

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 February 2005 (10.02.2005)

PCT

(10) International Publication Number
WO 2005/013339 A2

(51) International Patent Classification⁷: H01L 21/00 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/US2004/022949

(22) International Filing Date: 16 July 2004 (16.07.2004)

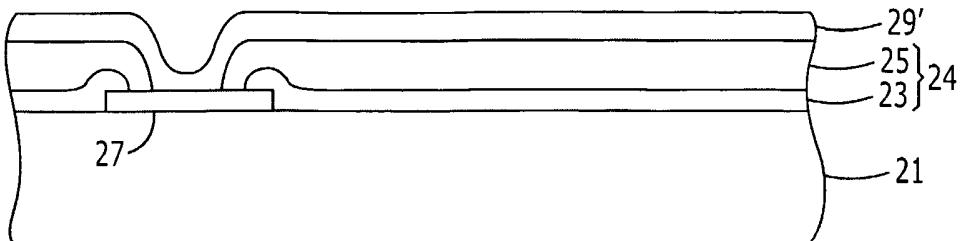
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/490,340 25 July 2003 (25.07.2003) US
60/507,587 1 October 2003 (01.10.2003) US

(71) Applicant (for all designated States except US): UNITIVE INTERNATIONAL LIMITED [NL/NL]; Caracasbaaiweg, Curacao, 201 (AN).

(72) Inventors; and


(75) Inventors/Applicants (for US only): MIS, Daniel, J. [US/US]; 204 North Rail Drive, Cary, NC 27513 (US). ZEHNIDER, Dean [US/US]; 2121 Old Forest Drive, Hillsborough, NC 27278 (US).

(74) Agent: MYERS BIGEL SIBLEY & SAJOVEC, P.A.; P.O. Box 37428, Raleigh, NC 27627 (US).

Published:
— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF FORMING CONDUCTIVE STRUCTURES INCLUDING TITANIUM-TUNGSTEN BASE LAYERS AND RELATED STRUCTURES

WO 2005/013339 A2

(57) Abstract: Methods may be provided for forming an electronic device including a substrate, a conductive pad on the substrate, and an insulating layer on the substrate wherein the insulating layer has a via hole therein exposing a portion of the conductive pad. In particular, a conductive structure may be formed on the insulating layer and on the exposed portion of the conductive pad. The conductive structure may include a base layer of titanium-tungsten (TiW) and a conduction layer of at least one of aluminum and/or copper. Moreover, the base layer of the conductive structure may be between the conduction layer and the insulating layer. Related devices are also discussed.

METHODS OF FORMING CONDUCTIVE STRUCTURES INCLUDING TITANIUM-TUNGSTEN BASE LAYERS AND RELATED STRUCTURES

RELATED APPLICATIONS

5 This application claims the benefit of priority from U.S. Provisional Patent Application No. 60/490,340 filed on July 25, 2003, and from U.S. Provisional Patent Application No. 60/507,587 filed on October 1, 2003. The disclosures of both of the above referenced Provisional Patent Applications are hereby incorporated herein by reference in their entirety.

10

FIELD OF THE INVENTION

The present invention relates to the field of integrated circuits and more particularly to methods of forming conductive structures for integrated circuit devices and related structures.

15

BACKGROUND OF THE INVENTION

High performance microelectronic devices often use solder balls or solder bumps for electrical interconnection to other microelectronic devices. For example, a very large scale integration (VLSI) chip may be electrically connected to a circuit board or other next level packaging substrate using solder balls or solder bumps. This connection technology is also referred to as "Controlled Collapse Chip Connection--C4" or "flip-chip" technology, and will be referred to herein as solder bumps.

According to solder bump technology developed by IBM, solder bumps are formed by evaporation through openings in a shadow mask which is clamped to an integrated circuit wafer. For example, U.S. Pat. No. 5,234,149 entitled "Debondable Metallic Bonding Method" to Katz et al. discloses an electronic device with chip wiring terminals and metallization layers. The wiring terminals are typically essentially aluminum, and the metallization layers may include a titanium or chromium localized adhesive layer, a co-deposited localized chromium copper layer, a localized wettable copper layer,

and a localized gold or tin capping layer. An evaporated localized lead-tin solder layer is located on the capping layer.

Solder bump technology based on an electroplating method has also been actively pursued. The electroplating method is particularly useful for

5 larger substrates and smaller bumps. In this method, an "under bump metallurgy" (UBM) layer is deposited on a microelectronic substrate having contact pads thereon, typically by evaporation or sputtering. A continuous under bump metallurgy layer is typically provided on the pads and on the substrate between the pads to allow current flow during solder plating.

10 An example of an electroplating method with an under bump metallurgy layer is discussed in U.S. Pat. No. 5,162,257 entitled "Solder Bump Fabrication Method" to Yung and assigned to the assignee of the present application. In this patent, the under bump metallurgy layer includes a chromium layer adjacent the substrate and pads, a top copper layer which

15 acts as a solderable metal, and a phased chromium/copper layer between the chromium and copper layers. The base of the solder bump is preserved by converting the under bump metallurgy layer between the solder bump and contact pad into an intermetallic of the solder and the solderable component of the under bump metallurgy layer.

20 An example of a redistribution routing conductor is discussed in U.S. Patent No. 6,389,691 entitled "Methods For Forming Integrated Redistribution Routing Conductors And Solder Bumps" to Rinne et al. and assigned to the assignee of the present application. In this patent, a redistribution routing conductor can be integrally formed together with an associated solder bump.

25 Notwithstanding the methods and structures discussed above, there continues to exist a need in the art for improved interconnection structures.

SUMMARY OF THE INVENTION

According to embodiments of the present invention, methods may be

30 provided for forming an electronic device including a substrate, a conductive pad on the substrate, and an insulating layer on the substrate wherein the insulating layer has a via hole therein exposing a portion of the conductive pad. More particularly, a conductive structure may be formed on the insulating layer and on the exposed portion of the conductive pad. The

conductive structure may include a base layer including titanium-tungsten (TiW) and a conduction layer including at least one of aluminum and/or copper. Moreover, the base layer of the conductive structure is between the conduction layer and the insulating layer.

5 In addition, forming the conductive structure may include forming a layer of titanium-tungsten on the insulating layer and on the exposed portions of the conductive pad, and forming the conduction layer including at least one of aluminum and/or copper on the layer of titanium-tungsten so that portions of the titanium-tungsten layer are exposed. After forming the conduction
10 layer, portions of the layer of titanium-tungsten exposed by the conduction layer may be removed. More particularly, removing portions of the layer of titanium-tungsten may include etching the layer of titanium-tungsten using hydrogen peroxide. In an alternative, removing portions of the layer of titanium-tungsten may include etching the layer of titanium-tungsten using a
15 mixture including hydrogen peroxide, potassium sulfate, benzotriazole, and sulfo-salicylic acid.

The base layer of the conductive structure may include a lip extending beyond the conduction layer of the conductive structure, and/or the conductive pad may include at least one of aluminum and/or copper. A
20 second insulating layer may be formed on the conductive structure and on the first insulating layer so that the conductive structure is between the first and second insulating layers, and a second via hole in the second insulating layer may expose a portion of the conductive structure. Moreover, the first and second via holes may be offset. An interconnection structure (such as a
25 solder bump) may also be formed on the exposed portion of the conductive structure, and an under bump metallurgy layer may be formed between the interconnection structure and the exposed portion of the conductive structure.

The conduction layer of the conductive structure may include an aluminum layer, and the conduction layer may also include a titanium layer
30 between the aluminum layer and the base layer of the conductive structure. A portion of the conductive pad may be exposed between the insulating layer and the conductive structure. Moreover, the insulating layer may include at least one of benzocyclobutene, polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride.

According to additional embodiments of the present invention, methods may be provided for forming an electronic device including a substrate and an insulating layer on the substrate. More particularly, a conductive structure may be formed on the insulating layer, and the conductive structure may

5 include a base layer including titanium-tungsten (TiW) and a conduction layer including at least one of aluminum and/or copper. Moreover, the base layer of the conductive structure may be between the conduction layer and the insulating layer, and the base layer of the conductive structure may include a lip extending beyond the conduction layer of the conductive structure.

10 Forming the conductive structure on the insulating layer may include forming a layer of titanium-tungsten on the insulating layer, and after forming the layer of titanium-tungsten, the conduction layer may be formed on the layer of titanium-tungsten so that portions of the layer of titanium-tungsten are exposed. After forming the conduction layer, portions of the layer of titanium-
15 tungsten exposed by the conduction layer may be removed. More particularly, removing portions of the layer of titanium-tungsten may include etching the layer of titanium-tungsten using hydrogen peroxide. In an alternative, removing portions of the layer of titanium-tungsten may include etching the layer of titanium-tungsten using a mixture including hydrogen peroxide, potassium sulfate, benzotriazole, and sulfo-salicylic acid.

20 The electronic device may include a conductive pad on the substrate, the insulating layer may have a via hole therein exposing a portion of the conductive pad, and forming the conductive structure may include forming the conductive structure on the insulating layer and on exposed portions of the conductive pad. More particularly, the conductive pad may include at least one of aluminum and/or copper. In addition, a portion of the conductive pad may be exposed between the insulating layer and the conductive structure.

25 A second insulating layer may be formed on the conductive structure and on the first insulating layer so that the conductive structure is between the first and second insulating layers. In addition, a second via hole may be formed in the second insulating layer exposing a portion of the conductive structure. Moreover, an interconnection structure (such as a solder bump) may be formed on the exposed portion of the conductive structure, and an

under bump metallurgy layer may be formed between the interconnection structure and the exposed portion of the conductive structure.

The conduction layer of the conductive structure may include an aluminum layer, and the conduction layer may also include a titanium layer

5 between the aluminum layer and the base layer of the conductive structure. In addition, the insulating layer may include at least one of benzocyclobutene, polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride.

According to still additional embodiments of the present invention, an electronic device may include a substrate, a conductive pad, an insulating

10 layer, and a conductive structure on the insulating layer. The conductive pad may be on the substrate, and the insulating layer may be on the substrate and on the conductive pad. In addition, the insulating layer may have a via hole therein exposing a portion of the conductive pad. The conductive structure may be on the insulating layer and on the exposed portion of the conductive

15 pad. More particularly, the conductive structure may include a base layer comprising titanium-tungsten (TiW) and a conduction layer comprising at least one of aluminum and/or copper. Moreover, the base layer of the conductive structure may be between the conduction layer and the insulating layer. The base layer of the conductive structure may include a lip extending beyond the

20 conduction layer of the conductive structure, and/or the conductive pad may include at least one of aluminum and/or copper.

In addition, a second insulating layer may be provided on the conductive structure and on the first insulating layer so that the conductive structure is between the first and second insulating layers. Moreover, the

25 second insulating layer may have a second via hole therein exposing a portion of the conductive structure wherein the first and second via holes are offset. An interconnection structure (such as a solder bump) may be provided on the exposed portion of the conductive structure, and an under bump metallurgy layer may be provided between the interconnection structure and

30 the exposed portion of the conductive structure.

The conduction layer of the conductive structure may include an aluminum layer, and the conduction layer may also include a titanium layer between the aluminum layer and the base layer of the conductive structure. A portion of the conductive pad may be exposed between the insulating layer

and the conductive structure, and/or the insulating layer may include at least one of benzocyclobutene, polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride.

According to yet additional embodiments of the present invention, an 5 electronic device may include a substrate, an insulating layer on the substrate, and a conductive structure on the insulating layer. The conductive structure may include a base layer including titanium-tungsten (TiW) and a conduction layer including at least one of aluminum and/or copper. Moreover, the base layer of the conductive structure may be between the conduction 10 layer and the insulating layer, and the base layer of the conductive structure may include a lip extending beyond the conduction layer of the conductive structure.

The electronic device may also include a conductive pad on the substrate, and the insulating layer may have a via hole therein exposing a 15 portion of the conductive pad. In addition, a portion of the conductive structure may be on the exposed portion of the conductive pad. The conductive pad may include at least one of aluminum and/or copper, and a portion of the conductive pad may be exposed between the insulating layer and the conductive structure.

20 In addition, a second insulating layer may be provided on the conductive structure and on the first insulating layer so that the conductive structure is between the first and second insulating layers, and the second insulating layer may have a second via hole therein exposing a portion of the conductive structure. In addition, an interconnection structure (such as a 25 solder bump) may be provided on the exposed portion of the conductive structure, and an under bump metallurgy layer may be provided between the interconnection structure and the exposed portion of the conductive structure.

Moreover, the conduction layer of the conductive structure may be an 30 aluminum layer, and the conduction layer may also include a titanium layer between the aluminum layer and the base layer of the conductive structure. In addition, the insulating layer may include at least one of benzocyclobutene, polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1, 2A-B, 3, and 4 are cross-sectional views illustrating steps of forming conductive structures and resulting conductive structures according to embodiments of the present invention.

5 Figures 5-9 are cross-sectional views illustrating steps of methods of forming conductive structures and resulting conductive structures according to additional embodiments of the present invention.

Figures 10-13 are photographs illustrating conductive structures according to yet additional embodiments of the present invention.

10

DETAILED DESCRIPTION

The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many 15 different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, thicknesses of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout.

20 It will be understood that when an element such as a layer, region or substrate is referred to as being "on" another element, it can be directly on the other element, or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" another element, there are no intervening elements present. Also, when an element is referred to as 25 being "bonded" to another element, it can be directly bonded to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly bonded" to another element, there are no intervening elements present. It will also be understood that when an element is referred to as being "connected" or "coupled" to another element, it 30 can be directly connected or coupled to the other element or intervening elements may be present. Finally, the term "directly" means that there are no intervening elements.

According to embodiments of the present invention, a conductive structure including an aluminum and/or copper layer may be provided on an

organic and/or an inorganic insulating passivation layer. The conductive structure, for example, may be used as a redistribution routing line providing electrical connectivity between an input/output pad on a substrate and an interconnection structure (such as a solder bump) offset from the input/output pad. Conductive lines and solder bumps according to embodiments of the present invention may be used, for example, to provide structures for flip chip processing. In other alternatives, a conductive line according to embodiments of the present invention may provide interconnection between two conductive input/output pads, between a conductive input/output pad and another conductive line, and/or between two interconnection structures.

Embodiments of the present invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments of the present invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the present invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a conductive layer illustrated as a rectangle may, typically, have rounded or curved features. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the present invention.

An electronic structure according to embodiments of the present invention is illustrated in Figure 4. As shown in Figure 4, an electronic substrate **21** may include a semiconductor material such as silicon (Si), gallium arsenide (GaAs), silicon germanium (SiGe), and/or sapphire. More particularly, the electronic substrate **21** may include a plurality of electronic devices such as transistors, diodes, resistors, capacitors, and/or inductors, providing a defined functionality. In addition, a conductive input/output pad **27** (such as a copper and/or aluminum pad) may provide electrical connectivity for electrical circuitry of the substrate **21**. An insulating passivation layer **24** may include an inorganic layer **23** (such as a layer of silicon oxide, silicon nitride, and/or silicon oxynitride) and an organic layer **25** (such as a layer of benzocyclobutene BCB and/or polyimide). In an alternative, the insulating

passivation layer 24 may include only one of an inorganic layer or an organic layer.

As further shown in Figure 4, a via hole in the insulating passivation layer 24 may expose portions of the conductive input/output pad 27, and a 5 conductive line 30 may be provided on the insulating passivation layer 24. More particularly, the conductive line 30 may include a base layer 29 including titanium-tungsten (TiW) and a conduction layer 33 including aluminum and/or copper. According to particular embodiments of the present invention, the conduction layer 33 may include a stack of aluminum on titanium (Ti/Al), 10 aluminum on titanium on titanium-tungsten (TiW/Ti/Al), copper on titanium (Ti/Cu), copper on titanium-tungsten (TiW/Cu), aluminum on titanium-tungsten on titanium nitride (TiN/TiW/Al), and/or copper on titanium-tungsten on titanium nitride (TiN/TiW/Cu). A conduction layer 33 including a stack of aluminum on titanium may getter oxygen from a titanium-tungsten base layer. 15 A second insulating passivation layer 35 on the conductive line 30 and on the first insulating passivation layer 24 includes a second via hole therein exposing a portion of the conductive line 30 offset from the conductive input/output pad 27. Moreover, an under bump metallurgy layer 37 and an interconnection structure 39 (such as a solder bump) may be provided on 20 exposed portions of the conductive line 30. Accordingly, the conductive line 30 may allow redistribution of the interconnection structure 39 from the respective conductive input/output pad 27, and the interconnection structure 39 may provide electrical and/or mechanical interconnection to a next level of packaging. 25 While not shown in Figure 4, the base layer 29 of the conductive line 30 may include a lip extending beyond the conduction layer 33. In addition or in an alternative, portions of the conductive input/output pad 27 may be exposed between the insulating passivation layer 24 and the conductive line 30. Stated in other words, a width of the conductive line 30 may be less than 30 a width of portions of the conductive input/output pad 27 exposed through the via hole in the insulating passivation layer 24.

Methods of forming structures illustrated in Figure 4 according to embodiments of the present invention are illustrated in Figures 1-4. As shown in Figure 1, an insulating passivation layer 24 including an inorganic layer 23

(such as silicon oxide, silicon nitride, and/or silicon oxynitride) and/or an organic layer **25** (such as benzocyclobutene and/or polyimide) can be formed on a substrate **21**. More particularly, an inorganic layer **23** may be formed on the substrate, and an organic layer **25** may be formed on the inorganic layer **23** opposite the substrate **21**. The substrate **21** may include a material such as silicon (Si), gallium arsenide (GaAs), silicon germanium (SiGe), and/or sapphire, and the electronic substrate may include electronic devices such as transistors, diodes, resistors, capacitors, and/or inductors.

In addition, a conductive input/output pad **27** (such as an aluminum and/or copper pad) may be included on the substrate **21**, and the conductive input/output pad **27** may provide electrical connectivity for circuitry of the substrate **21**. Moreover, a via hole in the insulating passivation layer **24** may expose at least a portion of the conductive pad **27**. As further shown in Figure 1, a blanket layer of titanium-tungsten **29'** may be formed on the insulating passivation layer **24** and on portions of the conductive input/output pad **27** exposed through the via hole in the insulating passivation layer **24**.

Prior to forming the blanket layer of titanium-tungsten **29'**, the exposed surface of the conductive input/output pad **27** may be subjected to a wet and/or dry pretreatment to reduce a surface oxide thereof and to reduce a contact resistance between the conductive input/output pad **27** and the titanium-tungsten formed thereon. For example, the exposed surface of the conductive input/output pad **27** may be subjected to a sputter clean, and the blanket layer of titanium-tungsten **29'** can be formed by sputtering. Moreover, the sputter clean and the sputter deposition can be performed in a same process chamber to reduce further oxidation and/or contamination. In alternatives, the exposed surface of the conductive input/output pad **27** may be subjected to a wet etch/clean, a dry etch/clean, and/or a plasma etch/clean prior to forming the blanket layer of titanium-tungsten, and/or the blanket layer of titanium-tungsten **29** may be formed by evaporation.

More particularly, the blanket layer of titanium-tungsten **29'** may be formed to a thickness of approximately 100 Angstroms. The blanket layer of titanium may have a composition of approximately 10% titanium and 90% tungsten.

With an aluminum conductive input/output pad 27, the blanket layer of titanium-tungsten 29' may provide passivation of portions of the aluminum conductive input/output pad 27 exposed through the via hole in the insulating passivation layer 24. The blanket layer of titanium-tungsten 29' may also

5 getter oxygen from the surface of the aluminum conductive input/output pad 27.

As shown in Figure 2A, a conduction layer 33 may be formed using a lift-off technique. More particularly, a resist layer 31 may be formed and patterned to provide a lift-off stencil with an opening exposing portions of

10 the blanket layer of titanium-tungsten 29'. A layer of metal 33 is then formed on the resist layer 31 and on exposed portions of the titanium-tungsten (TiW) layer 29. The metal layer 33 may include aluminum and/or copper, and the metal layer 33 may be formed by evaporation. The metal layer 33 may include a stack of metal layers such as aluminum on titanium (Ti/Al),

15 aluminum on titanium on titanium-tungsten (TiW/Ti/Al), copper on titanium (Ti/Cu), copper on titanium-tungsten (TiW/Cu), aluminum on titanium-tungsten on titanium nitride (TiN/TiW/Al), and/or copper on titanium-tungsten on titanium nitride (TiN/TiW/Cu). For example, the conduction layer may include a titanium layer having a thickness in the range of approximately 200

20 Angstroms to approximately 1000 Angstroms on the blanket layer of titanium-tungsten 29', and an aluminum layer having a thickness of approximately 2µm. A conduction layer 33 including a stack of aluminum on titanium may getter oxygen from a titanium-tungsten base layer.

The structure including the resist layer 31 and the conduction layer 33

25 may then be exposed to a solvent bath so that the resist layer 31 dissolves and portions of the metal layer 33 thereon lift off. Portions of the blank layer of titanium-tungsten (TiW) 29' not covered by the remaining portions of the metal layer 33 may then be removed using an etch chemistry that selectively etches titanium-tungsten with respect to aluminum and/or copper to provide

30 the structure of Figure 3 with the conductive line 30 including a base layer of titanium-tungsten 29 and a conduction layer 33. With a conduction layer 33 including a stack of aluminum on titanium, exposed portions of the blanket layer of titanium-tungsten 29' (10%Ti and 90%W) may be etched using an etching agent such as hydrogen peroxide (H_2O_2) in water (30% H_2O_2), and/or

a mixture including hydrogen peroxide (H_2O_2), water, potassium sulfate, benzotriazole, and sulfo-salicylic acid.

In an alternative, the conduction layer **33** can be formed using photolithography/etch techniques as illustrated, for example, in Figure 2B, and

5 exposed portions of the blanket layer of titanium-tungsten **29'** can be removed to provide the structure of Figure 3. More particularly, a blanket metal layer **33'** including aluminum and/or copper may be sputtered on the blanket layer of titanium-tungsten **29'**. The blanket metal layer **33'** may be a stack of metal layers such as aluminum on titanium (Ti/Al), aluminum on titanium on

10 titanium-tungsten (TiW/Ti/Al), copper on titanium (Ti/Cu), copper on titanium-tungsten (TiW/Cu), aluminum on titanium-tungsten on titanium nitride (TiN/TiW/Al), and/or copper on titanium-tungsten on titanium nitride (TiN/TiW/Cu). For example, the metal layer **33'** may include a titanium layer having a thickness in the range of approximately 200 Angstroms to

15 approximately 1000 Angstroms on the blanket layer of titanium-tungsten **29'**, and an aluminum layer having a thickness of approximately 2 μ m.

An etch mask **31'** may then be formed on the metal layer **33'**. For example, a layer of photoresist may be deposited, exposed, and developed to provide the etch mask **31'** on the metal layer **33'**. Portions of the metal layer

20 **33'** exposed by etch mask **31'** may then be removed using a wet and/or dry etch chemistry suitable to etch aluminum and/or copper to provide the conduction layer **33**. Portions of the blanket layer of titanium-tungsten **29'** not covered by the remaining conduction layer **33** may then be removed using an etch chemistry that selectively etches TiW with respect to aluminum and/or

25 copper. With a conduction layer **33** including a stack of aluminum on titanium, exposed portions of the blanket layer of titanium-tungsten **29'** (10%Ti and 90%W) may be etched using an etching agent such as hydrogen peroxide (H_2O_2) in water (30% H_2O_2), and/or a mixture including hydrogen peroxide (H_2O_2), water, potassium sulfate, benzotriazole, and sulfo-salicylic acid.

30 The etch mask **31'** can be removed after patterning the conduction layer **33** and the base layer **29** to provide the structure illustrated in Figure 3 including the conductive line **30**. In an alternative, the mask layer **31'** may be removed before etching the TiW layer **29'** after etching the metal layer **33'**.

Accordingly, the structure of Figure 3 may be provided using either lift-off techniques as discussed above with regard to Figure 2A or photolithography techniques as discussed above with regard to Figure 2B. In either case, a plasma etch may be used to clean up residual metal after 5 patterning the conduction layer 33 and the TiW base layer 29.

While not shown in Figure 3, a lip of the titanium-tungsten base layer 29 may extend beyond the conduction layer 33 after patterning the titanium-tungsten base layer 29 using the conduction layer 33 as an etch mask. More particularly, the lip of the titanium-tungsten base layer may be self-aligned 10 with respect to the conduction layer 33 and extend a uniform distance from the conduction layer 33 around a periphery of the conductive line 30. Without being bound to a particular mechanism, the Applicants theorize that electro-chemical properties of the etching agent in proximity with the conduction layer 33 (such as an aluminum conduction layer) may reduce a reactivity of the 15 etching agent with respect to the titanium-tungsten in proximity with the conduction layer.

By maintaining a lip of the base layer 29, an undercutting of the conduction layer 33 may be reduced and/or eliminated and a reliability of the conductive line may be increased. If the base layer 29 is patterned in a 20 manner that allows undercutting of the conduction layer 33, the resulting undercut region may provide a blind cavity for entrapment of potential corrosives and/or contaminants; the undercut region may create potential stress concentration points in packaged devices; and/or the undercut region may reduce a bond strength between the conductive line 30 and the insulating 25 passivation layer 24. By reducing and/or eliminating undercutting, entrapment of corrosives and/or contaminants can be reduced, creation of stress concentration points may be reduced, and/or bond strengths may be increased.

In addition, the conductive line 30 may be protected with an inorganic 30 and/or organic insulating passivation layer 35 as shown in Figure 4. The insulating passivation layer 35 may include benzocyclobutene (BCB), polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride. Moreover, a via hole in the insulating passivation layer 35 may expose a portion of the conductive line 30, an under bump metallurgy layer 37 may be formed on

exposed portions of the conductive line 30, and an interconnection structure 39 (such as a solder bump) may be formed on the under bump metallurgy layer 37. The interconnection structure 39 may be formed, for example, using one or more bumping processes such as evaporation, electroplating, electro-
5 less plating, and/or screen printing. Under bump metallurgy layers and solder bumps are discussed, for example, in U.S. Patent No. 6,492,197 entitled "Trilayer/bilayer Solder Bumps And Fabrication Methods Therefor" to Rinne; U.S. Patent No. 6,392,163 entitled "Controlled-Shaped Solder Reservoirs For Increasing The Volume Of Solder Bumps" to Rinne *et al.*;
10 U.S. Patent No. 6,389,691 entitled "Methods For Forming Integrated Redistribution Routing Conductors And Solder Bumps" to Rinne *et al.*; U.S. Patent No. 6,388,203 entitled "Controlled-Shaped Solder Reservoirs For Increasing The Volume Of Solder Bumps, And Structures Formed Thereby" to Rinne *et al.*; U.S. Patent No. 6,329,608 entitled "Key-Shaped Solder Bumps
15 And Under Bump Metallurgy" to Rinne *et al.*; and U.S. Patent No. 5,293,006 entitled "Solder Bump Including Circular Lip" to Yung. The disclosures of the above referenced patents are incorporated herein in their entirety by reference. Accordingly, the conductive line 30 may provide electrical connection between the conductive input/output pad 27 and the
20 interconnection structure 39 that is laterally offset from the conductive input/output pad.

In an alternative, a second conductive line (not shown) may be formed on the insulating passivation layer 35 and exposed portions of the first conductive line 30, and a third insulating passivation layer (not shown) may be provided on the second conductive line (not shown) and the insulating passivation layer 35. A via hole be provided in the third insulating passivation layer exposing portions of the second conductive line. Accordingly, multiple levels of conductive lines may be used to provide electrical connection between a conductive input/output pad and a respective interconnection structure. In an alternative or in addition, one or more levels of conductive lines may be used to provide electrical connection between two or more conductive input/output pads.

Steps of forming conductive lines according to additional embodiments of the present invention are illustrated in Figures 5-8. More particularly, a

titanium-tungsten (TiW) base enhancement described with respect to Figures 5-8 may reduce an undercut region that may otherwise be generated beneath wiring formed using wet etch process methods. Undercut regions beneath microelectronic structures may generally be undesirable because a reduced 5 base area may reduce bond strength; an undercut region may provide a blind cavity for entrapment of potential corrosives and contaminants; and an undercut may create potential stress concentration points in packaged devices.

According to embodiments of the present invention, a conductive line 10 may be provided on an insulating passivation layer of an electronic device with the conductive line including a conduction layer on a metal base layer (different than the conduction layer) and the metal base layer being between the conduction layer and the insulating passivation layer. More particularly, a lip of the metal base layer may extend beyond edges of the conductive line. 15 For example, the conduction layer may be a layer of aluminum, and the metal base layer may be a layer of titanium-tungsten (TiW). More particularly, an aluminum conduction layer may have a thickness of approximately $2\mu\text{m}$, and a TiW base layer may have a thickness of approximately 1000Δ . In addition, a Titanium barrier layer may be provided between the aluminum wiring layer 20 and the TiW base layer, and the Ti barrier layer may have a thickness in the range of approximately 200Δ to 1000Δ .

Methods of forming conductive lines including conduction layers on metal base layers according to embodiments of the present invention are illustrated in Figures 5-9. As shown in Figure 5, a substrate **121** may include 25 electronic devices (such as transistors, diodes, resistors, capacitors, and/or inductors) with a conductive input/output pad **127** and an insulating passivation layer **124** thereon. The substrate **121**, for example, may be a silicon substrate, a gallium arsenide (GaAs) substrate, a silicon germanium (SiGe) substrate, and/or a sapphire substrate. The insulating passivation 30 layer **124** may include an insulating organic and/or an insulating inorganic material. More particularly, the insulating passivation layer **124** may include benzocyclobutene (BCB), polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride. The insulating passivation layer **124** may also be patterned

to provide a via therein exposing a portion of the conductive input/output pad **127**. The conductive input/output pad **127** may be an aluminum input/output pad.

A blanket layer **129'** of a metal may be formed on the insulating passivation layer **124** and on exposed portions of the conductive input/output pad **127**. For example, a blanket layer of titanium-tungsten (TiW) having a thickness of approximately 1000Δ may be formed on the insulating passivation layer **124** and on exposed portions of the conductive input/output pad **127**. Moreover, the blanket layer of titanium-tungsten may be formed by sputtering and/or evaporation to have a composition of approximately 10%Ti and 90%W. Moreover, exposed portions of the conductive input/output pad **127** may be pretreated prior to forming the blanket layer **129'** of metal using a wet and/or dry pretreatment. A wet and/or dry pretreatment, for example, may be used to reduce a surface oxide on the conductive input/output pad **127** to thereby reduce a contact resistance between the conductive input/output pad **127** and the metal of the blanket layer **129'**. More particularly, the pretreatment may include sputtering to reduce a surface oxide on the conductive input/output pad **127**. In addition or in an alternative, a plasma treatment may be used to clean a surface of the insulating passivation layer **124** and/or the conductive input/output pad **127**.

As shown in Figure 6, a lift-off technique can then be used to form a patterned conduction layer. For example, a patterned layer of photoresist **131** may expose portions of the blanket layer **129'** of metal where a conduction layer **133** is to be provided wherein the conduction layer includes a metal not included in the metal of the blanket layer **129'**. For example, the conduction layer **133** may include a layer of Titanium (Ti) **132** and a layer of aluminum (Al) **134**. More particularly, the titanium layer **132** may have a thickness in the range of approximately 200Δ to 1000Δ , and the aluminum layer **134** may have a thickness of approximately $2\Phi m$. In various alternatives, the conduction layer **133** may include sequential layers of aluminum on titanium (Ti/Al); aluminum on titanium on titanium-tungsten (TiW/Ti/Al); sequential layers of copper on titanium (Ti/Cu); copper on titanium-tungsten (TiW/Cu); aluminum on titanium-tungsten on titanium nitride (TiN/TiW/Al); and/or copper on

titanium-tungsten on titanium nitride (TiN/TiW/Cu). A conduction layer 133 including a stack of aluminum on titanium may getter oxygen from a titanium-tungsten base layer.

As shown, sacrificial portions of the conduction layer 133' may also be 5 formed on the photoresist 131. The photoresist 131 and sacrificial portions of the conduction layer 133' thereon can be removed thereby providing the conduction layer 133 on the blanket layer 129'. While a lift-off technique is discussed, the conduction layer 133 may be formed using conventional photolithography/etch techniques, such as including a wet etch through an 10 etch mask.

A wet etch can then be performed on the blanket layer 129' of metal without using a mask other than the conduction layer 133 to provide the base layer 129 having lips 119 extending beyond the conduction layer 133, as shown in Figure 7. According to particular embodiments of the present 15 invention, the metal base layer 129 may be a titanium-tungsten (10%Ti and 90%W) base layer, the conduction layer 133 may include aluminum layer 134 and titanium layer 132, and the wet etch may be performed using hydrogen peroxide (H₂O₂) in Water (30% H₂O₂). In an alternative, the metal base layer 129 may be a titanium-tungsten (10%Ti and 90%W) base layer, the 20 conduction layer 133 may include aluminum layer 134 and titanium layer 132, and the wet etch may be performed using a mixture of hydrogen peroxide (H₂O₂), water, potassium sulfate, benzotriazole, and sulfo-salicylic acid.

According to embodiments of the present invention, the lip 119 of the base layer 129 may be formed to extend beyond the conduction layer 133 25 without requiring a mask (other than the conduction layer 133). By forming the base layer 129 without requiring a mask, the lip 119 may be self-aligned with respect to conduction layer 133 extending a uniform distance therefrom. The lip 119 may thus reduce undercutting of the conduction layer 133 thereby improving reliability of the resulting structure. More particularly, the lip 119 30 may increase an area of contact with the insulating passivation layer 124 thereby improving adhesion therewith. By reducing undercutting, generation of cracks in the conduction layer 133 may be reduced. Without being bound to a particular mechanism, the Applicants theorize that electro-chemical

properties of the etching agent in proximity with the conduction layer **133** (such as an aluminum conduction layer) may reduce a reactivity of the etching agent with respect to the titanium-tungsten in proximity with the conduction layer.

5 As shown in Figure 8, a second insulating passivation layer **135** may be formed on the first insulating passivation layer **124**, on the conduction layer **133**, and on the lip **119** of the base layer **129**. Moreover, a via hole **123** may be provided through the second insulating passivation layer **135** thereby exposing a portion of the conduction layer **133**.

10 As shown in Figure 9, an interconnection structure **139** (such as a solder bump) may be formed on the exposed portion of the conduction layer **133**. Accordingly, a conductive line (including the conduction layer **133** and the base layer **129**) may provide redistribution from a conductive input/output pad **127** to an interconnection structure **139** (such as a solder bump).

15 Moreover, the second insulating passivation layer **135** may include an organic and/or an inorganic insulating material. More particularly, the second insulating passivation layer may include benzocyclobutene (BCB), polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride. In an alternative, the conductive line (including conduction layer **133** and base layer **129**) may 20 provide interconnection between the conductive input/output pad **127** and another contact pad on the substrate **135**.

Various structures including TiW base layers and Al wiring layers according to embodiments of the present invention are illustrated in the photographs of Figures 10-13. As shown in the top view of Figure 10, a 25 conductive structure may be provided on an insulating passivation layer **235**, and the conductive structure may include an aluminum conduction layer **234** on a titanium-tungsten base layer so that the titanium-tungsten base layer is between the aluminum conduction layer **234** and the insulating passivation layer **235**. Moreover, a lip **219** of the titanium-tungsten base layer extends 30 beyond the aluminum conduction layer **234** a relatively uniform distance around the periphery of the conductive structure. As shown, the conductive structure may have elongate and enlarged width portions.

Figure 11 is a top view of additional conductive structures on an insulating passivation layer 335 according to embodiments of the present invention. As shown in Figure 11, aluminum conduction layers 334 may be provided on respective titanium-tungsten base layers such that lips 319 of the 5 titanium-tungsten base layers extend beyond the aluminum conduction layers 334 around the periphery of the conductive structures.

Figure 12 is a top view of still additional conductive structures on an insulating passivation layer 435 according to embodiments of the present invention. As shown in Figure 12, an aluminum conduction layer 434 may be 10 provided on a respective titanium-tungsten base layer such that a lip 419 of the titanium-tungsten base layer extends beyond the aluminum conduction layer 434 a relatively uniform distance around the periphery of the conductive structure.

Figure 13 is a photograph of a cross-section of a conductive structure 15 according to embodiments of the present invention. As shown in Figure 13, the conductive structure may be formed on an insulating passivation layer 535, and the conductive structure may include a titanium-tungsten base layer 529 and an aluminum conduction layer 534. More particularly, the titanium-tungsten base layer 529 may include a lip 519 extending beyond the 20 aluminum conduction layer 534.

In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the 25 following claims.

That Which Is Claimed Is:

1. A method of metallizing an integrated circuit chip including a substrate, a conductive pad on the substrate, and an insulating layer on the substrate wherein the insulating layer has a via hole therein exposing a portion of the conductive pad, the method comprising:
 - 5 forming a conductive structure on the insulating layer and on the exposed portion of the conductive pad, the conductive structure including a base layer comprising titanium-tungsten (TiW) and a conduction layer
 - 10 comprising at least one of aluminum and/or copper, wherein the base layer of the conductive structure is between the conduction layer and the insulating layer.
2. A method according to Claim 1 wherein forming the conductive structure on the insulating layer comprises,
 - 15 forming a layer of titanium-tungsten on the insulating layer and on the exposed portions of the conductive pad,
 - 20 forming the conduction layer comprising at least one of aluminum and/or copper on the layer of titanium-tungsten so that portions of the layer of titanium-tungsten layer are exposed, and
 - 25 after forming the conduction layer comprising at least one of aluminum and/or copper, removing portions of the layer of titanium-tungsten exposed by the conduction layer comprising at least one of aluminum and/or copper.
3. A method according to Claim 2 wherein removing portions of the layer of titanium-tungsten comprises etching the layer of titanium-tungsten using hydrogen peroxide.
4. A method according to Claim 2 wherein removing portions of the layer of titanium-tungsten comprises etching the layer of titanium-tungsten using a mixture including hydrogen peroxide, potassium sulfate, benzotriazole, and sulfo-salicylic acid.

- 5 5. A method according to Claim 1 wherein the base layer of the conductive structure includes a lip extending beyond the conduction layer of the conductive structure.
- 10 6. A method according to Claim 1 wherein the conductive pad comprises at least one of aluminum and/or copper.
- 15 7. A method according to Claim 1 further comprising:
 forming a second insulating layer on the conductive structure and on the first insulating layer so that the conductive structure is between the first and second insulating layers; and
 forming a second via hole in the second insulating layer exposing a portion of the conductive structure wherein the first and second via holes are offset.
- 20 8. A method according to Claim 7 further comprising:
 forming an interconnection structure on the exposed portion of the conductive structure.
- 25 9. A method according to Claim 8 further comprising:
 forming an under bump metallurgy layer between the interconnection structure and the exposed portion of the conductive structure.
- 30 10. A method according to Claim 8 wherein the interconnection structure comprises solder.
11. A method according to Claim 1 wherein the conduction layer of the conductive structure comprises an aluminum layer.
12. A method according to Claim 11 wherein the conduction layer of the conductive structure further comprises a titanium layer between the aluminum layer and the base layer of the conductive structure.

13. A method according to Claim 1 wherein a portion of the conductive pad is exposed between the insulating layer and the conductive structure.
14. A method according to Claim 1 wherein the insulating layer 5 comprises at least one of benzocyclobutene, polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride.
15. A method of metallizing an integrated circuit chip including a substrate, and an insulating layer on the substrate, the method comprising:
 - 10 forming a conductive structure on the insulating layer, the conductive structure including a base layer comprising titanium-tungsten (TiW) and a conduction layer comprising at least one of aluminum and/or copper, wherein the base layer of the conductive structure is between the conduction layer and the insulating layer, and wherein the base layer of the conductive structure
 - 15 includes a lip extending beyond the conduction layer of the conductive structure.
16. A method according to Claim 15 wherein forming the conductive structure on the insulating layer comprises,
 - 20 forming a layer of titanium-tungsten on the insulating layer, after forming the layer of titanium-tungsten, forming the conduction layer comprising at least one of aluminum and/or copper on the layer of titanium-tungsten so that portions of the layer of titanium-tungsten layer are exposed, and
 - 25 after forming the conduction layer comprising at least one of aluminum and/or copper, removing portions of the layer of titanium-tungsten exposed by the conduction layer comprising at least one of aluminum and/or copper.
17. A method according to Claim 16 wherein removing portions of the 30 layer of titanium-tungsten comprises etching the layer of titanium-tungsten using hydrogen peroxide.
18. A method according to Claim 16 wherein removing portions of the layer of titanium-tungsten comprises etching the layer of titanium-tungsten

using a mixture including hydrogen peroxide, potassium sulfate, benzotriazole, and sulfo-salicylic acid.

19. A method according to Claim 15 wherein the electronic device includes a conductive pad on the substrate, wherein the insulating layer has a via hole therein exposing a portion of the conductive pad, and wherein forming the conductive structure includes forming the conductive structure on the insulating layer and on exposed portions of the conductive pad.
- 10 20. A method according to Claim 19 wherein the conductive pad comprises at least one of aluminum and/or copper.
- 15 21. A method according to Claim 19 wherein a portion of the conductive pad is exposed between the insulating layer and the conductive structure.
- 20 22. A method according to Claim 15 further comprising:
forming a second insulating layer on the conductive structure and on the first insulating layer so that the conductive structure is between the first and second insulating layers; and
forming a second via hole in the second insulating layer exposing a portion of the conductive structure.
- 25 23. A method according to Claim 22 further comprising:
forming an interconnection structure on the exposed portion of the conductive structure.
- 30 24. A method according to Claim 23 further comprising:
forming an under bump metallurgy layer between the interconnection structure and the exposed portion of the conductive structure.
25. A method according to Claim 23 wherein the interconnection structure comprises solder.

26. A method according to Claim 15 wherein the conduction layer of the conductive structure comprises an aluminum layer.
27. A method according to Claim 26 wherein the conduction layer of 5 the conductive structure further comprises a titanium layer between the aluminum layer and the base layer of the conductive structure.
28. A method according to Claim 15 wherein the insulating layer comprises at least one of benzocyclobutene, polyimide, silicon oxide, silicon 10 nitride, and/or silicon oxynitride.
29. An electronic device comprising:
 - a substrate;
 - a conductive pad on the substrate;
 - 15 an insulating layer on the substrate, the insulating layer having a via hole therein exposing a portion of the conductive pad;
 - a conductive structure on the insulating layer and on the exposed portion of the conductive pad, the conductive structure including a base layer comprising titanium-tungsten (TiW) and a conduction layer comprising at least 20 one of aluminum and/or copper, wherein the base layer of the conductive structure is between the conduction layer and the insulating layer.
30. An electronic device according to Claim 29 wherein the base layer of the conductive structure includes a lip extending beyond the conduction 25 layer of the conductive structure.
31. An electronic device according to Claim 29 wherein the conductive pad comprises at least one of aluminum and/or copper.
- 30 32. An electronic device according to Claim 29 further comprising:
 - a second insulating layer on the conductive structure and on the first insulating layer so that the conductive structure is between the first and second insulating layers, the second insulating layer having a second via hole

therein exposing a portion of the conductive structure wherein the first and second via holes are offset.

33. An electronic device according to Claim 32 further comprising:
5 an interconnection structure on the exposed portion of the conductive structure.

34. An electronic device according to Claim 33 further comprising:
an under bump metallurgy layer between the interconnection structure
10 and the exposed portion of the conductive structure.

35. An electronic device according to Claim 33 wherein the interconnection structure comprises solder.

15 36. An electronic device according to Claim 29 wherein the conduction layer of the conductive structure comprises an aluminum layer.

37. An electronic device according to Claim 36 wherein the conduction layer of the conductive structure further comprises a titanium layer between
20 the aluminum layer and the base layer of the conductive structure.

38. An electronic device according to Claim 29 wherein a portion of the conductive pad is exposed between the insulating layer and the conductive structure.

25 39. An electronic device according to Claim 29 wherein the insulating layer comprises at least one of benzocyclobutene, polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride.

30 40. An electronic device comprising:
a substrate;
an insulating layer on the substrate;
a conductive structure on the insulating layer, the conductive structure including a base layer comprising titanium-tungsten (TiW) and a conduction

layer comprising at least one of aluminum and/or copper, wherein the base layer of the conductive structure is between the conduction layer and the insulating layer, and wherein the base layer of the conductive structure includes a lip extending beyond the conduction layer of the conductive structure.

5

41. An electronic device according to Claim 40 further comprising:
a conductive pad on the substrate wherein the insulating layer has a via hole therein exposing a portion of the conductive pad, and wherein a portion of the conductive structure is on the exposed portion of the conductive pad.
- 10
42. An electronic device according to Claim 41 wherein the conductive pad comprises at least one of aluminum and/or copper.
- 15
43. An electronic device according to Claim 41 wherein a portion of the conductive pad is exposed between the insulating layer and the conductive structure.
- 20
44. An electronic device according to Claim 40 further comprising:
a second insulating layer on the conductive structure and on the first insulating layer so that the conductive structure is between the first and second insulating layers, the second insulating layer having a second via hole therein exposing a portion of the conductive structure.
- 25
45. An electronic device according to Claim 44 further comprising:
an interconnection structure on the exposed portion of the conductive structure.
- 30
46. An electronic device according to Claim 45 further comprising:
an under bump metallurgy layer between the interconnection structure and the exposed portion of the conductive structure.

47. An electronic device according to Claim 45 wherein the interconnection structure comprises solder.

48. An electronic device according to Claim 40 wherein the conduction 5 layer of the conductive structure comprises an aluminum layer.

49. An electronic device according to Claim 48 wherein the conduction layer of the conductive structure further comprises a titanium layer between the aluminum layer and the base layer of the conductive structure.

10

50. An electronic device according to Claim 40 wherein the insulating layer comprises at least one of benzocyclobutene, polyimide, silicon oxide, silicon nitride, and/or silicon oxynitride.

15

51. An electronic structure comprising:
a substrate including a conductive pad thereon;
a passivation layer on the substrate, the passivation layer having a via hole therein exposing a portion of the conductive pad; and
a redistribution wiring line on the passivation layer and on the exposed 20 portion of the conductive pad, the redistribution wiring line including a first layer comprising TiW and a second layer comprising at least one of aluminum and copper.

52. An electronic structure according to Claim 51, further comprising:
a second passivation layer on the redistribution wiring line, the second passivation layer having a second via hole therein exposing a portion of the redistribution wiring line;
an underbump metallurgy layer on the exposed portion of the redistribution wiring line; and
30 a solder bump on the underbump metallurgy layer.

53. An electronic device comprising:
a substrate having an insulating layer thereon;

5 a metal base layer on a portion of the insulating layer wherein portions of the insulating layer are free of the metal base layer; and

10 a metal wiring layer on the metal base layer wherein the metal wiring layer comprises a metal not included in the metal base layer, wherein the metal base layer is between the metal wiring layer and the insulating layer, and wherein the metal base layer includes a lip extending beyond the metal wiring layer.

15 54. An electronic device according to Claim 53 wherein the metal base layer comprises titanium-tungsten.

20 55. An electronic device according to Claim 54 wherein the metal wiring layer comprises an aluminum layer.

25 56. An electronic device according to Claim 55 wherein the metal wiring layer includes a titanium layer between the aluminum layer and the metal base layer.

30 57. A method of forming an electronic device, the method comprising: forming a continuous metal base layer on an insulating layer; forming a metal wiring layer on a portion of the continuous metal base layer so that portions of the continuous metal base layer are free of the metal wiring layer and so that the continuous metal base layer is between the metal wiring layer and the insulating layer; and

35 removing portions of the continuous metal base layer free of the metal wiring layer to provide a patterned metal base layer between the metal wiring layer and the insulating layer wherein the patterned metal base layer includes a lip extending beyond the metal wiring layer.

40 58. A method according to Claim 57 wherein the continuous metal base layer is maintained free of a mask other than the metal wiring layer while removing portions of the continuous metal base layer.

59. A method according to Claim 57 wherein the continuous metal base layer comprises titanium-tungsten.

5 60. A method according to Claim 59 wherein the metal wiring layer comprises an aluminum layer.

10 61. A method according to Claim 60 wherein the metal wiring layer includes a titanium layer between the aluminum layer and the metal base layer.

1/4

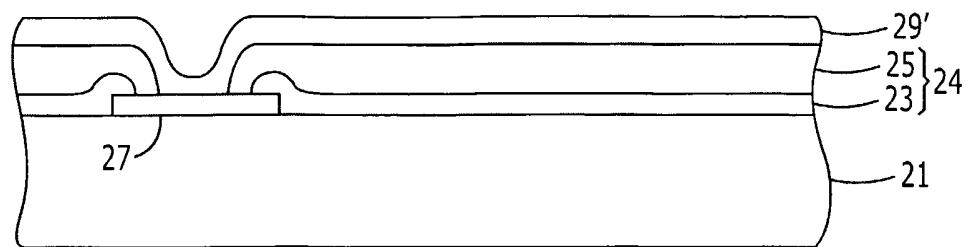


FIGURE 1

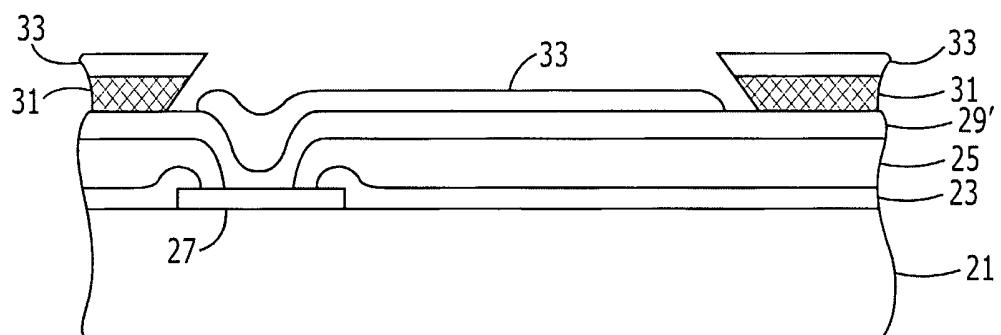


FIGURE 2A

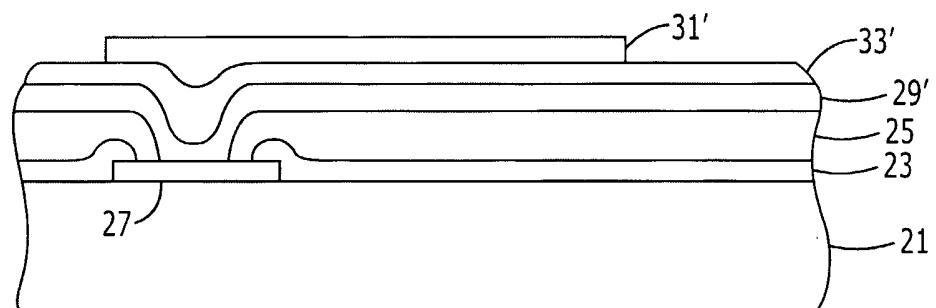


FIGURE 2B

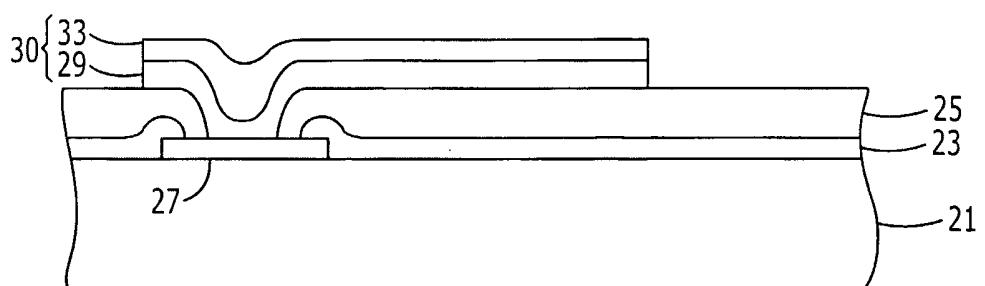


FIGURE 3

2/4

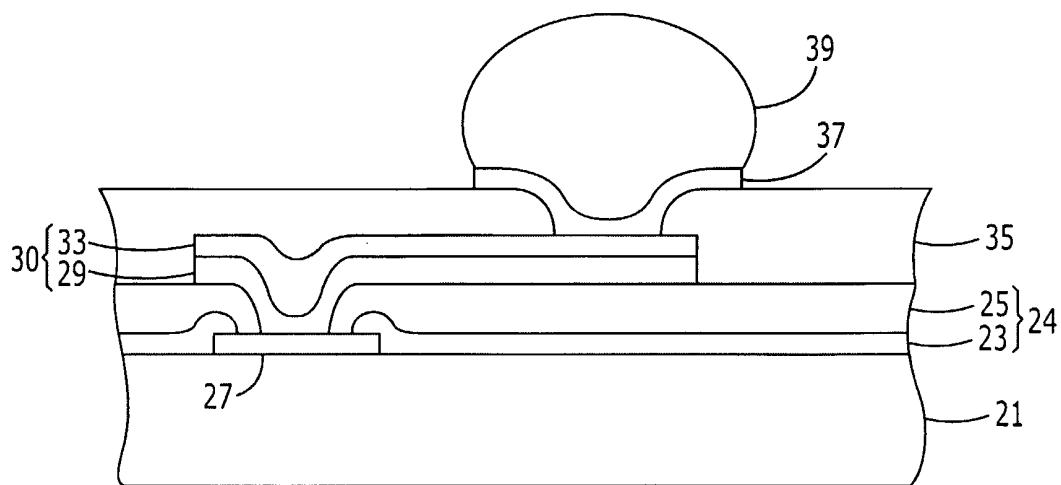


FIGURE 4

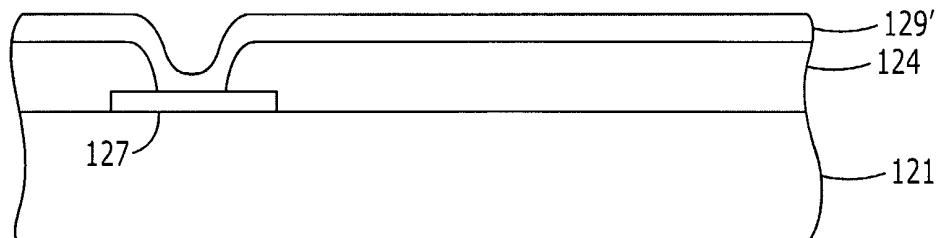


FIGURE 5

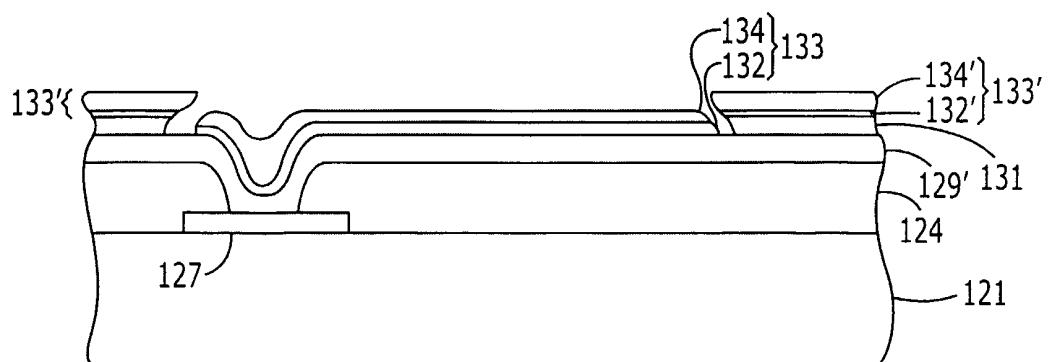


FIGURE 6

3/4

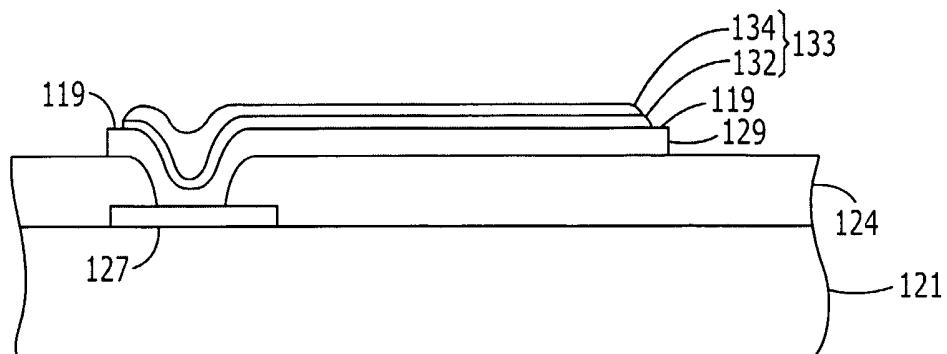


FIGURE 7

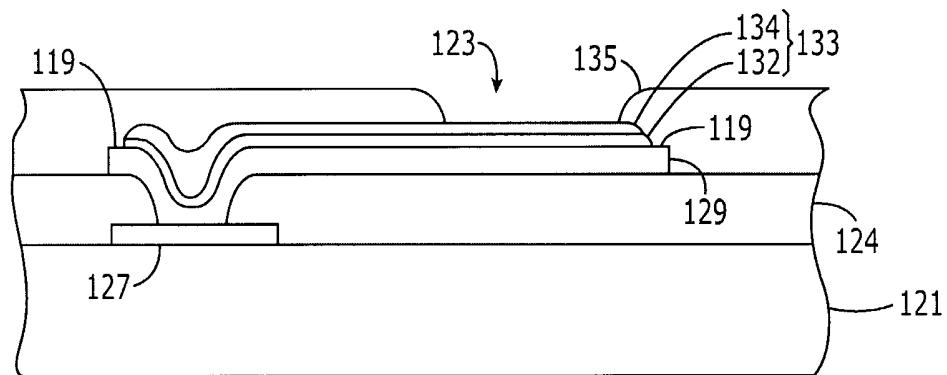


FIGURE 8

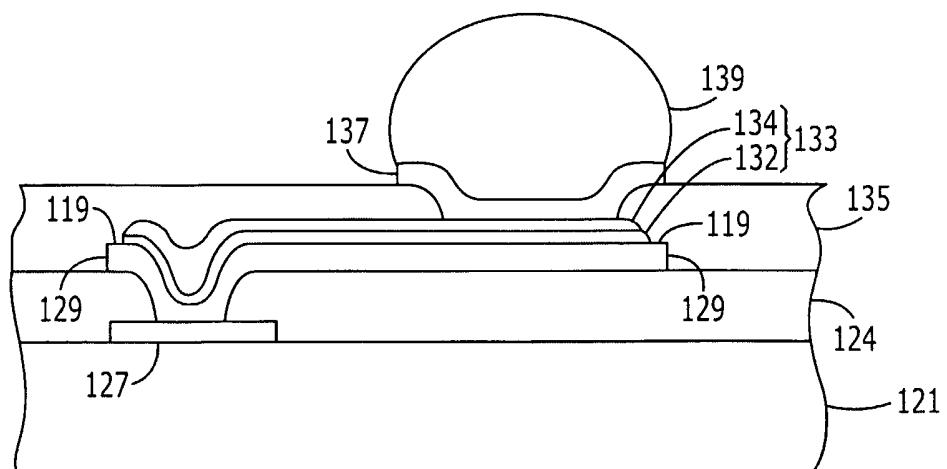


FIGURE 9

4/4

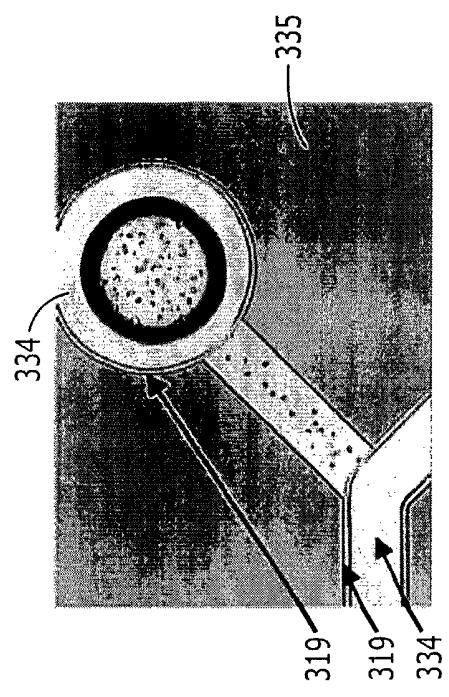


FIGURE 11

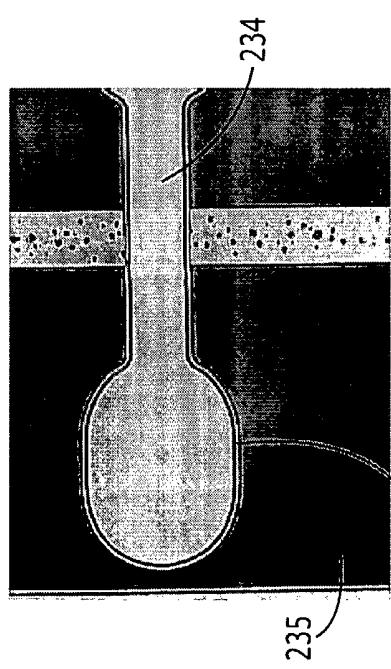


FIGURE 10

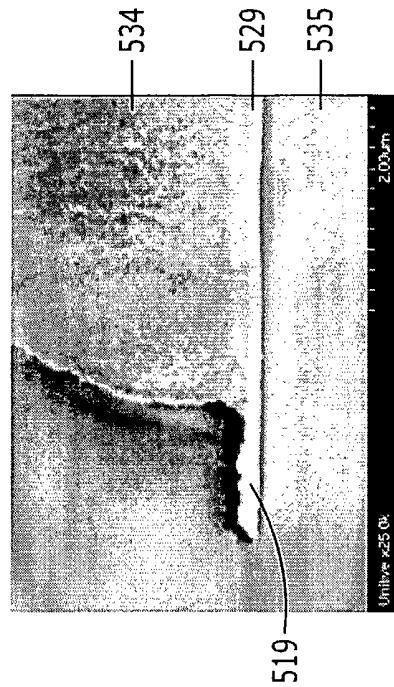


FIGURE 13

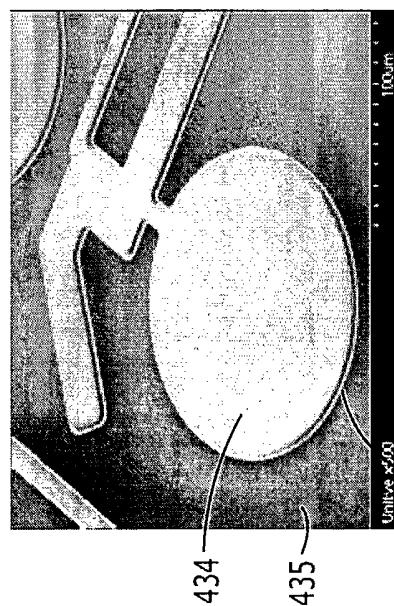


FIGURE 12