Title: METHOD AND APPARATUS FOR MEASURING DISTANCE USING OPTICAL SIGNAL

Abstract: The present invention relates to a method and an apparatus for measuring a distance using a phase difference between optical signals. The method for measuring the distance comprises the steps of: receiving, through an operation of a shutter, a plurality of signals reflected from an object-to-be-measured, with reference to different phases; calculating a phase difference between a transmission signal and a reception signal on the basis of the plurality of the received signals with reference to the different phases; and calculating the distance between the object-to-be-measured and a distance measuring device on the basis of the phase difference, wherein the plurality of signals may be signals having the same frequency and the same amplitude. Therefore, the method can calculate an accurate phase difference between the transmission signal and the reception signal, thereby accurately recognizing the distance from a surrounding object.
본 발명은 상 신호의 위상차이를 이용한 거리 측정 방법 및 장치로서, 거리 측정 방법은 측정 대상에서 반사된 복수개의 신호를 서서히 능각을 통해 서로 다른 위상을 기준으로 수신하는 단계, 상기 서로 다른 위상을 기준으로 수신한 상기복수개의 신호를 기초로 송신 신호와 수신 신호의 위상 차이를 산출하는 단계, 상기 위상 차이를 기초로 상기 측정 대상과 거리 측정 장치 사이의 거리를 산출하는 단계를 포함하며, 상기 복수개의 신호는 동일한 주파수, 동일한 진폭을 가진 신호일 수 있다. 따라서, 송신 신호와 수신 신호 사이의 정확한 위상의 차이를 산출하여 주변 환경과의 거리를 정확하게 인식할 수 있다.
명세서
발명의 명칭: 광 신호를 이용한 거리 측정 방법 및 장치
기술분야
[1] 본 발명은 거리 측정 방법 및 장치에 관한 것으로서, 더욱 상세하게는 광 신호를 이용한 거리 측정 방법 및 장치에 관한 것이다.
배경기술
[8] 라이다 센서 시스템의 구성은 응용 분야에 따라 다르며 동일한 방식도 복잡하게 구성되지만, 기본적인 구성은 레이저 송신부, 레이저 받침부, 신호 수집 및 처리와 데이터를 송수신하기 위한 부분으로 구분될 수 있다.
[10] 타임-오브-플라이트 방식은 레이저가 필스 또는 구형과 신호를 방출하여 측정
범위 내에 있는 물체들로부터의 반사 패스 또는 구형과 신호들이 수신기에 도착하는 시간을 측정함으로써 측정 대상과 거리 측정 장치 사이의 거리를 측정하는 것이 가능하다.

위상-변환 방식은 특정 주파수를 가지고 연속적으로 변조되는 레이저 빔을 방출하고 측정 범위 내에 있는 물체로부터 반사되어 되돌아 오는 신호의 위상 변화량을 측정하여 시간 및 거리를 계산하는 방식이다.

기존 위상-변환 방식에서는 하나의 신호에 대해 한 주기의 파장에서 여러 번 서터의 개폐 동작을 통해 각 위상의 신호를 얻어 송신신호와 수신신호 사이의 위상차이를 산출하는 방법을 사용하였다.

이러한 경우 서터가 한 주기의 파장에서 여러 번 동작하도록 고속의 서터 속도가 구현되어야 하기 때문에 채영카메라의 가격이 상승하게 되며, 또한 고속으로 채영되는 경우에 신호가 원하는 위상에서 채영되지 못하는 문제도 종종 발생하였다.

발명의 상세한 설명
기술적 과제

상기와 같은 문제점을 해결하기 위한 본 발명의 제1 목적은 저속의 서터를 가진 카메라 장치에서도 송신 광신호와 수신 광신호 사이의 위상변화를 이상하여 거리를 측정하는 방법을 제공하는 것이다.

본 발명의 제2 목적이 저속의 서터를 가진 카메라 장치에서도 송신 광신호와 수신 광신호 사이의 위상변화를 이상하여 거리를 측정하는 장치를 제공하는 것이다.

과제 해결 수단

상술한 본 발명의 제1 목적을 달성하기 위한 본 발명의 일 측면에 따른 광 신호의 위상차이를 이용한 거리 측정 방법은 측정 대상에서 반사된 동일 주파수 및 동일 전폭을 갖는 복수 개의 신호를 서터의 동작을 통해 서로 다른 위상을 기준으로 수신하는 단계, 상기 서로 다른 위상을 기준으로 수신한 상기 복수 개의 신호를 기초로 송신 신호와 수신 신호의 위상 차이를 산출하는 단계, 상기 위상 차이를 기초로 상기 측정 대상과 거리 측정 장치 사이의 거리를 산출하는 단계를 포함한다.

상기 측정 대상에서 반사된 복수 개의 신호를 서터의 동작을 통해 서로 다른 위상을 기준으로 수신하는 단계는 제1 서터 동작을 통해 상기 측정 대상에서 반사된 제1 신호를 제1 위상을 기준으로 수신하는 단계, 제2 서터 동작을 통해 상기 측정 대상에서 반사된 제2 신호를 제2 위상을 기준으로 수신하는 단계, 제3 서터 동작을 통해 상기 측정 대상에서 반사된 제3 신호를 제3 위상을 기준으로 수신하는 단계와 제4 서터 동작을 통해 상기 측정 대상에서 반사된 제4 신호를
제4 위상을 기준으로 수신하는 단계를 포함할 수 있다.

상기 서로 다른 위상을 기준으로 수신한 복수 개의 신호를 기초로 송신 신호와 수신 신호의 위상 차이를 산출하는 단계는 상기 제1 위상에서 수신된 상기 제1 신호의 전폭 정보를 산출하는 단계, 상기 제2 위상에서 수신된 상기 제2 신호의 전폭 정보를 산출하는 단계, 상기 제3 위상에서 수신된 상기 제3 신호의 전폭 정보를 산출하는 단계와 상기 제1 신호의 전폭 정보, 상기 제2 신호의 전폭 정보, 상기 제3 신호의 전폭 정보, 상기 제4 신호의 전폭 정보를 기초로 상기 송신 신호와 상기 수신 신호의 위상 차이를 산출하는 단계를 포함할 수 있다.

상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호는 순차적으로 수신되는 사인파 또는 정현파 또는 펄스 또는 구형파 신호이고, 상기 제1 위상은 0도, 상기 제2 위상은 90도, 상기 제3 위상은 180도, 상기 제4 위상은 270도일 수 있다.

상기 서로 다른 위상을 기준으로 수신한 복수개의 신호를 기초로 송신 신호와 수신 신호의 위상 차이를 산출하는 단계는 상기 제1 위상에서 수신된 상기 제1 신호의 포토셀에 차지된 전폭을 산출하는 단계, 상기 제2 위상에서 수신된 상기 제2 신호의 포토셀에 차지된 전폭을 산출하는 단계, 상기 제3 위상에서 수신된 상기 제3 신호의 포토셀에 차지된 전폭을 산출하는 단계, 상기 제4 위상에서 수신된 상기 제4 신호의 포토셀에 차지된 전폭을 산출하는 단계, 및 상기 제1 신호, 상기 제2 신호, 상기 제3 신호 및 상기 제4 신호의 각각의 포토셀에 차지된 전폭을 기초로 상기 송신 신호와 상기 수신 신호의 위상 차이를 산출하는 단계를 포함한다.

상기 거리 측정 방법은 상기 복수 개의 신호를 순차적으로 상기 측정 대상으로 송신하는 단계를 더 포함하고, 상기 복수 개의 신호는 상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호로서 상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호를 수신하는 서서의 속도를 기초로 순차적으로 전송되는 신호일 수 있다.

상술한 본 발명의 제2 목적을 달성하기 위한 본 발명의 일 측면에 따른 광 신호의 위상차이를 이용한 거리 측정 장치는 동일한 주파수 및 동일한 전폭을 가지는 복수 개의 신호를 송신하는 신호 송신부와 측정 대상에서 반사된 상기 복수 개의 신호를 기초로 복수 개의 신호를 서서를 동작을 통해 서로 다른 위상을 기준으로 수신하는 신호수신부와 상기 서로 다른 위상을 기준으로 수신한 복수개의 신호를 기초로 송신 신호와 수신 신호의 위상 차이를 산출하고 상기 위상 차이를 기초로 상기 측정 대상과 거리 측정 장치 사이의 거리를 산출하는 제어부를 포함하는 것을 특징으로 한다.

상기 신호 수신부는 제1 서서 동작으로 통해 상기 측정 대상에서 반사된 제1 신호를 제1 위상을 기준으로 수신하고, 제2 서서 동작으로 통해 상기 측정 대상에서 반사된 제2 신호를 제2 위상을 기준으로 수신하고, 제3 서서 동작으로
통해 상기 측정 대상에서 반사된 제3 신호를 제3 위상을 기준으로 수신하고, 제4 서터 동작으로 통해 상기 측정 대상에서 반사된 제4 신호를 제4 위상을 기준으로 수신하도록 구현될 수 있다.

상기 제어부는 상기 제1 위상에서 수신된 상기 제1 신호의 진폭 정보를 산출하고 상기 제2 위상에서 수신된 상기 제2 신호의 진폭 정보를 산출하고 상기 제3 위상에서 수신된 상기 제3 신호의 진폭 정보를 산출하고 상기 제4 위상에서 수신된 상기 제4 신호의 진폭 정보를 산출하고 상기 제1 신호의 진폭 정보, 상기 제2 신호의 진폭 정보, 상기 제3 신호의 진폭 정보, 상기 제4 신호의 진폭 정보를 기초로 상기 송신 신호와 상기 수신 신호의 위상 차이를 산출하도록 구현될 수 있다.

상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호는 순차적으로 수신되는 사인파 또는 정원파 또는 웨이스 또는 구현파 신호이고, 상기 제1 위상은 0도, 상기 제2 위상은 90도, 상기 제3 위상은 180도, 상기 제4 위상은 270도일 수 있다.

상기 제어부는, 상기 제1 위상에서 수신된 상기 제1 신호의 포토셀에 차지된 광량을 산출하고 상기 제2 위상에서 수신된 상기 제2 신호의 포토셀에 차지된 광량을 산출하고 상기 제3 위상에서 수신된 상기 제3 신호의 포토셀에 차지된 광량을 산출하고 상기 제4 위상에서 수신된 상기 제4 신호의 포토셀에 차지된 광량을 산출하고 상기 제1 신호, 상기 제2 신호, 상기 제3 신호 및 상기 제4 신호 각각의 포토셀에 차지된 광량을 기초로 상기 송신 신호와 상기 수신 신호의 위상 차이를 산출하도록 구현될 수 있다.

상기 신호 송신부는 상기 복수 개의 신호를 순차적으로 상기 측정 대상으로 송신하도록 구현되고, 상기 복수 개의 신호는 상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호로서 상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호를 수신하는 서터의 속도를 기초로 순차적으로 전송되는 신호일 수 있다.

발명의 효과

상술한 바와 같이 본 발명의 실시예에 따른 복수개의 광 신호를 이용한 거리 측정 방법 및 이러한 방법을 수행하는 장치는 저속의 서터 속도를 가진 거리 측정 장치에서도 송신 신호와 수신 신호 사이의 정확한 위상의 차이를 산출할 수 있다. 따라서, 거리 측정 장치와 주변 객제와의 거리를 정확하게 인식할 수 있다.

도면의 간단한 설명

도 1은 본 발명의 실시예에 따른 거리 측정 방법을 나타낸 개념도이다.

도 2는 본 발명의 실시예에 따른 거리 측정 방법을 나타낸 개념도이다.

도 3은 본 발명의 실시예에 따른 송신 신호와 수신 신호의 위상 차이를 기초로 거리를 측정하는 방법을 나타낸 개념도이다.
[36] 도 5는 본 발명의 실시예에 따른 포토셀에 차지되는 광량을 측정하는 APS 휘로도이다.
[37] 도 6은 본 발명의 실시예에 따른 포토셀에 차지되는 광량을 이용하여 거리 측정방법을 나타낸 개념도이다.
[38] 도 7은 본 발명의 실시예에 따른 측정부에서 측정 목표 지점까지의 거리를 측정하는 방법을 나타낸 개념도이다. (Ts)
[39] 도 8은 본 발명의 실시예에 따른 측정부에서 측정 목표 지점까지의 거리를 측정하는 방법을 나타낸 개념도이다. (2Ts)
[40] 도 9는 본 발명의 실시예에 따른 측정부에서 측정 목표 지점까지의 거리를 측정하는 방법을 나타낸 개념도이다. (3Ts)
[41] 도 10은 본 발명의 실시예에 따른 측정부에서 측정 목표 지점까지의 거리를 측정하는 방법을 나타낸 개념도이다. (4Ts)
[43] 도 12는 본 발명의 실시예에 따른 거리 측정 장치를 나타낸 개념도이다.
[45] 도 14는 본 발명의 실시예에 따른 측정 목표 지점까지의 거리를 측정하는 방법을 기초로 차간 거리 측정을 수행하는 방법을 나타낸 개념도이다.

발명의 실시를 위한 측선의 형태

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들은 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.

제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로 명명될 수 있다. 또 또는 이는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는
"가지다" 등의 용어는 명세서상에 기재된 특정, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.

이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.

이하, 본 발명의 실시예에서 거리 측정을 위해 사용되는 광원은 레이저 광원으로서 250nm부터 11μm까지의 파장 영역에서 특정 파장을 가지거나 파장 가변이 가능한 레이저 광원들이 사용될 수 있다. 예를 들어, 소형, 저전력이 가능한 LED(light emitting diode) 또는 LD(laser diode)와 같은 반도체 레이저 다이오드가 많이 사용될 수 있다.

도 1은 본 발명의 실시예에 따른 거리 측정 방법을 나타낸 개념도이다.

도 1을 참조하면, 거리 측정 장치(100)의 신호 송신부(120)에서는 복수 개의 신호(160, 170, 180, 190)를 일정한 시간 간격으로 측정 대상으로 송신할 수 있다. 신호(160, 170, 180, 190)는 광원에서 발생된 광 신호일 수 있다. 이하, 본 발명의 실시예에서는 신호 송신부(120)에서 순차적으로 송신되는 4개의 광 신호(160, 170, 180, 190)가 측정 대상(150)에 반사되어 거리 측정 장치(100)의 신호 수신부(140)에 수신되는 광 신호(160-1, 170-1, 180-1, 190-1)를 기초로 거리 측정 장치(100)와 측정 대상(150) 사이의 거리를 측정하는 방법에 대해 개시한다. 4개의 광 신호(160, 170, 180, 190)는 임의적인 개수로서 4개가 아닌 순차적으로 송신되는 복수개의 광신호가 사용되는 경우 본 발명의 권리 범위에 포함될 수 있다.

또한, 본 발명의 실시예에서는 0도, 90도, 180도, 270도의 4개의 위상을 기준으로 반사된 광 신호(160-1, 170-1, 180-1, 190-1)의 정보를 수신하는데, 이러한 4개의 위상 기준은 임의적인 기준으로서 다른 위상 기준을 기초로 광 신호를 수신할 수도 있고 이러한 실시예도 본 발명의 권리 범위에 포함된다.

복수 개의 신호(160, 170, 180, 190)가 송신된 측정 대상(150)에서 반사된 신호(160-1, 170-1, 180-1, 190-1)에 대해 서로 다른 위상을 기준으로 서터를 동작하여 신호 수신부(140)에서 신호를 수신할 수 있다. 신호 수신부(140)는 서로 다른 위상을 기준으로 수신된 신호를 기초로 송신 신호와 수신 신호 사이의 위상 차이에 대한 정보를 산출할 수 있다. 산출된 송신 신호와 수신 신호 사이의 위상 차이에 대한 정보는 측정 대상(150)과 거리 측정 장치(100) 사이의 거리를 산출하기 위해 사용될 수 있다.

본 발명에서 개시한 복수 개의 신호를 전송하는 방법을 사용하는 경우, 하나의 신호에 대해 한 주기의 파장에서 복수 번의 서터의 개폐 동작을 통해 각 위상 별
신호를 얻어 송신 신호와 수신 신호의 위상 차이를 산출하는 방법과 동일한 효과를 가질 수 있다. 즉, 서터의 주기와 배수 부분 동작하도록 고속의 서터 속도로 구현하기 어렵더라도 저속의 서터 동작을 통해서도 배수개의 위상을 기준으로 산출된 신호 정보를 기초로 송신 신호와 수신 신호 사이의 위상차를 산출할 수 있다.

이하, 본 발명의 실시예에서는 신호 송신부의 송신된 복수개의 송신 신호(제1신호, 제2신호, 제3신호, 제4신호)가 반사된 신호를 신호 수신부에서 서터의 개폐 동작을 기초로 위상마다 수신 신호 정보를 산출하는 방법에 대해 개시한다.

도 2는 본 발명의 실시예에 따른 거리 측정 방법을 나타낸 개념도이다.

도 2의 (A)를 참조하면, 신호 수신부는 특정한 주파수의 제1 신호를 제1 시간에 측정 대상으로 송신할 수 있다. 측정 대상으로 송신된 신호는 측정 대상에서 반사된 후 다시 신호 수신부로 입력될 수 있다. 도 2의 (A)는 제1 신호가 측정 대상에서 반사되어 신호 수신부로 입력되는 신호(210)를 나타낸다.

신호 수신부는 송신된 신호의 특정한 위상을 기준으로 특정 시간에 제1 서터 동작(215)을 수행하여 측정 대상에서 반사되는 제1 신호(210)를 수신할 수 있다. 특정한 위상을 기준으로 산출된 신호 정보는 송신 신호와 수신 신호 사이의 위상 차이를 산출하기 위해 사용될 수 있다. 측정 대상에서 반사되어 수신되는 송신 신호와 신호 송신부에서 출력되는 송신 신호의 위상의 차이를 기초로 거리 측정 장치와 측정 대상 사이의 거리를 산출할 수 있다.

도 3은 본 발명의 실시예에 따른 송신 신호와 수신 신호의 위상 차이를 기초로 거리를 측정하는 방법을 나타낸 개념도이다.

도 3을 참조하면, 과장의 주기를 T, 신호의 부파의 속도를 c라고 하는 경우 도 3의 (A)는 송신되는 신호의 시간에 따른 신호의 크기를 나타내고 도 3의 (B)는 수신되는 신호의 시간에 따른 신호의 크기를 나타낸다. 도 3의 (A)와 도 3의 (B)는 주파수의 위상의 차이가 발생하게 되는데, 위상의 차이를 기초로 부파의 발생한 거리 측정 장치와 측정 대상 사이의 거리를 측정할 수 있다. 아래의 수학식 1은 왕복 시간을 나타낸다.

<수학식 1>

\[T = \frac{\varphi}{c} \]

수학식 1의 \(\varphi \)는 왕복 시간을 나타내는 변수이다. 신호의 왕복 시간은 송신된 신호와 측정 복수 지점에서 반사되어 수신된 신호의 위상 차이인 \(\varphi \), 신호의 주파수 \(f \)를 기초로 산출될 수 있다. 수학식 1은 기초로 산출된 왕복 시간에 신호의 속도(예를 들어, 신호의 빠른 경우, 빠른 속도)로 균한 경우 신호가 동일한 왕복 거리가 산출되고 왕복 거리를 2로 나누면, 거리 측정 장치와 복수 측정 지점 사이의 거리를 산출된다. 아래의 수학식 2는 거리 측정 장치와 복수 측정 지점 사이의 거리를 나타내기 위한 수학식이다.
측정 지점 사이의 거리를 나타낸다.

<수학식 2>

\[\kappa = \frac{1}{\phi} \]

수학식 2에서 \(\kappa \)는 거리 측정 장치와 목표 측정 지점 사이의 거리를 나타내는 변수이다. 거리 측정 장치와 목표 측정 지점 사이의 거리는 광원에서 1회 발생되는 빛을 측정 대상으로 송신하고 반사된 신호의 위상 차이를 기초로 산출할 수 있다. 좀 더 정확한 거리 측정을 위한 방법으로 수신되는 신호의 한 주기 내에서 여러 번 신호의 크기를 측정을 수행하여 정확한 위상의 차이를 산출하는 방법이 사용될 수 있다.

다시 도 2를 참조하면, 본 발명의 실시예에서는 복수개의 신호를 신호 수신부에서 서티의 온/오프(on/off)를 수행하여 서로 다른 위상을 기준으로 수신하여 송신 신호와 수신 신호 사이의 위상의 차이를 산출할 수 있다.

도 2의 (B), 도 2의 (C), 도 2의 (D)는 본 발명의 실시예에 따른 복수개의 신호를 기초로 위상 차이를 산출하는 방법을 수행하기 위해 반사된 신호를 나타낸 개념도이다.

예를 들어, 신호 송신부에서는 광원에서 제1 신호와 동일한 성질(전폭, 주파수)을 가진 제2 신호를 제1 시간 이후 일정 시간 후인 제2 시간에 다시 측정 대상으로 송신할 수 있다. 측정 대상에서 반사되어 신호 수신부에서 수신된 반사된 제2 신호(220)는 제1 신호를 측정한 위상과 다른 위상에서 제2 서터 동작(225)을 통하여 신호에 대한 정보를 수신할 수 있다. 예를 들어 제1 신호가 반사된 신호(210)에 대해 위상 0도를 기준으로 제2 서터 동작(215)을 통해 반사된 제1 신호(210)의 신호 정보를 수신하였다면, 제2 신호가 반사된 신호(220)에 대해서는 위상 90도를 기준으로 제2 서터 동작(225)을 수행하여 반사된 제2 신호(220)의 신호 정보를 수신할 수 있다.

동일한 방법으로 신호 발생부는 제2 시간 이후의 제3 시간에 제3 신호를 발생시키고 제3 시간 이후의 제3 시간에 제4 신호를 발생시킬 수 있다. 도 1의 (C)는 위상 180도를 기준으로 제3 신호가 측정 대상에서 반사된 제3 신호(230)를 제3 서터 동작(235)을 통해 수신하고, 도 1의 (D)는 위상 270도를 기준으로 제4 신호가 측정 대상에서 반사된 제4 신호(240)를 제4 서터 동작(245)를 통해 수신할 수 있다.

위와 같은 방법으로 서로 다른 위상에서 측정된 제1 신호, 제2 신호, 제3 신호, 제4 신호의 크기를 기초로 아래의 수학식 3을 사용하여 위상의 차이를 산출할 수 있다.

<수학식 3>

\[\psi = \frac{\alpha + \beta}{\sqrt{\gamma}} \]

수학식 3을 참조하면, 제1 신호(A1)의 크기와 제3 신호(A3)의 크기의 차이를 분자, 제2 신호(A2)의 크기와 제4 신호(A4)의 크기의 차이를 분모로 하여
아크탄젠트를 취한 값을 기초로 위상의 차이 값을 산출할 수 있다.

[80] 이때 겪출된 신호의 크기는 서터가 on에서 off로 올겨질 때의 신호의 크기이고, 또는 서터가 on 떨 때의 신호의 크기이거나 서터가 on에서 off로 떨 때까지 시간의 1/2에 해당될 때의 신호의 크기일 수 있으며, 다만 제1신호 내지 제4신호의 크기를 측정하여야 하기 때문에 제1신호의 크기를 서터가 on에서 off로 올겨질 때 측정하였을 때, 제2, 3, 4 신호도 서터가 on에서 off로 올겨질 때 측정되어야만 한다.

[81] 산출된 위상의 차이값은 전술한 수학식 2에 대입되어 거리 측정 장치와 측정 대상 사이의 거리를 측정할 수 있다.

[82] 본 발명의 또 다른 실시예에 따르면 신호 송신부에서 송신되는 신호가 구형파 또는 펄스(square wave or pulse)인 경우에도 복수의 신호에 대한 서터의 위상 별 서터의 구동을 기초로 거리 측정 장치와 측정 대상 사이의 거리를 산출할 수 있다.

[83] 도 4는 본 발명의 실시예에 따른 구형파를 이용한 거리 측정 방법을 나타낸 개념도이다.

[84] 도 4를 참조하면, 도 4의 (A)는 송신 신호의 파형을 나타낸다. 송신 신호의 파형을 0도, 90도, 180도, 270도의 위상을 기준으로 펄스 또는 구형파가 존재할 경우는 ‘1’ 펄스 또는 구형파가 존재하지 않을 경우 ‘0’이라고 하고 예의 경우 ‘0’로 판단한다면, 각 위상에 따라 측정값은 ‘1110’이라고 할 수 있다.

[85] 도 4의 (B)는 수신 신호의 파형을 나타낸다. 수신 신호가 송신 신호(또는 기준신호)를 기준으로 160만의 차이를 가지고 수신된 경우, 0도, 90도, 180도, 270도의 위상을 기준으로 ‘0110’의 측정 값을 가질 수 있다. 즉, 기준 신호와의 0도에서 90도 사이의 위상을 가진 과장 사이에서 송신 신호가 수신되는 경우, 모두 동일한 ‘0110’의 값을 가질 수 있다. 즉, 펄스 또는 구형파를 이용한 거리 측정은 4개의 위상을 기준으로 측정한 펄스 또는 구형파의 진폭 값 변화를 기초로 수행될 수 있다.

[86] 여기서 수학식 3을 위한 신호의 크기는 구형파 또는 펄스의 크기로서 A1=0, A2=1, A3=1, A4=0의 값을 갖는 것으로 이해하면 된다.

[87] 본 발명의 위상신호의 크기는 위에서 설명한 바와 같이 신호가 사인파 또는 정현파인 경우에서 서터의 on에서 off될 때까지의 시간에서 동일한 시간에 측정된 반사 신호의 진폭의 크기를 측정하며, 또 신호가 펄스 또는 구형파인 경우에는 반사된 펄스 또는 구형파의 크기를 진폭의 크기로 측정하면 된다.

[88] 또한, 신호가 사인파 또는 구형파인지의 여부와 관계없이 도 5에 도시된 바와 같은 APS(Active Pixel Sensor)를 이용하여 카메라의 포토센서에 차지된 광량을 이용하여 위상차이를 구할 수 있다.

[89] 도 6는 본 발명의 실시예에서 위상신호의 크기를 측정하는 방법의 다른 예이다.

[90] 포토센서 차지되는 광량은 서터가 on되어 있을 때이며, 사인파에서는 전
위상에서 차지(또는 역차지)되거나, 구형과한 경우에는 위상이 1인 경우에만 차지된다.

[92] 포토선에 차지되는 광량이 최대인 경우에는 그 값은 4를 갖게 되며, 만일 반사된 제1 신호 또는 반사된 제2신호와 같이 서터가 on 되어 있을 때의 3/4만 충진되었다면 그 신호값은 3을 갖게 되며, 만일 반사된 제3신호 또는 반사된 제4신호와 같이 서터가 on 되어 있을 때의 1/4만 충진되어 있다면 1의 값을 갖게 된다.

[93] 도 7은 본 발명의 실시에 따른 측정부에서 측정 목표 지점까지의 거리를 측정하는 방법을 나타낸 개념도이다.

[94] 도 7을 참조하면, 도 1과 다르게 측정부에서 발생한 신호가 사인과 또는 정원과 곡선이 아닌 펄스 또는 구형과 신호 형태를 가질 수 있다. 펄스 또는 구형과 신호는 상대적으로 사인과 또는 정원과 신호보다 생성 및 서터 속도와 파형을 동기화하기에 용이하다.

[95] 도 7에서는 서터가 닫혔다 열리면서 구동되는 서터의 구동 시간을 Ts라고 하는 경우 2Ts를 신호의 주기로 가지는 신호를 생성하여 거리 측정 장치에서 측정 대상으로 신호를 송신할 수 있다. 생성된 신호는 Ts 주기 동안(반파장 동안)은 에를 들어, 신호의 진폭이 A의 크기를 가지고 나머지 Ts 주기 동안(나머지 반파장)은 신호의 진폭이 0의 크기를 가질 수 있다.

[96] 도 7의 (A)는 제1 시간에 생성된 제1 신호가 측정 목표 지점에서 반사된 제1 신호(510)가 신호 수신부에서 제1 서터의 동작(515)을 통해 수신하는 방법을 나타낸 개념도이다. 신호 수신부의 서터는 반사된 제1 신호(510)의 위상 0의 위치에서 제1 서터 동작(515)을 수행하여 반사된 제1 신호(510)를 수신한 후 닫힌다. 즉, 반사된 제1 신호(510)를 수신하는 신호 수신부는 위상 0을 기준으로 반사된 제1 신호(510)를 수신할 수 있다.

[97] 도 7의 (B)는 제2 시간에 생성된 제2 신호가 측정 대상에서 반사된 제2신호(520)를 신호 수신부에서 제2 서터 동작(525)을 통해 수신하는 방법을 나타낸 개념도이다. 제2 신호는 제1 신호가 발생된 이후 일정한 시간 후에 생성된 신호일 수 있다. 신호 수신부의 서터는 반사된 제2 신호(520)를 위상 90도의 위치를 기준으로 수신하도록 동작할 수 있다.

[98] 도 3의 (C) 및 도 3의 (D)도 동일하게 도 7의 (C)는 제3 시간에 생성된 제3 신호가 측정 목표 지점에서 반사된 제3 신호(530)를 위상 180도를 기준으로 제3 서터 동작(535)을 통해 수신하고 도 7의 (D)는 제4 시간에 생성된 제4 신호가 측정 목표 지점에서 반사된 제4 신호(540)를 위상 270도를 기준으로 제4 서터 동작(545)을 통해 수신할 수 있다.

[99] 이러한 방법을 사용함으로서 서터 스피드는 따로 증가시키지 않고 하나의 신호에서 4 개의 위상을 기준으로 거리 측정 장치와 측정 대상 사이의 거리를 측정하는 경우와 동일하게 각 위상을 기준으로 신호의 변화를 측정할 수 있다.

[100] 도 7은 하나의 예로서 신호의 반파장의 길이가 길어지는 경우에도 동일한
방법으로 4개의 위상을 기준으로 각각의 신호를 수신할 수 있다.

[101] 도 8은 본 발명의 실시예에 따른 측정부에서 측정 목표 지점까지의 거리를 측정하는 방법을 나타낸 개념도이다.

[103] 도 8에서는 신호의 파장의 길이가 2배 길어지고 서터의 속도가 도 3과 비교하여 1/2인 경우를 나타낸다. 신호의 한 파장이 길어질 경우, 서터의 속도는 줄어들고 신호의 세기는 도 5와 비교하여 1/2에 해당하는 세기를 사용하여 거리 측정을 수행할 수 있다. 신호 송신부에서는 다양한 파장의 길이를 가진 신호를 측정 대상으로 송신할 수 있다.

[104] 도 8에서도 도 7과 마찬가지로 신호 송신부에서는 제1 시간, 제2 시간, 제3 시간, 제4 시간에 신호를 생성하여 측정 목표 지점으로 송신하고 신호 수신부는 측정 목표 지점에서 반사된 제1 신호(610), 제2 신호(620), 제3 신호(630), 제4 신호(640)를 90도의 위상 차이를 두고, 제1 신호가 반사된 신호(610)를 0도의 위상, 제2 신호가 반사된 신호(620)를 90도의 위상, 제3 신호가 반사된 신호(630)를 180도의 위상, 제4 신호가 반사된 신호(640)를 270도의 위상에서 서터를 구동하여 수신할 수 있다.

[105] 도 9는 본 발명의 실시예에 따른 측정부에서 측정 목표 지점까지의 거리를 측정하는 방법을 나타낸 개념도이다.

[107] 도 9를 참조하면, 도 97에서는 파장의 길이가 도 7와 비교하여 3배의 길이에 해당하고 서터의 스피드가 도 7의 서터 스피드와 비교하여 1/3의 속도를 가질 경우를 나타낸다.

[108] 도 9의 (A) 내지 도 9의 (D)는 도 7 및 도 8에서 설명한 바와 동일하게 송신된 제1 신호, 제2 신호, 제3 신호 및 제4 신호가 반사된 제1 신호(710), 제2 신호(720), 제3 신호(730), 제4 신호(740)를 신호 수신부에서 0도, 90도, 180도, 270도의 위상 차이를 가지고 수신하는 경우를 나타낸다.

[109] 도 10은 본 발명의 실시예에 따른 측정부에서 측정 목표 지점까지의 거리를 측정하는 방법을 나타낸 개념도이다.

[111] 도 10에서는 파장의 길이가 도 7과 비교하여 4배의 길이에 해당하고 서터의 스피드가 도 7의 서터 스피드와 비교하여 1/4의 속도를 가질 경우를 나타낸다.

[113] 위와 같은 방식으로 서터의 스피드와 신호의 파장의 길이와 변할 수 있으며, 변하는 서터 스피드와 변하는 신호의 파장 길이에 따라 신호 수신부는 발생되는 신호를 수신하여 송신 신호와 수신 신호 사이의 위상의 차이를 산출하여 위상 차이에 따른 신호 송신부와 측정 목표 지점 사이의 거리를 측정할 수 있다.

[114] 도 11은 본 발명의 실시예에 따른 거리 측정 방법을 나타낸 개념도이다.
도 11에서는 전술한 방법과 다르게 서터의 구동 신호를 사인과 또는 정현과의 진폭에 해당하는 진폭을 갖는 임펄스 또는 구형과 형태로 구동하고 수신된 빛의 세기를 측정하여 빛의 세기 값과 주기를 측정하여 위상의 차이를 산출하는 방법을 설명한다.

도 11을 참조하면, 서터에 구동신호를 사인과 또는 정현과의 진폭에 해당하는 진폭을 갖는 임펄스 또는 구형과(900, 920, 930, 940)를 입력하여 서터를 구동시키는 경우 임펄스 또는 구형과 신호(900, 920, 930, 940)가 입력되는 주기로 반사된 신호를 수신할 수 있다. 수신된 신호의 크기는 사인과 또는 정현과 형태를 가지게 되고 이러한 사인과 또는 정현과의 진폭의 값을 기초로 송신된 신호와 수신된 신호 사이의 위상의 차이를 산출할 수 있다.

도 12는 본 발명의 실시예에 따른 거리 측정 장치를 나타낸 개념도이다.

도 12에서는 전술한 사인과 또는 정현과 신호 및/또는 임펄스 또는 구형과 신호를 생성하여 측정 대상으로 송신하여 반사된 신호를 수신하는 방법으로 거리를 측정하는 장치를 나타낸다.

이하, 본 발명의 실시예에서 분리된 구성부로 나타낸 것은 기능상 임의적으로 분리하여 도시한 것으로서 하나의 구성부가 복수개의 구성부로 분리되거나 복수개의 구성부가 하나의 구성부로 구현될 수도 있고 이러한 실시예 또한 본 발명의 권리 범위에 포함된다.

거리 측정 장치는 제어부(1040), 신호 송신부(1000), 신호 수신부(1050)를 포함할 수 있다.

제어부(1040), 신호 송신부(1000), 신호 수신부(1050)에 포함되는 구성부 중 일부는 FPGA(field-programmable gate array)로 구현될 수 있다.

신호 송신부(1000)는 위상 스케줄러(1005), 코사인 테이블(1015), 펄스 또는 구형과 생성부(1010), D/A 컨버터(1020), 구동회로(1025), 광원(1030)을 포함할 수 있다.

위상 스케줄러(1005)는 발생되는 신호의 위상을 스케줄링하고 신호 수신부에 기준 신호를 제공할 수 있다. 신호 수신부(1050)는 위상 스케줄러(1005)에서 제공하는 기준 신호를 기초로 복수개의 위상에서 송신 신호를 수신할 수 있다.

코사인 테이블(1015) 및 D/A 컨버터(1020)는 신호의 위상에 따른 진폭 값을 결정하여 사인과 또는 정현과 신호를 생성하기 위해 구현될 수 있다. 사인과 또는 정현과 신호를 사용하지 않고 전술한 펄스 또는 구형과 신호를 이용하는 경우, 펄스 또는 구형과 생성부(1010)을 사용하여 펄스 또는 구형과 신호를 생성할 수 있다.

코사인 테이블(1015), D/A 컨버터(1020), 펄스 또는 구형과 생성부(1010)는 하나의 신호 송신부(1000)에 포함되어 신호 송신부(1000)에서 생성되는 신호에 따라 선택적으로 사용될 수도 있으나, 하나의 신호 송신부(1000)에서 사인과 또는 정현과 신호만 생성하는 경우, 펄스 또는 구형과 생성부(1010)는 포함되지
없을 수 있고 신호 송신부(1000)에서 펄스 또는 구형과 신호만 생성하는 경우, 코사인 테이블(1015) 및 D/A 컨버터(1020)는 포함되지 않을 수 있다.

[128] 구동 회로(1025)는 이전 회로단에서 생성된 디지털 신호를 기초로 광원을 구동시키기 위한 아날로그 신호를 생성할 수 있다.

[129] 광원(1030)은 측정 목표 지점으로 전송되는 빛을 생성하는 부분으로서 다양한 형태로 구현될 수 있다. 예를 들어, 레이저 광원이 사용되는 경우, 레이저 광원은 250mm부터 11μm까지의 파장 영역에서 특정 파장을 가지거나 파장 가변이 가능한 레이저 광원들이 생성되도록 광원을 구현할 수 있다. 또한 광원(1030)으로는 소형, 저전력이 가능한 LED(light emitting diode) 또는 LD(laser diode)와 같은 반도체 레이저 다이오드가 주로 사용될 수 있다.

[130] 광원(1030)에서는 진술한 바와 같이 동일한 성질을 가진 복수개의 신호를 측정 목표 지점으로 송신할 수 있다. 동일한 성질을 가진 복수개의 신호는 제1 신호, 제2 신호, 제3 신호, 제4 신호일 수 있고 각 신호는 순차적으로 일정한 간격을 가지고 측정 목표 지점으로 송신될 수 있다.

[131] 케이블(1040)는 신호 송신부(1000)에서 발생한 정보를 기초로 신호 수신부(1050)로 전달하기 위해 구현될 수 있다. 예를 들어, 케이블(1040)에서는 신호 송신부에서 생성된 송신 신호를 기초로 신호 수신부에 구비된 카메라(1060)의 서터 개폐 동작을 제어할 수 있다. 또한 케이블(1040)은 신호 수신부(1000) 및 신호 수신부(1050)에서 수행되는 동작을 제어하는 신호를 생성할 수 있다.

[132] 신호 수신부(1050)는 카메라(1060), 위상 탐지부(1070), 레인징 카운터(1080)를 포함할 수 있다.

[133] 카메라(1060)는 서터가 구비되어 있어서 측정 대상에서 반사만 신호를 수신할 수 있다. 카메라(1060)의 구비된 서터는 특정한 서터 스피드를 기초로 수신된 신호의 특정한 위상 지점을 기준으로 개폐 동작을 수행할 수 있다. 전술한 바와 같이 카메라(1060)의 서터는 수신되는 동일한 성질을 가진 복수개의 신호를 일정한 위상을 기준으로 수신하여 송신 신호와 수신 신호 사이의 위상 차이를 산출할 수 있다. 카메라(1060)는 케이블(1040)로부터 수신된 기준 신호 정보를 기초로 수신 신호를 특정한 위상을 기준으로 수신할 수 있다.

[134] 위상 탐지부(1070)는 카메라(1060)에 의해 수신된 복수개의 신호의 위상을 탐지하도록 구현될 수 있다.

[135] 거리 탐지부(1080)는 위상 탐지부(1070)에서 탐지된 수신 신호의 위상과 송신 신호의 위상을 타임 스텝프와 같은 신호 비교 정보를 사용하여 위상의 차이를 산출하도록 구현될 수 있다. 본 발명의 실시예에 따른 복수개의 신호를 기초로 위상 별로 산출된 신호 정보를 기초로 위상 탐지부(1070)에서는 송신 신호와 수신 신호 사이의 위상의 변화를 탐지하여 거리 측정 장치와 측정 대상 사이의 거리를 산출할 수 있다.

[136] 도 12에서는 설명의 편의상 신호 송신부(1000), 케이블(1040), 신호
수신부(1050)가 하나의 장치에 구비되어 있는 것으로 가정하였으나 독립된 구성으로 구현할 수도 있다.

[137]
[139] 도 13을 참조하면, 측정 대상에서 반사된 제1 신호를 제1 위상을 기준으로 수신한다(단계 S1100).
[140] 신호 송신부의 광원에서 제1 시간에 생성된 제1 신호가 측정 목표 지점에서 반사된 제1 신호를 제1 위상을(예를 들어, 0도)을 기준으로 신호 수신부에서 수신할 수 있다. 신호 수신부에서는 수신된 제1 신호의 제1 위상을 기준으로 서리를 개방하여 신호를 수신할 수 있다.
[141] 측정 목표 지점에서 반사된 제2 신호를 제2 위상을 기준으로 수신한다(단계 S1110).
[142] 신호 송신부의 광원에서 제2 시간에 생성된 제2 신호가 측정 목표 지점에서 반사된 제2 신호를 제2 위상을 기준으로 신호 수신부에서 수신할 수 있다. 제2 신호는 제1 신호가 생성된 후 서터의 속도를 감안하여 일정한 시간 후에 신호 송신부에서 송신할 수 있다. 신호 수신부에서는 수신된 제2 신호의 제2 위상을 기준으로 서리를 개방하여 신호를 수신할 수 있다.
[143] 측정 목표 지점에서 반사된 제3 신호를 제3 위상을 기준으로 수신한다(단계 S1120).
[144] 신호 송신부의 광원에서 제3 시간에 생성된 제3 신호가 측정 목표 지점에서 반사된 제3 신호를 신호 수신부에서 수신할 수 있다. 제3 신호는 제2 신호가 생성된 후 서터의 속도를 감안하여 일정한 시간 후에 송신할 수 있다. 신호 수신부에서는 수신된 제3 신호의 제3 위상을 기준으로 서리를 개방하여 신호를 수신할 수 있다.
[145] 측정 목표 지점에서 반사된 제4 신호를 제4 위상을 기준으로 수신한다(단계 S1130).
[146] 신호 송신부의 광원에서 제4 시간에 생성된 제4 신호가 측정 목표 지점에서 반사된 제4 신호를 신호 수신부에서 수신할 수 있다. 제4 신호는 제3 신호가 생성된 후 서터의 속도를 감안하여 일정한 시간 후에 송신할 수 있다. 신호 수신부에서는 수신된 제4 신호의 제4 위상을 기준으로 서리를 개방하여 신호를 수신할 수 있다.
[147] 수신된 반사된 제1 신호, 반사된 제2 신호, 반사된 제3 신호, 반사된 제4 신호의 위상 별 신호 정보를 기초로 위상 차이를 산출한다(단계 S1140).
[148] 각 위상을 기준으로 수신된 제1 신호, 제2 신호, 제3 신호, 제4 신호는 하나의 신호 주기에서 서로 다른 위상을 기준을 서터가 동작하여 수신된 신호 정보와 동일하게 처리되어 송신 신호와 수신 신호 사이의 위상 차이를 산출하기 위해 사용될 수 있다. 송신 신호와 수신 신호 사이의 위상 차이를 산출하는
방법으로는 다양한 수학적 처리 방법이 사용될 수 있고 본 발명의 실시예에서는 하나의 실시예에 제한되지 않는다. 예를 들어, 사인과 또는 정현곡선을 가진 경우 각 신호의 위장별 전폭값을 기준으로 송신 신호와 수신 신호의 위상의 차이를 산출할 수 있고, 멀스 또는 구형과 함수의 경우에는 각 신호별 산출된 위상값을 4개의 비트 정보로서 활용하여 위상의 차이를 산출할 수 있다.

[149] 산출된 송신 신호와 수신 신호의 위상 차이를 기초로 거리 측정 장치와 측정 대상 사이의 거리를 산출한다(단계 S1150).

[150] 단계 S1130에서 산출된 송신 신호와 수신 신호 사이의 위상 차이 정보를 기초로 거리 측정 장치와 측정 대상 사이의 거리를 산출할 수 있다. 수신 신호 사이의 위상 차이 정보를 기초로 거리 측정 장치와 측정 대상 사이의 거리를 산출하는 방법으로는 예를 들어, 수학식 2와 같은 수식을 사용하여 위상 차이 정보를 기초로 거리 측정 장치와 측정 대상 사이의 거리를 산출할 수 있다.

[151]

[152] 도 14는 본 발명의 실시예에 따른 측정 목표 지점까지의 거리를 측정하는 방법을 기초로 차간 거리 측정을 수행하는 방법을 나타낸 개념도이다.

[153] 도 14에서는 도 1 내지 도 13에서 진행한 방법을 통해 구현된 근거리 라이다 FPA(focal plane array) 센서(1200)를 차량에 구비하여 고정 및 이동을 수행하는 장애물을 인식하는 방법에 대해 개시한다.

[154] 본 발명의 실시예에 따른 라이다 센서(1200)를 사용하여 도로를 주행하는 운전자가 운행하는 자신의 차량을 기준으로 도로상에 존재하는 다른 차량과의 거리를 인식하기 위한 시스템을 구현할 수 있다.

[155] 라이다 센서(1200)에서는 복수개의 신호(1220)를 일정한 시간 간격으로 측정 대상(1250)으로 송신하고 복수개의 신호(1220)를 위상 차이를 두고 수신하여 측정 대상(1250)과의 거리를 측정할 수 있다. 거리를 측정하기 위해서 사용되는 신호는 다양한 주파수 및 전폭으로 변조되어 생성되어 측정 대상(1250)으로 송신될 수 있다.

[156] 차량의 제어부는 라이다 센서(1200)에서 생성된 차간 거리 정보를 모니터링하고 모니터링된 정보에 따라 충돌 위험이 있는 경우 경보 시스템을 동작시키거나, 차량의 기동을 제어할 수 있다.

[157] 도 14는 본 발명의 실시예에 따른 라이다 센서가 응용되는 하나의 실시예로서 차량뿐만 아니라 다양한 운송 수단, 거리 측정 장치 등 라이다 센서가 응용될 수 있는 분야에서 활용될 수 있다.

[158]

[159] 이 상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 주요 지침의 범위에 기재된 본 발명의 사항 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
청구범위

[청구항 1] 광 신호의 위상차이를 이용한 거리 측정 방법에 있어서,
측정 대상에서 반사된 동일 주파수 및 동일 전폭을 가진 복수개의 신호를 서서의 동작을 통해 서로 다른 위상을 기준으로
수신하는 단계;
상기 서로 다른 위상을 기준으로 수신한 상기 복수개의 신호를
기초로 송신 신호와 수신 신호의 위상 차이를 산출하는 단계;
상기 위상 차이를 기초로 상기 측정 대상과 거리 측정 장치 사이의
거리를 산출하는 단계를 포함하는 것을 특정으로 하는
광 신호의 위상차이를 이용한 거리 측정 방법.

[청구항 2] 제1항에 있어서,
상기 측정 대상에서 반사된 복수개의 신호를 서서의 동작을 통해
서로 다른 위상을 기준으로 수신하는 단계는,
제1 서서 동작을 통해 상기 측정 대상에서 반사된 제1 신호를 제1
위상을 기준으로 수신하는 단계;
제2 서서 동작을 통해 상기 측정 대상에서 반사된 제2 신호를 제2
위상을 기준으로 수신하는 단계;
제3 서서 동작을 통해 상기 측정 대상에서 반사된 제3 신호를 제3
위상을 기준으로 수신하는 단계; 및
제4 서서 동작을 통해 상기 측정 대상에서 반사된 제4 신호를 제4
위상을 기준으로 수신하는 단계를 포함하는 것을 특정으로 하는
광 신호의 위상차이를 이용한 거리 측정 방법.

[청구항 3] 제2항에 있어서, 상기 서로 다른 위상을 기준으로 수신한 복수개의
신호를 기초로 송신 신호와 수신 신호의 위상 차이를 산출하는
단계는,
상기 제1 위상에서 수신된 상기 제1 신호의 전폭 정보를 산출하는
단계;
상기 제2 위상에서 수신된 상기 제2 신호의 전폭 정보를 산출하는
단계;
상기 제3 위상에서 수신된 상기 제3 신호의 전폭 정보를 산출하는
단계;
상기 제4 위상에서 수신된 상기 제4 신호의 전폭 정보를 산출하는
단계; 및
상기 제1 신호의 전폭 정보, 상기 제2 신호의 전폭 정보, 상기 제3
신호의 전폭 정보, 상기 제4 신호의 전폭 정보를 기초로 상기 송신
신호와 상기 수신 신호의 위상 차이를 산출하는 단계를 포함하는
것을 특정으로 하는
광 신호의 위상차이를 이용한 거리 측정 방법.

[청구항 4]
광 신호의 위상차이를 이용한 거리 측정 방법.

[청구항 5]
상기 2항에 있어서,
상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호는
순차적으로 수신되는 사이의 또는 정원과 또는 필스 또는 구형과
신호이고, 상기 1위상은 60도, 상기 2위상은 90도, 상기 3
위상은 180도, 상기 4위상은 270도인 것을 특정으로 하는
광 신호의 위상차이를 이용한 거리 측정 방법.

[청구항 6]
상기 서로 다른 위상을 기준으로 수신한 복수개의 신호를 기초로
송신 신호와 수신 신호의 위상 차이를 산출하는 단계는,
상기 제1 위상에서 수신된 상기 제1 신호의 포토셀에 차지된
광량을 산출하는 단계;
상기 제2 위상에서 수신된 상기 제2 신호의 포토셀에 차지된
광량을 산출하는 단계;
상기 제3 위상에서 수신된 상기 제3 신호의 포토셀에 차지된
광량을 산출하는 단계;
상기 제4 위상에서 수신된 상기 제4 신호의 포토셀에 차지된
광량을 산출하는 단계 및
상기 제1 신호, 상기 제2 신호, 상기 제3 신호 및 상기 제4 신호의
각각의 포토셀에 차지된 광량을 기초로 상기 송신 신호와 상기
수신 신호의 위상 차이를 산출하는 단계를 포함하는 것을
특정으로 하는
광 신호의 위상차이를 이용한 거리 측정 방법.

[청구항 7]
동일한 주파수 및 동일한 진폭을 가지는 복수 개의 신호를
송신하는 신호 송신부와,
측정 대상에서 반사된 상기 복수 개의 신호를 서서의 동작을 통해
상기 서로 다른 위상을 기준으로 수신하는 신호 수신부와,
상기 서로 다른 위상을 기준으로 수신한 복수 개의 신호를 기초로
송신 신호와 수신 신호의 위상 차이를 산출하고 상기 위상 차이를
기초로 상기 측정 대상과 거리 측정 장치 사이의 거리를 산출하는
제어부를 포함하는 것을 특징으로 하는
광 신호의 위상차이를 이용한 거리 측정 장치

[청구항 8]
제7항에 있어서, 상기 신호 수신부는,
제1 서터 동작으로 통해 상기 측정 대상에서 반사된 제1 신호를
제1 위상을 기준으로 수신하고, 제2 서터 동작으로 통해 상기 측정
대상에서 반사된 제2 신호를 제2 위상을 기준으로 수신하고, 제3
서터 동작으로 통해 상기 측정 대상에서 반사된 제3 신호를 제3
위상을 기준으로 수신하고, 제4 서터 동작으로 통해 상기 측정
대상에서 반사된 제4 신호를 제4 위상을 기준으로 수신하도록
구현되는 것을 특징으로 하는
광 신호의 위상차이를 이용한 거리 측정 장치.

[청구항 9]
제8항에 있어서, 상기 제어부는,
상기 제1 위상에서 수신된 상기 제1 신호의 진폭 정보를 산출하고
상기 제2 위상에서 수신된 상기 제2 신호의 진폭 정보를 산출하고
상기 제3 위상에서 수신된 상기 제3 신호의 진폭 정보를 산출하고
상기 제4 위상에서 수신된 상기 제4 신호의 진폭 정보를 산출하고
상기 제1 신호의 진폭 정보, 상기 제2 신호의 진폭 정보, 상기 제3
신호의 진폭 정보, 상기 제4 신호의 진폭 정보를 기조로 상기 송신
신호와 상기 수신 신호의 위상 차이를 산출하도록 구현되는 것을
특징으로 하는
광 신호의 위상차이를 이용한 거리 측정 장치.

[청구항 10]
제8항에 있어서,
상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호는
순차적으로 수신되는 사인파 또는 정현파 또는 펄스 또는 구형과
신호이고, 상기 제1 위상은 0도, 상기 제2 위상은 90도, 상기 제3
위상은 180도, 상기 제4 위상은 270도인 것을 특징으로 하는
광 신호의 위상차이를 이용한 거리 측정 장치.

[청구항 11]
제8항에 있어서, 상기 제어부는,
상기 제1 위상에서 수신된 상기 제1 신호의 포토센에 차지된
광량을 산출하고 상기 제2 위상에서 수신된 상기 제2 신호의
포토센에 차지된 광량을 산출하고 상기 제3 위상에서 수신된 상기
제3 신호의 포토센에 차지된 광량을 산출하고 상기 제4 위상에서
수신된 상기 제4 신호의 포토센에 차지된 광량을 산출하고 상기
제1 신호, 상기 제2 신호, 상기 제3 신호 및 상기 제4 신호 각각의
포토센에 차지된 광량을 기조로 상기 송신 신호와 상기 수신
신호의 위상 차이를 산출하도록 구현되는 것을 특징으로 하는
광 신호의 위상차이를 이용한 거리 측정 장치.

[청구항 12]
제7항에 있어서,
상기 신호 송신부는 상기 복수 개의 신호를 순차적으로 상기 측정 대상으로 송신하도록 구현되고,
상기 복수개의 신호는 상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호로서 상기 제1 신호, 상기 제2 신호, 상기 제3 신호, 상기 제4 신호를 수신하는 서터의 속도를 기초로 순차적으로 전송되는 신호인 것을 특정으로 하는
광 신호의 위상차이를 이용한 거리 측정 장치.