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(57) ABSTRACT 

Conventional block ciphers that traffic in 128-bit block sizes 
are ill-suited for operating in Small domains like credit card 
numbers. Some embodiments relate to techniques for con 
structing and speeding up practical and provably secure 
schemes for deterministically enciphering data from a small 
domain like credit card numbers using a conventional block 
cipher or other pseudorandom function. 
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METHOD AND SYSTEM FOR 
ACCELERATING THE DETERMINISTC 
ENCPHERING OF DATA IN A SMALL 

DOMAIN 

RELATED APPLICATION 

0001. This application hereby claims priority under 35 
U.S.C.S 119 to U.S. Provisional Application 61/164,660 
entitled “Thorp Mode Encryption.” by Benjamin J. Morris, 
Philip Rogaway, Terence Spies, and Till Stegers, filed Mar. 
30, 2009 (Atty. Docket No.: UC095511PSP). 

BACKGROUND 

0002 1. Field 
0003. The present embodiments relate to cryptographic 
techniques for constructing a blockcipher-based encryption 
scheme. More specifically, the present embodiments relate to 
techniques for constructing fast and provably secure schemes 
for deterministically enciphering data from a small domain, 
like credit card numbers, using a conventional block cipher. 
0004 2. Related Art 
0005 Imagine wanting to encrypt a nine-decimal-digit 
plaintext, such as a U.S. Social Security number, into a 
ciphertext that is also a nine-decimal-digit number. This 
operation is useful for storing the ciphertext in the same 
record structure as the plaintext. Modern cryptographic tech 
niques typically assume the plaintext input to a block cipher 
has a block size of 128 bits and that the block cipher outputs 
a ciphertext of 128 bits. Unfortunately, nine-decimal-digit 
plaintext input and nine-decimal-digit ciphertext output are 
incompatible with a block size of 128 bits. 
0006. One could imagine attempting to construct the 
desired scheme directly, by modifying a known primitive, but 
Such constructions have many shortcomings. For example, 
one could modify the definition of the Advanced Encryption 
Standard (AES) so that it would take in a nine-decimal-digit 
plaintext and output a ciphertext that is also a nine-decimal 
digit number. But both the specification and implementations 
of AES have been carefully crafted, and the specification has 
been in the public domain for a considerable time, so a modi 
fied version of AES would need careful study by many cryp 
tographers to determine whether the level of security believed 
to be provided by AES was compromised. As such, it is 
neither feasible nor desirable to employ such an approach. 
0007. In an alternative approach, rather than modifying 
AES, one could embed the nine-decimal-digit plaintext one 
wants to encrypt into a 128-bit string, and then invoke AES. 
Because AES returns a 128-bit string, the output would have 
to be mapped back into a nine-decimal-digit number. But it is 
impossible to encode a 128-bit string into nine decimal digits, 
since 2' >10. 
0008 Is it really a problem if one cannot encrypt nine 
decimal-digit numbers into nine-decimal-digit numbers? 
Consider a database of U.S. Social Security numbers. Sup 
pose one wished to silently replace all of the Social Security 
numbers with encrypted Social Security numbers. Using AES 
to produce an output of 128 bits and using this in place of the 
nine-decimal-digit numbers would break existing applica 
tions that access and manipulate U.S. Social Security num 
bers, because Such applications, expecting nine-decimal 
digit strings, are now faced with 128-bit binary strings 
instead. Further, the database schema for each table contain 
ing U.S. Social Security numbers would need to be changed 
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to support a different data type, and dependent applications 
would need to be modified accordingly. Conventional block 
ciphers like AES are, therefore, not directly usable to encrypt 
on Small domains of practical interest, because these tech 
niques send 128-bit inputs to 128-bit outputs. 
0009 Hence, what is needed is a cryptographic technique 
to encipher elements from a small domain into elements of the 
same Small domain. 

SUMMARY 

0010. The present embodiments provide a practical sys 
tem for enciphering input data drawn from a small domain 
into output data that is also drawn from the same domain. The 
system can be based on a conventional block cipher. Further, 
the system's process of enciphering can be sped up signifi 
cantly to reduce the number of invocations of a conventional 
block cipher that are needed. Finally, the system is practical 
and can enjoy provable security guarantees. 
0011. In some embodiments, the small domain that can be 
enciphered is the set of credit card numbers or the set of U.S. 
Social Security numbers. In general, the domain can be the set 
of all Strings of some fixed length n, where each String con 
sists of base-k characters for some k22. 
0012. In some embodiments, the system's process of enci 
phering elements from a small domain can be likened to 
shuffling cards. Each step in the enciphering process is analo 
gous to shuffling a deck of cards. Each card represents a 
message with the domain of the cipher. 
0013. In some embodiments, the system's process of enci 
phering can be sped up by five times compared to a more 
naive embodiment. 
0014. In some embodiments, the system's process of enci 
phering can be sped up by two times compared to a more 
naive embodiment. 

0015. In some embodiments, a conventional block cipher 
like AES (the Advanced Encryption Standard) is used to 
implement a pseudorandom function that generates pseudo 
random bits and is used internally within the embodiment. 
0016. In some embodiments, the obliviousness property 
of a card shuffle the property of a shuffle that you can trace 
the trajectory of a card without attending to the trajectories of 
other cards—is the basis of the encryption scheme that is 
Subject to the speed-up technique. 

BRIEF DESCRIPTION OF THE FIGURES 

0017 FIG. 1 shows two examples of domains for small 
space encryption in accordance with an embodiment. 
0018 FIG. 2 shows the major components of an imple 
mentation of a cipher E in accordance with an embodiment. 
0019 FIG. 3 shows a detailed example of how to encrypt 
a value drawn from the domain of playing cards numbered 0. 
..., 7 to another value in the same domain in accordance with 
an embodiment. 
0020 FIGS. 4A-4B show a detailed example illustrating 
the speed-up optimization to perform five rounds of encipher 
ing using a single call to the underlying pseudorandom func 
tion in accordance with an embodiment. 
0021 FIG. 5 shows a flowchart illustrating the process of 
performing five rounds of enciphering using a single call to 
the underlying pseudorandom function as a way of speeding 
up the process of enciphering for n-bit input strings in accor 
dance with an embodiment. 
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0022 FIG. 6 illustrates the process of encrypting a U.S. 
Social Security number to another number in the same 
domain in accordance with an embodiment. 
0023 FIG. 7 shows a flowchart illustrating the process of 
performing two rounds of enciphering using a single call to 
the underlying pseudorandom function as a way-of speeding 
up the process of enciphering for n-decimal-digit input 
strings in accordance with an embodiment. 
0024 FIG. 8 illustrates the general process of encrypting a 
message in the format of an n-character inputString where the 
character is base-k through p phases of enciphering in accor 
dance with an embodiment. 
0025 FIG. 9 illustrates the process of invoking a choice 
function on the input register and the speed-up register to 
return a pseudorandom character string in accordance with an 
embodiment. 
0026 Table 1 illustrates the Thorp shuffle technique with 
the obliviousness property in which only card seven is 
shuffled through four rounds in accordance with an embodi 
ment. 

0027 Table 2 illustrates how the enciphering system con 
catenates bits from the input String to index into a speed-up 
register to obtain a random bit in accordance with an embodi 
ment. 

0028 Table 3 illustrates some example parameter sets in 
accordance with an embodiment. 
0029. In the figures, like reference numerals refer to the 
same figure elements. Moreover, multiple instances of the 
same type of part may be designated by a common prefix 
separated from an instance number by a dash. 

DETAILED DESCRIPTION 

0030 The following description is presented to enable any 
person skilled in the art to make and use the present embodi 
ments, and is provided in the context of a particular applica 
tion and its requirements. Various modifications to the dis 
closed embodiments will be readily apparent to those skilled 
in the art, and the general principles defined herein may be 
applied to other embodiments and applications without 
departing from the spirit and scope of the present embodi 
ments. Thus, the present embodiments are not limited to the 
embodiments shown, but are to be accorded the widest scope 
consistent with the principles and features disclosed herein. 
0031. The data structures and code described in this 
detailed description are typically stored on a computer-read 
able storage medium, which may be any device or medium 
that can store code and/or data for use by a computer system. 
The computer-readable storage medium includes, but is not 
limited to, Volatile memory, non-volatile memory, magnetic 
and optical storage devices Such as disk drives, magnetic tape, 
CDs (compact discs), DVDs (digital versatile discs or digital 
Video discs), or other media capable of storing computer 
readable media now known or later developed. 
0032. The methods and processes described in the detailed 
description section can be embodied as code and/or data, 
which can be stored in a computer readable storage medium 
as described above. When a computer system reads and 
executes the code and/or data stored on the computer-read 
able storage medium, the computer system performs the 
methods and processes embodied as data structures and code 
and stored within the computer-readable storage medium. 
Furthermore, the methods and processes described below can 
be included in hardware modules. For example, the hardware 
modules can include, but are not limited to, application-spe 
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cific integrated circuit (ASIC) chips, field-programmable 
gate arrays (FPGAs), and other programmable-logic devices 
now known or later developed. When the hardware modules 
are activated, the hardware modules perform the methods and 
processes included within the hardware modules. 
0033 Embodiments provide a method and system for 
deterministically enciphering plaintext in a small domain 
such as U.S. Social Security numbers or credit card numbers 
into a ciphertext in the same domain. More generally, 
embodiments provide a method and system for deterministi 
cally enciphering plaintextina Small domain consisting of all 
strings of identical length over some finite alphabet. 
0034 FIG. 1 shows two examples of systems that operate 
in Small domains inaccordance with some embodiments. The 
first system enciphers a 16-decimal-digit credit card number 
102, the plaintext, into a ciphertext 104 that is also a 16-deci 
mal-digit number. The second system is an example of a 
database of Social Security numbers 106 stored in a table of 
the database. In this example, the system enciphers each 
nine-decimal-digit U.S. Social Security number into a cipher 
text that is also a nine-decimal-digit number, which looks just 
like another Social Security number. The ciphertext result is 
stored in place of the original Social Security number, updat 
ing the corresponding field in the database table. It is also 
possible to decipher each such Social Security number 
ciphertext to recover the original upon retrieval from the 
database. Another example of a small domain (not shown) is 
pieces of credit card numbers in which, say, the last five digits 
are shown in the clear and the first 11 digits are encrypted in 
accordance with an embodiment. These examples are not 
meant to limit the scope of the present invention but serve to 
illustrate their possible domains of use. 
0035. The examples given are a special case of “format 
preserving encryption’ (FPE). In an FPE scheme, encryption 
is deterministic and the format of the ciphertext is identical to 
that of the plaintext. The advantage of FPE is that it simplifies 
adding encryption to systems with legacy data like the data 
base because field types for the legacy data need not be 
changed when the data is enciphered. 
0036. In the systems illustrated in FIG. 1 we show a box 
labeled Ek, the enciphering system, which takes an input 
string such as a credit card number or a U.S. Social Security 
number and returns its respective enciphered output. More 
specifically, we define a cipher, a map F: Kx Tx M-> M 
where K. Tand Mare finite non-empty sets and where Eis 
a permutation on Mfor every Ke Kand Te TThe set Kis 
the key space, the set Tthe tweak space, and the set Mis the 
domain. The shared key K controls the encryption. Both the 
key space and the domain are sets of strings drawn from an 
arbitrary alphabet (a finite, non-empty set of characters). The 
elements of set Mare called plaintexts, or messages, and the 
number of them is denoted by M|=N. 
0037. The tweak space is a set of arbitrary byte strings. The 
set T should be large enough to accommodate all non-secret 
information that may be associated with a plaintext. Users are 
strongly encouraged to employ tweaks whenever possible, as 
their judicious use can significantly increase security. The 
intuition behind using a tweak in an FPE scheme is that we 
want knowledge of where a plaintext maps to under a tweakT 
does no good in trying to figure out where the same or even all 
plaintexts maps to under a different tweak T. 
0038. The cipher Eshould have following properties: (1) 
given a key and a tweak, it is bijective, that is, it is a one-to-one 
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and onto function; (2) it is deterministic—it does not depend 
on any internal randomness or “coins; (3) it is practical— 
meaning that it is simple and fast to compute; and (4) it is 
provably secure—meaning that a proof is known that pro 
vides a significant assurance that it is a good pseudorandom 
permutation. In saying that Eis a good pseudorandom per 
mutation we mean that a black box for computing E with 
respect to a random key Ke Klooks to an adversary with 
reasonable computational means like a family of independent 
random permutations on Mindexed by tweaks in the tweak 
Space. 
0039. In one or more embodiments, if the domain Mis the 
space of U.S. Social Security numbers, then M={0, 1,..., 
N-1}, and N=10. FIG. 1 shows encrypting a Social Security 
number in terms of the cipher via E. K.T., 348-88-2346)=234 
60-6477 (where hyphens are retained to show that the cipher 
text is a U.S. Social Security number). In one or more embodi 
ments, if the domain Mis the space of 16-digit credit card 
numbers, then M={0, 1,...,N-1}, where N=10". Further, 
FIG. 1 shows encrypting a credit card number in terms of the 
cipher via E(K, T, 4000 123456789123)=5887 32290447 
4263. 
0040 FIG. 2 shows the major components of an imple 
mentation of a cipher Ein one embodiment of the present 
invention. The components implement a tweaked pseudoran 
dom permutation on M for every key in Kand every tweak in 
TThe cipher Emechanism receives three arguments as 
inputs, namely a “Key’ 202, a “Plaintext 204, such as a 
credit card number or a U.S. Social Security number, and a 
“Tweak 206. The “Plaintext 204 is stored in an n-character 
register 208. “Key’ 202 is an element of the set of keys K. 
which may be defined as a set of 128-bit strings, where Kis 
the set of keys of the pseudorandom function. “Tweak” 206 is 
an element of the set of tweaks Twhich contains strings of 
bytes drawn from the set BYTE where J-21 and BYTE 
denotes {0,1}, the set of 8-bit bytes. Note that characters are 
the most general format because they include bits, decimal 
digits, and hexadecimal digits, to name a few. The pseudo 
random function 210 is the key to making the cipher practical 
and realizable; the function takes a round number, the key 
“Key’ 202, and the tweak “Tweak” 206 and outputs a fixed 
length pseudorandom base-k character String. In one embodi 
ment, this pseudorandom function 210 can be constructed 
from the CBC-MAC of AES (Advanced Encryption Stan 
dard). In yet another variation, the pseudorandom function 
210 can be implemented using CMAC. In another variation, 
the key Kitself can be a 128-bit quantity, a 192-bit or even a 
256-bit quantity, depending on the level of security desired. 
0041. The “combining function 212 takes a pair of equal 
length strings and returns a string of the same length. In one 
embodiment, when messages are bit strings, the combining 
function may be modulo-2 addition, also known as exclusive 
or. In another embodiment, when messages are decimal 
strings, the combining function is modulo-10 addition. In the 
general embodiment, the combining function 212 may be 
modulo-k addition for base-k characters. The output of the 
cipher F200 as a result of performing the computation 212 is 
“Ciphertext 216, which is in the same domain as the input 
“Plaintext 204. 
0042. What is the reason for including a tweak in the 
cipher E? Suppose we are enciphering the six middle digits of 
a 16-digit credit card number, the remaining ten digits are to 
be left in the clear. If we use a deterministic and tweakless 
scheme, there is a danger that an adversary might be able to 
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create, by noncryptographic means, an unnecessarily useful 
dictionary of plaintext/ciphertext pairs (X, Y), where X is a 
6-digit number and Y is its encryption. Each plaintext/cipher 
text pair (X,Y) that the adversary somehow obtains (acquired, 
for example, by a phishing attack) would let the adversary 
decrypt every credit card number that happens to have those 
same six middle digits. Note that in a database of 100 million 
entries we would expect about 100 credit card numbers to 
share any given six middle digits. Learning k credit card 
numbers and possessing an encrypted database ought not give 
you 100k more credit card numbers for free. 
0043. The problem is not a cryptographic failure, but a 
failure to use a good tool well. The middle-six digits ought to 
have been tweaked by the remaining ten. If this had been done 
then learning the credit card number 1234-123456-9876 
encrypts to 1234-770611-9876, say, would not let one 
decrypt 1111-770611-9999, as the mapping of 123456 to 
770611 is specific to the surrounding digits 1234/9876. 
0044. In general, it is desirable to use all information that 

is available and Statically associated to a plaintext as a tweak 
for that plaintext. In the most felicitous setting of all, the 
non-secret tweak associated to a plaintext is associated only 
to that plaintext. Extensive tweaking means that fewer plain 
texts are enciphered under any given tweak. This corre 
sponds, in the pseudorandom function model we have 
adopted, to fewer queries to the target instance. The relevant 
metric is the maximum number of plaintexts enciphered with 
the same tweak, which is likely to be significantly less than 
the total number of plaintexts enciphered. 
0045. To implement the cipher E, we need a representa 
tion of a message (the plaintext) and a procedure to “mix” the 
key K with the message. To be deterministic, practical and 
provably secure, the cipher Fcan be based on the idea of 
shuffling a deck of cards. Shuffling is equivalent to generating 
a random permutation of the cards. There are two basic algo 
rithms for doing this. The first is simply to assign a random 
number to each card, and then to sort the cards in order of their 
random numbers. This will generate a random permutation, 
unless two of the random numbers generated are the same. 
This can be eliminated either by retrying these cases, or 
reduced to an arbitrarily low probability by choosing a suffi 
ciently wide range of random number choices. The second, 
generally known as the Knuth shuffle or Fisher-Yates shuffle, 
is a linear-time algorithm, which involves moving through the 
pack from top to bottom, Swapping each card in turn with 
another card from a random position in the part of the pack 
that has not yet been passed through (including itself). Pro 
viding that the random numbers are unbiased, this will always 
generate a random permutation. 
0046 A variation on these algorithms is the Thorp shuffle, 
where the deck is cut into two equal-sized piles. Intuitively, 
cipher Eencrypts by "shuffling a set of messages using 
Thorp's method, where these messages can be thought of as 
cards in a large deck. Consider Such a deck of N cards where 
N is even. We wish to shuffle all the cards in the deck. First, cut 
the deck into two equal piles. Second, according to the out 
come of a fair coin flip, drop the bottom card from either the 
left or right pile, and then drop the card from the bottom of the 
other pile. Continue in this way, flipping a total of N/2 inde 
pendent coins, using each to decide if cards are dropped 
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left-then-right or right-then-left, until there are no more cards. 
This is one round of the shuffle in which all cards from the two 
decks have been shuffledback into a single deck. Cut the deck 
again into two equal-sized piles and repeat the shuffle proce 
dure for as many rounds as needed to mix the cards suffi 
ciently. 
0047. To see the Thorp shuffle in action, imagine that the 
single deck of cards has been cut into two decks: one deck is 
labeled “deck 1 (left pile) and the second deck is labeled 
“deck 2' (right pile). In this unusual deck there are only eight 
cards, each labeled with a number 0, 1, 2, 3, 4, 5, 6, and 7. 
Consider the Thorp shuffle with 4 rounds on this deck of 
cards. Cards 0-3 are in deck 1, and cards 4-7 are in deck 2. 
0048 Consider the pair of cards 0 and 4 at the bottom of 
each deck. To shuffle the deck, how do we decide in which 
order to drop the bottom cards? Do we drop card 0 and then 
card 4? Or, do we drop card 4 first and then card 048 Flipping 
a fair coin makes this determination: for example, “heads' 
(coin flip-0) means drop left-then-right and “tails” (coin 
flip=1) means drop right-then-left. For card pair (0.4) we flip 
a coin; it comes up "heads. So we drop card 0, and then drop 
card 4. The new deck being formed has card 0 at the bottom 
with card 4 on top of it. For each pair of remaining cards (1.5), 
(2,6) and (3.7), we flip a coin. Let us assume that “tails” is 
associated with (1.5), “tails” with (2,6) and “heads” with 
(3,7). 
0049. After performing the drop procedure for each pair of 
cards associated with each coin flip, the new deck is shown 
viewed from left to right instead of bottom to top:045 162 
37. After one round, the entire deck of eight cards has been 
shuffled using four independent coin flips. If we define a 
minimum, called a pass, as log Nthen the total number of 
coin flips used in a pass is log NN/2. Here computes 
the ceiling function such that x is the Smallest integer not 
less than X. The Thorp shuffle can mix the deck well after a 
Small number of passes. 
0050. Whenever Nicards are shuffled in this fashion, all the 
cards are being shuffled at the same time. Yet, it is possible to 
trace the route of any given card in the deck through each 
successive round of the shuffle without attending to the 
remaining cards in the deck. The Thorp shuffle is said to be 
oblivious to other cards in the deck in that one can focus on the 
route a single card takes as it is shuffled in multiple rounds; 
one need not be concerned with the route of other cards. An 
embodiment of the present invention leverages this oblivious 
ness property of the Thorp shuffle: a sufficient number of 
rounds that mix the cards quickly enough makes encrypting 
over Small domains practical and feasible. 
0051) To explain the obliviousness property of the Thorp 
shuffle, consider the same deck of eight cards in its original 
configuration: 0 1 2 3 4 56 7. Employing the obliviousness 
property, we can ignore seven of the cards and consider just 
shuffling card 7 in the deck. Alternatively, think of “encrypt 
ing 7 by applying the Thorp shuffle and only looking at the 
route of 7 during the course of the shuffle. Table 1 shows the 
Thorp shuffle oblivious to all but card 7. Given the coin flips 
tails (1), heads (O), tails (1), and heads (O) for the pairs in 
which card 7 is involved, the four rounds of shuffling show 
that card 7 ends at position 4 (numbering the positions in the 
horizontal deck from 0 to 7). Thus, the result of encrypting 7 
is 4 or F(K. T. 7)=4 for some K and T. The cards we do not 
care about are labeled with an asterisk “*” to focus our atten 
tion on 7. Note that 4 is drawn from the same domain as 7, 
namely M={0,...,N-1}, where N=8. 
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TABLE 1 

Card position 
Round number O 1 2 3 4 S 67 Coin flips 

:: * : * : * : 7 

* : * : * : 7 : Tails (1) right-then-left 
Heads (O) left-then-right 
Tails (1) right-then-left 
Heads (O) left-then-right 

* * : * : 7 : : 
* : 7 : * : * : 
* : * : 7 : * : 

0.052 The Thorp shuffle, due to its obliviousness, provides 
a practical method to encrypt messages over Small domains. 
To implement the shuffle, and therefore the cipher E, we need 
(1) a representation of the messages in space M. and (2) a 
function that realizes uniform random coin flips. 
0053 First, we represent all messages in space M, or the 
cards in the deck, by Strings of the same length n over some 
fixed alphabet. In one embodiment, where N=2", messages 
are represented as a n-bit strings, so that for instance card 7 in 
the shuffle would be represented by the binary string 111. In 
general, if N=k", then each message in M={0,..., k"-1} a 
string of n base-k digits. 
0054 Second, to implement the behavior of fair coin flips, 
we make use of a pseudorandom function family. The func 
tion (family) is said to be pseudorandom because it possesses 
the property that the input-output behavior of an instance of 
the family of such functions determined by a random key is 
computationally indistinguishable from a random function 
with the same signature. In an embodiment over an alphabet 
E the signature of this pseudorandom function is f Kx 
Tx(text missing or illegible when filed *->{0,1}, that 
is, given a key, a tweak, a round number, and a message, the 
function returns a pseudorandom bit of 0 or 1. 
0055. The key space Kis identical to the key space of the 
cipher E. For a key K, we use the notation frk() rather than 
f(K, ) to indicate a pseudorandom function keyed with key 
K. The total number of random bits needed to shuffle a single 
card for R rounds is Rbits, not (N/2)R bits which would be 
needed to shuffle the entire deck. (The property of being able 
to follow the trajectory of a single card without attending to 
all the other cards is called obliviousness.) Table 1 shows R=4 
rounds of the shuffle, and that four random bits are needed to 
implement the four coin flips. In a naive embodiment, the 
invocation of the pseudorandom function on each round 
returns a pseudorandom bit. The reason the round number is 
included as an argument to the pseudorandom function is to 
ensure that the pseudorandom bits are indeed generated inde 
pendently for different rounds. The reason the tweak is 
included is ensure that the encryption processes for different 
tweaks, even for the same plaintext, are independent. 
0056. In one or more embodiments, the pseudorandom 
function feould be implemented using the CBC-MAC of 
AES, the Advanced Encryption Standard. The CBC-MAC is 
a well-known method for using the Cipher Block Chaining 
mode of operation to turn a block cipher into a Message 
Authentication Code (MAC). When implemented using the 
CBC-MAC, the function finust be constructed in such away 
that the set of inputs on which the CBC-MAC is invoked is 
prefix-free, that is, for any distinct inputs x, y, X is not a prefix 
ofy. This is because the CBC-MAC is known to be a good 
pseudorandom function when invoked on a set of prefix-free 
inputs, assuming that the underlying block cipher is a good 
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pseudorandom random permutation. In addition to the CBC 
MAC, the pseudorandom function could also be implemented 
using the CMAC mode of operation. 
0057 The pseudorandom function ftypically needs to 
make only a single AES call per pseudorandom function 
invocation, provided the tweak has been preprocessed. Note 
that an AES call returns a 128-bit string. The pseudorandom 
function fwill pick one of these 128 bits and return just one 
bit; in one embodiment function freturns bit 127. This is 
reasonable and practical because all 128 bits are guaranteed 
to be pseudorandom and, therefore, any bit chosen is pseu 
dorandom. 

0058 FIG.3 illustrates a practical realization of the Thorp 
shuffle on a bit string of length n=3 in accordance with some 
embodiments. In this example illustrating an embodiment 
where N=8 =2 and R-4, we trace the encryption of 7 (in 
binary, 111). We show that in this example the encryption 
yields E, (7)=4 (300), just as we showed using cards. Note 
that the notation where "KT" is a subscript of cipher Eindi 
cates that the computation relies on the key K and the tweak 
T, which remain unchanged during the computation per 
formed by ESuppose that bit string 111 is stored in an n-bit 
register called reg 302. The string is divided into two parts: 
regO (the left side) and reg1 ... 2 (the right side). 
0059. In round 1 (312), the system invokes the pseudoran 
dom function T.304 with the round number 1 and the value 
of reg1 ... 2-11 as the arguments and outputs a pseudoran 
dom bit f(r-1, x=11)=1. The system computes the exclu 
sive-or (which is one embodiment of the combining function 
212 shown in FIG. 2) of this pseudorandom bit with the value 
of regO and outputs the 1-bit value 1 xor 1–0. Then the 
system concatenates reg1 ... 2 (right side) with the value 0 
output by the combining function 212, resulting in the string 
1 1 0. This concatenated result is stored in reg. After one 
round, the new state is 110, or 6 in decimal, which can be seen 
in the new state of the n-bit register 310. Following the same 
procedure outlined above for each Subsequent round, at the 
end of round 2 (314), the original plaintext 7 has been 
encrypted to the value 5 (316), after round 3 (318) to 2 (320), 
and, finally, after round 4 (322) to 4 (324), the value we 
expected and the same value returned in the Thorp shuffle of 
card 7. 

0060 For every round of the shuffle in this particular 
embodiment, the pseudorandom function finvokes the CBC 
MAC of AES exactly once. This is because the CBC-MAC of 
the tweak can be cached, utilizing the fact that CBC-MAC0. 
X|X)=CBC-MAC (CBC-MAC (0,X),X), where CBC 
MACCV. X) denotes the CBC-MAC of a sequence of blocks 
X starting with initialization vector V. With this preprocessing 
in mind, we refer to such a CBC-MAC invocation also as an 
AES call or AES invocation. Each CBC-MAC invocation 
returns an independent pseudorandom 128-bit string, ensur 
ing that different rounds behave independently—but only 1 
pseudorandom bit is returned by the pseudorandom function 
f. Because the computation required for each AES call is 
potentially expensive, it seems especially wasteful that the 
above procedure only uses 1 bit for each round when 128 bits 
are available. In another embodiment of the present invention, 
these 128 bits from one AES call can be shared by multiple 
rounds. In particular, if n25 for N=2", then for each group of 
five rounds—called a phase—only one AES call is required. 
Each round uses a different non-overlapping 16-element Sub 
set of these same 128 bits to provide separation between 
different rounds. In particular, this embodiment of the opti 
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mization uses 5-2–80 bits of the 128 bits returned from the 
AES call. This is where the speed-up optimization comes into 
play—we avoid the expense of calling AES in each round and 
amortize its cost over five rounds, at the low price of some 
additional arithmetic and a small number of register lookups. 
0061 FIGS. 4A-4B show this speed-up optimization to 
encipher a message drawn from the set Mwhere the total 
number of messages in Mis N=2" for some ne5 in accor 
dance with some embodiments. The message to encipherisan 
n-bit string, stored in an n-bit register MainReg 404. In one 
round of the Thorp shuffle presented earlier only the bit in 
position IOI of Main Reg was “active' in the sense that we 
computed the exclusive-or of that bit value with the output of 
the pseudorandom function F.That same bit is still active 
under this speed-up optimization. What is different is that 
four other bits of the n-bit Main Reg 404 are used to index into 
a speed-up register SpeedUpReg 412 (which we shall explain 
shortly) to yield a pseudorandom bit; this bit, as before, is 
exclusive-or-ed with the active bit. To populate this SpeedU 
pReg 412, one AES call (410) is made at the beginning of the 
5-round. This AES call in one phase returns a random 128-bit 
string, which is then stored in SpeedUpReg 412. The five 
rounds making up a phase share the SpeedUpReg 412 to 
obtain their subsets of bits. The arguments to said AES call are 
the round number and the bits 5... n of the n-bit Main Reg 
404. Call this bit string Z 408. The optimization exploits the 
fact that the substring Z of Main Reg is common to the n-bit 
strings in Main Reg 404 in all five rounds of the phase. The call 
AES (P(i, Z)) is keyed with key K and takes as an argument, 
in one embodiment, a prefix-free encoding P(i, Z) of the phase 
number i and the string Z. 
0062. The reason the speed-up optimization for encipher 
ing n-bit strings performs five rounds and not six rounds is 
that each round examines a different 16-bit subset of the 
128-bits in SpeedUpReg. Since 48 bits remain of the 128-bits 
considered in the SpeedUpReg, could we not also perform a 
sixth round and extract 16 of the 48 remaining bits to index 
into? The answer is no, unfortunately: Six rounds of encipher 
ing per phase for n-bit strings to achieve a six-fold speed-up 
require that the pseudorandom function output at least 6'2'' 
bits (6-2-192), which is more than the 128 bits output by our 
pseudorandom function. 
0063 FIG. 4B shows the state changes of the n-bit register 
Main Reg 404 for each round of a group of five rounds where 
index je (0, 1, 2, 3, 4). We label the bits in MainRegO). 
MainReg1, MainReg2, Main Reg3, and Main Reg4 at 
the beginning of round j=0 as bob, b. bs, and be respec 
tively. 
0064. For example, consider the roundj=0 (402) of phase 
5i. In Main Reg 404, bitbo is the active bit. Bits b, b. bs, and 
ba are concatenated to form a new bit string B406 (shown to 
the right of the n-bit register as bbbb). This bit string B 
406 is used to index into SpeedUpReg B+16=SpeedUpReg 
B 414 to obtain one pseudorandom bit. Suppose this bit 
string is B=1010. When j=0, then SpeedUpReg1010 
indexes into position 10 decimal of the speed-up register. 
Suppose that the pseudorandom bit SpeedUpReg1010 is 1. 
Note that B has four bits, so the index B+16 always points to 
a position in the (+1)-th 16-bit block of SpeedUpReg, ensur 
ing that indices do not repeat across rounds. 
0065 Suppose that the pseudorandom bit SpeedUpReg 
1010 is 1. Next, the system applies the combining func 
tion—in this embodiment, the exclusive-or operator—to the 
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value (say) 1 in boMainRegO and the pseudorandom bit 
SpeedUpReg1010)=1 to produce a 1-bit output, the value 
do-0 (1 xor 1). 
0066 Next, the system concatenates the value in bit posi 
tions Main Reg 1 . . . n—1 with the 1-bit output of the 
combining function, and stores the result in the register Main 
Reg. 
0067. The new state of the register Main Reg consists of 

bits b, b. bs, and b (so that b, occupies bit position IOI). 
followed by Z, and followed by do. In FIG. 4B, this state is 
shown in the next round. 
0068 To continue the example, consider the next round. 
Now j=1. The n-bit register Main Reg 404 has the following 
state: bbbb Z do. Bitb is the active bit. Bits b,b,b, and 
do are concatenated to form a new bit-string B 418 (shown to 
the right of the n-bit register). Notice that bit do is a result of 
the previous round and is appended to bbba to form 
B-babbado 0100. This bit string B 418 is used to compute 
the index B+16=4 +16=20 into the SpeedUpReg 420 to 
obtain the pseudorandom bit SpeedUpReg20. 
0069. Next, the system applies the combining function to 
b=MainRegO and the pseudorandom bit looked up from 
SpeedUpReg 412 to produce a 1-bit output d. 
0070 Next, the system concatenates the value in bit posi 
tions MainReg1 ... n—1 with d and stores the result in the 
register MainReg. 
0071. This procedure is continued for the next three 
rounds numberedj=2.j=3, andj=4. The very last state shown 
in the figure (422) is the final result of applying all five rounds 
in this phase to the n-bit register Main Reg 404: 
Z dodd.dd. If there are more phases remaining in the 
shuffle, then the phase number is incremented by 1 and the 
next group of five rounds is computed. Note that there may be 
fewer than five rounds in the very last phase of the encryption 
process. 
0072 FIG. 5 shows a flowchart illustrating the speed-up 
optimization of the Thorp shuffle in accordance with some 
embodiments. Note that the specific arrangement of steps 
shown in the figure should not be construed as limiting the 
Scope of the embodiments. The enciphering system begins by 
invoking the pseudorandom function f (step 502), passing 
in the phase number i, tweak T, and the Substring 
Z-Main Reg5 . . . n-1. The underlying implementation of 
this function invokes AES (P(i, Z)), where P(i, Z) is a prefix 
free encoding of the phase number and Z. The AES call 
outputs a 128-bit string. The system stores this string in the 
SpeedUpReg. 
0073. Next, the system starts an iteration (step 504) where 
each iteration is called a round and the round number Suc 
cessively takes on the values 0, 1, 2, 3, 4. 
0074 Next, the system sets B to be the concatenation of bit 
strings MainReg1 ... (4-1) and MainReg(n-j) . . . (n-1) 
(step 506). At first blush, it is not obvious what substrings are 
being concatenated, yet these correspond merely to the bit 
positions in Main Reg that do not fall into Z. To see this, 
consider the following example, which borrows from FIG. 4. 
Column 1 of Table 2 is j, the round number. Column 2 lists the 
index range 1 . . . (4-1) for the respective values of j, which 
extracts the first substring. The reason for this choice of 
indices is clear: in FIG. 4 you can see that part of each round 
involves rotating the n-bit register by 1 bit and storing the 
result of the exclusive-or computation in position n-1, so in 
each round Z is preceded by one bit bless. Column 3 shows 
the bit strings extracted as reg(n-j)... (n-1). From one round 
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to the next, this bit string grows by 1 bit. Thus, at index=0.1 
... 4 yields bit string bbbb, and In... (n-1) selects the 
empty string. At index=1, 1 ... 3 yields bit string babba 
and (n-1)... n-1 yields do. At index=2, 1 ... 2 yields bit 
stringbb and (n-2)... (n-1) yields dod. At index j 4, 1 
. . . (4-1) selects the empty string while n . . . (n-1) is 
dodd.ds. 

TABLE 2 

Bit concatenation for Speed-up optimization 

j 1... (4-) (n-j)... (n - 1) B 

O 1... 4 n ... (n - 1) b1b2bsbA. 
1 1... 3 (n-1)... (n - 1) b2bsbado 
2 1 ... 2 (n - 2) ... (n - 1) b3badodi 
3 1... 1 (n-3) ... (n - 1) badodid? 
4 1... O (n - 4) ... (n - 1) dodd2ds 

0075) Next, the system consults the SpeedUpReg register 
(step 508) to look up the pseudorandom bit at index B+16. 
Note that B has four bits and thus corresponds to an index in 
{0,..., 15. To ensure that each distinct rounds select among 
disjoint 16-bit substrings of SpeedUpReg, we add an offset of 
16 to the integer value of B. Thus, roundj=0 indexes into the 
range 0 ... 15, round=1 indexes into 16... 31, and so on, 
until roundj=4, which indexes into the range 64. .. 79. In 
other embodiments, the SpeedUpReg need only contain 80 
bits from the output of the pseudorandom function, since only 
indices from 0 to 79 can occur. The system may store more 
than 80 bits (such as all 128) for efficiency or other reasons 
without affecting functionality. 
0076 Next, the system invokes the combining function 
that computes the exclusive-or (step 510) of the value in bit 
position O and the pseudorandom bit from step 508 and 
produces a new 1-bit output. 
0077 Next, the system concatenates the value in bit posi 
tions 1 . . . n-1 with the value of the new 1-bit output (step 
512) to produce a new n-bit string. 
0078 Next, the system stores the concatenated result into 
Main Reg (step 514). 
0079 If not all rounds of the current phase are complete, 
the system proceeds to the next round (step 516), continuing 
with step 504. Otherwise, the iteration ends. 
0080 FIGS. 4 and 5 illustrate the speed-up optimization 
for n-bit strings in accordance with some embodiments. As 
another, more realistic, example, consider FIG. 6, which 
shows how to encrypt a U.S. Social Security number such as 
348-88-2346 using a practical realization of the Thorp shuffle 
in accordance with some embodiments. After two rounds of 
enciphering, the result is 888-23-4606. In this embodiment, 
only two rounds are shown but there can be as many rounds as 
needed to ensure that the Thorp shuffle mixes the “deck” of 
U.S. Social Security numbers well. 
I0081 Let us look at this enciphering more closely. U.S. 
Social Security numbers are enciphered using a tweaked 
cipher E. KXTX M-> M where Kis the key space of the 
underlying pseudorandom function, and Tis a tweak space of 
byte strings, and Kis the space of all U.S. Social Security 
numbers. The previous embodiment is modified to accommo 
date base-10 characters instead of binary characters as fol 
lows. First, the n-bit register is replaced with a nine-character 
register. Second, the exclusive-orbinary operation (which is 
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really modulo-2 addition) is replaced with modulo-10 addi 
tion. Third, the pseudorandom function freturns a base-10 
character. 
0082 Suppose that a U.S. Social Security number 
348882346 is stored in a register called Main Reg 602. The 
character string is divided into two parts: Main RegO and 
MainReg1 ... 8. In round 1 (612), the system invokes the 
pseudorandom function f. 604, passing in as arguments the 
round number 0 and the value of Main Reg 1 . . . 
8=48882346. Suppose the invocation f(0,48882346) 604 
returns the character 7 (one may think of this as rolling a 
ten-sided die). We compute the modulo-10 (606) addition of 
this character with the value in character position IO to get 
3+7-0. Next, we concatenate the value in MainReg1 ... 
n-1 (48.882346) with the value of the output of the modulo 
10 addition, 0, to produce a new character string, 48.8823460, 
and store it in register Main Reg. After Round 1 (612), 
348882346 has been encrypted to the intermediate value 
48.8823460, as shown by the state of the 9-character register 
610. 

I0083) We follow the same procedure outlined above for 
each subsequent round. For example, assuming f(1, 
888234606)=2, round 1 (618) yields the intermediate encryp 
tion 888234606 of 348882346 (616). This example illustrates 
how the described enciphering scheme can be used to encrypt 
messages in a small domain Such as U.S. Social Security 
numbers to ciphertexts in the same domain. Since E is 
bijective, it is guaranteed two encrypted Social Security num 
bers only collide if their corresponding plaintexts are identi 
cal 
0084. Note that the process of enciphering n-digit decimal 
strings can be sped up in a manner similar to that which was 
illustrated in FIG. 4 for n-bit input strings. Rather than achiev 
ing a fivefold speed-up in the n-bit string case (measured in 
the number of AES calls), an embodiment for decimal strings 
achieves a twofold speed-up. FIG. 7 illustrates the process for 
applying the speed-up optimization to n-decimal-digit strings 
in accordance with some embodiments. (Why phases com 
prise two rounds over the domain of decimal-digit strings and 
not five rounds as for bit strings will become clear in a 
moment.) 
0085 FIG.7 shows this speed-up optimization to encipher 
a message drawn from set Mwhere the total number of mes 
sages in set Mis N=10" messages for some ne2 in accor 
dance with some embodiments. Each phase consists of two 
rounds. The message to encipher is an n-decimal-digit input 
string (712) stored in an n-decimal-digit register Main Reg 
714. 

I0086 To populate this SpeedUpReg 710, one AES call 
(704) is made at the beginning of each phase as part of 
pseudorandom function f.702. This AES call (704) returns 
a pseudorandom 128-bit string. Since the SpeedUpReg stores 
decimal-digit strings, the system applies a conversion func 
tion that converts the 128-bit string to the corresponding 
39-decimal-digit string, which is then stored in SpeedUpReg 
710. The two rounds making up a phase share the SpeedU 
pReg 710 to obtain their subsets of bits. The decimal-digits 
MainReg2 ... n of the n-decimal-digit Main Reg 714 are a 
decimal string Z 718. The call AES (P(i, Z)) is keyed with 
key K and takes as an argument, in one embodiment, a prefix 
free encoding P(i, Z) of the phase number i and the string Z. 
Similar to the binary case, the speed-up optimization exploits 
the fact that Substring Z is common to the n-decimal-digit 
strings contained in Main Reg 714 during both rounds of the 
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current phase. In particular, in one embodiment, AES is keyed 
with K and applied to a prefix-free encoding P(i, Z) of the 
phase number i and the String Z. 
I0087. In each phase of the encryption of decimal-digit 
strings using the speed-up optimization for enciphering deci 
mal-digit strings, the two rounds examine disjoint 10-digit 
subsets of the 39-decimal digits in SpeedUpReg. Accord 
ingly, 19 digits of the 39-decimal digits in SpeedUpReg 
remain unused. Could we not also perform a third round and 
extract 10 of the 19 remaining decimal digits to index into? 
Unfortunately, this does not work. Over the course of three 
consecutive rounds of enciphering, the three states of n-digit 
register MainReg contain only a common (n-3)-digit Sub 
string Z To assure independent pseudorandom characters, we 
would therefore need to index with a 3-digit string B. How 
ever, there are 100 possible values for B, so that the pseudo 
random function would need to provide at least 310-300 
digits, which is more than the 38 decimal digits obtained from 
the 128-bit string output we assume. In general, enciphering 
strings consisting of n base-k digits in phases comprising m 
rounds requires the pseudorandom function to output at least 
mk"'' base-k digits. 
I0088 FIG. 7 shows the state changes of the n-decimal 
digit register Main Reg 714 for rounds j=0, 1 of some phase i. 
We label the contents of digit positions Oas bo and 1 as b, 
shown cross-hatched in FIG. 7. 

I0089 For example, consider the round 2i + where j=0 
(716). In Main Reg 714, bit be is the active bit, which we 
assume to be 5. Bit b is extracted to form a new bit string B 
720 (shown to the right of the n-decimal-digit register as 
B=b). This bit string B, say B-6, is used to index into the 
SpeedUpReg 710 to obtain the pseudorandom base-10 char 
acter SpeedUpReg B+10=SpeedUpReg6. Suppose that 
the pseudorandom decimal digitat that position is 9. Note that 
with this index formula, both rounds in the phase use 10 
different decimal-digits of the 39 decimal digits in the 
SpeedUpReg 710. 
0090 Next, the system combines the value in decimal 
digit position 0 with the pseudorandom decimal digit 
looked up from the SpeedUpReg 710 to produce a 1-decimal 
digit output, which we denote by co. The combining function 
is simply modulo-10 addition, so co-9+ 5–4. 
0091 Next, the system concatenates the value in decimal 
digit positions MainReg1 . . . n-1 with co and stores the 
concatenation result into the register Main Reg 714. 
0092. The new state of the register MainReg 714 in round 
j=0 is bZ co. To continue the example, consider the next 
round where j=1. The n-decimal-digit register Main Reg 714 
contains bZ co. Digit b is the active digit. Digit co is 
extracted to form a new string B 726 (shown to the right of the 
n-decimal-digit register Main Reg). This string B 726 is used 
to compute the index B+10.j=14 into SpeedUpReg 728 to 
obtain one pseudorandom decimal-digit from the next 
10-digit Subset of the speed-up register. 
0093. Next, the system combines the value in decimal 
digit position 0 with the pseudorandom decimal-digit 
looked up from the SpeedUpReg 710 to produce a 1-decimal 
digit output c. The combining function is again modulo-10 
addition. 

0094. Next, the system concatenates the value in decimal 
digit positions 1 ... n-1 with the value of the 1-decimal-digit 
output of the combine function, and stores the concatenation 
result into the register Main Reg. 
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0095. The very last state shown in the figure is the end 
result of applying one two-round phase to the n-decimal-digit 
register 730: Zcoc. If there are more phases remaining in the 
shuffle then the phase number is incremented by land the next 
group of two rounds is computed. (Note that there may be 
fewer than two rounds in the very last phase). 
0096 FIG. 8 shows a flowchart illustrating a more general 
procedure of enciphering a message represented as an n-char 
acter string where each characteris base-k digit in accordance 
with some embodiments. Note that the specific arrangement 
of steps shown in the figure should not be construed as lim 
iting the scope of the embodiments. These embodiments 
include, but are not limited to, n-bit input strings, n-decimal 
digit input strings, and n-hexadecimal-digit input strings. 
0097. The enciphering system begins the process by 
receiving (step 802) the message (a string of n base-k digits), 
the tweak (a byte string), and the key K. Each character is a 
base-k digit. 
0098 Next, the system stores the n-character input into an 
n-character first register Main Reg (step 804). 
0099 Next, the enciphering system iterates over the first 
register MainReg in a numbered sequence of phases (step 
806), modifying the state of Main Reg. For each phase, the 
system performs the following. 
0100 Next, the system invokes the pseudorandom func 
tion f (step 808) with two arguments: the phase number i 
and the value MainReg1 . . . n-1 together with the phase 
number p. f. returns a pseudorandom base-k character 
string. Note that this pseudorandom function outputs a pseu 
dorandom base-k character string of length 1. 
0101 Next, the system selects at least mk" characters 
(step 810) for some m22 from the pseudorandom base-k 
character string output of the pseudorandom function f 
and stores these selected characters in a second register 
SpeedUpReg. The second register SpeedUpReg behaves as 
the same speed-up register shown in FIG. 4 and FIG. 7. 
0102 Next, the system iterates over the first register a 
sequence of m rounds (step 812). The last phase contains 
fewer rounds if the total number of rounds is not a multiple of 

0103) Next, the enciphering system applies a choice func 
tion (step 814) to the first register Main Reg, the second reg 
ister SpeedUpReg, and the round number to produce a pseu 
dorandom base-k character output. 
0104. Next, the enciphering system combines the value in 
character position O of the first register and the pseudoran 
dom base-k character output by the choice function to pro 
duce a new base-k character (step 816). Note that, in some 
embodiments, this combining function is modulo-kaddition. 
0105 Next, the enciphering system (step 818) concat 
enates the value in character positions MainReg1 ... n-1 of 
the first register with the value of the new base-k character 
output and stores the result into the first register Main Reg. 
0106 If there are more rounds (step 820), then the enci 
phering system goes to step 814 and continues with the pro 
cess. Otherwise, if there are more phases (822), then the 
enciphering system goes back to step 808 and continues the 
process with the next phase. 
0107. When all phases are complete, the input string has 
been successfully enciphered. The ciphertext is contained in 
the first register Main Reg. 
0108 FIG. 9 shows a flowchart elaborating the choice 
function given in step 814 of FIG. 8 in accordance with some 
embodiments. Note that the specific arrangement of steps 
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shown in the figure should not be construed as limiting the 
Scope of the embodiments. The enciphering system begins by 
invoking the choice function using the first register Main Reg, 
the second register SpeedUpReg, and the round number as 
arguments to the function (step 902). What the system is 
doing, intuitively, is taking a pseudorandom character 
string—the output of the pseudorandom function stored con 
veniently in the SpeedUpReg—and “choosing from a subset 
of the pseudorandom character string some character string 
that is, therefore, also pseudorandom. 
0109 Next, the enciphering system (step 904) extracts the 
(m-1) base-k characters string B from MainReg, where in 
round j, B is the concatenation of characters 1 . . . (m-1-) 
and characters (n-j)... (n-1) of Main Reg. 
0110. Next, the enciphering system (step 906) interprets 
the string of m-1 base-k characters as a decimal number Band 
returns character b+k"'i of the SpeedUpReg to produce a 
pseudorandom base-k character output. 
0111. The following table gives some valid values for k, 
m, 1 satisfying the parameter constraint mik"'s1. 

TABLE 3 

Example parameter sets 

Radixk PRF output length 1 Phase length m 

2 128 5 
3 65 3 
8 16 2 

10 39 2 
16 8 2 

0112 The foregoing descriptions of embodiments have 
been presented for purposes of illustration and description 
only. They are not intended to be exhaustive or to limit the 
present description to the forms disclosed. Accordingly, 
many modifications and variations will be apparent to prac 
titioners skilled in the art. Additionally, the above disclosure 
is not intended to limit the present description. The scope of 
the present description is defined by the appended claims. 
What is claimed is: 
1. A method for enciphering an input string to produce an 

output String, comprising: 
receiving the input string; 
storing the input string into a register; 
modifying the register in a sequence of phases, wherein 

each phase involves: 
invoking a pseudorandom function that outputs a pseu 
dorandom string; 

iteratively modifying the register in a sequence of two or 
more rounds, wherein each round entails using a dif 
ferent portion of the pseudorandom string to direct the 
modification of the register, and 

providing the contents of the register as an output, after the 
sequence of phases completes. 

2. The method of claim 1, 
wherein receiving the input string also involves receiving a 

key and a tweak; and 
wherein applying the pseudorandom function involves 

using the key and the tweak to determine the pseudoran 
dom function. 

3. The method of claim 1, wherein the pseudorandom 
function is implemented by the CBC-MAC of the Advanced 
Encryption Standard (AES). 



US 2010/0246813 A1 

4. The method of claim 1, 
wherein said input string is drawn from a small domain 

such as Social Security numbers or credit card numbers: 
wherein said domain consists of all strings of length nel 
whose characters are base-k digits for some k22; 

wherein enciphering said input string from a small domain 
results in an output string with a format that is the same 
as the input string; and 

wherein such format preservation simplifies adding 
encryption to systems with legacy data, because field 
types for the legacy data need not be changed when the 
data is enciphered. 

5. A method for enciphering an input to produce an output, 
comprising: 

receiving the input, wherein the input is n characters in 
length and wherein each character is a base-k digit, 

storing the input into an n-character first register O... n-1; 
modifying the first register in a numbered sequence of 

phases, wherein each phase involves: 
applying a pseudorandom function to a phase number 

and the value in character positions m ... n-1 of the 
first register, for some msn, wherein the pseudoran 
dom function outputs a pseudorandom character 
string and wherein each character is a base-k digit, 

selecting at least mk"1 base-k characters from the 
pseudorandom character string and storing them in a 
second register, 

iteratively performing the following operations, wherein 
each iteration constitutes a round and wherein each 
round involves: 
applying a choice function to the first register, the second 

register, and the round number, wherein the choice 
function outputs a pseudorandom base-k character; 

combining the value in character position O of the first 
register and the pseudorandom base-k character to 
produce a new base-k character output; 

concatenating the value in character positions 1 ... n-1 
of the first register with the value of the new base-k 
character, and 

storing the concatenation result into the n-character first 
register, and 

providing the contents of the first register as an output, after 
the sequence of phases completes. 

6. The method of claim 5, wherein concatenating two char 
acter strings involves: 

joining a first character string of X characters in length to a 
second character string of y characters in length to pro 
duce a new character string of X-Fy characters and 
wherein the new character string contains the characters 
of the first character string followed by the characters of 
the second character string. 

7. The method of claim 5, 
wherein receiving the input involves receiving a key and a 

tweak; and 
wherein applying the pseudorandom function involves 

using the key and the tweak to determine the pseudoran 
dom function. 

8. The method of claim 7, wherein applying the pseudo 
random function further comprises: 

computing a phase number, wherein the phase number is 
unique and is associated with multiple rounds in the pass 
of n phases; and 

using the phase number of determine the pseudorandom 
function. 
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9. The method of claim 8, wherein applying the pseudo 
random function further comprises: 

computing a current position number, wherein said current 
position number comprises the value in bit positions k. 
... n-1 of the first register nek; and 

using the current position number to determine the pseu 
dorandom function. 

10. The method of claim 9, wherein for each phase, apply 
ing the pseudorandom function further comprises: 

invoking the pseudorandom function using the key, phase 
number, the current position number, and the tweak. 

11. The method of claim 5, wherein for each round, apply 
ing the choice function further comprises: 

invoking the choice function using the first register, the 
second register, and the round; 

concatenating the character string in positions 1 ... (m-1- 
j) of the first register with the character String in posi 
tions (n-j) . . . (n-1), where j is the round number, to 
produce a string of m-1 base-k characters; and interpret 
ing the string of m-1 base-k characters as a decimal 
number band returning a character in position b+k"j 
of the second register to output a pseudorandom base-k 
character. 

12. The method of claim 5, wherein the pseudorandom 
function is constructed from the CBC-MAC of the Advanced 
Encryption Standard (AES). 

13. The method of claim 12, wherein at least one AES call 
is performed per pseudorandom function invocation. 

14. The method of claim 5, 
wherein said input is drawn from a small domain such as 

Social Security numbers or credit card numbers: 
wherein said domain consists of all strings of length nel 
whose characters are base-k digits for some k>2; 

wherein said input from a small domain after enciphering 
results in an output with a format that is the same as the 
input; and 

wherein Such format preservation simplifies adding 
encryption to systems with legacy data, because field 
types for the legacy data need not be changed when the 
data is enciphered. 

15. The method of claim 5, 
wherein combining two single-character strings involves 

using modulo-kaddition to produce another single-char 
acter output string, and wherein the single-character 
string is a base-k digit; and 

wherein one of the two single-character strings and the 
output string uniquely determines the other single-char 
acter String. 

16. A non-transitory computer-readable storage medium 
for storing instructions that when executed by a computer 
cause the computer to perform a method for enciphering an 
input to produce an output, comprising: 

receiving the input, wherein the input is n characters in 
length and wherein each character is a base-k digit, 

storing the input into an n-character first register O... n-1; 
modifying the first register in a numbered sequence of 

phases, wherein each phase involves: 
applying a pseudorandom function to a phase number 

and the value in character positions m ... n-1 of the 
first register for Some msn, wherein the pseudoran 
dom function outputs a pseudorandom character 
string and wherein each character is a base-k digit, 
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selecting at least milk"'' base-k characters from the 
pseudorandom character string and storing them in a 
second register, 

iteratively performing the following operations, wherein 
each iteration constitutes a round and wherein each 
round involves: 
applying a choice function to the first register, the 

second register, and the round number, wherein the 
choice function outputs a pseudorandom base-k 
character; 

combining the value in character position O of the 
first register and the pseudorandom base-k charac 
ter output to produce a new base-k character output; 

concatenating the value in character positions 1 . . . 
n-1 of the first register with the value of the new 
base-k character output; and 

storing the concatenation result into the n-character 
first register, and 

providing the contents of the first register as an output, after 
the sequence of phases completes. 

17. The non-transitory computer-readable storage medium 
of claim 16, wherein concatenating two character strings 
involves: 

joining a first character string of X characters in length to a 
second character string of y characters in length to pro 
duce a new character string of length X-y number of 
characters and wherein the new character string contains 
the characters of the first character string followed by the 
characters of the second character string. 

18. The non-transitory computer-readable storage medium 
of claim 16, 

wherein receiving the input involves receiving a key and a 
tweak; and 

wherein applying the pseudorandom function involves 
using the key and the tweak to determine the pseudoran 
dom function. 

19. The non-transitory computer-readable storage medium 
of claim 18, wherein applying the pseudorandom function 
further comprises: 

computing a phase number, wherein the phase number is 
unique and is associated with multiple rounds in the pass 
of n phases; and 

using the phase number to determine the pseudorandom 
function. 

20. The non-transitory computer-readable storage medium 
of claim 19, wherein applying the pseudorandom function 
further comprises: 

computing a current position number, wherein said current 
position number comprises the value in bit positions k. 
... n-1 of the first register nek; and 

using the current position number to determine the pseu 
dorandom function. 

21. The non-transitory computer-readable storage medium 
of claim 20, wherein for each phase, applying the pseudoran 
dom function further comprises: 

invoking the pseudorandom function using the key, phase 
number, the tweak number, and the current position 
number. 

22. The non-transitory computer-readable storage medium 
of claim 16, wherein for each round, applying the choice 
function further comprises: 

invoking the choice function using the first register, the 
second register, and the round; 
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concatenating the character string in positions 1 ... (m-1 
of the first register with the character string in posi 

tions (n-j)... (n-1) of the first register, where j is the 
round number, to produce a string of m-1 base-k char 
acters; and 

interpreting the string of m-1 base-k characters as a deci 
mal number b and returning a character in position 
b+k"'i of the second register to output a pseudoran 
dom base-k character. 

23. The non-transitory computer-readable storage medium 
of claim 16 wherein the pseudorandom function is con 
structed from the CBC-MAC of the Advanced Encryption 
Standard (AES). 

24. The non-transitory computer-readable storage medium 
of claim 23, wherein at least one AES call is performed per 
pseudorandom function invocation. 

25. The non-transitory computer-readable storage medium 
of claim 16, wherein said input is drawn from a small domain 
such as Social Security numbers or credit card numbers; 

wherein said domain consists of all strings of length nel 
whose characters are base-k digits for some k22; 

wherein said input from a small domain after enciphering 
results in an output with a format that is the same as the 
input; and 

wherein Such format preservation simplifies adding 
encryption to systems with legacy data, because field 
types for the legacy data need not be changed when the 
data is enciphered. 

26. The non-transitory computer-readable storage medium 
of claim 16, wherein combining two single-character strings 
involves using modulo-k addition to produce another single 
character string, and wherein the single-character String is a 
base-k digit; and 

wherein one of the two single-character strings and the 
output string uniquely determines the other single-char 
acter String. 

27. A system for enciphering an input to produce an output, 
comprising: 

a receiving mechanism configured to receive the input, 
wherein the input is n characters in length and wherein 
each character is a base-k digit; 

a storing mechanism configured to store the input into an 
n-character first register 0 . . . n-1: 

a computation mechanism configured to modify the first 
register in a numbered sequence of phases, wherein each 
phase involves: 
applying a pseudorandom function to a phase number 

and the value in character positions m ... n-1 of the 
first register, for some msn, wherein the pseudoran 
dom function outputs a pseudorandom character 
string and wherein each character is a base-k digit, 

selecting at least milk"'' base-k characters from the 
pseudorandom character string and storing them in a 
second register, 

iteratively performing the following operations, wherein 
each iteration constitutes a round and wherein each 
round involves: 
applying a choice function to the first register, the 

second register, and the round number, wherein the 
choice function outputs a pseudorandom base-k 
character; 

combining the value in character position IOI of the 
first register and the pseudorandom base-k charac 
ter to produce a new base-k character output; 
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concatenating the value in character positions 1 . . . 
n-1 of the first register with the value of the new 
base-k character; and 

storing the concatenation result into the n-character 
first register, and 

an outputting mechanism configured to provide the con 
tents of the first register as an output, after the sequence 
of phases completes. 

28. The system of claim 27, wherein concatenating two 
character strings involves: 

joining a first character string of X characters in length to a 
second character string of y characters in length to pro 
duce a new character string of length X-y number of 
characters and wherein the new character string contains 
the characters of the first character string followed by the 
characters of the second character string. 

29. The system of claim 27, 
wherein receiving the input involves receiving a key and a 

tweak; and 
wherein applying the pseudorandom function involves 

using the key and the tweak to determine the pseudoran 
dom function. 

30. The system of claim 29, wherein applying the pseudo 
random function further comprises: 

computing a phase number, wherein the phase number is 
unique and is associated with multiple rounds in the pass 
of n phases; and 

using the phase number to determine the pseudorandom 
function. 

31. The system of claim 30, wherein applying the pseudo 
random function further comprises: 

computing a current position number, wherein said current 
position number comprises the value in bit positions k. 
... n-1 of the first register nek; and 

using the current position number to determine the pseu 
dorandom function. 

32. The system of claim 31, wherein for each phase, apply 
ing the pseudorandom function further comprises: 

invoking the pseudorandom function using the key, phase 
number, the tweak number, and the current position 
number. 
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33. The system of claim 27, wherein for each round, apply 
ing the choice function further comprises: 

invoking the choice function using the first register, the 
second register, and the round; 

concatenating the character string in positions 1 ... (m-1- 
j) of the first register with the character String in posi 
tions (n-j)... (n-1) of the first register, where j is the 
round number, to produce a string of m-1 base-k char 
acters; and 

interpreting the string of m-1 base-k characters as a deci 
mal number b and returning a character in position 
b+k"j of the second register to output a pseudoran 
dom base-k character. 

34. The system of claim 27 wherein the pseudorandom 
function is constructed from the CBC-MAC of the Advanced 
Encryption Standard (AES). 

35. The system of claim 34, wherein at least one AES call 
is performed per pseudorandom function invocation. 

36. The system of claim 27, 
wherein said input is drawn from a small domain such as 

Social Security numbers or credit card numbers: 
wherein said domain consists of all strings of length nel 
whose characters are base-k digits for some k22; 

wherein said input from a small domain after enciphering 
results in an output with a format that is the same as the 
input; and 

wherein Such format preservation simplifies adding 
encryption to systems with legacy data, because field 
types for the legacy data need not be changed when the 
data is enciphered. 

37. The system of claim 27, 
wherein combining two single-character strings involves 

using modulo-kaddition to produce another single-char 
acter string, and wherein the single-character string is a 
base-k digit; and 

wherein one of the two single-character strings and the 
output string uniquely determines the other single-char 
acter String. 


