Title: MULTILAYER CERAMIC CAPACITOR INCLUDING AT LEAST ONE SLOT

Abstract: An apparatus includes a two-terminal MLCC. The two-terminal MLCC includes a conductive layer, where the conductive layer includes at least one slot. The apparatus may also include a second conductive layer that includes at least one slot and an insulating layer that separates the two conductive layers. In one example, a first (e.g., positive) terminal of the two-terminal MLCC is formed by a first set of plates, where each plate in the first set includes at least one slot. A second (e.g., negative) terminal of the two-terminal MLCC is formed by a second set of plates, where each plate in the second set also includes at least one slot. The first set of plates and the second set of plates are interleaved, and each pair of plates is separated by an insulating layer.
MULTILAYER CERAMIC CAPACITOR INCLUDING AT LEAST ONE SLOT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority from commonly owned U.S. Non-Provisional Patent Application No. 14/090,589 filed on November 26, 2013, the contents of which are expressly incorporated herein by reference in their entirety.

FIELD

[0002] The present disclosure is generally related to a multilayer ceramic capacitor (MLCC).

DESCRIPTION OF RELATED ART

[0003] Advances in technology have resulted in smaller and more powerful computing devices. For example, there currently exist a variety of portable personal computing devices, including wireless computing devices, such as portable wireless telephones, personal digital assistants (PDAs), and paging devices that are small, lightweight, and easily carried by users. More specifically, portable wireless telephones, such as cellular telephones and Internet protocol (IP) telephones, can communicate voice and data packets over wireless networks. Further, many such wireless telephones include other types of devices that are incorporated therein. For example, a wireless telephone can also include a digital still camera, a digital video camera, a digital recorder, and an audio file player. Also, such wireless telephones can process executable instructions, including software applications, such as a web browser application, that can be used to access the Internet. As such, these wireless telephones can include significant computing capabilities.

[0004] Electronic devices, such as wireless telephones, may include various circuit elements, such as resistors, capacitors, transistors, inductors, etc. One type of capacitor that may be included in electronic devices is the multilayer ceramic capacitor (MLCC). MLCCs include conductive plates that are interleaved with insulating layers. To determine the impedance of a MLCC, the MLCC can be modeled as an RLC circuit. The R (resistor) portion of the circuit contributes a "real" portion of the impedance
based on an equivalent series resistance (ESR) of the MLCC. The LC portion of the circuit contributes an "imaginary" portion of the impedance based on an equivalent series inductance (ESL) and a capacitance of the MLCC.

[0005] The MLCC may be associated with a quality factor ("Q factor") that is based on a ratio of the "imaginary" portion of the impedance to the "real portion" of the impedance. Thus, the Q factor of the MLCC may be inversely proportional to ESR, and one way to increase the Q factor of a MLCC is to reduce the ESR of the MLCC.

SUMMARY

[0006] MLCCs may be two-terminal MLCCs or multi-terminal MLCCs. Two terminal MLCCs have a single positive terminal (e.g., electrode) and a single negative terminal (e.g., electrode). Multi-terminal MLCCs have multiple positive terminals and multiple negative terminals. In a two-terminal MLCC, the positive terminal is formed by a first set of metal plates and the negative terminal of the MLCCs is formed by a second set of metal plates. Plates from the first set and the second set are interleaved and each pair of plates is separated by an insulating layer. In an alternating current (AC) circuit, a MLCC may experience skin effect. Due to skin effect, most of the current flowing through a conductor (e.g., a metal plate in the MLCC) is concentrated near the surfaces of the conductor instead of being evenly distributed throughout the entire cross sectional area of the conductor. In terms of current density, current flowing through a plate of a MLCC primarily flows through the surface portions of the plate. This loss of conducting area results in an increase in AC resistance (ACR), and therefore an increase in ESR and a decrease in the Q factor of the MLCC.

[0007] In accordance with the described techniques, each of the metal plates that form the terminals of a two-terminal MLCC is cut to form at least one slot (also referred to as a "channel" or a "hole") in the plate. The slot(s) in the metal plates result in an increase in surface regions, which results in a decrease in ACR (and thus ESR) and an increase in the Q factor of the two-terminal MLCC. In one example, slots can be cut into the metal plates parallel to the direction of current flow. In another example, the metal plates have slots cut parallel to the current flow direction as well as perpendicular to the current flow direction.
In a particular embodiment, an apparatus includes a two-terminal MLCC. The two-terminal MLCC includes a conductive layer, where the conductive layer includes at least one slot. The apparatus may also include a second conductive layer that includes at least one slot and an insulating layer that separates the two conductive layers. In one example, a first (e.g., positive) terminal of the two-terminal MLCC is formed by a first set of plates, where each plate in the first set includes at least one slot. A second (e.g., negative) terminal of the two-terminal MLCC is formed by a second set of plates, where each plate in the second set also includes at least one slot. The first set of plates and the second set of plates are interleaved, and each pair of plates is separated by an insulating layer.

In another particular embodiment, a method includes forming a first conductive layer corresponding to a first terminal of a two-terminal MLCC, where the first conductive layer includes at least one slot. The method also includes forming a first insulating layer above the first conductive layer, where a first side of the first insulating layer is adjacent to the first conductive layer. The method further includes forming a second conductive layer corresponding to a second terminal of the two-terminal MLCC above the first insulating layer. The second conductive layer also includes at least one slot. A second side of the first insulating layer that is opposite to the first side is adjacent to the second conductive layer.

In another particular embodiment, an apparatus includes a two-terminal MLCC that includes first means for conducting, second means for conducting, and means for insulating disposed between the first means for conducting and the second means for conducting. The first means for conducting corresponds to a first terminal of the two-terminal MLCC and includes at least one slot. The second means for conducting corresponds to a second terminal of the two-terminal MLCC and also includes at least one slot.

In another particular embodiment, a non-transitory computer-readable medium includes instructions that, when executed by a processor, cause the processor to initiate formation of a first conductive layer corresponding to a first terminal of a two-terminal MLCC. The first conductive layer includes at least one slot. The instructions are also
executable by the processor to cause the processor to initiate formation of a first insulating layer above the first conductive layer, where a first side of the first insulating layer is adjacent to the first conductive layer. The instructions are further executable by the processor to initiate formation of a second conductive layer corresponding to a second terminal of the two-terminal MLCC above the first insulating layer. The second conductive layer also includes at least one slot, and a second side of the first insulating layer that is opposite to the first side is adjacent to the second conductive layer.

[0012] One particular advantage provided by at least one of the disclosed embodiments is a MLCC that exhibits improved Q factor. Other aspects, advantages, and features of the present disclosure will become apparent after review of the entire application, including the following sections: Brief Description of the Drawings, Detailed Description, and the Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is a diagram to illustrate a perspective view of a particular embodiment of a two-terminal multilayer ceramic capacitor (MLCC) that includes at least one conductive layer having at least one slot;

[0014] FIG. 2 is a diagram to illustrate a package view of the MLCC of FIG. 1;

[0015] FIG. 3 is a diagram to illustrate an exploded view of the MLCC of FIG. 1;

[0016] FIG. 4 is a diagram to illustrate a top-down view of a conductive layer of the MLCC of FIG. 1;

[0017] FIG. 5 is a current flow density diagram of a conductive layer of the MLCC of FIG. 1;

[0018] FIG. 6 is a diagram to illustrate a perspective view of another particular embodiment of a two-terminal MLCC that includes at least one conductive layer having at least one slot;

[0019] FIG. 7 is a diagram to illustrate an exploded view of the MLCC of FIG. 6;
FIG. 8 is diagram to illustrate a top-down view of another particular embodiment of a conductive layer of a two-terminal MLCC;

FIG. 9 is a graph to illustrate impedance curves of two-terminal MLCCs that include at least one conductive layer having at least one slot;

FIG. 10 is a flowchart to illustrate a particular embodiment of a method of forming a two-terminal MLCC that includes at least one conductive layer having at least one slot;

FIG. 11 is a block diagram of a wireless device including a two-terminal MLCC that includes at least one conductive layer having at least one slot; and

FIG. 12 is a data flow diagram of a particular illustrative embodiment of a manufacturing process to manufacture electronic devices that include a two-terminal MLCC that includes at least one conductive layer having at least one slot.

DETAILED DESCRIPTION

A first particular illustrative embodiment of a two-terminal multilayer ceramic capacitor (MLCC) 100 is described with reference to FIGs. 1-5. The two-terminal MLCC 100 includes a first terminal 110 (e.g., a positive (+) terminal) and a second terminal 120 (e.g., a negative (-) terminal). Current flow direction in the MLCC may be from the first terminal 110 to the second terminal 120, as shown. A package view of the two-terminal MLCC 100 is shown in FIG. 2 (e.g., the two-terminal MLCC 100 may be packaged as shown in FIG. 2 and available as an off-the-shelf component for inclusion in electronic circuits and devices).

The two-terminal MLCC 100 may include multiple conductive layers (e.g., nickel or copper plates) that form the first terminal 110 and the second terminal 120. For example, a first set of conductive layers may form the first terminal 110. In FIG. 1, the first set of conductive layers includes conductive layers 111 and 112. A second set of conductive layers may form the second terminal 120. In FIG. 1, the second set of conductive layers includes conductive layers 121 and 122. Conductive layers from the first set and the second set may be interleaved, and each pair of conductive layers may
be separated by an insulating layer. In FIG. 1, insulating (e.g., dielectric ceramic) layers 131, 132, and 133 separate the conductive layers 111, 112, 121, and 122, and are shown using a hatching pattern. As further illustrated in FIG. 3, from top to bottom, the order of layers in the two-terminal MLCC 100 is the conductive layer 121, the insulating layer 131, the conductive layer 111, the insulating layer 132, the conductive layer 122, the insulating layer 133, and the conductive layer 112.

[0027] It should be noted that the number and relative dimensions of the various layers shown in the figures are for example only. In alternate embodiments, a two-terminal MLCC may have a different number of layers and layers of different sizes (e.g., layers of one terminal may be differently sized than layers of the other terminal and/or the insulating layers). In one example, a two-terminal MLCC may include between 20 and 100 conductive layers, where each conductive layer is approximately 500 micrometers (µm) wide and 7 to 10 µm thick. As used herein, two quantities may be "approximately" equal if the two quantities are within a measurement error interval, a process error interval, or a tolerance level (e.g. a particular percentage, such as 2%, or a particular amount, such as 3 µm).

[0028] A capacitor, such as the two-terminal MLCC 100, can be modeled as a RLC circuit that includes a resistor (R), an inductor (L), and a capacitor (C) connected in series. The impedance (Z) of the capacitor is a complex quantity that includes a real portion and an imaginary portion. The real portion of Z is based on an equivalent series resistance (ESR) of the RLC circuit, and the imaginary portion of Z is based on an equivalent series inductance (ESL) and a capacitance of the RLC circuit. A quality factor (Q factor) of a MLCC may represent a ratio of energy stored (without loss) in the MLCC to energy dissipated by the MLCC. Higher Q factor is indicative of better capacitor performance. The Q factor of a MLCC may be approximated by the ratio of the imaginary portion of Z to the real portion of Z, because the inductor and capacitor of the RLC circuit can be considered energy storing elements whereas the resistor of the RLC circuit can be considered an energy dissipating element. Thus, Q factor may be considered to be inversely proportional to ESR, and one way to improve Q factor of a MLCC is to decrease ESR of the MLCC.
In an alternating current (AC) circuit, the ESR of a MLCC is primarily AC resistance (ACR). ACR may increase relative to direct current resistance (DCR) because of skin effect. Skin effect, which may be more pronounced at higher AC frequencies, is a physical phenomenon that causes most of the current flowing through a conductor (e.g., a conductive layer of a MLCC) to be concentrated near the surfaces of the conductor instead of being evenly distributed throughout the entire cross sectional area of the conductor. This loss of conducting area results in an increase in ACR, and therefore decreases the Q factor.

To decrease the ACR of the two-terminal MLCC 100, one or more of the conductive layers 111-112 and 121-122 is cut to form at least one non-conductive slot (also referred to as a "channel" or a "hole"). As used herein, a "non-conductive" slot is a slot that is substantially non-conductive. Even though cutting slot(s) into a conductive layer decreases the overall area/volume of the conductive layer, the slot(s) result in an increase in surface regions, which results in a decrease in ACR (and thus ESR) and an increase in the Q factor of the two-terminal MLCC 100. In a particular embodiment, as shown in FIG. 1, four slots may be cut in the conductive layer 121 parallel to the current flow direction. This pattern may be referred to as a "five finger" pattern. A process by which slots may be cut into a conductive layer and by which a two-terminal MLCC may be formed is further described with reference to FIG. 10.

As shown in FIG. 3, the remaining conductive layers 111, 122, and 112 also have slots cut in the "five finger" pattern. FIG. 4 illustrates a top-down view of the conductive layer 121. As shown in FIG. 4, the conductive layer 121 includes slots 402, 404, 406, and 408 that separate the "finger" portions 401, 403, 405, 407, and 409. Each of the slots 402, 404, 406, and 408 is cut across less than an entirety of a length of the conductive layer 121. For example, a first (e.g., right-hand) end of the slot 402 coincides with a first (e.g., right-hand) end of the conductive layer 121. A second (e.g., left-hand) end of the slot 402 that is opposite the first end of the slot 402 does not coincide with a second (e.g., left-hand) end of the conductive layer 121 that is opposite the first end of the conductive layer 121. In the conductive layer 121, the "fingers" extend away from the associated terminal 120. In an alternate embodiment, the
"fingers" may extend towards the associated terminal. For example, in conductive layer 421, the "fingers" extend towards associated terminal 420.

[0032] FIG. 5 illustrates a current flow density diagram 510 for the conductive layer 121 when current flows through the two-terminal MLCC 100. In FIG. 5, higher current flow density is indicated by denser shading patterns. As shown in FIG. 5, current flows primarily near the top, bottom, left, and right surfaces of each of the "finger" portions 401, 403, 405, 407, and 409. For purposes of comparison, FIG. 5 also illustrates a current flow density diagram 520 for the conductive layer 121 if no slots are cut.

[0033] It will thus be appreciated that by cutting slots into conductive layers of a two-terminal MLCC, larger cross sectional areas of the conductive layers conduct current, which results in a decrease in ACR (and thus ESR) and an increase in Q factor. The two-terminal MLCC 100 illustrated in FIGs. 1-5 may thus provide improved performance (e.g., higher Q factor) as compared to a MLCC that does not include any conductive layers having slots. The improved Q factor indicates less insertion loss associated with the capacitor, which may lead to decreased power consumption and dissipation (e.g., improved battery life) in an electronic device. Because the MLCC 100 has an increased Q factor, the MLCC 100 may achieve a desired capacitance while maintaining a smaller size than a MLCC that has a lower Q factor. Thus, for a particular Q factor, the described techniques may enable use of a smaller (e.g., less chip area and/or volume) MLCC, and for a particular area/volume MLCC, the described techniques may provide higher Q factor. It will therefore be appreciated that the described techniques may enable design of smaller circuits/chipsets/packages with higher capacitor Q factor.

[0034] In the MLCC 100 of FIGs. 1-5, each of the slots is cut parallel to the current flow direction of the MLCC 100. In alternate embodiments, slots may be cut in other directions in addition to, or instead of, parallel to the current flow direction. For example, FIGs. 6-7 illustrate a second illustrative embodiment of a two-terminal MLCC 600. The MLCC 600 includes a first terminal 610 and a second terminal 620. Conductive layers 611 and 612 are associated with the first terminal 610, and
conductive layers 621 and 622 are associated with the second terminal 620. The MLCC 600 also includes insulating layers 631, 632, and 633, as shown.

[0035] In the MLCC 600, each conductive layer 611-612 and 621-622 includes a plurality of first slots that are perpendicular to the current flow direction and at least one second slot that is parallel to the current flow direction. The second (parallel) slot connects a pair of the first (perpendicular) slots, forming a "dog bone" pattern. In a particular embodiment, the "dog bone" pattern of FIGs. 6-7 may be used instead of the "five finger" pattern of FIGs. 1-5. The "dog bone" pattern may not reduce the capacitive surface area of conductive layers of the MLCC 600 as much as the "five finger" pattern reduces the capacitive surface area of the conductive layers of the MLCC 100. Because the "dog bone" pattern reduces the capacitive surface area of the conductive layers by a smaller amount than the "five finger" pattern, the MLCC 600 may have a higher capacitance than the MLCC 100.

[0036] In alternate embodiments, multiple "dog bone" patterns may be cut from a conductive layer of a MLCC. For example, FIG. 8 illustrates a "2 dog bone" slot pattern 804 cut from a conductive layer 802. It should be noted that the various slot patterns described herein are for example only, and not to be considered limiting. In accordance with the described techniques, one or more slots may be cut into a conductive layer of a two-terminal MLCC in various patterns. In a particular embodiment, different patterns may be simulated using simulation software executing on a computing device, and a particular pattern may be selected as having a desired combination of characteristics (capacitance, ESR, Q factor, size, complexity, cost, etc.).

[0037] FIG. 9 is a graph 900 to illustrate impedance curves of two-terminal MLCCs that include at least one conductive layer having at least one slot. In the graph 900, impedance (Z) is plotted on the y-axis in Ohms and operating frequency is plotted on the x-axis in gigahertz (GHz). The graph 900 includes three curves. A first curve 901, illustrated using a large broken line, corresponds to a two-terminal MLCC that does not include any slots (e.g., corresponding to current flow density diagram 520 of FIG. 5). A second curve 902, illustrated using a solid line, corresponds to the "five finger" slot
pattern of FIGs. 1-5. A third curve 903, illustrated using a small broken line, corresponds to the "2 dog bone" pattern of FIG. 8.

[0038] At the lowest point on each of the impedance curves 901-903 (e.g., the "valley"), the real portion of the impedance (i.e. ESR, which is primarily ACR) is dominant. Therefore, the lowest point on each of the curves 901-903 can be compared to compare ACR. In the embodiment of FIG. 9, the two-terminal MLCC having no slot pattern has an ACR of 74 milliohms. The "five finger" MLCC has an ACR of 38 milliohms. The "2 dog bone" MLCC has an ACR of 15 milliohm. Thus, because Q factor is roughly inversely proportional to ACR, the "five finger" pattern results in almost a 2X improvement in Q factor and the "2 dog bone" pattern results in almost a 5X improvement in Q factor.

[0039] It should be noted that in the described two-terminal MLCC, one or more slots are cut into conductive layers to decrease ESR. Thus, with respect to the impedance curves shown in FIG. 9, the described techniques may be directed to making the "valley" in an impedance curve as deep as possible. In the described two-terminal MLCC, current enters a particular side of each conductive layer of a particular terminal from a particular direction and exits the conductive layer in an opposite direction from an opposite side. The described two-terminal MLCC is distinguished from MLCCs in which one or more slots may be cut to affect current directionality. For example, in a multi-terminal MLCC, slots may be cut to route current through each conductive layer to each terminal in a winding fashion to increase ESL of the MLCC. In such MLCCs, because current is made to travel a longer length, ESR is increased, not decreased, which may lead to a decrease in Q factor. In terms of the graphs shown in FIG. 9, such techniques may be directed to shifting the "valley" of the impedance curve along the x-axis, instead of deepening the "valley" along the y-axis.

[0040] Referring to FIG. 10, a flowchart of a particular embodiment of a method 1000 of forming a MLCC that includes at least one conductive layer having at least one slot is shown.

[0041] The method 1000 includes forming a first conductive layer corresponding to a first terminal of a two-terminal MLCC, at 1002. The first conductive layer includes at
least one slot. For example, referring to FIG. 1, the conductive layer 112 corresponding to the first terminal 110 may be formed. In a particular embodiment, conductive layers of a MLCC may be formed using a metal layer screen printing process and a slot pattern (e.g., the "five finger" slot pattern of FIGs. 1-5, the "dog bone" pattern of FIGs. 6-7, the "2 dog bone" pattern of FIG. 8, or another slot pattern) may be used during the process. The metal layer screen printing process may use a metal ink (e.g., copper electrode ink).

In a particular embodiment, conductive layers of the two-terminal MLCC are formed using a common pattern (e.g., screen printing pattern). In a particular embodiment, a slot may be cut out of a conductive layer by "punching" the slot out of the conductive layer using a cutting tool. Alternatively, the slot may be "formed" by refraining from depositing metal electrode ink in a region corresponding to the slot.

[0042] The method 1000 also includes forming a first insulating layer above the first conductive layer, at 1004. A first side of the first insulating layer is adjacent to the first conductive layer. For example, referring to FIG. 1, the insulating layer 133 may be formed on the conductive layer 112 such that a bottom of the insulating layer 133 is adjacent to the conductive layer 112. In a particular embodiment, insulating layers of a MLCC may be formed using wet etching, dry etching, deposition, planarization, lithography or another process. In one example, the insulating layer may be formed by depositing a ceramic slurry (e.g., a material formed by combining ceramic powder and binding agent(s)).

[0043] The method 1000 further includes forming a second conductive layer corresponding to a second terminal of the two-terminal MLCC above the first insulating layer, at 1006. The second conductive layer includes at least one slot, and a second side of the first insulating layer that is opposite to the first side is adjacent to the second conductive layer. For example, referring to FIG. 1, the conductive layer 122 corresponding to the second terminal 120 may be formed on top of the insulating layer 133 such that the top of the insulating layer 133 is adjacent to the conductive layer 122.

[0044] The method 1000 includes forming a second insulating layer above the second conductive layer, at 1008, and forming a third conductive layer corresponding to the first terminal above the second insulating layer, at 1010. The third conductive layer
includes at least one slot. For example, referring to FIG. 1, the insulating layer 132 and the conductive layer 111 may be formed.

[0045] The method 1000 also includes forming a third insulating layer above the third conductive layer, at 1012, and forming a fourth conductive layer corresponding to the second terminal above the third insulating layer, at 1014. The fourth conductive layer includes at least one slot. For example, referring to FIG. 1, the insulating layer 131 and the conductive layer 121 may be formed.

[0046] In a particular embodiment, after the conductive and insulating layers of the MLCC are formed, the layers may be pressed (e.g., by a laminating/pressing machine) to fuse the layers together. The resulting MLCC structure may be fired (e.g., baked) in an oven or a kiln. Electrical connections or caps may then be added to the MLCC. In particular embodiments, forming a MLCC may involve a high-temperature co-fired ceramic (HTCC) process and/or a low-temperature co-fired ceramic (LTCC) process.

[0047] In a particular embodiment, the method 1000 of FIG. 10 may be initiated by a processing unit such as a central processing unit (CPU), a field-programmable gate array (FPGA) device, an application-specific integrated circuit (ASIC), a controller, another hardware device, firmware device, or any combination thereof. As an example, the method 1000 of FIG. 10 can be initiated and controlled by fabrication equipment, such as a processor within or coupled to fabrication equipment and that executes instructions stored at a memory (e.g., a non-transitory computer-readable medium), as described further with reference to FIG. 12. Manufacturing processes, such as screen printing, wet etching, dry etching, deposition, planarization, lithography, or a combination thereof, may be used by fabrication equipment to fabricate MLCCs described herein.

[0048] Referring to FIG. 11, a block diagram of a wireless device 1100 is shown. The wireless device 1100 includes a processor 1110, such as a digital signal processor (DSP) or a central processing unit (CPU), coupled to a memory 1132. FIG. 11 also shows a display controller 1126 that is coupled to the processor 1110 and to a display 1128. A coder/decoder (CODEC) 1134 can also be coupled to the processor 1110. A speaker 1136 and a microphone 1138 can be coupled to the CODEC 1134.
FIG. 11 further indicates that a wireless controller 1140 can be coupled to the processor 1110 and to an antenna 1142 via a radio-frequency (RF) stage 1180 disposed between the wireless controller 1140 and the antenna 1142. In a particular embodiment, the RF stage 1180 includes a two-terminal MLCC 1182, where the two-terminal MLCC 1182 includes at least one slot. For example, the two-terminal MLCC 1182 may be the two-terminal MLCC 100 of FIGs. 1-5, the two-terminal MLCC 600 of FIGs. 6-7, a two-terminal MLCC that includes slots based on the "2 dog bone" pattern of FIG. 8, etc., and may be formed according to the method 1000 of FIG. 10. In a particular embodiment, the two-terminal MLCC 1182 is included in an inductor (L) capacitor (C) voltage controlled oscillator (LC-VCO), an LC-based filter, an LC tank, an LC network, a matching circuit, and/or another component of the RF stage 1180.

The memory 1132 may be a tangible non-transitory processor-readable storage medium that includes executable instructions 1156. The instructions 1156 may be executed by a processor, such as the processor 1110, to perform or initiate performance of one or more of operations, functions, and/or methods related to operation of the wireless device 1100. In a particular embodiment, the processor 1110, the display controller 1126, the memory 1132, the CODEC 1134, and the wireless controller 1140 are included in a system-in-package or system-on-chip device 1122. In a particular embodiment, an input device 1130 and a power supply 1144 are coupled to the system-on-chip device 1122. Moreover, in a particular embodiment, as illustrated in FIG. 11, the display 1128, the input device 1130, the speaker 1136, the microphone 1138, the antenna 1142, and the power supply 1144 are external to the system-on-chip device 1122. However, each of the display 1128, the input device 1130, the speaker 1136, the microphone 1138, the antenna 1142, and the power supply 1144 can be coupled to a component of the system-on-chip device 722, such as an interface or a controller.

In conjunction with the described embodiments, an apparatus includes a two-terminal MLCC that includes first means for conducting, second means for conducting, and means for insulating. The first means for conducting corresponds to a first terminal of the two-terminal MLCC and includes at least one slot. For example, the first means for conducting may include the conductive layer 111, the conductive layer 112, the conductive layer 611, the conductive layer 612, or another conductive layer.
corresponding to a first terminal of a two-terminal MLCC. The second means for conducting corresponds to a second terminal of the two-terminal MLCC and includes at least one slot. For example, the second means for conducting may include the conductive layer 121, the conductive layer 122, the conductive layer 621, the conductive layer 622, or another conductive layer corresponding to a second terminal of a two-terminal MLCC. The means for insulating is disposed between the first means for conducting and the second means for conducting. For example, the means for insulating may include the insulating layer 131, the insulating layer 132, the insulating layer 133, the insulating layer 631, the insulating layer 632, the insulating layer 633, or another insulating layer disposed between two conductive layers of a two-terminal MLCC.

[0052] The foregoing disclosed devices and functionalities may be designed and configured into computer files (e.g. RTL, GDSII, GERBER, etc.) stored on computer-readable media. Some or all such files may be provided to fabrication handlers to fabricate devices based on such files. Resulting products include wafers that are then cut into dies and packaged into chips. The chips are then employed in devices including, but not limited to, a mobile phone, a communications device, a set top box, a music player, a video player, an entertainment unit, a navigation device, a personal digital assistant (PDA), a fixed location data unit, or a computer. FIG. 12 depicts a particular illustrative embodiment of an electronic device manufacturing process 1200.

[0053] Physical device information 1202 is received at the manufacturing process 1200, such as at a research computer 1206. The physical device information 1202 may include design information representing at least one physical property of an electronic device, such as a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182). For example, the physical device information 1202 may include physical parameters, material characteristics, and structure information that is entered via a user interface 1204 coupled to the research computer 1206 (e.g., conductive/insulating layer length/width/thickness, slot pattern, etc. may be entered into the research computer 1206). The research computer 1206 includes a processor 1208, such as one or more processing cores, coupled to a computer-readable medium such as a memory 1210. The
memory 1210 may store computer-readable instructions that are executable to cause the processor 1208 to transform the physical device information 1202 to comply with a file format and to generate a library file 1212.

[0054] In a particular embodiment, the library file 1212 includes at least one data file including the transformed design information. For example, the library file 1212 may include a library of electronic devices (e.g., semiconductor devices), including a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182), provided for use with an electronic design automation (EDA) tool 1220.

[0055] The library file 1212 may be used in conjunction with the EDA tool 1220 at a design computer 1214 including a processor 1216, such as one or more processing cores, coupled to a memory 1218. The EDA tool 1220 may be stored as processor executable instructions at the memory 1218 to enable a user of the design computer 1214 to design a circuit including a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182), using the library file 1212. For example, a user of the design computer 1214 may enter circuit design information 1222 via a user interface 1224 coupled to the design computer 1214. The circuit design information 1222 may include design information representing at least one physical property of an electronic device, such as a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182). To illustrate, the circuit design property may include identification of particular circuits and relationships to other elements in a circuit design, positioning information, feature size information, interconnection information, or other information representing a physical property of an electronic device.

[0056] The design computer 1214 may be configured to transform the design information, including the circuit design information 1222, to comply with a file format. To illustrate, the file formation may include a database binary file format representing planar geometric shapes, text labels, and other information about a circuit layout in a hierarchical format, such as a Graphic Data System (GDSII) file format. The design
computer 1214 may be configured to generate a data file including the transformed design information, such as a GDSII file 1226 that includes information describing a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182), in addition to other circuits or information. To illustrate, the data file may include information corresponding to a system-on-chip (SOC) or a chip interposer component that that includes a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182), and that also includes additional electronic circuits and components within the SOC.

[0057] The GDSII file 1226 may be received at a fabrication process 1228 to manufacture a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182) according to transformed information in the GDSII file 1226. For example, a device manufacture process may include providing the GDSII file 1226 to a mask manufacturer 1230 to create one or more masks, such as masks to be used with photolithography processing, illustrated in FIG. 12 as a representative mask 1232. The mask 1232 may be used during the fabrication process to generate one or more wafers 1233, which may be tested and separated into dies, such as a representative die 1236. The die 1236 includes a circuit including two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182).

[0058] In a particular embodiment, the fabrication process 1228 may be initiated by or controlled by a processor 1234. The processor 1234 may access a memory 1235 that includes executable instructions 1237, such as computer-readable instructions or processor-readable instructions. The executable instructions may include one or more instructions that are executable by a computer, such as the processor 1234.

[0059] The fabrication process 1228 may be implemented by a fabrication system that is fully automated or partially automated. For example, the fabrication process 1228 may be automated and may perform processing steps according to a schedule. The fabrication system may include fabrication equipment (e.g., processing tools) to perform
one or more operations to form an electronic device. For example, the fabrication equipment may be configured to form one or more conductive layers, to form one or more insulating layers, to form one or more electrical connections or vias, to perform one or more etches, to form one or more metal structures, and/or to form other circuit elements using manufacturing processes (e.g., screen printing, wet etching, dry etching, deposition, planarization, lithography, or a combination thereof). In a particular embodiment, a two-terminal MLCC fabricated by the fabrication process 1228 may be inserted into an integrated circuit, a printed circuit board (PCB), and/or an electronic device.

[0060] The fabrication system may have a distributed architecture (e.g., a hierarchy). For example, the fabrication system may include one or more processors, such as the processor 1234, one or more memories, such as the memory 1235, and/or controllers that are distributed according to the distributed architecture. The distributed architecture may include a high-level processor that controls and/or initiates operations of one or more low-level systems. For example, a high-level portion of the fabrication process 1228 may include one or more processors, such as the processor 1234, and the low-level systems may each include or may be controlled by one or more corresponding controllers. A particular controller of a particular low-level system may receive one or more instructions (e.g., commands) from a high-level system, may issue sub-commands to subordinate modules or process tools, and may communicate status data back to the high-level system. Each of the one or more low-level systems may be associated with one or more corresponding pieces of fabrication equipment (e.g., processing tools). In a particular embodiment, the fabrication system may include multiple processors that are distributed in the fabrication system. For example, a controller of a low-level system component of the fabrication system may include a processor, such as the processor 1234.

[0061] Alternatively, the processor 1234 may be a part of a high-level system, subsystem, or component of the fabrication system. In another embodiment, the processor 1234 includes distributed processing at various levels and components of a fabrication system.
Thus, the memory 1235 may include processor-executable instructions 1237 that, when executed by the processor 1234, cause the processor 1234 to initiate or control formation of a two-terminal MLCC that includes at least one conductive layer that includes at least one slot. For example, various layers may be formed by one or more deposition tools, such as screen printing tool, a deposition tool (e.g., a flowable chemical vapor deposition (FCVD) tool, a spin-on deposition tool, etc.), or another tool. Structures, such as MLCC layers, may be etched (e.g., cut) by one or more cutting devices, including but not limited to etching machines or etchers, such as a wet etcher, a dry etcher, or a plasma etcher.

As an illustrative example, the processor 1234 may control steps for forming a first conductive layer of a two-terminal MLCC, an insulating layer on the first conductive layer, and a second conductive layer on the insulating layer, where the first conductive layer and/or the second conductive layer include at least one slot. For example, the processor 1234 may be embedded in or coupled to one or more controllers that control one or more pieces of fabrication equipment to perform the steps. The processor 1234 may control the steps by executing the instructions 1237 to control (e.g., activate, deactivate, schedule, etc.) one or more other processes configured to form conductive layers and insulating layers. To illustrate, a first instruction or set of instructions may be executable to cause the processor 1234 to activate a process and associated machinery that operates to form a first conductive layer of a two-terminal MLCC, where the first conductive layer includes at least one slot. A second instruction or set of instructions may be executable to cause the processor 1234 to activate a process and associated machinery that operates to form an insulating layer on the first conductive layer. A third instruction or set of instructions may be executable to cause the processor 1234 to activate a process and associated machinery that operates to form a second conductive layer on the insulating layer. The second conductive layer may include at least one slot. In a particular embodiment, manufacturing processes (e.g., screen printing, wet etching, dry etching, deposition, planarization, lithography, or a combination thereof) may be used to fabricate the two-terminal MLCC.

The die 1236 may be provided to a packaging process 1238 where the die 1236 is incorporated into a representative package 1240. For example, the package 1240 may
include the single die 1236 or multiple dies, such as a system-in-package (SiP) arrangement. The package 1240 may be configured to conform to one or more standards or specifications, such as Joint Electron Device Engineering Council (JEDEC) standards.

[0065] Information regarding the package 1240 may be distributed to various product designers, such as by use of a component library stored at a computer 1246. The computer 1246 may include a processor 1248, such as one or more processing cores, coupled to a memory 1250. A printed circuit board (PCB) tool may be stored as processor executable instructions at the memory 1250 to process PCB design information 1242 received from a user of the computer 1246 via a user interface 1244. The PCB design information 1242 may include physical positioning information of a packaged electronic device on a circuit board, the packaged electronic device corresponding to the package 1240 including two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182).

[0066] The computer 1246 may be configured to transform the PCB design information 1242 to generate a data file, such as a GERBER file 1252 with data that includes physical positioning information of a packaged electronic device on a circuit board, as well as layout of electrical connections such as traces and vias, where the packaged electronic device corresponds to the package 1240 including a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182). In other embodiments, the data file generated by the transformed PCB design information may have a format other than a GERBER format.

[0067] The GERBER file 1252 may be received at a board assembly process 1254 and used to create PCBs, such as a representative PCB 1256, manufactured in accordance with the design information stored within the GERBER file 1252. For example, the GERBER file 1252 may be uploaded to one or more machines to perform various steps of a PCB production process. The PCB 1256 may be populated with electronic
components including the package 1240 to form a representative printed circuit assembly (PCA) 1258.

[0068] The PCA 1258 may be received at a product manufacturer 1260 and integrated into one or more electronic devices, such as a first representative electronic device 1262 and a second representative electronic device 1264. As an illustrative, non-limiting example, the first representative electronic device 1262, the second representative electronic device 1264, or both, may be selected from a set top box, a music player, a video player, an entertainment unit, a navigation device, a communications device, a personal digital assistant (PDA), a fixed location data unit, and a computer, into which a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182), is integrated. As another illustrative, non-limiting example, one or more of the electronic devices 1262 and 1264 may be remote units such as mobile phones, hand-held personal communication systems (PCS) units, portable data units such as personal data assistants, global positioning system (GPS) enabled devices, navigation devices, fixed location data units such as meter reading equipment, or any other device that stores or retrieves data or computer instructions, or any combination thereof. Embodiments of the disclosure may be suitably employed in any device which includes integrated circuitry including a capacitor. Embodiments of the disclosure may also be employed in non-integrated circuit based devices that include a capacitor.

[0069] A device that includes a two-terminal MLCC including at least one conductive layer having at least one slot (e.g., corresponding to the two-terminal MLCC 100, 600, or 1182) may be fabricated, processed, and incorporated into an electronic device, as described in the illustrative manufacturing process 1200. One or more aspects of the embodiments disclosed with respect to FIGs. 1-11 may be included at various processing stages, such as within the library file 1212, the GDSII file 1226, and the GERBER file 1252, as well as stored at the memory 1210 of the research computer 1206, the memory 1218 of the design computer 1214, the memory 1250 of the computer 1246, the memory of one or more other computers or processors (not shown) used at the various stages, such as at the board assembly process 1254, and also incorporated into one or more other physical embodiments such as the mask 1232, the die 1236, the
package 1240, the PCA 1258, other products such as prototype circuits or devices (not shown), or any combination thereof. Although various representative stages are depicted with reference to FIGS. 1-11, in other embodiments fewer stages may be used or additional stages may be included. Similarly, the process 1200 of FIG. 12 may be performed by a single entity or by one or more entities performing various stages of the manufacturing process 1200.

[0070] Those of skill would further appreciate that the various illustrative logical blocks, configurations, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software executed by a processor, or combinations of both. Various illustrative components, blocks, configurations, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or processor executable instructions depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.

[0071] The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), registers, hard disk, a removable disk, a compact disc read-only memory (CD-ROM), or any other form of non-transient storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an application-specific integrated circuit (ASIC). The ASIC may reside in a computing device or a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a computing device or user terminal.
[0072] The previous description of the disclosed embodiments is provided to enable a person skilled in the art to make or use the disclosed embodiments. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other embodiments without departing from the scope of the disclosure. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope possible consistent with the principles and novel features as defined by the following claims.
CLAIMS:

1. An apparatus comprising:
 a two-terminal multilayer ceramic capacitor (MLCC) comprising:
 a conductive layer, wherein the conductive layer includes at least one slot.

2. The apparatus of claim 1, wherein the two-terminal MLCC includes a single positive terminal and a single negative terminal.

3. The apparatus of claim 1, wherein the at least one slot decreases an equivalent series resistance (ESR) of the two-terminal MLCC as compared to the conductive layer not including the at least one slot.

4. The apparatus of claim 3, wherein the decrease in the ESR of the two-terminal MLCC increases a quality factor (Q factor) of the two-terminal MLCC.

5. The apparatus of claim 1, wherein the at least one slot includes a plurality of first slots that are perpendicular to a current flow direction of the two-terminal MLCC and at least one second slot that is parallel to the current flow direction.

6. The apparatus of claim 5, wherein the plurality of first slots includes two slots.

7. The apparatus of claim 5, wherein the at least one second slot connects a pair of first slots.

8. The apparatus of claim 5, wherein the at least one second slot includes two slots.

9. The apparatus of claim 1, wherein the at least one slot is cut across less than an entirety of a length of the conductive layer.
10. The apparatus of claim 9, wherein:
 a first end of the at least one slot coincides with a first end of the conductive layer, and
 a second end of the at least one slot that is opposite the first end of the at least one slot does not coincide with a second end of the conductive layer that is opposite the first end of the conductive layer.

11. The apparatus of claim 1, wherein the at least one slot is parallel to a current flow direction of the two-terminal MLCC.

12. The apparatus of claim 1, wherein the conductive layer includes a plurality of slots, wherein each of the plurality of slots is parallel to a current flow direction of the two-terminal MLCC.

13. The apparatus of claim 12, wherein the plurality of slots includes at least four slots.

14. The apparatus of claim 1, wherein the two-terminal MLCC further comprises a second conductive layer that includes at least one slot.

15. The apparatus of claim 14, wherein the two-terminal MLCC further comprises an insulating layer that separates the conductive layer and the second conductive layer.

16. The apparatus of claim 1, wherein the MLCC is integrated into at least one semiconductor die.

17. The apparatus of claim 1, further comprising a device selected from the group consisting of a mobile phone, a set top box, a music player, a video player, an entertainment unit, a navigation device, a communications device, a personal digital assistant (PDA), a fixed location data unit, and a computer, into which the MLCC is integrated.
18. A method comprising:
forming a first conductive layer corresponding to a first terminal of a two-terminal multilayer ceramic capacitor (MLCC), wherein the first conductive layer includes at least one slot;
forming a first insulating layer above the first conductive layer, wherein a first side of the first insulating layer is adjacent to the first conductive layer; and
forming a second conductive layer corresponding to a second terminal of the two-terminal MLCC above the first insulating layer, wherein the second conductive layer includes at least one slot, and wherein a second side of the first insulating layer that is opposite to the first side is adjacent to the second conductive layer.

19. The method of claim 18, wherein the at least one slot of the first conductive layer and the at least one slot of the second conductive layer are formed from a common pattern.

20. The method of claim 18, wherein the at least one slot of the first conductive layer includes a plurality of slots that are parallel to a current flow direction of the two-terminal MLCC.

21. The method of claim 18, wherein the at least one slot of the first conductive layer includes a plurality of slots including a first slot and a second slot that are each perpendicular to a current flow direction of the two-terminal MLCC, the plurality of slots including a third slot that is parallel to the current flow direction and that connects the first slot and the second slot.

22. The method of claim 18, wherein the at least one slot of the first conductive layer decreases an equivalent series resistance (ESR) of the two-terminal MLCC as compared to the first conductive layer not including the at least one slot.
23. The method of claim 22, wherein the decrease in the ESR of the two-terminal MLCC increases a quality factor (Q factor) of the two-terminal MLCC.

24. The method of claim 18, wherein the at least one slot is cut across less than an entirety of a length of the first conductive layer.

25. The method of claim 18, further comprising:
 forming a second insulating layer above the second conductive layer; and
 forming a third conductive layer corresponding to the first terminal above the second insulating layer, wherein the third conductive layer includes at least one slot.

26. The method of claim 25, further comprising:
 forming a third insulating layer above the third conductive layer; and
 forming a fourth conductive layer corresponding to the second terminal above the third insulating layer, wherein the fourth conductive layer includes at least one slot.

27. An apparatus comprising:
 a two-terminal multilayer ceramic capacitor (MLCC) comprising:
 first means for conducting, wherein the first means for conducting corresponds to a first terminal of the two-terminal MLCC and wherein the first means of for conducting includes at least one slot;
 second means for conducting, wherein the second means for conducting corresponds to a second terminal of the two-terminal MLCC and wherein the second means of for conducting includes at least one slot; and
 means for insulating, wherein the means for insulating is disposed between the first means for conducting and the second means for conducting.
28. The apparatus of claim 27, further comprising a device selected from the group consisting of a mobile phone, a set top box, a music player, a video player, an entertainment unit, a navigation device, a communications device, a personal digital assistant (PDA), a fixed location data unit, and a computer, into which the first means for conducting, the second means for conducting, and the means for insulating are integrated.

29. A non-transitory computer-readable medium comprising instructions that, when executed by a processor, cause the processor to:

initiate formation of a first conductive layer corresponding to a first terminal of a two-terminal multilayer ceramic capacitor (MLCC), wherein the first conductive layer includes at least one slot;

initiate formation of a first insulating layer above the first conductive layer, wherein a first side of the first insulating layer is adjacent to the first conductive layer; and

initiate formation of a second conductive layer corresponding to a second terminal of the two-terminal MLCC above the first insulating layer, wherein the second conductive layer includes at least one slot, and wherein a second side of the first insulating layer that is opposite to the first side is adjacent to the second conductive layer.

30. The non-transitory computer-readable medium of claim 29, wherein the two-terminal MLCC is integrated into a device selected from the group consisting of a mobile phone, a set top box, a music player, a video player, an entertainment unit, a navigation device, a communications device, a personal digital assistant (PDA), a fixed location data unit, and a computer.
FIG. 8
FIG. 9

No patterning: ACR = 74 mOhm

“5 finger” patterning: ACR = 38 mOhm

“2 dog bone patterning”: ACR = 15 mOhm
Form a first conductive layer corresponding to a first terminal of a two-terminal MLCC, where the first conductive layer includes at least one slot

Form a first insulating layer above the first conductive layer, where a first side of the first insulating layer is adjacent to the first conductive layer

Form a second conductive layer corresponding to a second terminal of the two-terminal MLCC above the first insulating layer, where the second conductive layer includes at least one slot, and where a second side of the first insulating layer that is opposite to the first side is adjacent to the second conductive layer

Form a second insulating layer above the second conductive layer

Form a third conductive layer corresponding to the first terminal above the second insulating layer, where the third conductive layer includes at least one slot

Form a third insulating layer above the third conductive layer

Form a fourth conductive layer corresponding to the second terminal above the third insulating layer, where the fourth conductive layer includes at least one slot

FIG. 10
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H01G4/30 H01G4/012 H01G4/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01G H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **Z** document member of the same patent family

Date of the actual completion of the international search: 4 February 2015

Date of mailing of the international search report: 11/02/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Giesen, Fabian
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>X</td>
<td>US 5 099 387 A (KATO NOBORU [JP] ET AL) figures 1-10 column 1, line 5 - column 2, line 31 column 3, line 4 - column 4, line 61</td>
<td>1-4, 9-20, 24-30</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>5-8</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>JP H08191034 A</td>
<td>23-07-1996</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2013027841 AI</td>
<td>31-01-2013</td>
<td>KR 20130012715 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013027841 AI</td>
</tr>
<tr>
<td>EP 1075004 AI</td>
<td>07-02-2001</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5099387 A</td>
</tr>
</tbody>
</table>