
(19) United States
US 2010O246813A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0246813 A1
Morris et al. (43) Pub. Date: Sep. 30, 2010

(54) METHOD AND SYSTEM FOR
ACCELERATING THE DETERMINISTC
ENCPHERING OF DATAN A SMALL
DOMAIN

(75) Inventors: Benjamin J. Morris, Davis, CA
(US); Phillip Rogaway, Davis, CA
(US); Till Stegers, Davis, CA (US)

Correspondence Address:
PARK, VAUGHAN & FLEMING LLP
282O FIFTH STREET
DAVIS, CA 95618-7759 (US)

THE REGENTS OF THE
UNIVERSITY OF
CALIFORNLA, Oakland, CA (US)

(73) Assignee:

(21) Appl. No.: 12/750,528

INPUT Cipher E. KXTX M M u1
(M = 0, ..

(22) Filed: Mar. 30, 2010

Related U.S. Application Data

(60) Provisional application No. 61/164,660, filed on Mar.
30, 2009.

Publication Classification

(51) Int. Cl.
H04L 9/28 (2006.01)

(52) U.S. Cl. .. 380/28

(57) ABSTRACT

Conventional block ciphers that traffic in 128-bit block sizes
are ill-suited for operating in Small domains like credit card
numbers. Some embodiments relate to techniques for con
structing and speeding up practical and provably secure
schemes for deterministically enciphering data from a small
domain like credit card numbers using a conventional block
cipher or other pseudorandom function.

200

OUTPUT

Key III
2O2 n-character register 208

Plaintext
204

Pseudorandom function 21 O
TWeak
206

No. 7 Ciphertext
216

E Combining function 212

Patent Application Publication Sep. 30, 2010 Sheet 1 of 10 US 2010/0246813 A1

104

5887 3229 O447 4263

106 Update with ciphertext
234-60-6477

390-22-5388

Database of U.S. Social Security Numbers

FIG. 1

Patent Application Publication Sep. 30, 2010 Sheet 2 of 10 US 2010/0246813 A1

200

INPUT Cipher E. Kx Tx M M -1 OUTPUT
M = {0, ..., N-1}

n-character register 208
Key III
202

Plaintext 2. N 7 Ciphertext
216

Pseudorandom function 210
Tweak
2O6 E Combining function 212

FIG. 2

Patent Application Publication Sep. 30, 2010 Sheet 3 of 10 US 2010/0246813 A1

300 Computing EKT (7) = 4

n-bit register reg
3O2

312 Round 1 l

7T (1,11) = 1

7T (2,10) = 0

71 (3,01) = 1

7T (4,10) = 0

Patent Application Publication Sep. 30, 2010 Sheet 4 of 10 US 2010/0246813 A1

410

N- Fr(i.Z.B.)

128-bit string

SpeedUpReg(0.127)

7- 412
127

N--
used by Fict (i.Z, Bj)

16(i-1)-1

FIG. 4A

Patent Application Publication Sep. 30, 2010 Sheet 5 of 10 US 2010/0246813 A1

- 402 404
- 406

Round j=0 408 N n-bit register Main Reg(O. n-1 -
EEE 25N Z B-bibbib,

SpeedUpRegb1b2bab4+ 16 - 0
N - 414

BFb2bsb4do
N- 418

SpeedUpRegb2bgbado + 16 - 1)
N-420

B=bgbadood

422

FIG. 4B

Patent Application Publication Sep. 30, 2010 Sheet 6 of 10 US 2010/0246813 A1

START

APPLYPSEUDORANDOMFUNCTION FTOPHASE
NUMBER, TWEAK, AND BITS Z=MAINREG5.N-1). OUTPUT

128-BIT STRING AND STORE INTO SPEEDUPREG
502

FOREACHROUND J = 0, 1, 2, 3, 4
504

CONCATENATE BITS MAINREGI1...(4-J) AND
MAINREGI(N-J).(N-1) AND ASSIGN TO B

506

LOOKUP PSEUDORANDOM BIT IN
SPEEDUPREGB+16 JJ

508

COMBINE VALUE IN BIT POSITION MAINREGIO)
WITH PSEUDORANDOM BIT USING EXCLUSIVE

OR TO PRODUCE 1-BIT OUTPUT
510

CONCATENATE THE VALUE IN BIT
POSITIONS MAINREGI1...N-1) WITH THE

VALUE OF NEW 1-BIT OUTPUT
512

STORE THE CONCATENATION RESULT
INTO MAINREG

514

NEXT ROUND
516

FIG. 5 END

Patent Application Publication Sep. 30, 2010 Sheet 7 of 10 US 2010/0246813 A1

600

N- Computing Ek (348882346) = 888234606

612
u 9-character register Main Reg(0.9) 602

O (round) 604

71 (0,48882346) = 7

g s' a 610

618 4 ZSZŽ&WSZŽižN 1

Round 1 4 23% 2&

FIG. 6

Patent Application Publication

704 AESk(P(i.Z))

7O6 128-bit string

708 39-decimal digit string

710 SpeedUpReg(0.38)
O 9 19

716
Round 2i+0-

Sep. 30, 2010 Sheet 8 of 10 US 2010/0246813 A1

Input string 712

l
O n-1

n-decimal digit register Main Reg 714

N- 730

FIG. 7

Patent Application Publication

START

RECEIVE INPUT, TWEAK,
KEY K
802

STORE NCHARACTER
INPUT STRING IN MAINREG

804

FOREACH PHASE
806

APPLY APSEUDORANDOM
FUNCTION TO THE WALUE IN

CHARACTERPOSITIONS 1...N-1 OF
THE MAINREGAND OUTPUTA
PSEUDORANDOM CHARACTER

STRING
808

SELECT J CHARACTERS FROM THE
PSEUDORANDOM STRING AND
STORE THEMINASPEEDUPREG

810

FOREACHROUND
812

APPLY CHOICE FUNCTION TOMAINREG,
SPEEDUPREG, AND ROUND TO PRODUCE
A PSEUDORANDOM CHARACTER STRING

OUTPUT
814

Sep. 30, 2010 Sheet 9 of 10 US 2010/0246813 A1

COMBINE THE WALUE IN CHARACTER
POSITIONSO OF THE MAINREGAND THE
PSEUDORANDOM CHARACTER STRING

OUTPUT TO PRODUCE A NEW CHARACTER
STRING
816

CONCATENATE THE WALUE IN CHARACTER
POSITIONS 1...N-1) OF THE MAINREG WITH
THE WALUE OF THE NEW CHARACTER

STRING OUTPUT AND STORE
CONCATENATED RESULT INTO MAINREG

818

NEXT ROUND
820

NEXT PHASE
822

END

FIG. 8

Patent Application Publication Sep. 30, 2010 Sheet 10 of 10 US 2010/0246813 A1

INVOKE THE CHOICE FUNCTION
USING THE MAINREG, THE

SPEEDUPREG, AND THE ROUND
902

CONCATENATE THE CHARACTER STRING IN
POSITIONS 1...(M-1-J) OF MAINREG WITH THE
CHARACTER STRING IN POSITIONS (N-J).(N-1)),
WHERE JIS THE ROUND NUMBER, TO OBTAINA

STRING OF M-1 BASE-K CHARACTERS
904

INTERPRET THE STRING OF M-1 BASE-K
CHARACTERS ASA DECIMAL NUMBER BAND
RETURN CHARACTER B+KM-1 - J OF THE

SPEEDUPREG TO PRODUCE A PSEUDORANDOM
BASE-K CHARACTER OUTPUT

906

FIG. 9

US 2010/0246813 A1

METHOD AND SYSTEM FOR
ACCELERATING THE DETERMINISTC
ENCPHERING OF DATA IN A SMALL

DOMAIN

RELATED APPLICATION

0001. This application hereby claims priority under 35
U.S.C.S 119 to U.S. Provisional Application 61/164,660
entitled “Thorp Mode Encryption.” by Benjamin J. Morris,
Philip Rogaway, Terence Spies, and Till Stegers, filed Mar.
30, 2009 (Atty. Docket No.: UC095511PSP).

BACKGROUND

0002 1. Field
0003. The present embodiments relate to cryptographic
techniques for constructing a blockcipher-based encryption
scheme. More specifically, the present embodiments relate to
techniques for constructing fast and provably secure schemes
for deterministically enciphering data from a small domain,
like credit card numbers, using a conventional block cipher.
0004 2. Related Art
0005 Imagine wanting to encrypt a nine-decimal-digit
plaintext, such as a U.S. Social Security number, into a
ciphertext that is also a nine-decimal-digit number. This
operation is useful for storing the ciphertext in the same
record structure as the plaintext. Modern cryptographic tech
niques typically assume the plaintext input to a block cipher
has a block size of 128 bits and that the block cipher outputs
a ciphertext of 128 bits. Unfortunately, nine-decimal-digit
plaintext input and nine-decimal-digit ciphertext output are
incompatible with a block size of 128 bits.
0006. One could imagine attempting to construct the
desired scheme directly, by modifying a known primitive, but
Such constructions have many shortcomings. For example,
one could modify the definition of the Advanced Encryption
Standard (AES) so that it would take in a nine-decimal-digit
plaintext and output a ciphertext that is also a nine-decimal
digit number. But both the specification and implementations
of AES have been carefully crafted, and the specification has
been in the public domain for a considerable time, so a modi
fied version of AES would need careful study by many cryp
tographers to determine whether the level of security believed
to be provided by AES was compromised. As such, it is
neither feasible nor desirable to employ such an approach.
0007. In an alternative approach, rather than modifying
AES, one could embed the nine-decimal-digit plaintext one
wants to encrypt into a 128-bit string, and then invoke AES.
Because AES returns a 128-bit string, the output would have
to be mapped back into a nine-decimal-digit number. But it is
impossible to encode a 128-bit string into nine decimal digits,
since 2' >10.
0008 Is it really a problem if one cannot encrypt nine
decimal-digit numbers into nine-decimal-digit numbers?
Consider a database of U.S. Social Security numbers. Sup
pose one wished to silently replace all of the Social Security
numbers with encrypted Social Security numbers. Using AES
to produce an output of 128 bits and using this in place of the
nine-decimal-digit numbers would break existing applica
tions that access and manipulate U.S. Social Security num
bers, because Such applications, expecting nine-decimal
digit strings, are now faced with 128-bit binary strings
instead. Further, the database schema for each table contain
ing U.S. Social Security numbers would need to be changed

Sep. 30, 2010

to support a different data type, and dependent applications
would need to be modified accordingly. Conventional block
ciphers like AES are, therefore, not directly usable to encrypt
on Small domains of practical interest, because these tech
niques send 128-bit inputs to 128-bit outputs.
0009 Hence, what is needed is a cryptographic technique
to encipher elements from a small domain into elements of the
same Small domain.

SUMMARY

0010. The present embodiments provide a practical sys
tem for enciphering input data drawn from a small domain
into output data that is also drawn from the same domain. The
system can be based on a conventional block cipher. Further,
the system's process of enciphering can be sped up signifi
cantly to reduce the number of invocations of a conventional
block cipher that are needed. Finally, the system is practical
and can enjoy provable security guarantees.
0011. In some embodiments, the small domain that can be
enciphered is the set of credit card numbers or the set of U.S.
Social Security numbers. In general, the domain can be the set
of all Strings of some fixed length n, where each String con
sists of base-k characters for some k22.
0012. In some embodiments, the system's process of enci
phering elements from a small domain can be likened to
shuffling cards. Each step in the enciphering process is analo
gous to shuffling a deck of cards. Each card represents a
message with the domain of the cipher.
0013. In some embodiments, the system's process of enci
phering can be sped up by five times compared to a more
naive embodiment.
0014. In some embodiments, the system's process of enci
phering can be sped up by two times compared to a more
naive embodiment.

0015. In some embodiments, a conventional block cipher
like AES (the Advanced Encryption Standard) is used to
implement a pseudorandom function that generates pseudo
random bits and is used internally within the embodiment.
0016. In some embodiments, the obliviousness property
of a card shuffle the property of a shuffle that you can trace
the trajectory of a card without attending to the trajectories of
other cards—is the basis of the encryption scheme that is
Subject to the speed-up technique.

BRIEF DESCRIPTION OF THE FIGURES

0017 FIG. 1 shows two examples of domains for small
space encryption in accordance with an embodiment.
0018 FIG. 2 shows the major components of an imple
mentation of a cipher E in accordance with an embodiment.
0019 FIG. 3 shows a detailed example of how to encrypt
a value drawn from the domain of playing cards numbered 0.
..., 7 to another value in the same domain in accordance with
an embodiment.
0020 FIGS. 4A-4B show a detailed example illustrating
the speed-up optimization to perform five rounds of encipher
ing using a single call to the underlying pseudorandom func
tion in accordance with an embodiment.
0021 FIG. 5 shows a flowchart illustrating the process of
performing five rounds of enciphering using a single call to
the underlying pseudorandom function as a way of speeding
up the process of enciphering for n-bit input strings in accor
dance with an embodiment.

US 2010/0246813 A1

0022 FIG. 6 illustrates the process of encrypting a U.S.
Social Security number to another number in the same
domain in accordance with an embodiment.
0023 FIG. 7 shows a flowchart illustrating the process of
performing two rounds of enciphering using a single call to
the underlying pseudorandom function as a way-of speeding
up the process of enciphering for n-decimal-digit input
strings in accordance with an embodiment.
0024 FIG. 8 illustrates the general process of encrypting a
message in the format of an n-character inputString where the
character is base-k through p phases of enciphering in accor
dance with an embodiment.
0025 FIG. 9 illustrates the process of invoking a choice
function on the input register and the speed-up register to
return a pseudorandom character string in accordance with an
embodiment.
0026 Table 1 illustrates the Thorp shuffle technique with
the obliviousness property in which only card seven is
shuffled through four rounds in accordance with an embodi
ment.

0027 Table 2 illustrates how the enciphering system con
catenates bits from the input String to index into a speed-up
register to obtain a random bit in accordance with an embodi
ment.

0028 Table 3 illustrates some example parameter sets in
accordance with an embodiment.
0029. In the figures, like reference numerals refer to the
same figure elements. Moreover, multiple instances of the
same type of part may be designated by a common prefix
separated from an instance number by a dash.

DETAILED DESCRIPTION

0030 The following description is presented to enable any
person skilled in the art to make and use the present embodi
ments, and is provided in the context of a particular applica
tion and its requirements. Various modifications to the dis
closed embodiments will be readily apparent to those skilled
in the art, and the general principles defined herein may be
applied to other embodiments and applications without
departing from the spirit and scope of the present embodi
ments. Thus, the present embodiments are not limited to the
embodiments shown, but are to be accorded the widest scope
consistent with the principles and features disclosed herein.
0031. The data structures and code described in this
detailed description are typically stored on a computer-read
able storage medium, which may be any device or medium
that can store code and/or data for use by a computer system.
The computer-readable storage medium includes, but is not
limited to, Volatile memory, non-volatile memory, magnetic
and optical storage devices Such as disk drives, magnetic tape,
CDs (compact discs), DVDs (digital versatile discs or digital
Video discs), or other media capable of storing computer
readable media now known or later developed.
0032. The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a computer readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-read
able storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.
Furthermore, the methods and processes described below can
be included in hardware modules. For example, the hardware
modules can include, but are not limited to, application-spe

Sep. 30, 2010

cific integrated circuit (ASIC) chips, field-programmable
gate arrays (FPGAs), and other programmable-logic devices
now known or later developed. When the hardware modules
are activated, the hardware modules perform the methods and
processes included within the hardware modules.
0033 Embodiments provide a method and system for
deterministically enciphering plaintext in a small domain
such as U.S. Social Security numbers or credit card numbers
into a ciphertext in the same domain. More generally,
embodiments provide a method and system for deterministi
cally enciphering plaintextina Small domain consisting of all
strings of identical length over some finite alphabet.
0034 FIG. 1 shows two examples of systems that operate
in Small domains inaccordance with some embodiments. The
first system enciphers a 16-decimal-digit credit card number
102, the plaintext, into a ciphertext 104 that is also a 16-deci
mal-digit number. The second system is an example of a
database of Social Security numbers 106 stored in a table of
the database. In this example, the system enciphers each
nine-decimal-digit U.S. Social Security number into a cipher
text that is also a nine-decimal-digit number, which looks just
like another Social Security number. The ciphertext result is
stored in place of the original Social Security number, updat
ing the corresponding field in the database table. It is also
possible to decipher each such Social Security number
ciphertext to recover the original upon retrieval from the
database. Another example of a small domain (not shown) is
pieces of credit card numbers in which, say, the last five digits
are shown in the clear and the first 11 digits are encrypted in
accordance with an embodiment. These examples are not
meant to limit the scope of the present invention but serve to
illustrate their possible domains of use.
0035. The examples given are a special case of “format
preserving encryption’ (FPE). In an FPE scheme, encryption
is deterministic and the format of the ciphertext is identical to
that of the plaintext. The advantage of FPE is that it simplifies
adding encryption to systems with legacy data like the data
base because field types for the legacy data need not be
changed when the data is enciphered.
0036. In the systems illustrated in FIG. 1 we show a box
labeled Ek, the enciphering system, which takes an input
string such as a credit card number or a U.S. Social Security
number and returns its respective enciphered output. More
specifically, we define a cipher, a map F: Kx Tx M-> M
where K. Tand Mare finite non-empty sets and where Eis
a permutation on Mfor every Ke Kand Te TThe set Kis
the key space, the set Tthe tweak space, and the set Mis the
domain. The shared key K controls the encryption. Both the
key space and the domain are sets of strings drawn from an
arbitrary alphabet (a finite, non-empty set of characters). The
elements of set Mare called plaintexts, or messages, and the
number of them is denoted by M|=N.
0037. The tweak space is a set of arbitrary byte strings. The
set T should be large enough to accommodate all non-secret
information that may be associated with a plaintext. Users are
strongly encouraged to employ tweaks whenever possible, as
their judicious use can significantly increase security. The
intuition behind using a tweak in an FPE scheme is that we
want knowledge of where a plaintext maps to under a tweakT
does no good in trying to figure out where the same or even all
plaintexts maps to under a different tweak T.
0038. The cipher Eshould have following properties: (1)
given a key and a tweak, it is bijective, that is, it is a one-to-one

US 2010/0246813 A1

and onto function; (2) it is deterministic—it does not depend
on any internal randomness or “coins; (3) it is practical—
meaning that it is simple and fast to compute; and (4) it is
provably secure—meaning that a proof is known that pro
vides a significant assurance that it is a good pseudorandom
permutation. In saying that Eis a good pseudorandom per
mutation we mean that a black box for computing E with
respect to a random key Ke Klooks to an adversary with
reasonable computational means like a family of independent
random permutations on Mindexed by tweaks in the tweak
Space.
0039. In one or more embodiments, if the domain Mis the
space of U.S. Social Security numbers, then M={0, 1,...,
N-1}, and N=10. FIG. 1 shows encrypting a Social Security
number in terms of the cipher via E. K.T., 348-88-2346)=234
60-6477 (where hyphens are retained to show that the cipher
text is a U.S. Social Security number). In one or more embodi
ments, if the domain Mis the space of 16-digit credit card
numbers, then M={0, 1,...,N-1}, where N=10". Further,
FIG. 1 shows encrypting a credit card number in terms of the
cipher via E(K, T, 4000 123456789123)=5887 32290447
4263.
0040 FIG. 2 shows the major components of an imple
mentation of a cipher Ein one embodiment of the present
invention. The components implement a tweaked pseudoran
dom permutation on M for every key in Kand every tweak in
TThe cipher Emechanism receives three arguments as
inputs, namely a “Key’ 202, a “Plaintext 204, such as a
credit card number or a U.S. Social Security number, and a
“Tweak 206. The “Plaintext 204 is stored in an n-character
register 208. “Key’ 202 is an element of the set of keys K.
which may be defined as a set of 128-bit strings, where Kis
the set of keys of the pseudorandom function. “Tweak” 206 is
an element of the set of tweaks Twhich contains strings of
bytes drawn from the set BYTE where J-21 and BYTE
denotes {0,1}, the set of 8-bit bytes. Note that characters are
the most general format because they include bits, decimal
digits, and hexadecimal digits, to name a few. The pseudo
random function 210 is the key to making the cipher practical
and realizable; the function takes a round number, the key
“Key’ 202, and the tweak “Tweak” 206 and outputs a fixed
length pseudorandom base-k character String. In one embodi
ment, this pseudorandom function 210 can be constructed
from the CBC-MAC of AES (Advanced Encryption Stan
dard). In yet another variation, the pseudorandom function
210 can be implemented using CMAC. In another variation,
the key Kitself can be a 128-bit quantity, a 192-bit or even a
256-bit quantity, depending on the level of security desired.
0041. The “combining function 212 takes a pair of equal
length strings and returns a string of the same length. In one
embodiment, when messages are bit strings, the combining
function may be modulo-2 addition, also known as exclusive
or. In another embodiment, when messages are decimal
strings, the combining function is modulo-10 addition. In the
general embodiment, the combining function 212 may be
modulo-k addition for base-k characters. The output of the
cipher F200 as a result of performing the computation 212 is
“Ciphertext 216, which is in the same domain as the input
“Plaintext 204.
0042. What is the reason for including a tweak in the
cipher E? Suppose we are enciphering the six middle digits of
a 16-digit credit card number, the remaining ten digits are to
be left in the clear. If we use a deterministic and tweakless
scheme, there is a danger that an adversary might be able to

Sep. 30, 2010

create, by noncryptographic means, an unnecessarily useful
dictionary of plaintext/ciphertext pairs (X, Y), where X is a
6-digit number and Y is its encryption. Each plaintext/cipher
text pair (X,Y) that the adversary somehow obtains (acquired,
for example, by a phishing attack) would let the adversary
decrypt every credit card number that happens to have those
same six middle digits. Note that in a database of 100 million
entries we would expect about 100 credit card numbers to
share any given six middle digits. Learning k credit card
numbers and possessing an encrypted database ought not give
you 100k more credit card numbers for free.
0043. The problem is not a cryptographic failure, but a
failure to use a good tool well. The middle-six digits ought to
have been tweaked by the remaining ten. If this had been done
then learning the credit card number 1234-123456-9876
encrypts to 1234-770611-9876, say, would not let one
decrypt 1111-770611-9999, as the mapping of 123456 to
770611 is specific to the surrounding digits 1234/9876.
0044. In general, it is desirable to use all information that

is available and Statically associated to a plaintext as a tweak
for that plaintext. In the most felicitous setting of all, the
non-secret tweak associated to a plaintext is associated only
to that plaintext. Extensive tweaking means that fewer plain
texts are enciphered under any given tweak. This corre
sponds, in the pseudorandom function model we have
adopted, to fewer queries to the target instance. The relevant
metric is the maximum number of plaintexts enciphered with
the same tweak, which is likely to be significantly less than
the total number of plaintexts enciphered.
0045. To implement the cipher E, we need a representa
tion of a message (the plaintext) and a procedure to “mix” the
key K with the message. To be deterministic, practical and
provably secure, the cipher Fcan be based on the idea of
shuffling a deck of cards. Shuffling is equivalent to generating
a random permutation of the cards. There are two basic algo
rithms for doing this. The first is simply to assign a random
number to each card, and then to sort the cards in order of their
random numbers. This will generate a random permutation,
unless two of the random numbers generated are the same.
This can be eliminated either by retrying these cases, or
reduced to an arbitrarily low probability by choosing a suffi
ciently wide range of random number choices. The second,
generally known as the Knuth shuffle or Fisher-Yates shuffle,
is a linear-time algorithm, which involves moving through the
pack from top to bottom, Swapping each card in turn with
another card from a random position in the part of the pack
that has not yet been passed through (including itself). Pro
viding that the random numbers are unbiased, this will always
generate a random permutation.
0046 A variation on these algorithms is the Thorp shuffle,
where the deck is cut into two equal-sized piles. Intuitively,
cipher Eencrypts by "shuffling a set of messages using
Thorp's method, where these messages can be thought of as
cards in a large deck. Consider Such a deck of N cards where
N is even. We wish to shuffle all the cards in the deck. First, cut
the deck into two equal piles. Second, according to the out
come of a fair coin flip, drop the bottom card from either the
left or right pile, and then drop the card from the bottom of the
other pile. Continue in this way, flipping a total of N/2 inde
pendent coins, using each to decide if cards are dropped

US 2010/0246813 A1

left-then-right or right-then-left, until there are no more cards.
This is one round of the shuffle in which all cards from the two
decks have been shuffledback into a single deck. Cut the deck
again into two equal-sized piles and repeat the shuffle proce
dure for as many rounds as needed to mix the cards suffi
ciently.
0047. To see the Thorp shuffle in action, imagine that the
single deck of cards has been cut into two decks: one deck is
labeled “deck 1 (left pile) and the second deck is labeled
“deck 2' (right pile). In this unusual deck there are only eight
cards, each labeled with a number 0, 1, 2, 3, 4, 5, 6, and 7.
Consider the Thorp shuffle with 4 rounds on this deck of
cards. Cards 0-3 are in deck 1, and cards 4-7 are in deck 2.
0048 Consider the pair of cards 0 and 4 at the bottom of
each deck. To shuffle the deck, how do we decide in which
order to drop the bottom cards? Do we drop card 0 and then
card 4? Or, do we drop card 4 first and then card 048 Flipping
a fair coin makes this determination: for example, “heads'
(coin flip-0) means drop left-then-right and “tails” (coin
flip=1) means drop right-then-left. For card pair (0.4) we flip
a coin; it comes up "heads. So we drop card 0, and then drop
card 4. The new deck being formed has card 0 at the bottom
with card 4 on top of it. For each pair of remaining cards (1.5),
(2,6) and (3.7), we flip a coin. Let us assume that “tails” is
associated with (1.5), “tails” with (2,6) and “heads” with
(3,7).
0049. After performing the drop procedure for each pair of
cards associated with each coin flip, the new deck is shown
viewed from left to right instead of bottom to top:045 162
37. After one round, the entire deck of eight cards has been
shuffled using four independent coin flips. If we define a
minimum, called a pass, as log Nthen the total number of
coin flips used in a pass is log NN/2. Here computes
the ceiling function such that x is the Smallest integer not
less than X. The Thorp shuffle can mix the deck well after a
Small number of passes.
0050. Whenever Nicards are shuffled in this fashion, all the
cards are being shuffled at the same time. Yet, it is possible to
trace the route of any given card in the deck through each
successive round of the shuffle without attending to the
remaining cards in the deck. The Thorp shuffle is said to be
oblivious to other cards in the deck in that one can focus on the
route a single card takes as it is shuffled in multiple rounds;
one need not be concerned with the route of other cards. An
embodiment of the present invention leverages this oblivious
ness property of the Thorp shuffle: a sufficient number of
rounds that mix the cards quickly enough makes encrypting
over Small domains practical and feasible.
0051) To explain the obliviousness property of the Thorp
shuffle, consider the same deck of eight cards in its original
configuration: 0 1 2 3 4 56 7. Employing the obliviousness
property, we can ignore seven of the cards and consider just
shuffling card 7 in the deck. Alternatively, think of “encrypt
ing 7 by applying the Thorp shuffle and only looking at the
route of 7 during the course of the shuffle. Table 1 shows the
Thorp shuffle oblivious to all but card 7. Given the coin flips
tails (1), heads (O), tails (1), and heads (O) for the pairs in
which card 7 is involved, the four rounds of shuffling show
that card 7 ends at position 4 (numbering the positions in the
horizontal deck from 0 to 7). Thus, the result of encrypting 7
is 4 or F(K. T. 7)=4 for some K and T. The cards we do not
care about are labeled with an asterisk “*” to focus our atten
tion on 7. Note that 4 is drawn from the same domain as 7,
namely M={0,...,N-1}, where N=8.

Sep. 30, 2010

TABLE 1

Card position
Round number O 1 2 3 4 S 67 Coin flips

:: * : * : * : 7

* : * : * : 7 : Tails (1) right-then-left
Heads (O) left-then-right
Tails (1) right-then-left
Heads (O) left-then-right

* * : * : 7 : :
* : 7 : * : * :
* : * : 7 : * :

0.052 The Thorp shuffle, due to its obliviousness, provides
a practical method to encrypt messages over Small domains.
To implement the shuffle, and therefore the cipher E, we need
(1) a representation of the messages in space M. and (2) a
function that realizes uniform random coin flips.
0053 First, we represent all messages in space M, or the
cards in the deck, by Strings of the same length n over some
fixed alphabet. In one embodiment, where N=2", messages
are represented as a n-bit strings, so that for instance card 7 in
the shuffle would be represented by the binary string 111. In
general, if N=k", then each message in M={0,..., k"-1} a
string of n base-k digits.
0054 Second, to implement the behavior of fair coin flips,
we make use of a pseudorandom function family. The func
tion (family) is said to be pseudorandom because it possesses
the property that the input-output behavior of an instance of
the family of such functions determined by a random key is
computationally indistinguishable from a random function
with the same signature. In an embodiment over an alphabet
E the signature of this pseudorandom function is f Kx
Tx(text missing or illegible when filed *->{0,1}, that
is, given a key, a tweak, a round number, and a message, the
function returns a pseudorandom bit of 0 or 1.
0055. The key space Kis identical to the key space of the
cipher E. For a key K, we use the notation frk() rather than
f(K,) to indicate a pseudorandom function keyed with key
K. The total number of random bits needed to shuffle a single
card for R rounds is Rbits, not (N/2)R bits which would be
needed to shuffle the entire deck. (The property of being able
to follow the trajectory of a single card without attending to
all the other cards is called obliviousness.) Table 1 shows R=4
rounds of the shuffle, and that four random bits are needed to
implement the four coin flips. In a naive embodiment, the
invocation of the pseudorandom function on each round
returns a pseudorandom bit. The reason the round number is
included as an argument to the pseudorandom function is to
ensure that the pseudorandom bits are indeed generated inde
pendently for different rounds. The reason the tweak is
included is ensure that the encryption processes for different
tweaks, even for the same plaintext, are independent.
0056. In one or more embodiments, the pseudorandom
function feould be implemented using the CBC-MAC of
AES, the Advanced Encryption Standard. The CBC-MAC is
a well-known method for using the Cipher Block Chaining
mode of operation to turn a block cipher into a Message
Authentication Code (MAC). When implemented using the
CBC-MAC, the function finust be constructed in such away
that the set of inputs on which the CBC-MAC is invoked is
prefix-free, that is, for any distinct inputs x, y, X is not a prefix
ofy. This is because the CBC-MAC is known to be a good
pseudorandom function when invoked on a set of prefix-free
inputs, assuming that the underlying block cipher is a good

US 2010/0246813 A1

pseudorandom random permutation. In addition to the CBC
MAC, the pseudorandom function could also be implemented
using the CMAC mode of operation.
0057 The pseudorandom function ftypically needs to
make only a single AES call per pseudorandom function
invocation, provided the tweak has been preprocessed. Note
that an AES call returns a 128-bit string. The pseudorandom
function fwill pick one of these 128 bits and return just one
bit; in one embodiment function freturns bit 127. This is
reasonable and practical because all 128 bits are guaranteed
to be pseudorandom and, therefore, any bit chosen is pseu
dorandom.

0058 FIG.3 illustrates a practical realization of the Thorp
shuffle on a bit string of length n=3 in accordance with some
embodiments. In this example illustrating an embodiment
where N=8 =2 and R-4, we trace the encryption of 7 (in
binary, 111). We show that in this example the encryption
yields E, (7)=4 (300), just as we showed using cards. Note
that the notation where "KT" is a subscript of cipher Eindi
cates that the computation relies on the key K and the tweak
T, which remain unchanged during the computation per
formed by ESuppose that bit string 111 is stored in an n-bit
register called reg 302. The string is divided into two parts:
regO (the left side) and reg1 ... 2 (the right side).
0059. In round 1 (312), the system invokes the pseudoran
dom function T.304 with the round number 1 and the value
of reg1 ... 2-11 as the arguments and outputs a pseudoran
dom bit f(r-1, x=11)=1. The system computes the exclu
sive-or (which is one embodiment of the combining function
212 shown in FIG. 2) of this pseudorandom bit with the value
of regO and outputs the 1-bit value 1 xor 1–0. Then the
system concatenates reg1 ... 2 (right side) with the value 0
output by the combining function 212, resulting in the string
1 1 0. This concatenated result is stored in reg. After one
round, the new state is 110, or 6 in decimal, which can be seen
in the new state of the n-bit register 310. Following the same
procedure outlined above for each Subsequent round, at the
end of round 2 (314), the original plaintext 7 has been
encrypted to the value 5 (316), after round 3 (318) to 2 (320),
and, finally, after round 4 (322) to 4 (324), the value we
expected and the same value returned in the Thorp shuffle of
card 7.

0060 For every round of the shuffle in this particular
embodiment, the pseudorandom function finvokes the CBC
MAC of AES exactly once. This is because the CBC-MAC of
the tweak can be cached, utilizing the fact that CBC-MAC0.
X|X)=CBC-MAC (CBC-MAC (0,X),X), where CBC
MACCV. X) denotes the CBC-MAC of a sequence of blocks
X starting with initialization vector V. With this preprocessing
in mind, we refer to such a CBC-MAC invocation also as an
AES call or AES invocation. Each CBC-MAC invocation
returns an independent pseudorandom 128-bit string, ensur
ing that different rounds behave independently—but only 1
pseudorandom bit is returned by the pseudorandom function
f. Because the computation required for each AES call is
potentially expensive, it seems especially wasteful that the
above procedure only uses 1 bit for each round when 128 bits
are available. In another embodiment of the present invention,
these 128 bits from one AES call can be shared by multiple
rounds. In particular, if n25 for N=2", then for each group of
five rounds—called a phase—only one AES call is required.
Each round uses a different non-overlapping 16-element Sub
set of these same 128 bits to provide separation between
different rounds. In particular, this embodiment of the opti

Sep. 30, 2010

mization uses 5-2–80 bits of the 128 bits returned from the
AES call. This is where the speed-up optimization comes into
play—we avoid the expense of calling AES in each round and
amortize its cost over five rounds, at the low price of some
additional arithmetic and a small number of register lookups.
0061 FIGS. 4A-4B show this speed-up optimization to
encipher a message drawn from the set Mwhere the total
number of messages in Mis N=2" for some ne5 in accor
dance with some embodiments. The message to encipherisan
n-bit string, stored in an n-bit register MainReg 404. In one
round of the Thorp shuffle presented earlier only the bit in
position IOI of Main Reg was “active' in the sense that we
computed the exclusive-or of that bit value with the output of
the pseudorandom function F.That same bit is still active
under this speed-up optimization. What is different is that
four other bits of the n-bit Main Reg 404 are used to index into
a speed-up register SpeedUpReg 412 (which we shall explain
shortly) to yield a pseudorandom bit; this bit, as before, is
exclusive-or-ed with the active bit. To populate this SpeedU
pReg 412, one AES call (410) is made at the beginning of the
5-round. This AES call in one phase returns a random 128-bit
string, which is then stored in SpeedUpReg 412. The five
rounds making up a phase share the SpeedUpReg 412 to
obtain their subsets of bits. The arguments to said AES call are
the round number and the bits 5... n of the n-bit Main Reg
404. Call this bit string Z 408. The optimization exploits the
fact that the substring Z of Main Reg is common to the n-bit
strings in Main Reg 404 in all five rounds of the phase. The call
AES (P(i, Z)) is keyed with key K and takes as an argument,
in one embodiment, a prefix-free encoding P(i, Z) of the phase
number i and the string Z.
0062. The reason the speed-up optimization for encipher
ing n-bit strings performs five rounds and not six rounds is
that each round examines a different 16-bit subset of the
128-bits in SpeedUpReg. Since 48 bits remain of the 128-bits
considered in the SpeedUpReg, could we not also perform a
sixth round and extract 16 of the 48 remaining bits to index
into? The answer is no, unfortunately: Six rounds of encipher
ing per phase for n-bit strings to achieve a six-fold speed-up
require that the pseudorandom function output at least 6'2''
bits (6-2-192), which is more than the 128 bits output by our
pseudorandom function.
0063 FIG. 4B shows the state changes of the n-bit register
Main Reg 404 for each round of a group of five rounds where
index je (0, 1, 2, 3, 4). We label the bits in MainRegO).
MainReg1, MainReg2, Main Reg3, and Main Reg4 at
the beginning of round j=0 as bob, b. bs, and be respec
tively.
0064. For example, consider the roundj=0 (402) of phase
5i. In Main Reg 404, bitbo is the active bit. Bits b, b. bs, and
ba are concatenated to form a new bit string B406 (shown to
the right of the n-bit register as bbbb). This bit string B
406 is used to index into SpeedUpReg B+16=SpeedUpReg
B 414 to obtain one pseudorandom bit. Suppose this bit
string is B=1010. When j=0, then SpeedUpReg1010
indexes into position 10 decimal of the speed-up register.
Suppose that the pseudorandom bit SpeedUpReg1010 is 1.
Note that B has four bits, so the index B+16 always points to
a position in the (+1)-th 16-bit block of SpeedUpReg, ensur
ing that indices do not repeat across rounds.
0065 Suppose that the pseudorandom bit SpeedUpReg
1010 is 1. Next, the system applies the combining func
tion—in this embodiment, the exclusive-or operator—to the

US 2010/0246813 A1

value (say) 1 in boMainRegO and the pseudorandom bit
SpeedUpReg1010)=1 to produce a 1-bit output, the value
do-0 (1 xor 1).
0066 Next, the system concatenates the value in bit posi
tions Main Reg 1 . . . n—1 with the 1-bit output of the
combining function, and stores the result in the register Main
Reg.
0067. The new state of the register Main Reg consists of

bits b, b. bs, and b (so that b, occupies bit position IOI).
followed by Z, and followed by do. In FIG. 4B, this state is
shown in the next round.
0068 To continue the example, consider the next round.
Now j=1. The n-bit register Main Reg 404 has the following
state: bbbb Z do. Bitb is the active bit. Bits b,b,b, and
do are concatenated to form a new bit-string B 418 (shown to
the right of the n-bit register). Notice that bit do is a result of
the previous round and is appended to bbba to form
B-babbado 0100. This bit string B 418 is used to compute
the index B+16=4 +16=20 into the SpeedUpReg 420 to
obtain the pseudorandom bit SpeedUpReg20.
0069. Next, the system applies the combining function to
b=MainRegO and the pseudorandom bit looked up from
SpeedUpReg 412 to produce a 1-bit output d.
0070 Next, the system concatenates the value in bit posi
tions MainReg1 ... n—1 with d and stores the result in the
register MainReg.
0071. This procedure is continued for the next three
rounds numberedj=2.j=3, andj=4. The very last state shown
in the figure (422) is the final result of applying all five rounds
in this phase to the n-bit register Main Reg 404:
Z dodd.dd. If there are more phases remaining in the
shuffle, then the phase number is incremented by 1 and the
next group of five rounds is computed. Note that there may be
fewer than five rounds in the very last phase of the encryption
process.
0072 FIG. 5 shows a flowchart illustrating the speed-up
optimization of the Thorp shuffle in accordance with some
embodiments. Note that the specific arrangement of steps
shown in the figure should not be construed as limiting the
Scope of the embodiments. The enciphering system begins by
invoking the pseudorandom function f (step 502), passing
in the phase number i, tweak T, and the Substring
Z-Main Reg5 . . . n-1. The underlying implementation of
this function invokes AES (P(i, Z)), where P(i, Z) is a prefix
free encoding of the phase number and Z. The AES call
outputs a 128-bit string. The system stores this string in the
SpeedUpReg.
0073. Next, the system starts an iteration (step 504) where
each iteration is called a round and the round number Suc
cessively takes on the values 0, 1, 2, 3, 4.
0074 Next, the system sets B to be the concatenation of bit
strings MainReg1 ... (4-1) and MainReg(n-j) . . . (n-1)
(step 506). At first blush, it is not obvious what substrings are
being concatenated, yet these correspond merely to the bit
positions in Main Reg that do not fall into Z. To see this,
consider the following example, which borrows from FIG. 4.
Column 1 of Table 2 is j, the round number. Column 2 lists the
index range 1 . . . (4-1) for the respective values of j, which
extracts the first substring. The reason for this choice of
indices is clear: in FIG. 4 you can see that part of each round
involves rotating the n-bit register by 1 bit and storing the
result of the exclusive-or computation in position n-1, so in
each round Z is preceded by one bit bless. Column 3 shows
the bit strings extracted as reg(n-j)... (n-1). From one round

Sep. 30, 2010

to the next, this bit string grows by 1 bit. Thus, at index=0.1
... 4 yields bit string bbbb, and In... (n-1) selects the
empty string. At index=1, 1 ... 3 yields bit string babba
and (n-1)... n-1 yields do. At index=2, 1 ... 2 yields bit
stringbb and (n-2)... (n-1) yields dod. At index j 4, 1
. . . (4-1) selects the empty string while n . . . (n-1) is
dodd.ds.

TABLE 2

Bit concatenation for Speed-up optimization

j 1... (4-) (n-j)... (n - 1) B

O 1... 4 n ... (n - 1) b1b2bsbA.
1 1... 3 (n-1)... (n - 1) b2bsbado
2 1 ... 2 (n - 2) ... (n - 1) b3badodi
3 1... 1 (n-3) ... (n - 1) badodid?
4 1... O (n - 4) ... (n - 1) dodd2ds

0075) Next, the system consults the SpeedUpReg register
(step 508) to look up the pseudorandom bit at index B+16.
Note that B has four bits and thus corresponds to an index in
{0,..., 15. To ensure that each distinct rounds select among
disjoint 16-bit substrings of SpeedUpReg, we add an offset of
16 to the integer value of B. Thus, roundj=0 indexes into the
range 0 ... 15, round=1 indexes into 16... 31, and so on,
until roundj=4, which indexes into the range 64. .. 79. In
other embodiments, the SpeedUpReg need only contain 80
bits from the output of the pseudorandom function, since only
indices from 0 to 79 can occur. The system may store more
than 80 bits (such as all 128) for efficiency or other reasons
without affecting functionality.
0076 Next, the system invokes the combining function
that computes the exclusive-or (step 510) of the value in bit
position O and the pseudorandom bit from step 508 and
produces a new 1-bit output.
0077 Next, the system concatenates the value in bit posi
tions 1 . . . n-1 with the value of the new 1-bit output (step
512) to produce a new n-bit string.
0078 Next, the system stores the concatenated result into
Main Reg (step 514).
0079 If not all rounds of the current phase are complete,
the system proceeds to the next round (step 516), continuing
with step 504. Otherwise, the iteration ends.
0080 FIGS. 4 and 5 illustrate the speed-up optimization
for n-bit strings in accordance with some embodiments. As
another, more realistic, example, consider FIG. 6, which
shows how to encrypt a U.S. Social Security number such as
348-88-2346 using a practical realization of the Thorp shuffle
in accordance with some embodiments. After two rounds of
enciphering, the result is 888-23-4606. In this embodiment,
only two rounds are shown but there can be as many rounds as
needed to ensure that the Thorp shuffle mixes the “deck” of
U.S. Social Security numbers well.
I0081 Let us look at this enciphering more closely. U.S.
Social Security numbers are enciphered using a tweaked
cipher E. KXTX M-> M where Kis the key space of the
underlying pseudorandom function, and Tis a tweak space of
byte strings, and Kis the space of all U.S. Social Security
numbers. The previous embodiment is modified to accommo
date base-10 characters instead of binary characters as fol
lows. First, the n-bit register is replaced with a nine-character
register. Second, the exclusive-orbinary operation (which is

US 2010/0246813 A1

really modulo-2 addition) is replaced with modulo-10 addi
tion. Third, the pseudorandom function freturns a base-10
character.
0082 Suppose that a U.S. Social Security number
348882346 is stored in a register called Main Reg 602. The
character string is divided into two parts: Main RegO and
MainReg1 ... 8. In round 1 (612), the system invokes the
pseudorandom function f. 604, passing in as arguments the
round number 0 and the value of Main Reg 1 . . .
8=48882346. Suppose the invocation f(0,48882346) 604
returns the character 7 (one may think of this as rolling a
ten-sided die). We compute the modulo-10 (606) addition of
this character with the value in character position IO to get
3+7-0. Next, we concatenate the value in MainReg1 ...
n-1 (48.882346) with the value of the output of the modulo
10 addition, 0, to produce a new character string, 48.8823460,
and store it in register Main Reg. After Round 1 (612),
348882346 has been encrypted to the intermediate value
48.8823460, as shown by the state of the 9-character register
610.

I0083) We follow the same procedure outlined above for
each subsequent round. For example, assuming f(1,
888234606)=2, round 1 (618) yields the intermediate encryp
tion 888234606 of 348882346 (616). This example illustrates
how the described enciphering scheme can be used to encrypt
messages in a small domain Such as U.S. Social Security
numbers to ciphertexts in the same domain. Since E is
bijective, it is guaranteed two encrypted Social Security num
bers only collide if their corresponding plaintexts are identi
cal
0084. Note that the process of enciphering n-digit decimal
strings can be sped up in a manner similar to that which was
illustrated in FIG. 4 for n-bit input strings. Rather than achiev
ing a fivefold speed-up in the n-bit string case (measured in
the number of AES calls), an embodiment for decimal strings
achieves a twofold speed-up. FIG. 7 illustrates the process for
applying the speed-up optimization to n-decimal-digit strings
in accordance with some embodiments. (Why phases com
prise two rounds over the domain of decimal-digit strings and
not five rounds as for bit strings will become clear in a
moment.)
0085 FIG.7 shows this speed-up optimization to encipher
a message drawn from set Mwhere the total number of mes
sages in set Mis N=10" messages for some ne2 in accor
dance with some embodiments. Each phase consists of two
rounds. The message to encipher is an n-decimal-digit input
string (712) stored in an n-decimal-digit register Main Reg
714.

I0086 To populate this SpeedUpReg 710, one AES call
(704) is made at the beginning of each phase as part of
pseudorandom function f.702. This AES call (704) returns
a pseudorandom 128-bit string. Since the SpeedUpReg stores
decimal-digit strings, the system applies a conversion func
tion that converts the 128-bit string to the corresponding
39-decimal-digit string, which is then stored in SpeedUpReg
710. The two rounds making up a phase share the SpeedU
pReg 710 to obtain their subsets of bits. The decimal-digits
MainReg2 ... n of the n-decimal-digit Main Reg 714 are a
decimal string Z 718. The call AES (P(i, Z)) is keyed with
key K and takes as an argument, in one embodiment, a prefix
free encoding P(i, Z) of the phase number i and the string Z.
Similar to the binary case, the speed-up optimization exploits
the fact that Substring Z is common to the n-decimal-digit
strings contained in Main Reg 714 during both rounds of the

Sep. 30, 2010

current phase. In particular, in one embodiment, AES is keyed
with K and applied to a prefix-free encoding P(i, Z) of the
phase number i and the String Z.
I0087. In each phase of the encryption of decimal-digit
strings using the speed-up optimization for enciphering deci
mal-digit strings, the two rounds examine disjoint 10-digit
subsets of the 39-decimal digits in SpeedUpReg. Accord
ingly, 19 digits of the 39-decimal digits in SpeedUpReg
remain unused. Could we not also perform a third round and
extract 10 of the 19 remaining decimal digits to index into?
Unfortunately, this does not work. Over the course of three
consecutive rounds of enciphering, the three states of n-digit
register MainReg contain only a common (n-3)-digit Sub
string Z To assure independent pseudorandom characters, we
would therefore need to index with a 3-digit string B. How
ever, there are 100 possible values for B, so that the pseudo
random function would need to provide at least 310-300
digits, which is more than the 38 decimal digits obtained from
the 128-bit string output we assume. In general, enciphering
strings consisting of n base-k digits in phases comprising m
rounds requires the pseudorandom function to output at least
mk"'' base-k digits.
I0088 FIG. 7 shows the state changes of the n-decimal
digit register Main Reg 714 for rounds j=0, 1 of some phase i.
We label the contents of digit positions Oas bo and 1 as b,
shown cross-hatched in FIG. 7.

I0089 For example, consider the round 2i + where j=0
(716). In Main Reg 714, bit be is the active bit, which we
assume to be 5. Bit b is extracted to form a new bit string B
720 (shown to the right of the n-decimal-digit register as
B=b). This bit string B, say B-6, is used to index into the
SpeedUpReg 710 to obtain the pseudorandom base-10 char
acter SpeedUpReg B+10=SpeedUpReg6. Suppose that
the pseudorandom decimal digitat that position is 9. Note that
with this index formula, both rounds in the phase use 10
different decimal-digits of the 39 decimal digits in the
SpeedUpReg 710.
0090 Next, the system combines the value in decimal
digit position 0 with the pseudorandom decimal digit
looked up from the SpeedUpReg 710 to produce a 1-decimal
digit output, which we denote by co. The combining function
is simply modulo-10 addition, so co-9+ 5–4.
0091 Next, the system concatenates the value in decimal
digit positions MainReg1 . . . n-1 with co and stores the
concatenation result into the register Main Reg 714.
0092. The new state of the register MainReg 714 in round
j=0 is bZ co. To continue the example, consider the next
round where j=1. The n-decimal-digit register Main Reg 714
contains bZ co. Digit b is the active digit. Digit co is
extracted to form a new string B 726 (shown to the right of the
n-decimal-digit register Main Reg). This string B 726 is used
to compute the index B+10.j=14 into SpeedUpReg 728 to
obtain one pseudorandom decimal-digit from the next
10-digit Subset of the speed-up register.
0093. Next, the system combines the value in decimal
digit position 0 with the pseudorandom decimal-digit
looked up from the SpeedUpReg 710 to produce a 1-decimal
digit output c. The combining function is again modulo-10
addition.

0094. Next, the system concatenates the value in decimal
digit positions 1 ... n-1 with the value of the 1-decimal-digit
output of the combine function, and stores the concatenation
result into the register Main Reg.

US 2010/0246813 A1

0095. The very last state shown in the figure is the end
result of applying one two-round phase to the n-decimal-digit
register 730: Zcoc. If there are more phases remaining in the
shuffle then the phase number is incremented by land the next
group of two rounds is computed. (Note that there may be
fewer than two rounds in the very last phase).
0096 FIG. 8 shows a flowchart illustrating a more general
procedure of enciphering a message represented as an n-char
acter string where each characteris base-k digit in accordance
with some embodiments. Note that the specific arrangement
of steps shown in the figure should not be construed as lim
iting the scope of the embodiments. These embodiments
include, but are not limited to, n-bit input strings, n-decimal
digit input strings, and n-hexadecimal-digit input strings.
0097. The enciphering system begins the process by
receiving (step 802) the message (a string of n base-k digits),
the tweak (a byte string), and the key K. Each character is a
base-k digit.
0098 Next, the system stores the n-character input into an
n-character first register Main Reg (step 804).
0099 Next, the enciphering system iterates over the first
register MainReg in a numbered sequence of phases (step
806), modifying the state of Main Reg. For each phase, the
system performs the following.
0100 Next, the system invokes the pseudorandom func
tion f (step 808) with two arguments: the phase number i
and the value MainReg1 . . . n-1 together with the phase
number p. f. returns a pseudorandom base-k character
string. Note that this pseudorandom function outputs a pseu
dorandom base-k character string of length 1.
0101 Next, the system selects at least mk" characters
(step 810) for some m22 from the pseudorandom base-k
character string output of the pseudorandom function f
and stores these selected characters in a second register
SpeedUpReg. The second register SpeedUpReg behaves as
the same speed-up register shown in FIG. 4 and FIG. 7.
0102 Next, the system iterates over the first register a
sequence of m rounds (step 812). The last phase contains
fewer rounds if the total number of rounds is not a multiple of

0103) Next, the enciphering system applies a choice func
tion (step 814) to the first register Main Reg, the second reg
ister SpeedUpReg, and the round number to produce a pseu
dorandom base-k character output.
0104. Next, the enciphering system combines the value in
character position O of the first register and the pseudoran
dom base-k character output by the choice function to pro
duce a new base-k character (step 816). Note that, in some
embodiments, this combining function is modulo-kaddition.
0105 Next, the enciphering system (step 818) concat
enates the value in character positions MainReg1 ... n-1 of
the first register with the value of the new base-k character
output and stores the result into the first register Main Reg.
0106 If there are more rounds (step 820), then the enci
phering system goes to step 814 and continues with the pro
cess. Otherwise, if there are more phases (822), then the
enciphering system goes back to step 808 and continues the
process with the next phase.
0107. When all phases are complete, the input string has
been successfully enciphered. The ciphertext is contained in
the first register Main Reg.
0108 FIG. 9 shows a flowchart elaborating the choice
function given in step 814 of FIG. 8 in accordance with some
embodiments. Note that the specific arrangement of steps

Sep. 30, 2010

shown in the figure should not be construed as limiting the
Scope of the embodiments. The enciphering system begins by
invoking the choice function using the first register Main Reg,
the second register SpeedUpReg, and the round number as
arguments to the function (step 902). What the system is
doing, intuitively, is taking a pseudorandom character
string—the output of the pseudorandom function stored con
veniently in the SpeedUpReg—and “choosing from a subset
of the pseudorandom character string some character string
that is, therefore, also pseudorandom.
0109 Next, the enciphering system (step 904) extracts the
(m-1) base-k characters string B from MainReg, where in
round j, B is the concatenation of characters 1 . . . (m-1-)
and characters (n-j)... (n-1) of Main Reg.
0110. Next, the enciphering system (step 906) interprets
the string of m-1 base-k characters as a decimal number Band
returns character b+k"'i of the SpeedUpReg to produce a
pseudorandom base-k character output.
0111. The following table gives some valid values for k,
m, 1 satisfying the parameter constraint mik"'s1.

TABLE 3

Example parameter sets

Radixk PRF output length 1 Phase length m

2 128 5
3 65 3
8 16 2

10 39 2
16 8 2

0112 The foregoing descriptions of embodiments have
been presented for purposes of illustration and description
only. They are not intended to be exhaustive or to limit the
present description to the forms disclosed. Accordingly,
many modifications and variations will be apparent to prac
titioners skilled in the art. Additionally, the above disclosure
is not intended to limit the present description. The scope of
the present description is defined by the appended claims.
What is claimed is:
1. A method for enciphering an input string to produce an

output String, comprising:
receiving the input string;
storing the input string into a register;
modifying the register in a sequence of phases, wherein

each phase involves:
invoking a pseudorandom function that outputs a pseu
dorandom string;

iteratively modifying the register in a sequence of two or
more rounds, wherein each round entails using a dif
ferent portion of the pseudorandom string to direct the
modification of the register, and

providing the contents of the register as an output, after the
sequence of phases completes.

2. The method of claim 1,
wherein receiving the input string also involves receiving a

key and a tweak; and
wherein applying the pseudorandom function involves

using the key and the tweak to determine the pseudoran
dom function.

3. The method of claim 1, wherein the pseudorandom
function is implemented by the CBC-MAC of the Advanced
Encryption Standard (AES).

US 2010/0246813 A1

4. The method of claim 1,
wherein said input string is drawn from a small domain

such as Social Security numbers or credit card numbers:
wherein said domain consists of all strings of length nel
whose characters are base-k digits for some k22;

wherein enciphering said input string from a small domain
results in an output string with a format that is the same
as the input string; and

wherein such format preservation simplifies adding
encryption to systems with legacy data, because field
types for the legacy data need not be changed when the
data is enciphered.

5. A method for enciphering an input to produce an output,
comprising:

receiving the input, wherein the input is n characters in
length and wherein each character is a base-k digit,

storing the input into an n-character first register O... n-1;
modifying the first register in a numbered sequence of

phases, wherein each phase involves:
applying a pseudorandom function to a phase number

and the value in character positions m ... n-1 of the
first register, for some msn, wherein the pseudoran
dom function outputs a pseudorandom character
string and wherein each character is a base-k digit,

selecting at least mk"1 base-k characters from the
pseudorandom character string and storing them in a
second register,

iteratively performing the following operations, wherein
each iteration constitutes a round and wherein each
round involves:
applying a choice function to the first register, the second

register, and the round number, wherein the choice
function outputs a pseudorandom base-k character;

combining the value in character position O of the first
register and the pseudorandom base-k character to
produce a new base-k character output;

concatenating the value in character positions 1 ... n-1
of the first register with the value of the new base-k
character, and

storing the concatenation result into the n-character first
register, and

providing the contents of the first register as an output, after
the sequence of phases completes.

6. The method of claim 5, wherein concatenating two char
acter strings involves:

joining a first character string of X characters in length to a
second character string of y characters in length to pro
duce a new character string of X-Fy characters and
wherein the new character string contains the characters
of the first character string followed by the characters of
the second character string.

7. The method of claim 5,
wherein receiving the input involves receiving a key and a

tweak; and
wherein applying the pseudorandom function involves

using the key and the tweak to determine the pseudoran
dom function.

8. The method of claim 7, wherein applying the pseudo
random function further comprises:

computing a phase number, wherein the phase number is
unique and is associated with multiple rounds in the pass
of n phases; and

using the phase number of determine the pseudorandom
function.

Sep. 30, 2010

9. The method of claim 8, wherein applying the pseudo
random function further comprises:

computing a current position number, wherein said current
position number comprises the value in bit positions k.
... n-1 of the first register nek; and

using the current position number to determine the pseu
dorandom function.

10. The method of claim 9, wherein for each phase, apply
ing the pseudorandom function further comprises:

invoking the pseudorandom function using the key, phase
number, the current position number, and the tweak.

11. The method of claim 5, wherein for each round, apply
ing the choice function further comprises:

invoking the choice function using the first register, the
second register, and the round;

concatenating the character string in positions 1 ... (m-1-
j) of the first register with the character String in posi
tions (n-j) . . . (n-1), where j is the round number, to
produce a string of m-1 base-k characters; and interpret
ing the string of m-1 base-k characters as a decimal
number band returning a character in position b+k"j
of the second register to output a pseudorandom base-k
character.

12. The method of claim 5, wherein the pseudorandom
function is constructed from the CBC-MAC of the Advanced
Encryption Standard (AES).

13. The method of claim 12, wherein at least one AES call
is performed per pseudorandom function invocation.

14. The method of claim 5,
wherein said input is drawn from a small domain such as

Social Security numbers or credit card numbers:
wherein said domain consists of all strings of length nel
whose characters are base-k digits for some k>2;

wherein said input from a small domain after enciphering
results in an output with a format that is the same as the
input; and

wherein Such format preservation simplifies adding
encryption to systems with legacy data, because field
types for the legacy data need not be changed when the
data is enciphered.

15. The method of claim 5,
wherein combining two single-character strings involves

using modulo-kaddition to produce another single-char
acter output string, and wherein the single-character
string is a base-k digit; and

wherein one of the two single-character strings and the
output string uniquely determines the other single-char
acter String.

16. A non-transitory computer-readable storage medium
for storing instructions that when executed by a computer
cause the computer to perform a method for enciphering an
input to produce an output, comprising:

receiving the input, wherein the input is n characters in
length and wherein each character is a base-k digit,

storing the input into an n-character first register O... n-1;
modifying the first register in a numbered sequence of

phases, wherein each phase involves:
applying a pseudorandom function to a phase number

and the value in character positions m ... n-1 of the
first register for Some msn, wherein the pseudoran
dom function outputs a pseudorandom character
string and wherein each character is a base-k digit,

US 2010/0246813 A1

selecting at least milk"'' base-k characters from the
pseudorandom character string and storing them in a
second register,

iteratively performing the following operations, wherein
each iteration constitutes a round and wherein each
round involves:
applying a choice function to the first register, the

second register, and the round number, wherein the
choice function outputs a pseudorandom base-k
character;

combining the value in character position O of the
first register and the pseudorandom base-k charac
ter output to produce a new base-k character output;

concatenating the value in character positions 1 . . .
n-1 of the first register with the value of the new
base-k character output; and

storing the concatenation result into the n-character
first register, and

providing the contents of the first register as an output, after
the sequence of phases completes.

17. The non-transitory computer-readable storage medium
of claim 16, wherein concatenating two character strings
involves:

joining a first character string of X characters in length to a
second character string of y characters in length to pro
duce a new character string of length X-y number of
characters and wherein the new character string contains
the characters of the first character string followed by the
characters of the second character string.

18. The non-transitory computer-readable storage medium
of claim 16,

wherein receiving the input involves receiving a key and a
tweak; and

wherein applying the pseudorandom function involves
using the key and the tweak to determine the pseudoran
dom function.

19. The non-transitory computer-readable storage medium
of claim 18, wherein applying the pseudorandom function
further comprises:

computing a phase number, wherein the phase number is
unique and is associated with multiple rounds in the pass
of n phases; and

using the phase number to determine the pseudorandom
function.

20. The non-transitory computer-readable storage medium
of claim 19, wherein applying the pseudorandom function
further comprises:

computing a current position number, wherein said current
position number comprises the value in bit positions k.
... n-1 of the first register nek; and

using the current position number to determine the pseu
dorandom function.

21. The non-transitory computer-readable storage medium
of claim 20, wherein for each phase, applying the pseudoran
dom function further comprises:

invoking the pseudorandom function using the key, phase
number, the tweak number, and the current position
number.

22. The non-transitory computer-readable storage medium
of claim 16, wherein for each round, applying the choice
function further comprises:

invoking the choice function using the first register, the
second register, and the round;

Sep. 30, 2010

concatenating the character string in positions 1 ... (m-1
of the first register with the character string in posi

tions (n-j)... (n-1) of the first register, where j is the
round number, to produce a string of m-1 base-k char
acters; and

interpreting the string of m-1 base-k characters as a deci
mal number b and returning a character in position
b+k"'i of the second register to output a pseudoran
dom base-k character.

23. The non-transitory computer-readable storage medium
of claim 16 wherein the pseudorandom function is con
structed from the CBC-MAC of the Advanced Encryption
Standard (AES).

24. The non-transitory computer-readable storage medium
of claim 23, wherein at least one AES call is performed per
pseudorandom function invocation.

25. The non-transitory computer-readable storage medium
of claim 16, wherein said input is drawn from a small domain
such as Social Security numbers or credit card numbers;

wherein said domain consists of all strings of length nel
whose characters are base-k digits for some k22;

wherein said input from a small domain after enciphering
results in an output with a format that is the same as the
input; and

wherein Such format preservation simplifies adding
encryption to systems with legacy data, because field
types for the legacy data need not be changed when the
data is enciphered.

26. The non-transitory computer-readable storage medium
of claim 16, wherein combining two single-character strings
involves using modulo-k addition to produce another single
character string, and wherein the single-character String is a
base-k digit; and

wherein one of the two single-character strings and the
output string uniquely determines the other single-char
acter String.

27. A system for enciphering an input to produce an output,
comprising:

a receiving mechanism configured to receive the input,
wherein the input is n characters in length and wherein
each character is a base-k digit;

a storing mechanism configured to store the input into an
n-character first register 0 . . . n-1:

a computation mechanism configured to modify the first
register in a numbered sequence of phases, wherein each
phase involves:
applying a pseudorandom function to a phase number

and the value in character positions m ... n-1 of the
first register, for some msn, wherein the pseudoran
dom function outputs a pseudorandom character
string and wherein each character is a base-k digit,

selecting at least milk"'' base-k characters from the
pseudorandom character string and storing them in a
second register,

iteratively performing the following operations, wherein
each iteration constitutes a round and wherein each
round involves:
applying a choice function to the first register, the

second register, and the round number, wherein the
choice function outputs a pseudorandom base-k
character;

combining the value in character position IOI of the
first register and the pseudorandom base-k charac
ter to produce a new base-k character output;

US 2010/0246813 A1

concatenating the value in character positions 1 . . .
n-1 of the first register with the value of the new
base-k character; and

storing the concatenation result into the n-character
first register, and

an outputting mechanism configured to provide the con
tents of the first register as an output, after the sequence
of phases completes.

28. The system of claim 27, wherein concatenating two
character strings involves:

joining a first character string of X characters in length to a
second character string of y characters in length to pro
duce a new character string of length X-y number of
characters and wherein the new character string contains
the characters of the first character string followed by the
characters of the second character string.

29. The system of claim 27,
wherein receiving the input involves receiving a key and a

tweak; and
wherein applying the pseudorandom function involves

using the key and the tweak to determine the pseudoran
dom function.

30. The system of claim 29, wherein applying the pseudo
random function further comprises:

computing a phase number, wherein the phase number is
unique and is associated with multiple rounds in the pass
of n phases; and

using the phase number to determine the pseudorandom
function.

31. The system of claim 30, wherein applying the pseudo
random function further comprises:

computing a current position number, wherein said current
position number comprises the value in bit positions k.
... n-1 of the first register nek; and

using the current position number to determine the pseu
dorandom function.

32. The system of claim 31, wherein for each phase, apply
ing the pseudorandom function further comprises:

invoking the pseudorandom function using the key, phase
number, the tweak number, and the current position
number.

Sep. 30, 2010

33. The system of claim 27, wherein for each round, apply
ing the choice function further comprises:

invoking the choice function using the first register, the
second register, and the round;

concatenating the character string in positions 1 ... (m-1-
j) of the first register with the character String in posi
tions (n-j)... (n-1) of the first register, where j is the
round number, to produce a string of m-1 base-k char
acters; and

interpreting the string of m-1 base-k characters as a deci
mal number b and returning a character in position
b+k"j of the second register to output a pseudoran
dom base-k character.

34. The system of claim 27 wherein the pseudorandom
function is constructed from the CBC-MAC of the Advanced
Encryption Standard (AES).

35. The system of claim 34, wherein at least one AES call
is performed per pseudorandom function invocation.

36. The system of claim 27,
wherein said input is drawn from a small domain such as

Social Security numbers or credit card numbers:
wherein said domain consists of all strings of length nel
whose characters are base-k digits for some k22;

wherein said input from a small domain after enciphering
results in an output with a format that is the same as the
input; and

wherein Such format preservation simplifies adding
encryption to systems with legacy data, because field
types for the legacy data need not be changed when the
data is enciphered.

37. The system of claim 27,
wherein combining two single-character strings involves

using modulo-kaddition to produce another single-char
acter string, and wherein the single-character string is a
base-k digit; and

wherein one of the two single-character strings and the
output string uniquely determines the other single-char
acter String.

