底；第一电导体，其
位于所述装置衬底上；第二电导体，其位于所述装置衬底上；导电跨接元件，其与所述装置
衬底相异且分离，具有一个或多个跨接导体；其中所述导电跨接元件位于所述装置衬底上，
其中所述一个或多个跨接导体中的第一跨接导体与所述第一电导体及所述第二电导体电接
触。
[0318] 在某些实施例中，所述导电跨接元件是导电无源装置。
[0319] 在某些实施例中，所述导电跨接元件是导电无源装置。在某些实施例中，所述导电
装置是CMOS装置。在某些实施例中，所述导电装置包括驱动电路及非易失性存储器中的至少一
者。
[0320] 在某些实施例中，所述导电跨接元件容纳于适于进行微转移印刷的结构内。在某
些实施例中，所述导电跨接元件包括半导体、硅、绝缘体上硅、玻璃、金属及电介质中的一或多
者。
[0321] 在某些实施例中，所述跨接导体包括半导体、金属、贵金属、金、银、铂、铜、不锈钢、
镍、铬、焊料、PbSn、AgSn或AgSn。
[0322] 在某些实施例中，所述导电跨接块的邻近于导体衬底的一侧是凹入的。
[0323] 在某些实施例中，所述装置在所述导体衬底上包括与所述第一电导体及所述第二
电导体电隔的第三电导体，其中所述第三电导体位于所述导电跨接元件的凹部下方。
[0324] 在某些实施例中，所述凹部包括暴露绝缘体。
[0325] 在某些实施例中，所述导电跨接元件包括电连接到第二端子的第一端子，其中在
所述第一端子与所述第二端子之间具有暴露绝缘体，其中所述第一端子、第二端子及所述
暴露绝缘体在所述导电跨接元件的至少一个侧上形成平面表面。
[0326] 在某些实施例中，所述装置在所述导体衬底上包括与所述第一电导体及所述第二
电导体电隔的第三电导体，其中所述第三电导体由所述暴露绝缘体接触。
[0327] 在某些实施例中，所述跨接导体中的至少一者的一部分覆盖有绝缘体。
[0328] 在某些实施例中，所述跨接导体中的至少一者的中心部分覆盖有分离所述跨接导
体的暴露端的绝缘体。
[0329] 在某些实施例中，所述衬底是显示器衬底且所述导电跨接元件将冗余光发射器电连接到显示器电路。

[0330] 在某些实施例中，所述冗余光发射器取代有缺陷的主要光发射器而连接到所述显示器电路。

[0331] 在某些实施例中，所述第一电导体与所述第二电导体之间的距离是从100nm到500nm、从500nm到1μm、从1μm到20μm、从20μm到50μm或从50μm到100μm。在某些实施例中，所述装置衬底具有从5μm到10μm、从10μm到50μm、从50μm到100μm、从100μm到200μm、从200μm到500μm、从500μm到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

[0332] 在某些实施例中，所述导电跨接元件具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。在某些实施例中，所述导电跨接元件具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。在某些实施例中，所述导电跨接元件具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。

[0333] 在某些实施例中，所述装置衬底具有对可见光大于或等于50%、80%、90%或95%的透明度。在某些实施例中，所述装置衬底是选自下列各项组成的群组中的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

[0334] 在某些实施例中，所述导电跨接元件是交越线。

[0335] 在某些实施例中，所述装置包括：多个第一电导体，其位于所述装置衬底上，其中所述多个第一电导体包括所述第一电导体；多个第二电导体，其位于所述装置衬底上，其中所述多个第二电导体包括所述第二电导体；导电跨接元件，其与所述装置衬底异质且分离，其具有多个跨接导体，其长度从所述多个跨接导体中的一部分或多个跨接导体；且所述多个跨接导体的每一跨接导体与所述多个电导体中的第一电导体及所述多个第二电导体中的第二电导体电接触。

[0336] 在另一方面中，本发明是针对一种提供微组装装置的方法，其包括：提供包括以下各项的装置：装置衬底；第一电导体，其位于所述装置衬底上；第二电导体，其位于所述装置衬底上；及将具有一或多个跨接导体的导电跨接元件微组装于所述装置衬底上，其中所述导电跨接元件位于所述装置衬底上，其中所述第一或多个跨接导体中的第一跨接导体与所述第一电导体及所述第二电导体电接触。

[0337] 在某些实施例中，所述导电跨接元件是导电无源装置。在某些实施例中，所述导电跨接元件是有源装置。在某些实施例中，所述有源装置是CMOS装置。在某些实施例中，所述有源装置包括驱动电路及非易失性存储器中的至少一者。

[0338] 在某些实施例中，所述导电跨接元件容纳于适于进行微转移印刷的结构内。

[0339] 在某些实施例中，所述导电跨接元件包括半导体、硅、绝缘体上硅、玻璃、金属以及介质中的一或多者。

[0340] 在某些实施例中，所述跨接导体包括半导体、金属、贵金属、金、银、铂、钯、不锈钢、镍、铬、焊料、PbSn、AgSn或AgSn。

[0341] 在某些实施例中，所述导电跨接元件的邻近于衬底衬底的一部分是凹入的。

[0342] 在某些实施例中，所述衬底衬底的第二电导体与所述第一电导体及所述第二电导体电隔离，其中所述第二电导体位于所述导电跨接元件的凹部下方。
在某些实施例中，所述倒角包括暴露绝缘体。

在某些实施例中，所述导电跨接元件包括电连接到第二端子的第一端子，其中在所述第一端子与所述第二端子之间具有暴露绝缘体，其中所述第一端子、第二端子及所述暴露绝缘体在所述导电跨接元件的至少一个侧上形成平面表面。

在某些实施例中，所述方法包括在所述导电衬底上的与所述第一电导体及所述第二电导体电隔离的第三电导体，其中所述第三电导体由所述暴露绝缘体接触。

在某些实施例中，所述跨接导体中的至少一者的部分覆盖有绝缘体。

在某些实施例中，所述跨接导体中的至少一者的中心部分覆盖有远离所述跨接导体的暴露端的绝缘体。

在某些实施例中，所述衬底是显示器衬底且所述导电跨接元件将冗余光发射器电路连接到显示器电路。

在某些实施例中，所述冗余光发射器取代有缺陷的主要光发射器而连接到所述显示器电路。

在某些实施例中，所述第一电导体与所述第二电导体之间的距离是从100nm到500nm、从500nm到1微米、从1微米到20微米、从20微米到50微米或从50微米到100微米。

在某些实施例中，所述装置衬底具有从5微米到10微米、从10微米到50微米、从50微米到100微米、从100微米到200微米、从200微米到500微米、从500微米到0.5mm、从0.5mm到1mm、从1mm到5mm、从5mm到10mm或从10mm到20mm的厚度。

在某些实施例中，所述导电跨接元件具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的宽度。

在某些实施例中，所述导电跨接元件具有从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm的长度。

在某些实施例中，所述导电跨接元件具有从2μm到5μm、从4μm到10μm、从10μm到20μm或从20μm到50μm的高度。

在某些实施例中，所述装置衬底具有针对可见光大于或等于50%、80%、90%或95%的透光度。

在某些实施例中，所述装置衬底是选自以下各项组成的群组的部件：聚合物、塑料、树脂、聚酰亚胺、PEN、PET、金属、金属箔、玻璃、半导体及蓝宝石。

在某些实施例中，所述导电跨接元件是经越线。

在某些实施例中，所述方法包括：多个第一电导体，其位于所述装置衬底上，其中所述多个第一电导体包括所述第一电导体；多个第二电导体，其位于所述装置衬底上，其中所述多个第二电导体包括所述第二电导体；导电跨接元件，其与所述装置衬底相互且分离，具有多个跨接导体，其中所述多个跨接导体包括所述一或多个跨接导体；且所述多个跨接导体的每一跨接导体与所述多个电导体中的第一电导体及所述多个第二电导体中的第二电导体电接触。

在某些实施例中，所述装置衬底是所述导电跨接元件包括；所述导电跨接元件与具有接触表面的转印装置接触，借此将所述导电跨接元件暂时粘结到所述接触表面使得所述接触表面上暂时安置有所述导电跨接元件；所述转印装置的所述接触表面上的所述导电跨接元件与所述接触衬底的接触表面接触；及使所述转印装置的所述接触表面与所述导
电跨接元件分离，其中导电跨接元件被转印到所述接纳表面上，借此将所述导电跨接元件的所述部分组装于所述装置衬底的所述接纳表面上。

在某些实施例中，所述转印装置包括弹性体印模。

附图说明

图1是用于LCD显示器中的典型像素的图解说明；
图2是根据所揭示技术构造的实例性像素的图解说明；
图3是使用微组装来组装于显示器衬底上的较小微型LED的显微照片；
图4是根据本发明的说明性实施例的包含冗余RGB无机微型LED的实例性微型LED显示器的图解说明；
图5是根据所揭示技术的实例性像素的图解说明；
图6是根据本发明的说明性实施例的具有遮蔽微型LED的显示器的实例性像素的图解说明；
图7是根据本发明的说明性实施例的包含冗余RGB无机微型LED、驱动器IC及微型传感器的微组装显示器的图解说明；
图8A到8D是根据本发明的说明性实施例的用于微组装显示器及照明元件的微型LED面板中的冗余微型LED的图解说明；
图9A到9C是根据图解说明根据本发明的说明性实施例的玻璃上的微型LED的微移转移印刷阵列的示意图；
图10是根据本发明的说明性实施例的用于使用微组装跨接线来修复微型LED阵列装置的实例性结构的图解说明；
图11A及11B图解说明根据本发明的说明性实施例的用于微型LED阵列装置中的层减少的微组装交越线；
图12A及12B是根据本发明的说明性实施例的使用电阻器及二极管来通过在照明元件或显示器中提供冗余微型LED像素或子像素的电特征而促进修复的实例性电路的图解说明；
图13图解说明根据本发明的说明性实施例的适于微组装的电连接器；
图14是根据本发明的说明性实施例的包含补充RGB无机微型LED的微组装显示器的图解说明；
图15A及15B是根据本发明的说明性实施例的微组装微型LED显示器及照明元件架构的图解说明；
图16图解说明根据本发明的说明性实施例的微组装微型LED显示器及照明元件架构；
图17是根据本发明的说明性实施例的由占据相同可观看区域的两个独立显示器形成的实例性显示器的图解说明；
图18是根据本发明的说明性实施例的堆叠式微型LED显示器的图解说明；
图19是根据本发明的说明性实施例的由三个显示器面板形成的微组装堆叠式显
示器的图解说明；
[0381] 图20是根据本发明的说明性实施例的由具有不同分辨率的两个个别显示器形成的堆叠式显示器的图解说明；
[0382] 图21是根据本发明的说明性实施例的多模式显示器的实例性像素的图解说明；
[0383] 图22是根据本发明的说明性实施例的多模式显示器的实例性像素的图解说明；
[0384] 图23是根据本发明的说明性实施例的具有连接到冗余微型LED的集成电路及微型传感器的像素的图解说明；
[0385] 图24是根据本发明的说明性实施例的人类视觉及HDTV的色域的实例性图解说明；
[0386] 图25是根据本发明的说明性实施例的具有经改善色域的实例性像素的图解说明；
[0387] 图26是根据本发明的说明性实施例的供在用于产生视觉上完美装置的微组装无机微型LED阵列中使用的实例性像素的图解说明；
[0388] 图27A及27B是根据本发明的说明性实施例的用于产生视觉上完美装置的两个微组装无机微型LED阵列策略的图解说明；
[0389] 图28是根据本发明的说明性实施例的在连接之前的实例性像素的图解说明；
[0390] 图29是根据本发明的说明性实施例的使用色彩转换材料在微组装微型LED显示器及照明元件中实施色彩转换的图解说明；
[0391] 图30A及30B分别是根据本发明的说明性实施例的将自对准电介质用于微组装微型LED显示器及照明元件的装置的显微照片及图解说明；
[0392] 图31是根据本发明的说明性实施例的由单个微组装集成电路控制的功能元件的实例性4×4阵列的图解说明；
[0393] 图32图解说明根据本发明的说明性实施例的各自由单个微组装集成电路控制的功能元件的数个4×4阵列的实例性装置；
[0394] 图33是根据本发明的说明性实施例的使用控制元件来控制不同类型的实例性阵列的图解说明；
[0395] 图34是根据本发明的说明性实施例的具有可各自充当独立显示器的集成电路像素群集的使用微组装形成的显示器的图解说明；
[0396] 图35是根据本发明的说明性实施例的其中用户已选择仅接通整个装置的一部分的实例的图解说明；
[0397] 图36是根据本发明的说明性实施例的其中用户已选择仅接通整个装置的非标准形状的一部分的实例的图解说明；
[0398] 图37是根据本发明的说明性实施例的具有无线数据及/或电力输入的实例性阵列的图解说明；
[0399] 图38是根据本发明的说明性实施例的经设计成具有内建冗余的控制元件的图解说明；
[0400] 图39是根据本发明的说明性实施例的具有包含内建存储器的控制装置的阵列的图解说明；
[0401] 图40是根据本发明的说明性实施例的具有微组装温度感测元件的微组装微型LED显示器的图解说明；
[0402] 图41是根据本发明的说明性实施例的根据本发明的说明性实施例的无源矩阵无
机发光二极管显示器的图像；
[0403] 图42是根据本发明的说明性实施例的根据本发明的说明性实施例的显示器内的像素的光学显微照片；
[0404] 图43是根据本发明的说明性实施例的根据本发明的说明性实施例的显示器内的单个像素的光学显微照片；
[0405] 图44是根据本发明的说明性实施例的根据本发明的说明性实施例的其上具有无源矩阵显示器的完整显示器衬底的图像；
[0406] 图45是根据本发明的说明性实施例的根据本发明的说明性实施例的显示器的像素阵列的光学显微照片；
[0407] 图46是根据本发明的说明性实施例的用于制造无源矩阵有机发光二极管显示器的方法的流程图；
[0408] 图47A是根据本发明的说明性实施例的无源矩阵有机发光二极管显示器的图像；
[0409] 图47B是根据本发明的说明性实施例的图47A的无源矩阵有机发光二极管显示器的特写图像；
[0410] 图48A是根据本发明的说明性实施例的无源矩阵有机发光二极管显示器的图像；
[0411] 图48B是根据本发明的说明性实施例的图48A的无源矩阵有机发光二极管显示器的特写图像；
[0412] 图49A到49G是根据本发明的说明性实施例的显示器是部分透明的图像；
[0413] 图50是以无源矩阵配置布线的实例性印刷LED的光学显微照片；
[0414] 图51是以无源矩阵配置布线的实例性印刷LED的示意性及光学显微照片；
[0415] 图52是以无源矩阵配置布线的单个LED的光学显微照片；
[0416] 图53A及53B分别是适于从LED的一端接触两个端子的微型LED的实例性架构的平面图及横截面；及
[0417] 图54A到54E是微型LED的实例性架构的示意性横截面。
[0418] 依据图示及所描述的下文所陈述的详细描述将更明了本发明的特征及优点，其中在通篇中相似参考字符识对应元件。在图式中，相似参考编号通常指示相同、功能上类似及/或结构上类似的元件。

具体实施方式
[0419] 如本文中所使用，表达“半导体元件”及“半导体结构”同义使用且广泛是指半导体材料、结构、装置或装置的组件。半导体元件包含高质量单晶及多晶半导体、经由高温处理制作的半导体材料、掺杂半导体材料、有机及无机半导体以及具有一个或多个额外半导体组件及/或非半导体组件（例如电介质层或材料及/或导电层或材料）的复合半导体材料及结构。半导体元件包含半导体装置及装置组件，包含但不限于晶体管、包含太阳能电池的光伏装置、二极管、发光二极管、激光器、p-n结、光电二极管、集成电路及传感器。另外，半导体元件可是指形成功能半导体装置或产品的元件或部分。
[0420] “半导体”是指在低极温度下为绝缘体但在约300K到上述温度下具有可观导电性率的材料的任何材料。半导体的电特性可通过添加杂质或掺杂剂而修改或通过使用电场来控制。在本描述中，术语半导体的用法打算与此术语在微电子及电子装置领域中的用法相一
致。在本发明中有用的半导体可包含例如硅、锗及金刚石等元素半导体及（举例来说）以下各项的化合物半导体：IV族化合物半导体，例如Si及SiGe；III–V族半导体，例如AlSb、AlAs、AlP、InP、GaSb、GaAs、InGaAs、InP、InSb、InAs及InP；III–V族三元半导体合金，例如AlxGa1-xAs；II–VI族半导体，例如CuCl；IV–VI族半导体，例如PbS、PbTe及SnS；层状半导体，例如PbI2、MoSe2及GaSe；氧化物半导体，例如CuO及Cu2O。术语半导体包含固态半导体及掺杂为一种或多种选定材料的非本质半导体，其包含具有p型掺杂材料及n型掺杂材料的半导体，以提供适用于给定应用或装置的有益电子性质。术语半导体包含包括半导体及/或掺杂剂的混合物的复合材料。在本发明的一些应用中用的特定半导体材料包含但不限于：Si、Ge、SiC、AlP、AlAs、AlSb、GaSb、GaAs、GaSb、InP、InAs、GaSb、InP、InAs、InSb、ZnO、ZnSe、ZnTe、CdS、CdSe、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、PbS、PbTe、AlGaAs、AlInAs、AlInP、GaAs、GaInAs、GaInP、AlGaAsSb、AlInP及GaInAsP。多孔硅半导体材料对本发明在传感器及发光材料（例如发光二极管（LED）及固态激光器）领域中的应用有用。半导体材料的杂质是除半导体材料本身以外的原子、元素、离子及/或分子，或者提供于半导体材料中的任何掺杂剂。杂质半导体材料中所存在的非所要材料，其可能会极性地影响半导体材料的电子性质，且包含但不限于氧、碳及金属，包含重金属，重金属杂质包含但不限于：元素周期表上位于铜与铅之间的元素、钙、钠及其所有离子、化合物及/或错合物。

[0421] “衬底”是指其上或其中进行（或已进行）一过程（例如半导体元件的图案化、组装或集成）的结构或材料。衬底包含但不限于：(i) 其上制作、沉积、转印或支撑半导体元件的结构（还称作为同质衬底）；(ii) 装置衬底，举例来说，电子装置衬底；(iii) 具有用于后续转印、组装或集成的例子半导体元件的元件的施加结构衬底；及(iv) 用于接纳例如半导体元件的可印刷结构的目标衬底。施加衬底可为但未必是同质衬底。

[0422] 如本文中所使用的“显示器衬底”是指用于接纳例如半导体元件的可印刷结构的目标衬底（例如，非同质衬底）。显示器衬底材料的实例包含聚合物、塑料、树脂、聚酰亚胺、聚苯二甲酸乙二酯、聚对苯二甲酸乙二酯、金属、金属箔、玻璃、柔性玻璃、半导体及蓝宝石。

[0423] 如本文中所使用的术语“微型”及“微型装置”是指根据本发明的实施例的特定装置或结构的描述性大小。如本文中所使用，术语“微型”及“微型装置”打算是指按0.5μm到250μm尺寸的结构或装置。然而，将了解，本发明的实施例未必限制于此，且实施例的某些方面可用于大于或小于上述尺寸。

[0424] 如本文中所使用，“微型LED”是指按0.5μm到250μm尺寸的无机发光二极管。举例来说，微型LED可具有从0.5μm到2μm、从2μm到5μm、从5μm到10μm、从10μm到20μm、从20μm到50μm、从20μm到50μm、从50μm到100μm或从100μm到250μm的宽度、长度及高度中的至少一者（或两个或全部三个尺寸）。微型LED在电致性能发射光。由LED发射的光的色彩取决于微型LED的结构而变化。举例来说，当电致性能时，红色微型LED发射红色光，绿色微型LED发射绿色光，蓝色微型LED发射蓝色光，黄色微型LED发射黄色光且青色微型LED发射黄色光。

[0425] “可印刷”是指能够在不将衬底暴露于高温（例如，在小于或等于约400、200或150摄氏度的温度下）的情况下转印、组装、图案化、组装或集成到衬底上或其中的材料、结构、装置组件或集成式功能装置。在本发明的一个示例中，可印刷材料、元件、装置组件或装置能够经由原液印刷、微转移印刷或干式转印接触印刷而转印、组装、图案化、组织及/或集
成到衬底上或其中。

【00426】本发明的“可印刷半导体元件”包括可(举例来说)通过使用干式转印接触印刷、微转移印刷或原液印刷方法而组装或集成到衬底表面上的半导体结构。在一个实施例中，本发明的可印刷半导体元件是单一晶片、多晶或微晶无机半导体结构。在本描述的上下文中，单一结构是具有机械连接的特征的单体式元件。本发明的半导体元件可为未经掺杂或经掺杂，可具有选定空间分布的掺杂剂且可掺杂有多种不同掺杂剂材料，包含p型及n型掺杂剂。本发明包含具有超过或等于约1微米的至少一个横截面尺寸的微结构可印刷半导体元件及具有小于或等于约1微米的至少一个横截面尺寸的纳米结构可印刷半导体元件。在许多应用中使用的可印刷半导体元件包括从对高纯度固体材料(例如使用常规高温处理技术产生的高纯度半导体晶体片)的“由上而下”处理得来的元件。在一个实施例中，本发明的可印刷半导体元件包括复合结构型，所述复合结构型具有以操作方式连接到至少一个额外装置组件或结构(例如导电层、电介质层、电极、额外半导体结构或这些的任一组合)的半导体。在一个实施例中，本发明的可印刷半导体元件包括可拉伸半导体元件或异质半导体元件。

【00427】术语“柔性”是指材料、结构、装置或装置组件(例如)在不经历引起显著应变(例如以材料、结构、装置或装置组件的破坏点为特征的应变)的变换的情况下可逆地变形成弯曲形状的能力。

【00428】“塑料”是指可经模制或塑型(通常在加热时)且经硬化成所要形状的任何合成或天然存在的材料或材料组合。在本发明的装置及方法中有用的示例性塑料包含但不限于聚合物、树脂及纤维素衍生物。在本描述中，术语塑料打算包含复合塑料材料，所述复合塑料材料包括一或多种塑料及一或多种添加剂，例如结构增强剂、填充剂、纤维、塑化剂、稳定剂或可提供所要化学或物理性质的添加剂。“电介质”及“电介质材料”在本描述中被同义使用，是指高密度抵抗电流流动且可由所施加电场极化的物质。有用电介质材料包含但不限于SiO₂、Ta₂O₅、TiO₂、ZrO₂、Y₂O₃、Si₃N₄、STO、BST、PLZT、PMN及PZT。

【00429】“聚合物”是指包括多个重复化学基团(通常称作为单体)的分子。聚合物通常由高分子质量表征。在本发明中可使用的聚合物可为有机聚合物或无机聚合物且可为非晶、半非晶、结晶或部分结晶状态。聚合物可包括具有相同化学组成的单体或可包括具有不同化学组成的多个单体，例如共聚物。具有链接式单线链的交联聚合物对本发明的一些应用尤其有用。本发明的方法、装置及装置组件中可用的聚合物包含但不限于塑料、弹性体、热塑性弹性体、弹性塑料、恒温器、热塑性塑料及丙烯酸酯。非分散性聚合物包含但不限于缩醛聚合物、可生物降解聚合物、纤维素聚合物、含氟聚合物、耐纶、聚丙烯酸聚合物、聚酰胺-亚酰胺聚合物、酰亚胺、聚苯并咪唑、聚乙烯、聚碳酸酯、聚酯、聚醚醚酮、聚乙烯、聚乙烯共聚物及改质聚合物、聚醚酮、聚丙烯酸酯甲酯、聚甲基戊烯、聚苯乙烯、聚烯烃、聚偏二氟乙烯、聚偏氯乙烯、聚偏氟乙烯、聚偏氟乙烯、聚偏氟乙烯、聚偏氟乙烯及这些的任何组合。

【00430】如本文中所使用的“微转移印刷”是指用于将微型或纳米型材料、装置及半导体元件确定性组装成具有二维及三维布局的经空间组合的功能布局的系统、方法及技术。通常难以拾取并放置超薄或小型装置。然而，转移印刷可用选择并施加这些超薄、易碎或小型装置(例如微型LED)而不会对装置自身造成损坏。微结构印刷(例如，弹性印刷、静电印刷或混合印刷/静态印刷)可用于拾取微型装置，将微型装置输送到目的地衬底，及将微型装置印刷到目的地衬底上。在一些实施例中，表面粘附力用于控制对这些装置的选择并将其印刷
到目的的衬底上。此过程可大规模地并行执行。印模可经设计以在单个拾取及印刷操作中转印单个装置或数百到数千个离散结构。关于微转移印刷的论述通常参见第7,622,367号及第8,506,867号美国专利，所述美国专利中的每一者特此以全文引用的方式并入。

【0431】微转移印刷还实现将高性能半导体装置（例如，微型LED显示器）并行组装到几乎任何衬底材料（包括玻璃、塑料、金属、其它半导体材料或其它非半导体材料）上。衬底可是柔性的，借此准许产生柔性电子装置。柔性衬底可集成为大量配置，包含在热性基于硅的电子装置的情况下可能的配置。另外，举例来说，塑料衬底是机械强固且可用于提供较不易于遭受由机械应力引起的损坏或电子性能降级的电子装置。因此，这些材料可用于通过能够以低成本在大衬底区域上方产生电子装置的连续、高速印刷技术（例如，卷对卷制造）来制作电子装置。

【0432】此外，这些微转移印刷技术还可用于在与塑料聚合物衬底上的组装兼容的温度下印刷半导体装置。另外，半导体材料可印刷到大面积衬底上，借此实现复杂集成电路在大衬底区域上方的连续、高速印刷。此外，可提供在柔性或变形装置定向中具有良好柔性性能的柔性电子装置以实现广泛的应用于电子装置。

【0433】所揭示技术大体来说涉及可转印微型无机发光二极管（例如，微型LED）装置的形成。微组装微型LED显示器及照明元件使用过小、过多或过于易碎而无法通过常规手段（例如，真空抓手器或取放工具）组装的微型LED阵列。所揭示技术使用微转移印刷技术来实现微组装微型LED显示器及照明元件。微型LED可制造于同质衬底上且被印刷到例如显示器衬底的目的地衬底（例如，塑料、金属、玻璃或其它材料）。此实现小型有源区域显示器，因为半导体材料仅用于微型LED或其它有源元件（例如，驱动器或晶体管），而不跨越整个显示器面板或其的一大部分（如在薄膜显示器中通常发现）（例如，在某些实施例中，本发明提供具有小于或等于显示器的40%、30%、20%、10%、5%、3%、1%或0.5%或0.1%的有源区域的显示器衬底）。在某些实施例中，光发射器的组合发光区域小于或等于连续显示器衬底区域的八分之一、十一分之一、二十一分之一、五十分之一、百分之一、五百分之一、千分之一、两千分之一或万万分之一。

【0434】微组装微型LED显示器及照明元件可提供基本上单色、基本上白色或基本上可调谐色彩。其可包含发射基本上类似色彩的微型LED。举例来说，所有蓝色或所有红色微型LED，或其包含不同色彩的微型LED，举例来说，用于在显示器或照明元件上再现不同色彩的红色、绿色、蓝色、黄色或青色微型LED。微型LED的色彩可通过从微型LED的直接发射、通过色彩转换结构或其某一组合来产生。

【0435】在一些实施例中，所揭示显示器中所使用的微型LED从有源-结周界的钝化获益。举例来说，在将微型LED印刷到显示器衬底之前，每一微型LED二极管的结周界可被暴露（例如，通过蚀刻）且高带隙半导体（例如，InGaAlP、InGaN、GaAs、AlGaAs）可成长于所暴露结周界上，借此减少微型LED中的非辐射线重组。

【0436】此外，在某些实施例中，微型LED横向携载电流比较大、常规LED小一距离。因此，微型LED外延结构可薄于用于常规LED的结构。用于显示器的微型LED外延结构可包含较薄电流散布层或较薄缓冲层。在某些实施例中，由于微型LED的外延结构而可省略常规缓缓冲层。缓冲层通常随装置的厚度增加而被需要以防止装置衬底破裂。所揭示技术提供此类装置（例如，在一些实施例中，小于一毫米厚的装置）。例如这些装置的单装置不需要缓冲层以防
止衬底/装置的破裂。在一些实施例中，较薄的应变平衡交替外延层可用于替代常规缓冲层。通过使用具有不同晶格结构的结晶材料的交替层，提供还可起到外延层的全部功能（举例来说，应用于电传导光或光发射）的具有减少应变的整个结构。

【0437】图1是用于（举例来说）LCD显示器中的典型像素100的现有技术图解说明。像素100包含三个子像素104a、104b及104c（统称104）。在一些情形中，这些子像素是红色子像素104a、绿色子像素104b及蓝色子像素104c。彩色滤光器通常用于在背光用于照亮所选滤光器时形成每一子像素104的色彩。每一子像素104的强度可通过施加到每一子像素104的电压的变化而控制使得每一子像素104产生光敏阴影（例如，256个阴影）（例如，256个红色阴影256个绿色阴影及256个蓝色阴影）。在液晶显示器中，将电压施加到液晶中的液晶基于所施加电压而扭曲，借此针对每一子像素104使穿过液晶且因此穿过彩色滤光器的来自背光的光的量变化。

【0438】图2是根据所揭示技术构造的实例性像素200的图解说明。在此实例中，像素200具有类似图1中所示的像素100的大小的大小，然而，图2中所示的像素200是使用微型LED202a到202f（统称微型LED202）构造的。微型LED202可被转移印刷到衬底（例如，透明的（包含半透明、几乎透明的及大部分透明的）或柔性衬底）上。在一些实施例中，衬底是塑料、玻璃、金属或蓝宝石。

【0439】微组装稀疏集成高性能光发射器（例如微型LED202）及驱动器电路204（例如，微型集成电路）使是柔性的显示器明亮、汲取较少电力或仅显示显示器衬底的一部分。在一些实施例中，额外自由空间促进将更高功能装置（例如，微型传感器206）定位于显示器平面上，例如实现姿势发送、电力收集、光发射器冗余、图像捕获及无线操作的装置。举例来说，在一些实施例中，显示器在每一像素中包含微型集成集成驱动器电路204。另外，在一些实施例中，由微型LED占据的小操作区域实现透明显示器、多模式显示器、冗余微型LED及其它装置以及超明亮显示的构造。

【0440】图3图解说明使用微组装（例如，转移印刷）组装于显示器衬底上的LED。小型LED放置于显示器衬底上且以串联、并联或以其组合方式电连接于有源矩阵、无源矩阵中。组装LED显示器及照明元件展现许多所要性质，所述性质在一些实施例中包含卓越的色彩质量。其是高度高效的且具有低电力消耗。

【0441】如在此实例中所示，微组装LED显示器可能产生为透明的（例如，具有针对可见光大于或等于50%、80%、90%或95%的透明度）。透明度可至少部分地基于微型LED、连接特征及其它构成件的极少低区域覆盖率或透明度。透明度在装置中的“断断”状态中或从特定方向（例如，从与观看方向相对的装置的侧）观看时是明显的。透明度可实现实际上不可见显示器或光源。图49A到49G图解说明使用玻璃衬底构造的实例性透明的显示器。在一些实施例中，在无微组装技术的情况下实现部分或实际上透明度，前提是在像素密度足够低且观看者的既定角度足够远。

【0442】图4是包含冗余RGB无机微型LED402a到402x、驱动器电路406（例如，经转移印刷集成电路）及微型传感器404a及404b（统称微型传感器404）的微型LED显示器400的实例的图解说明。在一些实施例中，显示器400形成于可选聚合物、塑料、树脂、聚酯亚胺、聚苯乙烯二甲酸乙二酯、聚对苯二甲酸乙二酯、金属、金属箔、玻璃、半导体或蓝宝石的显示器衬底上。显示器400包含展现低电力消耗同时仍投射明光的经转移印刷冗余RGB微型LED402a到
402x。每一主要微型LED (例如, 402a、402c、402e、402g、402i、402k、402m、402o、402q、402s、402u、402w) 包含对应冗余、备用微型LED (例如, 分别是402b、402d、402f、402h、402j、402l、402n、402p、402r、402t、402v、402x)。经稀疏集成微型LED 402允许将其功能装置放置于每一像素内，例如微型传感器404a及404b、电力收集装置、姿势传感器或图像捕获装置。

0443 微型集成驱动器电路406 (例如, CMOS电路) 可经微转移印刷以驱动微型LED 402。微型集成驱动器电路406可包含嵌入式存储器 (例如, 非易失性存储器)。存储器可用于显示静态图像而无需持续地需要刷新显示器 (例如, 借此节省电力)。存储器还可存储 (举例来说) 用于调整显示器中的微型LED的输出的查找表。在一些实施例中，每一像素上定位有微型集成驱动器电路406以驱动相应像素中的每一微型LED。

0444 除了从显示器400的前端发射外，微型LED 402a至402x还可从显示器400的背部发射。显示器400可在一侧上包含粘附层，从而产生贴纸状显示器。显示器中所使用的布线 (例如用于将微型LED 402及微型传感器404耦合到集成驱动器电路406的布线) 可是细线 (例如，具有小于1μm的临界尺寸及小于0.25μm的叠加准确度) 或透明线。

0445 图7是图组装显示器700的图解说明，图组装显示器700在衬底上包含布置成主要及冗余无机微型LED对的主要及冗余RGB无机微型LED 702a至702x (统称微型LED 702)、驱动器IC 706以及微型传感器704a及704b (统称微型传感器704)。衬底可能是透明或柔性的，查找表可用于在冗余对 (例如，微型LED 702a及702b) 中的一个微型LED的配对者不起作用的情形下通过从所述微型LED提供额外光来产生视觉上完美的显示器。举例来说，如果微型LED 702a不起作用，那么驱动器706可致使微型LED 702b激活以补偿微型LED 702a。在另一实例中，如果所有微型LED经驱动以提供高分辨率显示器，那么微型LED 702b可在微型LED 702a不起作用的情况下经驱动以提供额外光 (例如，更明亮) 以补偿微型LED 702a。

0446 图5是根据所揭示技术的实例性像素500的图解说明。如上文所阐释，小微型LED 502允许冗余 (例如，具有从2μm到5μm、从5μm到10μm、从10μm到20μm、从20μm到50μm、从50μm到100μm或从100μm到250μm的宽度、长度及高度中的至少一者的LED)。冗余可产生视觉上完美的显示器且考虑到出故障的微型LED (例如，经产生有电短路或开路微型LED的显示器)。在一些实施例中，如果一个微型LED是有缺陷的或遗漏，那么此将通过外部驱动电子器件校正。举例来说，每一微型LED (例如，502a、502c及502e) 可具有对应备用或冗余微型LED (例如，分别是502b、502d、502f)，借此提供两个交错的显示器—可基于个别微型LED而激活的主要显示器及次要显示器。在一些实施例中，主要微型LED及次要微型LED两者布线到显示器或集成电路。在一些实施例中，冗余微型LED在测试所述显示器之后基于个体而布线。在此实例中，红色主要微型LED 502a具有对应冗余红色微型LED 502b，蓝色LED 502c具有对应冗余蓝色微型LED 502d，且绿色LED 502e具有对应冗余绿色微型LED 502f。

0447 每一微型LED可具有其自己的像素驱动器 (例如，晶体管电路)。此可用于形成高分辨率显示器。微型LED可经挑选以在许多不同模式 (例如正常操作模式或高分辨率模式) 中操作。此提供可自动 (例如，基于在显示器上观看的材料) 或由用户设定的可调谐分辨率 (例如，可视需要激活更多光发射器以提供较高分辨率显示器)。

0448 在一些实施例中，显示器具有可调谐亮度动态范围。如果更多发射器经接通，那么显示器将更明亮。此对各种应用 (包含改善日光可读性或在明亮周围环境中) 有用。显示器还可用于通过激活微型LED的混合 (例如，提供暖辉光) 形成色彩可调谐闪光。或者，微型LED
可以密集成图案供以增加光泽的强度。

[0449] 为在修复操作之前或之后，微型LED的冗余对可物理串联或并联连接。物理修复可包括激光切割器不需重叠线，通过化学气相沉积或激光辅助化学气相沉积来直接写入电迹线或喷墨印刷。微型LED的冗余对可独立且单独操作。显示器还可将冗余驱动电路及显示器控制元件用于经改善的信息显示器保真度或促进视觉上完善的显示器的产生。

[0450] 图6是具有散热功能LED 604的显示器的实例性多色彩像素600的构成说明。在此实例中，像素600经设计以包含一组主要RGB微型LED (红色微型LED 602a，绿色微型LED 604及蓝色微型LED 602d) 以及一组备用RGB微型LED (红色微型LED 602b，绿色微型LED 602c及蓝色微型LED 602e)。然而，在此情形中，主要绿色微型LED 604若可操作而主要蓝色微型LED 602d及红色微型LED 602a存在且操作。主要绿色微型LED 604可被被替换而或省略(例如，由于印刷错误)。可在在印刷之后由于其是有缺陷的微型LED已被移除，或其可存在但不被使用(例如，开路)。备用绿色微型LED 602c可被替换而或省略的主要绿色微型LED 604。备用红色及蓝色微型LED可在主要红色微型LED 602a及主要蓝色微型LED 602d操作时关断。在一些实施例中，电子电路检测可选或有缺陷的微型LED且激活对应备用微型LED。显示器的驱动电路可感测有接触的微型LED。在一些实施例中，通过与显示器分离的检测电路检测有缺陷的微型LED。可将有缺陷的微型LED移除或断开连接。在一些实施例中，连接替换微型LED以替换有接触的微型LED。在一些实施例中，已连接替换微型LED且有缺陷的微型LED必须在需要时移除或断开连接。在一些实施例中，主要微型LED及冗余微型LED两者均连接到显示器电路且驱动电路仅主要微型LED有缺陷的情况下驱动适宜冗余备用微型LED。

[0451] 图8A到8D图解说明用于微组装显示器及照明元件的微型LED面板中的微型LED的冗余。图8A到8C是图8D中所示的装置的识别区的放大图解说明。微组装微型LED面板中的冗余微型LED提供缺陷容限且促进视觉上完美的显示器及照明元件的形成。在第一连接步骤期间，如图8A中所图解说明，某一小部分微型LED (例如，微型LED 802) 经连接以形成电路，而冗余微型LED (例如，微型LED 804) 保留与电路断开连接且形成冗余微型LED (例如，用于补偿或替换有缺陷的主要微型LED的备份、备用或替换微型LED)。在一些实施例中，当形成到微型LED 802的连接时，尽管冗余装置804未连接到包含微型LED 802的较大电路，但导电接触特征806a及806b经形成到冗余装置804。测试程序可用于识别有缺陷的微型LED或者电路无意断开连接 (例如，"开路") 或无意短路的微型LED群组。如图8B中所示，通过直接且物理地写入电迹线，紧密接近于有缺陷的非冗余微型LED (例如，微型LED 808) 的冗余微型LED (例如，微型LED 810) 连接到电路。在一些实施例中，使用 (举例来说) 刷蚀来将电短路非冗余微型LED (例如，微型LED 812) 从如图8C中所示的电路以类似方式断开连接。在一些实施例中，有缺陷的非冗余LED (例如，812) 在将对应冗余LED连接到显示器电路之后不断开连接。

[0452] 图9A到9C是图解说明显示器底座 (例如，玻璃) 上的微型LED的经微转移印刷阵列的图像。每一像素902包含主要微型LED 906及可替换展示的显示器之后连接的备用微型LED 904。在识别开路像素 (举例来说，由于遗漏或有缺陷的微型LED) 时，可如图9B (例如，像素908具有错误主要微型LED及连接冗余微型LED且像素910具有遗漏主要微型LED及连接冗余微型LED) 及9C中所示连接备用微型LED。在此实验中，喷墨印刷胶态银粒子用作连接备用微型LED (如图9B中所示) 的直接写入方法。在一些实施例中，将未使用冗余微型LED从显示
器移除。在一些实施例中，将有缺陷的主要微型LED移除或断开连接（例如，在连接对应冗余微型LED之前或之后）。在一些实施例中，如果缺陷使得微型LED短路那么将有缺陷的主要微型LED断开连接或移除（例如，如果缺陷使得有缺陷的主要微型LED短路那么可不需要将那一微型LED移除）。在图9C所示的实施例中，显示器包含48个像素，每一像素包含主要微型LED及冗余微型LED，如图9A中所示。像素912a到912f各自包含有缺陷的主要微型LED且因此冗余微型LED已电连接到显示器电路以补偿/替换这些有缺陷的主要微型LED中的每一者。

【0453】图10是用于由于主要微型LED 1006b是具有缺陷的而使用微组装跨接线来电连接冗余微型LED 1004b来修复微型LED阵列装置的实例性方法的图解说明。导电跨接元件1002可通过微组装（例如，微转移印刷）放置于用于通过建立到备用、冗余微型LED 1004b的电连接来修复微型LED阵列装置。在一些实施例中，导电结构经制备用于微组装及组装，借此将冗余微型LED 1004电连接到显示器电路。建立微型LED阵列装置上的源线之间的连接，借此将冗余微型LED 1004b连接到所连接阵列的其余部分。电连接可使用（举例来说）跨接线1002（例如，金-金界面）通过清洁金属表面之间的焊接回流或触点而建立。

【0454】如此实施例中所示，跨接线1002用于连接冗余微型LED 1004b以有效地替换有缺陷的主要微型LED 1006b。冗余微型LED 1004a在此实例中未经连接，因为主要微型LED 1006a恰好地起作用。在一些实施例中，如果主要微型LED 1006a故障，那么在稍后时间处连接冗余微型LED 1004a。在一些实施例中，将未使用冗余微型LED（例如，微型LED 1004a）从显示器移除。在一些实施例中，将有缺陷的主要微型LED（例如，微型LED 1006b）移除（例如，在连接对应冗余微型LED之前或之后）。在一些实施例中，如果缺陷使得微型LED短路那么将有缺陷的主要微型LED（例如，1006b或其它实施例中所述述的主要微型LED）移除（例如，如果缺陷使得有缺陷的主要微型LED开路那么可不需要将那一微型LED移除）。

【0455】可以若干种方式感测不起作用微型LED。举例来说，可使用相机来检测从一或多个微型LED发射的光。相机可具有特定色谱。在一些实施例中，相机是集成到显示器面板中的光传感器（例如，微组装于与微型LED相同的面板或表面中或其上或微型传感器）。在一些实施例中，微型光传感器连接到微型集成电路（例如，形成用于像素或显示器的显示器驱动器的微型集成电路）。在一些实施例中，光传感器信号由微型集成电路解释。微型集成电路可在其中主要微型LED不起作用的情况下驱动次要微型LED。在一些实施例中，微型集成电路将不驱动有缺陷/不起作用的微型LED。微型集成电路还可更改其在某些情况下驱动主要微型LED的程度以确保适当色彩由微型LED输出（例如，正确的红色阴影）。在一些实施例中，显示器可在其经制造且由消费者使用之后执行此分析及校正。此可增加显示器的使用寿命及质量。

【0456】图11A及11B图解说明用于在微型LED阵列装置中的层减少的微组装交越线1102、1104及1106。减少欲对微型LED装置执行的处理步骤的数目通常是有利的。另外，一些微型LED装置（例如利用有源矩阵架构或无源矩阵架构的那些微型LED装置）从数据或电力线与迹线的交越线获益或需要所述交越线。实现此类交越线的典型方式是在两个金属层之间使电介质层图案化有导电通孔以电连接两个金属层。然而，此因电显示器衬底的处理添加额外步骤而增加微型LED装置的成本。

【0457】通过微组装提供电交越线（例如，交越线1104及1106）提供用以消除提供电介质层及第二金属层的大面积处理步骤的方式。借此通过将交越线以区域密集配置供应于同质衬
底上及将铰链线以较不密集配置微组装于装置底上来自减少成本。使用以此方式组装的铰链线(例如，铰链线1102、1104及1106)的微型LED装置还可通过提供冗余线及用于跨越有缺陷的明线形成使连接的方法从用于微型LED阵列装置中的缺陷容限的冗余获益。

【0458】此类型的层减少可通过简单无源装置1102(例如关于下文图13所描述的导电跨越线)或包含铰链线(例如某线)的例子，例如容合于适合微组装的结构内的CMOS驱动电路及/或非易失性存储器的其它功能性的集成装置1104来实现。在一些实施例中，适合微组装的结构包含多个一个铰链线，每一铰链线在其与容合于适合微组装的结构中的至少一个其它铰链线之间具有电绝缘。

【0459】图12A及12B是分别使用电阻器1206或二极管1208来通过在照明元件或显示器中提供呈冗余微组装微型LED像素或子像素的电特性的形式而促进修复的实例性系统的图解说明。在一一些实施例中，像素或子像素包含通过默认与像素或子像素的每一主要微型LED1202并联布线的备用微型LED1204。举例来说，此实施例的修复可由切断到短路微型LED的连接组成而无需提供额外直接写入金属特征来连接备用件。在一些实施例中，包含通过默认与主要微型LED1202并联布线的备用微型LED1204的每一像素或子像素还包含与备用微型LED1204串联的电阻器1206或二极管1208，如图12A及12B图中分别所示。

【0460】如图12A图中所示，在一些实施例中，电阻器1206与备用微型LED1204串联放置。在此实施例中，严重短路主要微型LED1202将显著于与备用微型LED1204串联的电阻器1206的电阻的电特性(电流-电压关系)。严重短路备用微型LED1204将显示不大于串联电阻器的电阻。借此提供通知哪一个微型LED(主要微型LED1202或备用微型LED1204)需要从阵列断开连接以便形成视觉上完美微组装微型LED显示器或照明元件的修复过程的电特性。如图12B中所图解说明，与备用微型LED1204串联的二极管1208将基于接通电压特征通知短路子像素中哪一个微型LED需要修复。

【0461】图13图解说明适于微组装的五种不同类型的电连接器1302、1304、1306、1308、1310或“跨接线”的横截面图。在一些实施例中，电连接器包含暴露的贵金属表面，包含银、铜或铝。在一些实施例中，电连接器包含暴露金属表面，包含铜、不锈钢、铝、镁、镍或铬。在一些实施例中，电连接器包含焊料，如同PbSn、AgSn、AgSn或其合金或其它焊料合金。

【0462】在一些实施例中，连接器(例如1302)形成同质衬底(例如，硅、SOI、GaAs、聚合物或玻璃)且通过蚀刻牺牲层从同质衬底释放。连接器可经转印到中间印模或衬底以便将其倒置。连接器可仅包含金属(例如，连接器1310)。

【0463】在一些实施例中，连接器必须“跨接”或越过导线以连接到点。举例来说，跨接线可如图38中所示用于将衬垫3802连接到衬垫3804。然而，跨接线并非必须导电地接触在这些衬垫之间通过的导线。在这些情形中，各种设计可用于确保适当导线经通过(“跨接”)且不短路。举例来说，连接器1304及1306包含金属及电介质。电介质材料可越过不计算由连接器连接的导线，借此确保这些导线不对连接器或衬垫3802及3804短路，返回参考图13，连接器的一部分可凹入使得两个跨接线之间的导线除非如所示由连接器1304、1308及1310连接。类似地，如由连接器1308所图解说明，绝缘体可用于防止跨接线导电地接触在两个衬垫(例如，如图38中所示的衬垫3802及3804)之间通过的导线。

【0464】另外，连接器可包含金属、聚合物、无机电介质、半导体及绝缘半导体中的一者的组合。连接器可具有定位于表面的两个暴露导电区之间的电绝缘暴露表面。
图14是包含主要RGB无机微型LED（例如，微型LED 1402g，1402k，1402m，1402o，1402u及1402w）及补充RGB无机微型LED（例如，微型LED 1402b，1402d，1402f，1402h，1402j，1402n，1402p，1402r，1402t，1402v及1402x）的微组装显示器1400的图解说明。在一些实施例中，此显示器中的一些但非全部像素包含多个R，G或B微型LED以针对灯或相机闪光灯或日光可观看性的超明亮闪光增大显示器的亮度。举例来说，微型LED 1402a，1402c，1402e，1402i，14021，1402o，1402q及1402s在图14中所示的实例中经指示但经省略。这些省略微型LED可是有意或无意省略。举例来说，其可未被印刷或其可由于其是有所缺陷的而已被移除。

补充微型LED中的一些补充微型LED可是不同于显示器中的其它微型LED的形状、大小（例如，微型LED 1402w）或色彩。查找表可用于促进针对所有条件的图像及照明质量优化。在一些实施例中，显示器包含微型集成电路1406及微型传感器1404，如上文所述。举例来说，每一像素可包含微型集成电路1406及一或多个微型传感器1404。

图15A及15B是微组装微型LED显示器及照明元件架构的图解说明。在一些实施例中，显示器（例如图15A中所示的显示器）通过在衬底上提供用于补充微型LED的空间及电路而促进修复而无需内建冗余。可在连接主要微型LED 1504阵列之后并与有备用微型LED 1502的微组装微型LED显示器架构提供用以产生视觉上完美微组装微型LED的方式，而无需在完全冗余架构中的每一像素处需要补充微型LED。仅在其中主要微型LED是有缺陷的例子中提供（例如，通过微转移印刷）补充微型LED（例如，在图15A中以虚线显示）。补充微型LED可视需要经印刷到位1502a到1502d。在一些实施例中，到位置1502a到1502d的连接已经形成使得补充微型LED在印刷时被连接到显示器电路。

如图15B中所示，在某些实施例中，显示器或照明元件架构包含光发射器（例如微型LED 1516）及嵌入于微型LED经转移印刷到其的显示器衬底1512上的粘性或保形层1508中或放置于其上的金属互连特征1506a及1506b（统称1506），使得金属互连特征1506在粘性或保形层1508的至少一个表面上暴露且可连接到光发射器1516。

装置包含微型LED阵列。每一微型LED在一侧（接触粘性或保形层1508的同一侧）上具有两个触点使得微型LED的触点与金属互连特征1506接触。金属互连特征1506a及1506b的间隙与粘性层1508以及微型LED1516的设计使得存在关于放置每一微型LED 1516的增加容限，借此增加生产合格率。粘性层的一部分1514接触微型LED 1516的底侧，借此一且将其微转移印刷到显示器衬底1512即将微型LED固定于适当位置中。

微型LED可在组装之后立即加以测试，且额外微型LED可在测试之后经组装用于修复。架构可在每一像素处包含冗余互连特征以接受额外微型LED用于修复。架构可包含定位于粘性层的至少一部分下方的反射层1510。反射层1510可使金属的且可是导电的或用作电导体。

图16图解说明与微型LED形成于其上或其中的同质源衬底分离且不同的非同质显示器衬底1604上的微组装微型LED。在一些实施例中，如图16中所示的照明元件的架构促进修复而无需内建冗余。用于微组装的微型LED阵列可具备具有面向下（与欲由转印元件接触的微型LED的接触表面相对）的两个端子1602a及1602b（统称1602）的微型LED。微型LED可具有从每一端子向下延伸的一或多个导电突出部。另外，突出部可延伸超过微型LED上的其它特征。突出部（端子1602a及1602b）可接触及穿透金属互连特征（接触衬垫）1608a及1608b（统称1608）的一部分以在印刷之后增加电连接性。
说明书

【0472】显示器顶底1604可任选地具备反射层或图案，如图15B中所示。在一些实施例中，显示器顶底1604包含粘性或柔性层1606（例如，PDMS）及金属互连特征1608（例如，具有金、铂、锡、铜或银表面的金属互连特征）。

【0473】在一些实施例中，粘性层1606沉积于显示器顶底1604上，且金属互连特征1608沉积于粘性层1606的顶部上（例如，通过物理沉积、转印、微组装、转移印刷及/或图案化）。微型LED阵列可经由转印元件组装于显示器顶底1604上。微型LED可粘附到粘性层1606，建立从微型LED的触点1602到金属互连结构1608的电连接性。在一些实施例中，微型LED粘附到金属互连层1608。在一些实施例中，端子1602的形成（例如，大小）使得其提供对每一微型LED在显示器上的放置的增加的容限。如图16中所示，微型LED可进一步放置到非同质顶底1604的左侧或右侧且端子1602将仍接触其相应互连特征1608。

【0474】在将微型LED沉积于显示器顶底1604上之后，可对微型LED进行测试，可视需要添加微型LED（例如，用以替换或替代有缺陷的微型LED），且可视需要切断金属互连特征1608（例如，用以将有缺陷的微型LED断开连接）。可视需要重复此过程。这些技术可用于产生视觉上完美微型LED显示器及照明元件。

【0475】图17是通过占据相同可观看区域1702的两个独立显示器形成的实例性显示器1700的图解说明。一个显示器可补偿另一者中的缺陷。独立、协调驱动器芯片可控制每一显示器。举例来说，每一独立显示器可具有其自己的行驱动器及列驱动器。如图17中所示，第一显示器是由列驱动器1704及行驱动器1706驱动而第二显示器是由列驱动器1708及行驱动器1710驱动。

【0476】独立显示器的像素可占据相同平面或定位于显示器的相同表面上或其可间隔开（举例来说，分离）达一距离（例如，通过在每一独立显示器之间放置电介质层而加以控制）。图18是堆叠式微型LED显示器1800的图解说明。透明微型LED显示器1802a到1802d（其中每一者可显示显示器，例如显示器400，如关于图4所描述）可沿垂直尺寸堆叠。此允许可调谐亮度且还可补偿缺陷。举例来说，替代将备用微型LED定位于与主要微型LED相同的表面上或相同的平面中，备用微型LED可定位于单独表面上，借此由数个独立、完全起作用显示器形成堆叠式显示器。另外，堆叠式透明微型LED显示器可用于形成3D显示器。

【0477】图19是由三个显示器面板1902a到1902c（其中每一者可显示例如图4所示的显示器400的显示器）形成的微组装堆叠式显示器1900的图解说明。可使用不同数目个显示器面板来提供各种效率及增加的清晰度。在此实例中，微组装显示器包含冗余RGB无机微型LED、驱动器IC、传感器及透明衬底。显示器将多个层次显示器面板用于缺陷容限、增加的亮度、2.5维或3维信息显示器或增加的分辨率。

动器（例如，微型集成电路）2010a及2010b。在一些实施例中，单个驱动器用于堆叠显示系统中的每一显示器面板（例如，2002a及2002b）。

[0479] 在一些实施例中，微型LED发射器用于形成多模式显示器。图21是多模式显示器的实例性像素结构图的图解说明。发射式微型LED显示器2102可与第二类型的显示器2104（例如反射式显示器、电泳或基于MEM的显示器）组合来形成多模式显示器。图21中所示的实例中，第二显示器2104是反射式显示器。微型LED 2106a到2106f将仅利用一少部分像素区域而反射组件2104（举例来说）还可利用像素2100的区域中的某一区域。举例来说，例如蜂窝电话（包含智能电话）的移动装置或平板电脑装置可在显示器类型之间切换，借此允许（举例来说）在观看视频或观看图片时使用微型LED显示器2102，而超低电力“类纸”显示器（例如，电泳显示器）或反射式显示器（例如反射式显示器2104）可用于阅读。

[0480] 在一些实施例中，如图22中所图解说明的像素2200所展示，微型LED 2204a到2204f可放置于反射元件2202的顶部上且鉴于微型LED 2204a到2204f的小大小不会强烈地干涉反射式显示元件。

[0481] 如先前所述述，显示器（例如，微型LED显示器）可与经微转移印刷传感器及收发器交。图23是具有连接到微型LED 2302a到2302f（例如，微型LED 2302a到2302b形成冗余对，微型LED 2302c到2302d形成冗余对且微型LED 2302e到2302f形成冗余对）的集成电路2306及微型传感器2304的像素2300的图解说明。举例来说，显示器可与图像捕获装置（例如，光学传感器、光电二极管）、红外传感器（例如，姿势感测或IR相机）、温度传感器（例如，关于微型LED反馈以提供色彩/亮度校正）及无线发射装置交。显示器还可包含例如太阳能电池（收集光）的电力吸收装置，运动能收集（例如，压电装置），用以存储能量的电容器或用于收集电磁辐射的天线。与显示器交的转移印刷元件可根据所要功能及应用以不同密度（稀疏性）印刷。举例来说，需要较少温度传感器，但每一像素需要图像捕获装置。

[0482] 图24是人类视觉及HDTV的色域的实例性图解说明。所揭示技术可用于改善显示器的色域以更紧密匹配人类视觉的色域。

[0483] 如图25中所图解说明，微型LED显示器可包含各种色彩的微型LED以除其它外还改善显示器的色域。除了标准红色微型LED 2502a到2502b、蓝色微型LED 2502e到2502f及绿色微型LED 2502g到2502h外，在一些实施例中，微型LED显示器包含黄色微型LED 2502c及2502d（举例来说如在图25中所示的像素2500中）或其它色彩微型LED（例如，青色）。在另一实施例中，像素2500可包含两种不同红色、绿色或蓝色微型LED（例如，绿色微型LED 2502c发射不同于2502d的绿色光）。此允许经改善色域（例如，更多可实现色彩）。显示器还可包含微型集成电路2506、微型传感器2504或其它半导体元件，如上文所述。

[0484] 图26是供在微组装无机微型LED阵列中使用以产生视觉上完美装置的实例性像素2600的图解说明。像素2600包含六个子像素2608a到2608f，每一子像素具有不同色彩（例如，一个子像素2608a具有红色微型LED 2602a，另一子像素2608b具有不同红色微型LED 2802b；一个子像素2608c具有绿色微型LED 2602e，另一子像素2608d具有不同绿色微型LED 2602g；一个子像素2608e具有蓝色微型LED 2602e且一个像素2608f具有不同蓝色微型LED 2602f）。举例来说，像素2600可包含六个子像素2608a到2608f，每一子像素具有包含达450nm、460nm、530nm、540nm、650nm及660nm的输出强度的相应峰值的微型LED。查找表可用于补偿像素不均匀性。
图27A到27B是用于产生视觉上完美装置的两个微组装无机微型LED阵列策略的图解说明。图27A中所示的显示器2700每子像素2704使用两个微型LED (2702a及2702b)。图27B中所示的显示器2750每单位区域利用更多像素 (例如，2756a到2756d) 且任何像素较少子像素及/或微型LED。在图27B中所示的实例中，每子像素2754仅存在一个微型LED 2752，然而针对显示器的每一视觉可辨别区存在两个或多于两个像素 (在此实例中，4个像素；12个子像素)。在显示器中遗漏一个微型LED的情形中，邻近像素使用来自查找表的信息来补偿。举例来说，如果微型LED 2752a遗漏，那么微型LED 2752b可用于补偿遗漏微型LED。

图28是在连接之前的实例性像素2800的图解说明。在一些实施例中，可使微组装微型LED 2802a到2802f阵列照亮且可观察光致发光以在连接之前识别有缺陷的微型LED (例如，2802a及2802e)。此可用于触发物理修复，将额外微型LED添加到包含由光致发光测试识别的有缺陷的微型LED的子像素。在一些实施例中，微型LED2802a及2802e是有缺陷的且被移除。在一些实施例中，因此，将仅布线微型LED 2802b、2802c及2802f。在其它实施例中，2802d还被布线。图28还图解说明其中微型LED 2802d是有缺陷的且额外微型LED 2802e经印刷以修补有缺陷的微型LED 2802d的情景。

图29是使用色彩转换材料的芯片（举例来说，例如立体面的多面体）来实施微组装微型LED显示器及照明元件中的色彩转换的图解说明。在一些实施例中，显示器及照明元件需要不同于其构成微型LED的直接发射波长全R/G/B能力及/或色彩。

用于实现此色彩转换的一种方法是通过使用微组装技术来将微型LED 2904a及2904b阵列放置于对应色彩转换材料阵列上方、上或与其接触。举例来说，通过在至少部分透明的显示器衬底2906中形成凹部2902a到2902h且用磷光体及其它色彩转换材料填充凹部。色彩转换材料包含含磷光体凝胶或树脂、磷光体陶瓷及单晶磷光体。其它色彩转换材料包含直接带隙半导体，例如在一些实施例中包含量子阱及表面钝化的外延堆叠的部分的那些直接带隙半导体。

在替代色彩转换方法中，将（举例来说）直接带隙半导体的色彩转换材料的芯片微组装于显示器衬底上，且将微型LED阵列的至少一部分组装于芯片上方。

在一些实施例中，装置经设计使得自微型LED发射的光的大部分或全部向下穿过透明显示器衬底及任选地穿过色彩转换材料而发射。此属性赋予装置有价值特性，所述装置（举例来说）如在显示器或照明元件中具有所述属性。所述显示器或照明元件从一个方向是几乎透明的且从相反方向是明亮光源或信息显示器。此属性可通过形成完全或几乎完全覆盖微型LED的一侧（例如，微型LED的“顶部”侧）的反射性结构来实现，其中微型LED触点、阵列连接金属及/或补镜柄结构形成于显示器衬底上。

在色彩转换的替代方法中，色彩转换层形成于微型LED的顶部上或在微型LED的多个一侧和部分环绕微型LED。

图30A及30B是将自对准电介质用于微组装微型LED显示器及照明元件的装置的图像及图解说明。在一些实施例中，减少微组装微型LED显示器或照明元件的显示器衬底上的对准步骤的数目是有利的。

在一些实施例中，包含对特定波长基本上透明的一些材料的微型LED组装于也对相同特定波长透明的显示器衬底上。微型LED在微型LED的与介于微型LED与显示器衬底之间的界面相对定位的侧上具有一或两个电触点。微型LED任选地还包含覆盖微型LED与显
示器衬底相对的侧的一部分的电介质材料（例如，氧化硅或氟化硅）。在形成到微型LED的连接之前，在一些实施例中，提供环绕微型LED的周界的绝缘层是有益的，借此避免不想要的电短路。绝缘层是通过沉积一层光可界定电介质（例如，BCB，聚酰亚胺，PBO，环氧树脂或硅酮）而形成，从而将光敏电介质暴露于光，使光从显示器衬底下面闪亮，且交联光可界定材料（两个金属触点上方的区除外），借此在形成连接之前将微型LED的周界绝缘层。

[0494] 在一些实施例中，具有匹配人类视觉的光谱响应的相机可用于定义供与微组装微型LED显示器一起使用的查找表。使用微组装微型LED的显示器从像素到像素亮度均匀性及色彩一致性获益。产生微型LED的外延及微制作过程通常产生具有亮度范围及输出光谱范围的微型LED。在一些实施例中，使用微型LED组件的显示器从以每一子像素的输出表现的查找表获益（例如，允许显示器根据亮度与所述子像素的电流之间的关系驱动每一个子像素），借此提供准确再现图像及色彩犹如装置的微型LED不具有色彩及亮度的不均匀性所需要的信息。此外，查找表可考虑到人类视觉响应的亮度、色彩及效率之间的关系。

[0495] 在一些实施例中，具有匹配人类眼睛的光谱响应的光谱响应的相机及光学滤光器用于产生用于微型LED显示器的查找表。在一些实施例中，具有匹配人类视觉蓝色响应的光谱响应的光谱响应的相机及光学滤光器、具有匹配人类视觉绿色响应的光谱响应的光谱响应的相机及光学滤光器及具有匹配人类视觉红色响应的光谱响应的光谱响应的相机及光学滤光器用于产生用于微型LED显示器的查找表。

[0496] 在一些实施例中，微尺度功能元件阵列与微尺度控制元件阵列交错。在一些实施例中，组装无机微尺度功能装置阵列与交错的组装微尺度控制元件阵列集成在一起控制元件可包含微尺度硅集成电路装置，所述微尺度硅集成电路装置通过微组装方法与微尺度装置集成在一起且交错。在一些实施例中，微组装方法是借助弹性体印模、静电头及/或基于真空夹头组装工具进行转移印刷。

[0497] 组装微尺度功能元件即是微型发光装置（例如发光二极管（LED））、垂直腔面发射型激光器（VCSEL）或边缘发射型激光器。组装微尺度功能元件是感测装置，例如光电二极管、辐射传感器、温度传感器及运动传感器。组装微尺度功能元件是能量收集或能量转换装置。组装微尺度功能元件是致动器装置。

[0498] 单个微尺度控制元件可控制阵列或阵列功能元件。在一些实施例中，控制元件通过导线网络与功能元件群集连接，所述导线从控制元件扇出到每一功能元件。在一些实施例中，布线是由经图案化的沉积薄膜金属（例如，Al，Cu，Mo或Au）制成。

[0499] 微尺度控制集成电路可包含各种功能性。控制元件可包含存储器、数字电路及模拟电路两者、传感器、信号处理电路及/或光学收发器（例如，提供光学输入到控制元件及从控制元件提供光学输出）。功能元件阵列及单个控制元件可在较大群阵列内作为独立单元操作。每一功能元件阵列可操作为独立显示器。

[0500] 图31是由单个微组装集成电路3104控制的功能元件3102a到3102p（统称3102）的实例性4×4阵列3100的图解说明。功能元件3102可通过单个薄膜金属化过程与控制元件3104连接。在一些实施例中，控制元件3104及功能元件3102定位于相同平面中或相同表面上，连接布线触出远离控制元件3104且可连接到功能元件3102中的每一者，如图31中所示。

[0501] 图32是包含六个4×4功能元件（每一功能元件由单个微组装集成电路控制）阵列（例如，如图31中所示）的实例性3200。控制元件阵列可使用微组装在功能元件阵列内
交错。

[0502] 图33是使用控制元件3302来控制不同类型的元件的实例性阵列3300的图像说明。举例来说，阵列3300可包含十六个像素3306a到3306p（统称3306，但可使用其它数目个像素）。每一像素3306可包含红色微型LED 3304a、蓝色微型LED 3304b及绿色微型LED 3304c。控制元件3302可处理来自检测元件的信号或从检测元件读出信号且还控制或读入信号到功能阵列元件。因此，阵列装置可能是多功能且可在相同表面上或在相同平面或阵列区域（例如，高光谱焦点平面阵列）中执行许多任务。阵列可将单个金属层级及单个控制元件用于功能阵列。

[0503] 图34是使用微组装形成显示器3400的图解说明。每一集成电路像素群集可充当独立显示器且每一功能元件群集可独立于控制元件操作。举例来说，整个装置的小部分可在使用中被通电，且阵列装置（显示器，举例来说）的其余部分可保持断电。图35是其中用户已选择仅接通整个装置的一部分的实例性显示器3500的图解说明。图36是其中用户已选择仅接通整个装置的呈非标准形状（举例来说，并非矩形的形状）的一部分的实例性显示器3600的图解说明。

[0504] 图37是具有无线数据或电力输入的实例性阵列3700的图解说明。控制元件可连接到集成式天线3702。因此，显示器块可使数据或电力使用无线电波发射流式传输到功能装置阵列（例如，显示器）。

[0505] 图38是经设计具有内建冗余的控制元件的图解说明。举例来说，每元件群集印刷额外控制芯片（如文所描述）。微组装跨接线或交叉线可用于提供用以电连接备用控制元件（例如，将衬垫3802连接到衬垫3804）的构件。因此，如上文所述，稀疏填充多功能阵列可为实现额外功能性的备用装置提供空间且可使用微组装低成本跨接线来连接到备用装置。

[0506] 图39是具有控制装置3904的阵列3900的图解说明。控制装置3904具有内建式存储器3902。控制装置3904可包含嵌入式存储器的集成电路控制装置。此实现用于静态图像的按需刷新的电力节省显示器。

[0507] 图40是具有微组装温度感测元件4002的微组装微型LED显示器4000的图解说明。微组装技术促进包含微组装微型LED 4004a及4004b（统称4004）及微组装IR或温度感测装置4002的微组装微型LED显示器的形成。包含温度或IR感测的显示器可提供所要数据输入能力。举例来说免触控开机接口。在一些实施例中，IR或温度感测装置包含低带隙半导体（例如，InGaAs，InGaAsSb，HgCdTe）、热电材料（例如，铟酸铋或铋酸铋）、热电堆及对温度梯度或温度改变作出电响应的其它装置。在一些实施例中，显示器包含一种类型的温度感测装置是有利的。在一些实施例中，显示器包含多于一种类型的温度感测装置。

[0508] 在一些实施例中，微组装显示器包含数个色彩的微组装微型LED、数个不同类型的微组装IR或温度感测装置、微组装无源电组件或微组装控制或存储器元件中的一或两者。在一些实施例中，感测元件的数目小于显示器中的微型LED的数目。在一些实施例中，感测元件的数目等于或大于微型LED的数目。

[0509] 在一些实施例中，揭示技术提供使用无机微型LED及制造显示器的方法的无源矩阵显示器。类似地，在一些实施例中，揭示技术使用无机微型LED及制造显示器的方法提供有源矩阵显示器。
图41中展示完整无源矩阵无机发光二极管（LED）显示器的图像。此显示器包含微尺度红色LED的360×90阵列。本文中所揭示的显示器中所使用的微型LED制备于同质衬底上。从衬底部分地移除，且微型LED在同质衬底上的位置是通过键接（例如，每一LED的单个、偏移中心键接）维持，且且后使用粘弹性弹性体印模转移印刷。微型LED以每平方英寸大约3000个微型LED的分辨率形成于同质衬底上。在一些实施例中，微型LED以每平方厘米高达10^{6}或10^{8}个微型LED的分辨率形成于同质衬底上。

所图解说明显示器结构设计以支撑使用红色、绿色及蓝色LED的128×128像素阵列。此外，在此实施例中，每一像素中存在用于每一色彩LED（红色、绿色及蓝色）的两个位点，使得（视所要）可实施冗余方案，例如本文中所描述的那些。在此示范中，红色LED被填充到绿色及蓝色子像素阵列中。除红色之外还可使用其它色彩的微型LED以便产生全色显示器。像素大小是99×99微米，如图42中所示，相当于每英寸256个像素。发射区域是11.88mm×8.91mm。支撑显示器的玻璃衬底的大小是大约25mm×25mm。

图43是显示器内的单个像素的光学显微照片。微型LED使用薄膜金属互连片连接到金属行及列。最顶部金属（例如， metals2）通过蚀刻于沉积于金属1上方的电介质层的通孔连接到下部金属（例如， metals1）。微型LED沿两个（全部）方向发射光，然而，微型LED上的金属触点将光的大部分向下穿过玻璃衬底反射。

图44是其上具有无源矩阵显示器的完整显示器衬底（玻璃衬底）的图像。十六个显示器被连接在每一150mm玻璃晶片。在一些情形中，印刷小于16个显示器。图45是显示器的像素阵列的光学显微照片。

图46是用于制造无源矩阵无机发光二极管显示器（例如制造于150mm玻璃晶片（0.7mm厚）上的图47A到47B及48A到48B中所示的显示器）的方法4600的流程图。如上文所论述，例如蓝宝石及塑料的其它衬底还可用作显示器衬底。显示器衬底可是较薄的（例如，0.5mm到1mm厚）。

使用金属物力气相沉积及光刻技术将第一金属层沉积并图案化于晶片表面上（4602）。具体来说，使负性作用光致抗蚀剂暴露及显影以形成剥离模板，使用电子束蒸镀沉积T/C/A/TI金属堆叠，且然后通过将剥离模板移除完成光图案化金属层。金属1包含铝（2000A）及钛（2500A）堆叠。最顶部的钛的用途是保护铝避免稍后过程流程中的氧化化反应。

将氮化硅电介质层沉积于晶片表面上（4604）以在金属1与金属2之间形成电绝缘层。接下来，使用晶片旋涂器将薄聚合物层旋涂到晶片表面上（4606）。此处，使用密歇根州密德兰的陶氏化学公司（Dow Chemical Co.）的光敏负性作用半导体级环氧树脂（Dow Intervia 8023）。使用热处理将溶剂从聚合物移除。具体来说，在140摄氏度的热板上软烘烤达4分钟，后继接着在摄氏90度的烤箱中在流动氮气烘烤30分钟。

接下来，将微尺度无机LED微转移印刷到聚合物的表面上（4608）。使印刷工具执行微转移印刷。使用粘弹性弹性体印模促进转移过程。转印过程在固体（LED）与粘弹性弹性体表面之间利用运动可调粘附。为拾取LED，工具使印模快速移动远离源表面，导致弹性体与芯片之间的粘附有效增加。在印刷期间，印刷工具使印模缓慢移动远离目的地表面，借此使LED留在目标表面（例如，聚合物表面）上。另一方面，通过在转印过程中赋予印模的横向剪切移动而帮助转移步聚。印模将120×90微型LED阵列转印到显示器。为完成360×90显示
器，执行三个印刷操作。
[0518] 为制成全色显示器（120RGB×90），需要三个单独印刷操作，一个印刷操作用于红色光发射器和一个印刷操作用于绿色光发射器及一个印刷操作用于蓝色光发射器。为实现冗余，可印刷额外LED。在此实例中，将六个LED印刷到每一像素，如图43中所示。因此，此配置可实施冗余微流LED。
[0519] 图43中的像素展示单个99×99微米像素的六个微流LED的实例。在此实例中，在六个转印操作中印刷全LED阵列。针对此处所示的显示器，仅利用三个子像素点（例如，借助驱动器芯片驱动）。
[0520] 在转印微流LED之后，聚合物首先暴露于UV辐射且然后在流动氮气下在175摄氏度的烤箱中达3小时加以固化（4610）。聚合物的UV暴素是防止微流LED在烤箱固化器件移动的重要步骤。
[0521] 接下来，穿过电介质层（聚合物及氯化硅两者）而形成通孔（窗）以使金属1的表面暴露（4612）。此过程是使用对聚合物及氯化硅层的标准光刻（正作用光致抗蚀剂的曝光及显影）及反应离子蚀刻来执行。铝上的最顶层铬用于防止铝在反应离子蚀刻步骤期间钝化。
[0522] 接下来，沉积并图案化第二金属（金属2）（4614）。金属2的目的是接触微流LED的阳极及阴极两者及通过通孔将阳极连接到金属1。此过程是通过首先在负性作用光致抗蚀剂中图案化剥离模板，接下来沉积金属堆叠（Ti/Au/Ti/Au）及最后将光致抗蚀剂掩模剥离以留下经图案化金属布线来实现。
[0523] 使用切割工具（例如，Dio切割工具）将晶片锯割成个别显示器（4616）。在切割之前，将显示器晶片涂覆有保护光致抗蚀剂层，且此保护光致抗蚀剂层是在切割后从每一个别显示器裸片剥除的溶剂。
[0524] 在将个别显示器从晶片切割之后，将无源矩阵驱动器IC接合到玻璃晶片的表面上的接纳衬垫（4618）。此是使用标准“玻璃覆晶”接合过程来实现，其中使用各向异性导电膜（ACF）来进行玻璃上的金属（金属2）衬垫与驱动器IC上的金属衬垫之间的电连接。
[0525] 接下来，使用“玻璃上柔性板（flex-on-glass）”技术将柔性印刷电路（缆线）附接到显示器（4620）。此处，使用ACF膜将柔性印刷电路电互连到显示器玻璃上的金属（金属2）衬垫。
[0526] 在此实例中，使用FPGA驱动器板来将输入（1片）发送到驱动器芯片中且最终到显示器中。柔性印刷电路将驱动器芯片及显示器连接到FPGA驱动器板。
[0527] 图47A到47B及48A到48B是工作显示器的图像。图47A是无源矩阵无机发光二极管显示器的图像且图47B是无源矩阵无机发光二极管显示器的放大图像。图48A是无源矩阵无机发光二极管显示器的另一图像且图48B是无源矩阵无机发光二极管显示器的不同放大图像。图49A到49G是证实显示器透明度的图像。周围光由金属线及小LED阻挡，剩余层是透明的。
[0528] 图50是以无源矩阵配置布线的实例性微流LED显示器的显微照片。微组装LED显示器使用从外延衬底转印到显示器衬底（例如，到非同质于LED的显示器衬底，例如塑料或玻璃）的多个微流LED来产生显示器。所揭示显示器架构建立从每一LED的“顶部”到每一LED的两个端子的接触。接触LED的阳极的导电线及空间（或其它形状）与接触到相同LED的阴极的
导电结构横向分离。在此实施例中，LED还具有彼此横向分离的电可接触端子（例如，阴极及阳极）。此配置允许使用面板处理或其中线及空间基于每区域形成是相对粗且不昂贵（例如，2微米线及空间到2mm线及空间）的其它大面积处理来建立到LED的互连。例如来说，图50中所示的微型LED显示器将2.5μm及5μm导电线用于行线5004a到5004c、列线5006a到5006b及互连件5008a到5008b。

[0529] 在某些实施例中，微型LED上的可电接触端子经形成以占据尽可能多的LED区域的占用面积。因此，为了实现微型LED的两个端子的横向分离，在某些实施例中，LED具有足够长于其宽度的长度。在某些实施例中，LED使用细光刻（例如，具有介于从100nm到20微米范围的特征的晶片长度光刻）来减少端子之间的分离距离。

[0530] 举例来说，如图50中所示的LED 5002a到5002f是矩形微型LED。具体来说，在此实施例中，LED具有3.5μm的宽度及10μm的长度。在某些实施例中，伸长几何形状是有利的，包含在每一LED的端子位于LED的上方时。除其它外，与大端子电极耦合的LED的伸长几何形状提供放置的容易性（例如，减少放置每一LED所需的准确度）。在某些实施例中，长度对宽度比率大于2。举例来说，在从2到5的范围中。在某些实施例中，本文中所述的LED具有以下范围的宽度、长度及高度中的至少一者：从2μm到5μm、从5μm到10μm、从10μm到20μm或从20μm到50μm。

[0531] 在某些实施例中，列电极（例如，导电线5006a到5006b）形成于衬底上。绝缘层施加于列电极上方。孔5010a到5010d形成于列电极中以暴露列电极。LED 5002a到5002f经微转移印刷到绝缘层上。导电材料可施加成单层以形成行电极5004a到5004c及到列电极的互连件（例如，5008a到5008b）。行电极5004a到5004c电接触相应LED上的第一端子而互连件（例如，5008a到5008b）将相应LED上的第二端子电连接到相应列电。因此，LED端子（其位于LED的相同面上）可在单个层面上连接。举例来说，微型LED的连接可使用单个光掩模及金属层（例如，单个层）来建立到LED的两个端子的连接。

[0532] 图51是以无源矩阵配置布线的实例性布线LED的图解说明。行电极5104及互连件5108a到5108b形成于单个层面上。互连件5108a到5108b电连接到相应列电极5106a到5106b。如图51中所示，互连件5108a到5108b与列电极5106a到5106b之间的互连形成于绝缘层中，如上文所论述。相比来说，行电极5104与列电极5106a到5106b之间的互连是绝缘的。

[0533] 图52是以无源矩阵配置布线的单个LED 5202的光学显微照片（例如，图1的单个LED的放大图像）。LED 5202包含第一端子5210及第二端子5212。减少LED的端子5210与端子5212之间的横向分离及在LED的尺寸的限制内增加端子5210及5212的大小增加对所组装微型LED与用于将其互连于显示器衬底上的相对粗导电线（5204、5206及5208）之间的对齐及光刻误差的容忍。

[0534] 图53A到53B是适于从LED的一面接触两个端子的微型LED的实例性架构的图解说明。图53A是LED 5300的平面图且图53B是LED 5300的横截面图。如图53A及53B中所示，端子5302a及302b覆盖LED 5300的顶部的一大部分且端子5302a及5302b两者位于LED 5300的顶部表面上。电极之间的间隙最小化（例如，100nm到100微米的距离），如上文所论述。此配置允许使用面板处理或其中线及空间基于每区域形成是相对粗且不昂贵（2微米线及空间到2mm线及空间）的其它低分辨率大面积处理来建立到LED的互连。在某些实施例中，为实现微
型LED 5300的两个端子的横向分离，LED 5300具有足够长于其宽度的长度。在某些实施例中，LED使用细光刻（举例来说，具有介于从100nm到20微米范围的特征的晶片长度光刻）来减少端子之间的距离。

【0535】 有源层形成于横向导电层上。电介质材料沉积于活性材料上及有源层及横向导电层的一面，如图53B中所示。端子5302a连接到有源层且端子5302b连接到横向导电层。

【0536】 在某些实施例中，LED向下发射器外部发射光的基本上大部分。在此等实施例中，可电接触/导电端子可形成于反射性金属（包含金、银、铝及其它合金）中。相比来说，在向下发射实施例中，横向构造结构形成于对从LED发射的光透明的材料中，例如具有经选择以使横向导电层中的吸收最小化的适合带隙或吸收边缘的半导体。镜（此处未展示）可形成于LED上面以进一步将来自LED的光向下反射。

【0537】 在某些实施例中，LED经配置以向上发射其外部发射光的基本上大部分。在此等实施例中，可电接触/导电端子形成于透明材料（包含透明导电氧化物、ITO、ZnO、碳纳米管膜及铜金属网）中。在向上发射实施例中，横向构造结构形成于对从LED发射的光透明的材料中，举例来说具有经选择以使横向导电层中的吸收最小化的适合带隙或吸收边缘的半导体。在这些实施例中，横向导电层还可包含光学反射层，所述光学反射层包含电介质镜、金属镜及/或具有高折射率以促进总内反射的材料。光学反射材料或显示器衬底的部分可经提供以将来自LED的光向上反射。

【0538】 图54A到54E图解说明根据本发明的实施例的发光二极管结构的实施例。如图54A中所示，第一电触点5402位于半导体元件5406的第一侧上且第二电触点5404位于半导体元件5406的相对侧上。在此实施例中，第一电触点5402在将半导体元件5406印刷至显示器衬底时从顶部接达。第一电触点5402经形成使得其一部分延伸超过半导体元件5406的边缘，借此实现在将结构印刷到显示器衬底5410时从结构的与第二电触点5404相同的侧接达第一电触点5402。此可再印刷于显示器衬底5410上时是有利的，因为第一电触点5402与第二电触点5404两者可在共同光刻步骤集合中接达以用于连接。

【0539】 图54B图解说明显示器衬底5410上的图54A的发光二极管，其中第一电触点5402与显示器衬底5410上的第一接触衬垫5452接触，可形成与印刷半导体结构的第二电触点5404的电连接5450。钝化层5419防止从第一导线5450及第二导线5452到半导体元件5406的不想要导电。

【0540】 图54A中所图解说明的结构可通过使用光刻过程移除半导体元件5406的一部分（例如，通过蚀刻）使得暴露第一电触点5402的一部分（例如，从与第二电触点5404相同的侧可接达）来形成。

【0541】 图54C图解说明将第一电触点5402及第二电触点5404两者定位于半导体元件5406的同一侧上的一替代结构。此结构还通过移除半导体元件5406的一部份来制成，然而，半导体材料的移除在所述部分经完全蚀刻穿过半导体元件5406（如在图54A中所示的实例中所进行）之前停止，借此留下半导体元件5406的悬臂延伸部5408。在一个实施例中，悬臂延伸部5408以不同于半导体元件5406的剩余部分的方式掺杂。举例来说，此允许悬臂延伸部5408更导电或更佳防止光发射而半导体元件5406的剩余部分经掺杂以响应于第一电触点5402与第二电触点5404之间的电流而发射光。

【0542】 图54D图解说明发光二极管的替代结构。此结构类似于图54C中所示的结构，然而，
第一电触点5402较厚使得第一电触点5402及第二电触点5404在相同平面中具有顶部表面或接触共同表面。在某些实施例中，此是有利的；因为发光二极管可借助已形成的共面连接衬垫印刷到显示器衬底。此允许发光二极管在将其印刷到显示器衬底5410时电连接到显示器电路。

【0543】在形成悬臂延伸部5408之后，第一电触点5402形成于悬臂延伸部5408上（例如，通过光刻）。在某些实施例中，第一电触点5402及第二电触点5404两者是同时或相继形成。

【0544】上文关于图54A、图54C及54D所描述的结构可使用采用印模（例如弹性印模）的印刷过程印刷于显示器衬底5410上以形成显示器，图54B图解说明显示器衬底5410上的图54A的发光二极管，其中第一电触点5402与显示器衬底5410上的第一接触衬垫5452接触。可形成到印刷半导体结构的第二电触点5404的电连接5450。钝化层5419防止从第一导线5450及第二导线5452到半导体元件5406的不需要导电，类似地，图54E图解说明显示器衬底5406上的图54C的发光二极管及所形成的电线5450、5452。

【0545】已描述特定实施例，所属领域的技术人员现在将明了，可使用并入有本发明的概念的其它实施例。因此，本发明不应限于特定实施方案，而是应仅受所附权利要求书的精神及范围限制。

【0546】贯穿其中将设备及系统描述为具有、包含或包括特定组件或步骤方法描述为具有、包含或包括特定步骤的描述，另外预期存在基本上由所叙述的组件组成或由所叙述的组件组成的所揭示技术的设备及系统，且存在基本上由所叙述的处理步骤组成或由所叙述的处理步骤组成的根据所揭示技术的过程及方法。

【0547】应理解，只要所揭示技术保持可操作，步骤的次序或执行某些动作的次序并不重要。此外，可同时实行两个或多于两个步骤或动作。
图2
图3
图4
图5
图6
图12A

图12B
图13
图14
图17
图22
图24
图27B
图28
图29
图31
图32
图35
图36
图37
图38
图40
图42

99 μm × 99 μm 像素（6个红色微型发光二极管）
图43
沉积第一金属层级

沉积电介质层

将薄聚合物层旋涂到晶片表面上

将微型无机发光二极管微转印印刷到聚合物的表面上

使聚合物经受紫外曝光且将衬底及其上的装置在烤箱中固化

穿过电介质层形成通孔以暴露第一金属层级的表面

沉积及图案化第二金属层级

将晶片锯割成若干个别显示器

将无源矩阵驱动器集成电路接合到玻璃晶片上的接纳衬垫

将柔性印刷电路附接到显示器

图46
微型发光二极管显示器

图47B
图49B

图49C
智能电话液晶显示器上的1"红色PMDLED显示器

图49F
打印机上的1"红色PMiLED显示器

图496
呈无源矩阵配置的 $3.5 \times 10 \, \mu m^2$ 所印刷、经布线发光二极管。5 \, \mu m 及 2.5 \, \mu m 线。
图53A
图54B