发明名称
用于嗜酸粒细胞增多综合征的啶基氨基苯甲酰胺衍生物

摘要
本发明涉及啶基氨基苯甲酰胺衍生物在制备用于治疗 FIP1L1－PDGFRα 诱导的或 TEL－PDGFRβ 诱导的骨髓增生性疾病的药物中的用途，特别是用于治疗性治疗和/或预防性治疗嗜酸粒细胞增多综合征和对伊马替尼有耐药性的嗜酸粒细胞增多综合征的药物，本发明还涉及治疗嗜酸粒细胞增多综合征、慢性嗜酸性粒细胞白血病和对伊马替尼有耐药性的嗜酸粒细胞增多综合征或其它与 FIP1L1－PDGFRα、TEL－PDGFRβ 或能够激活 PDGFR 的相似突变有关的疾病的方法。
1. 式(I)的嘧啶基氨基苯甲酰胺衍生物及此类化合物的 N-氧化物或药学上可接受的盐的用途：

![化学结构式](image)

其中

R₁ 代表氢、低级烷基、低级烷氧基、低级烷基、酰氧基、低级烷基、羧基、低级烷基或苯基-低级烷基、羧基-低级烷基、低级烷氧基羧基-低级烷基或苯基-低级烷基；

R₂ 代表氢、任选被一或多个相同或不同基团 R₃ 取代的低级烷基、环烷基、苯并环烷基、杂环基、芳基或含有 0、1、2 或 3 个环氮原子和 0 或 1 个氧原子和 0 或 1 个硫原子的单环或多环杂芳基，该基团在任何情况下均为未取代的或单取代或多取代的；

并且 R₃ 代表羟基、低级烷氧基、酰氧基、羧基、低级烷氧基羧基、氨基甲酰基、N-单-或 N,N-二取代的氨基甲酰基、氨基、单取代或双取代的氨基、环烷基、杂环基、芳基或含有 0、1、2 或 3 个环氮原子和 0 或 1 个氧原子和 0 或 1 个硫原子的单环或多环杂芳基，该基团在任何情况下均为未取代的或单取代或多取代的；

或者其中 R₁ 和 R₂ 一起代表具有 4、5 或 6 个碳原子的亚烷基，任选被下列基团单取代或二取代：低级烷基、环烷基、杂环基、苯基、羟基、低级烷氧基、氨基、单取代或二取代的氨基、氧代、氮环基、吡啶基或嘧啶基；具有 4 或 5 个碳原子的 benzalkylene；具有 1 个氧原子和 3 或 4 个碳原子的氧杂亚烷基；具有 1 个氮原子和 3 或 4 个碳原子的氮杂亚烷基，其中氮为未取代的或被下列基团取代：低级烷基、苯基-低级烷基、低级烷氧基羧基-低级烷基、羧基-低级烷基、氨基甲酰基-低级烷基、N-单-或 N,N-
二取代的氨基甲酰基-低级烷基、环烷基、低级烷氧基羰基、羧基、苯基、取代的苯基、吡啶基、噻啶基或吡唑基；

R₄代表氢、低级烷基或卤素；

它们用于生产治疗 FIP1L1-PDGFRα 诱导的或 TEL-PDGFRβ诱导的骨髓增生性疾病的药物。

2. 权利要求1的用途，其中所述骨髓增生性疾病选自骨髓单核细胞白血病、嗜酸粒细胞增多综合征、慢性嗜酸性粒细胞白血病和对伊马替尼有耐药性的嗜酸粒细胞增多综合征。

3. 权利要求1或2的用途，其中式(I)化合物为式(II)的4-甲基-3-[4-(3-吡啶基)-2-噻啶基]氨基]-N-[5-(4-甲基-1H-咪唑-1-基)-3-(三氟甲基)苯基] 苯甲酰胺及其N-氧化物或药学上可接受的盐：

![化学结构式](image1)

4. 式(II)化合物或其N-氧化物或药学上可接受的盐的用途：

![化学结构式](image2)

用于治疗或预防选自骨髓单核细胞白血病、嗜酸粒细胞增多综合征、慢性嗜酸性粒细胞白血病和对伊马替尼有耐药性的嗜酸粒细胞增多综合征的骨髓增生性疾病。
5. 权利要求1-3中任一项的用途，用于治疗FIP1L1-PDGFRα诱导的骨髓增生性疾病，其中突变出现在FIP1L1-PDGFRα。

6. 权利要求5的用途，其中所述突变为T674I。

7. 权利要求4的用途，用于治疗嗜酸粒细胞增多综合征。

8. 权利要求7的用途，其中所述嗜酸粒细胞增多综合征对伊马替尼的治疗具有耐药性。

9. 治疗患有FIP1L1-PDGFRα诱导的或TEL-PDGFRβ诱导的骨髓增生性疾病哺乳动物的方法，该方法包括给予需要此类治疗的哺乳动物FIP1L1-PDGFRα或TEL-PDGFRβ诱导抑制量的式(II)化合物或其N-氧化物或药学上可接受的盐:

![化学结构式]

10. 用于治疗FIP1L1-PDGFRα诱导的或TEL-PDGFRβ诱导的骨髓增生性疾病的药用组合物，该药用组合物包括式(II)化合物或其N-氧化物或药学上可接受的盐:

![化学结构式]
用于嗜酸粒细胞增多综合证的嘧啶基氨基苯甲酰胺衍生物

技术领域

本发明涉及用于治疗 TEL-PDGFRβ或 FIP1L1-PDGFRα诱导的骨髓增生性疾病的嘧啶基氨基苯甲酰胺衍生物的用途，涉及用于治疗 TEL-PDGFRβ或 FIP1L1-PDGFRα诱导的骨髓增生性疾病的药物的生产，还涉及治疗包括人类在内的温血动物的方法，在该方法中将嘧啶基氨基苯甲酰胺衍生物给药于患有 TEL-PDGFRβ或 FIP1L1-PDGFRα诱导的骨髓增生性疾病的温血动物，特别是骨髓单核细胞白血病、嗜酸粒细胞增多综合证和慢性嗜酸粒细胞白血病，尤其是对伊马替尼有耐药性的嗜酸粒细胞增多综合证或对伊马替尼有耐药性的骨髓单核细胞白血病。

本发明也涉及治疗骨髓单核细胞白血病、嗜酸粒细胞增多综合征、慢性嗜酸性粒细胞白血病和对伊马替尼有耐药性的嗜酸粒细胞增多综合症或其它与 TEL-PDGFRβ、FIPL1-PDGFRα或使 PDGFR 活化的相似变异有关的疾病。

背景技术

TEL-PDGFRβ为与慢性骨髓单核细胞白血病(CMML)有关的融合激酶，所述疾病为骨髓增生性疾病，其特征在于异常的骨髓细胞生成、噬酸粒细胞增多、骨髓纤维化，时常发展为急性骨髓性白血病。

FIP1L1-PDGFRα为与嗜酸粒细胞增多综合症(HES)或慢性嗜酸性粒细胞白血病(CEL)有关的融合激酶，所述疾病为与血液嗜酸粒细胞过多和器官损伤有关的纯系(clonal)骨髓增生性疾病。

已经有证据显示嘧啶基氨基苯甲酰胺衍生物具有能够对抗临床上相关的融合激酶 TEL-PDGFRβ和 FIP1L1-PDGFRα的活性，所述激酶分别与骨髓增生性疾病 CMML 和 HES 有关。另外，此类嘧啶基氨基苯甲酰胺衍生物能够有效对抗 TEL-PDGFRβ和/或 FIP1L1-PDGFRα导致的骨髓增生性
疾病。嘧啶基氨基苯甲酰胺衍生物能够有效抑制上述两种融合激酶转化的 Ba/F3 细胞的生长，能够抑制这些融合激酶中酪氨酸残基的磷酸化以及其下游信号靶的活化。嘧啶基氨基苯甲酰胺衍生物也能够在体外有效对抗 TEL-PDGFRβ中伊马替尼抗性的 T681I 突变。该残基相应于 BCR-ABL 中的 T315I，它是一种在患者中导致伊马替尼耐药性的突变，以难以抑制而著称。伊马替尼(通用名)为酪氨酸激酶抑制剂，在美国以 GLEEVEC®上市，在欧洲以 GLIVEC®上市。

已经发现嘧啶基氨基苯甲酰胺衍生物可用于治疗 TEL-PDGFRβ-或 FIP1L1-PDGFRα 诱导的骨髓增生性疾病，特别是用于治愈性治疗和/或预防性治疗骨髓单核细胞白血病、嗜酸粒细胞增多综合征、慢性嗜酸性粒细胞白血病和对伊马替尼有耐药性的嗜酸粒细胞增多综合征。

发明内容

本发明涉及式(I)的嘧啶基氨基苯甲酰胺化合物及此类化合物的 N-氧化物或药学上可接受的盐的用途：

![化合物结构](image)

(I)

其中：

R₁ 代表氢、低级烷基、低级烷氧基-低级烷基、酰氧基-低级烷基、羧基-低级烷基、低级烷氧基羧基-低级烷基或苯基-低级烷基；

R₂ 代表氢、任选被一或多个相同或不同基团 R₃ 取代的低级烷基、环烷基、苯并环烷基(benzycycloalkyl)、杂环基、芳基或含有 0、1、2 或 3 个环氮原子和 0 或 1 个氧原子和 0 或 1 个硫原子的单环或双环芳杂环基，该基团在任何情况下均为未取代的或单取代或多取代的；
并且 R₃ 代表羟基、低级烷氧基、酰氧基、羧基、低级烷氧基羧基、氨基甲酰基、N-单-或 N,N-二取代的氨基甲酰基、氨基、单取代或二取代的氨基、环烷基、杂环基、芳基或含有 0、1、2 或 3 个烷原子和 0 或 1 个氧原子和 0 或 1 个硫原子的单环或双环杂芳基，该基团在任何情况下均为未取代的或单取代或多取代的；

或者其中 R₁ 和 R₂ 一起代表具有 4、5 或 6 个碳原子的亚烷基，任选被下列基团单取代或二取代：低级烷基、环烷基、杂环基、苯基、羟基、低级烷氧基、氨基、单取代或二取代的氨基、氧代、吡啶基、吡啶基或噻啶基；具有 4 或 5 个碳原子的 benzalkylene；具有 1 个氧原子和 3 或 4 个碳原子的氧化杂环基；具有 1 个氮原子和 3 或 4 个碳原子的氮杂亚烷基；具有 1 个氮原子和 3 或 4 个碳原子的氮杂亚烷基，其中氮为未取代的或被下列基团取代：低级烷基、苯基-低级烷基、低级烷氧基羧基-低级烷基、羧基-低级烷基、氨基甲酰基-低级烷基、N-单-或 N,N-二取代的氨基甲酰基-低级烷基、环烷基、低级烷氧基羧基、羧基、苯基、取代的苯基、吡啶基、噻嗪基或吡嗪基；

R₄ 代表氢、低级烷基或卤素；

所述化合物用于制备治疗 FIP1L1-PDGFRα 或 TEL-PDGFRβ 诱导的骨髓增生性疾病的药用组合物，特别是用于制备性治疗和/或预防性治疗骨髓单核细胞白血病、嗜酸粒细胞增多综合征、慢性嗜酸性粒细胞白血病和对伊马替尼有耐药性的嗜酸粒细胞增多综合征或对伊马替尼有耐药性的骨髓单核细胞白血病。本发明也涉及式 I 化合物在治疗或预防 FIP1L1-PDGFRα 或 TEL-PDGFRβ 诱导的骨髓增生性疾病中的用途，特别是用于制备性治疗和/或预防性治疗骨髓单核细胞白血病、慢性嗜酸性粒细胞白血病、嗜酸粒细胞增多综合征和对伊马替尼有耐药性的嗜酸粒细胞增多综合征。

除非另外说明，在上下文采用的术语优选在本文中具有下列定义：

前缀“低级”代表具有至多并包括最多 7 个碳原子的基团，特别是具有至多并包括最多 4 个碳原子的基团，所述基团可以是直链的或具有单个或多个支链的支链。
当化合物、盐等采用复数形式时，也意味着包括单数形式的化合物、盐等。

任何不对称碳原子均可以(R)-、(S)-或(R,S)-构型存在，优选以(R)-或(S)-构型存在。因此，化合物可以为异构体的混合物或为纯异构体，优选为对映体纯的非对映异构体。

本发明也包括可能存在的式I化合物的互变异构体。

低级烷基优选为1(包括1)至7(包括7)的烷基；优选为1(包括1)至4(包括4)的烷基，为直链或支链；优选低级烷基为丁基，例如仲丁基、异丁基、叔丁基；丙基，例如整丙基或异丙基；乙基或甲基。优选低级烷基为甲基、丙基或叔丁基。

低级酰基优选为甲酰基或低级烷基酰基，特别是乙酰基。

芳基为通过位于该基团的芳环碳原子的键与分子结合的芳族基团。在优选的实施方案中，芳基为具有6－14个碳原子的芳族基团，特别是苯基、萘基、四氢萘基、芴基或菲基，所述芳基为未取代的或被1或多个(优选至少3个，特别是1或2个)取代基所取代，所述取代基特别选自氨基、单取代或双取代的氨基、卤素、低级烷基、取代的低级烷基、低级链烯基、低级炔基、苯基、羟基、醚化或酯化的羟基、硝基、氰基、羧基、酯化的羧基、烷酰基、苯甲酰基、氨基甲酰基、N-单-或N,N-二取代的氨基甲酰基、脒基、胍基、脲基、巯基、硫代、低级烷硫基、苯硫基、苯基-低级烷硫基、低级烷基苯硫基、低级烷基亚磺酰基、苯基亚磺酰基、苯基-低级烷基亚磺酰基、低级烷基苯基亚磺酰基、低级烷基磺酰基、苯基磺酰基、苯基-低级烷基磺酰基、低级烷基磺酰基、低级烷基苯基磺酰基、卤素-低级烷基硫基、卤素-低级烷基磺酰基(例如特别是三氟甲磺酰基)、二羟基硼杂基(dihydroxyborax)(-B(OH)2)、杂环基、单环或双环杂芳基和与所述环的邻位碳原子相连的低级亚烷基氧化基(例如亚甲基氧化基)。所述芳基更优选为苯基、萘基或四氢萘基，在任何情况下它们均可以是未取代的或被1或2个选自下列基团的取代基所独立取代：卤素，特别是氟、氯或溴；羟基；被低级烷基(例如甲基)、被卤素-低级烷基(例如三氟甲基)或被苯基醚化的羟基；与相邻碳原子相连的低级亚烷基氧化基，例如亚甲基氧化基；低级烷基，例如甲基或
丙基；卤素-低级烷基，例如三氟甲基；羟基-低级烷基，例如羟基甲基或 2-羟基-2-丙基；低级烷氧基-低级烷基，例如甲氧基甲基或 2-甲氧基乙基；低级烷氧基烷基-低级烷基，例如甲氧基甲基甲基；低级烷基，例如 1-丙炔基；酯化的羧基，特别是低级烷氧基羧基，例如甲氧基羧基、正丙氧基羧基或异丙氧基羧基；N-单-取代的氨基甲酰基，特别是被低级烷基(例如甲基、正丙基或异丙基)单取代的氨基甲酰基；氨基；低级烷基氨基，例如甲基氨基；二-低级烷基氨基，例如二甲基氨基或二乙基氨基；低级亚烷基-氨基，例如吡咯烷子基或哌啶子基；低级氧杂亚烷基-氨基，例如吗啉代；低级氧杂亚烷基-氨基，例如哌嗪子基；酰基氨基，例如乙酰基氨基或苯甲酰基氨基；低级烷基磺酰基，例如甲磺酰基；氨磺酰基或苯磺酰基。

环烷基优选为环丙基、环戊基、环己基或环庚基，并且可以是未取代的或被一或多个(特别是 1 或 2 个)选自上述芳基的取代基中所定义的取代基所取代，优选被低级烷基(例如甲基)、低级烷氧基(例如甲氧基或乙氧基)或羟基所取代，也可以被氧代取代或者与苯并环稠合，例如与苯环稠合，例如苯并环戊基或苯并环己基。

取代的烷基为上述所定义的烷基，特别是低级烷基，优选甲基；其中可能存在一或多个(特别是至多 3 个)取代基，取代基主要选自：卤素(特别是氟)、氨基、N-低级烷基氨基、N,N-二-低级烷基氨基、N-低级烷酰基氨基、羟基、氨基、羧基、低级烷氧基羧基和苯基-低级烷氧基羧基。特别优选三氟甲基。

单取代或二取代的氨基优选为被 1 或 2 个选自下列彼此互相独立的基团所取代的氨基：低级烷基，例如甲基；羟基-低级烷基，例如 2-羟基乙基；低级烷氧基低级烷基，例如甲氧基乙基；苯基-低级烷基，例如苄基或 2-苯基乙基；低级烷酰基，例如乙酰基；苯甲酰基；取代的苯甲酰基，其中苯基特别被一或多个(优选 1 或 2 个)选自下列的基团所取代：硝基、氨基、卤素、N-低级烷基氨基、N,N-二-低级烷基氨基、羟基、氨基、羧基、低级烷氧基羧基、低级烷酰基和氨基甲酰基；苯基-低级烷氧基羧基，其中苯基为未取代的或特别被一或多个(优选 1 或 2 个)选自下列基团的取代基所取代：硝基、氨基、卤素、N-低级烷基氨基、N,N-二-低级烷基氨基、羟基、
氰基、羧基、低级烷氧基羰基、低级烷酰基和氨基甲酰基；并且所述单取代或二取代的氨基优选 N-低级烷基氨基，例如 N-甲基氨基；羟基-低级烷基氨基，例如 2-羟基乙氨基或 2-羟基丙基氨基；低级烷氧基低级烷基氨基，例如甲氧基乙氨基；苯基-低级烷基氨基，例如苄基氨基；N,N-二低级烷基氨基；N-苯基-低级烷基-N-低级烷基氨基；N,N-二低级烷基胺基氨基；低级烷酰基氨基，例如乙酰基氨基，或一个选自苯甲酰基氨基和苯基-低级烷氧基羰基氨基的取代基，其中苯基在任何情况下均可以是未取代的或者特别被硝基或氨基所取代，或者也可以被下列基团取代：卤素、氨基、N-低级烷基氨基、N,N-二低级烷基氨基、羟基、氰基、胺基、低级烷氧基羰基氨基、低级烷酰基氨基、氨基甲酰基氨基。二取代的氨基也可以是低级烷基-氨基，例如吡咯烷子基、2-氧代吡咯烷子基或哌啶子基；低级氧杂烷基-氨基，例如吗啉代或低级氧杂烷基-氨基，例如哌嗪子基或 N-取代的哌嗪子基，例如 N-甲基哌嗪子基或 N-甲氧基羰基哌嗪子基。

卤素优选为氟、氯、溴或碘，特别是氟、氯或溴。

酯化的羟基优选为 C8-C20 烷基氨基，例如正癸基氨基；低级烷氧基(优选)，例如甲氧基、乙氧基、异丙氧基或叔丁基氧基；苯基-低级烷氧基，例如苄氧基；苯基氨基；卤素-低级烷氧基，例如三氟甲基氧基、2,2,2-三氟乙氧基或 1,1,2,2-四氟乙氧基或被含有 1 或 2 个氢原子的单环或双环杂芳基取代的低级烷氧基，优选被下列基团取代的低级烷氧基：咪唑基(例如 1H-咪唑-1-基)、吗啉基、苯并咪唑基(例如 1-苯并咪唑基)、吡啶基(特别是 2-、3-或 4-吡啶基)、喹啶基(特别是 2-喹啶基)、吡啶基、咪唑基(特别是 3-异喹唑基)、嗎啉基、吲哚基或噻唑基。

酯化的羰基优选为低级烷基羰基氧基、苯甲酰基氧基、低级烷氧基羰基氧基(例如叔丁氧基羰基氧基)或苯基-低级烷氧基羰基氧基(例如苄氧基羰基氧基)。

酯化的羧基优选为低级烷氧基羰基(例如叔丁氧基羰基、异-丙氧基羰基、甲氧基羰基或乙氧基羰基)、苯基-低级烷氧基羰基或苯氧基羰基。

烷酰基主要为烷基羰基，特别是低级烷酰基，例如乙酰基。

N-单-或 N,N-二取代的氨基甲酰基优选被 1 或 2 个独立选自下列基团
的取代基所取代：低级烷基、苯基-低级烷基和羟基-低级烷基或低级亚烷基、氧化-低级亚烷基或在末端氮原子上任选被取代的氟苯-低级亚烷基。

含有 0、1、2 或 3 个环氮原子和 0 或 1 个氧原子以及 0 或 1 个硫原子的单环或双环杂芳基(该基团在任何情况下均可以是未取代的或为单取代或多取代的)是指连接杂芳基与式 I 分子中其它部分的环为不饱和的杂环基团，其中在连接环中(也任选在任何被合(anssembled)环中)，至少 1 个碳原子被选自氮、氧和硫的杂原子所代替；其中所述连接环优选具有 5-12 个，更优选具有 5 或 6 个环原子；并且它可以是未取代的或被一或多个(特别是 1 或 2 个)选自上面芳基的取代基中所定义的取代基所取代，优选被低级烷基(例如甲基)、低级烷氧基(例如甲氧基或乙氧基)或羟基所取代。优选所述单环或双环杂芳基选自 2H-吡咯基、吡咯基、噻唑基、苯并咪唑基、吡啶基、吲哚基、噻唑基、吡啶基、吡嗪基、噻唑基、4H-噻唑基、异噻唑基、噻唑基、2,3-二氧杂环基、1,5-二氧杂环基、喹啉环基、噻唑啉基、噻唑环基、喋啶环基、中氮环基、3H-吲哚基、吲哚基、异吲哚基、嗯唑基、异嗯唑基、噻唑基、异噻唑基、异噻唑基、三唑基、四唑基、呋喃基、苯并[d] 吡唑基、噻唑基和喹啉基。更优选单环或双环杂芳基选自：吡咯基、咪唑基(例如 1H-咪唑-1-基)、苯并咪唑基(例如 1-苯并咪唑基)、吲哚基(特别是5-吲哚基)、吡啶基(特别是 2-、3-或 4-吡啶基)、噻唑基(特别是 2-噻唑基)、吡嗪基、异噻唑基(特别是 3-异噻唑基)、喹啉基(特别是 4-或 8-喹啉基)、吲哚基(特别是 3-吲哚基)、噻唑基、苯并[d] 吡唑基、噻唑基和喹啉基。在本发明的一个优选的实施方案中，所述吡啶基基团可以在氮原子的邻位被羟基取代，从而至少部分以吡啶-(1H)2-酮的相应的互变异构体形式存在。在另一个优选的实施方案中，所述噻嗪基基团可以在 2 和 4 位上同时被羟基取代，从而可以以几种互变异构体形式存在，例如噻嗪-(1H,3H)2,4-二酮。

杂环基优选为具有 1 或 2 个选自氮、氧和硫的杂原子的 5、6 或 7 元杂环体系，它可以是不饱和的或者也是完全或部分饱和的，并且可以是未取代的或是特别被下列基团取代的：低级烷基(例如甲基)、苯基-低级烷基(例如苄基)、氧化或杂芳基(例如 2-哌嗪基)；所述杂环基特别为 2-或 3-吡咯烷基、2-氧代-5-吡咯烷基、哌啶基、N-苄基-4-哌啶基、N-低级烷基-4-
哌啶基、N-低级烷基-哌嗪基，吗啉基(例如2-或3-吗啉基)、2-氧代-1H-氮杂䓬-3-基、2-四氢呋喃基或2-甲基-1,3-二氧戊环-2-基。

盐优选为式I化合物药学上可接受的盐。

此类盐优选由具有碱性氮原子的式I化合物与有机酸或无机酸形成，例如，为酸加成盐，特别是药学上可接受的盐。适当的无机酸为，例如，卤酸(例如盐酸)、硫酸或磷酸。适当的有机酸为，例如，羧酸、膦酸、磺酸或氨基磺酸，例如乙酸、丙酸、辛酸、癸酸、十二烷酸、羟基乙酸、乳酸、富马酸、琥珀酸、己二酸、庚二酸、辛二酸、壬二酸、苹果酸、酒石酸、柠檬酸、氨基酸(例如谷氨酸或天冬氨酸)、马来酸、羟基马来酸、甲基马来酸、环己烷甲酸、金刚烷甲酸、苯甲酸、水杨酸、4-氨基水杨酸、邻苯二甲酸、苯乙酸、扁桃酸、肉桂酸、甲烷-或乙烷-磺酸、2-羟基乙烷磺酸、乙烷-1,2-二磺酸、苯磺酸、2-萘磺酸、1,5-萘-二磺酸、2-,3-或4-甲基苯磺酸、甲基磺酸、乙基硫酸、十二烷酸、N-环己基氨基磺酸、N-甲基-、N-乙基-或N-丙基-氨基磺酸或其它有机质子酸，例如抗坏血酸。

当有负电荷的基团存在时，例如羧基或磺基存在时，也可以与碱形成盐，例如金属盐或铵盐，如碱金属或碱土金属盐(例如钠、钾、镁或钙盐)，或者与氢或适当的有机胺形成的铵盐，所述胺例如叔胺类(如三乙胺或三(2-羟基乙基)胺)或杂环碱类(例如N-乙基-哌啶或 N,N'-二甲基哌嗪)。

当碱性基团和酸性基团存在于同一分子中时，式I化合物也可以形成内盐。

为方便分离或纯化，也可以采用药学上可接受的盐，例如苦味酸盐或高氯酸盐。当在治疗中使用时，只能采用药学上可接受的盐或游离化合物(当应用于药物制剂中时)，因此优选上述这些盐。

考虑到新化合物游离形式与其盐形式(包括那些用作中间体的盐，例如在新化合物纯化或鉴别中使用的盐)之间的紧密联系，因此，如果适当且方便的话，在上下文中任何时候提及游离化合物时都可以理解为也是指其相应的盐。

式I范围中的化合物及其生产方法公开于2004年1月15日公开的WO 04/005281，该文献引入本申请作为参考。优选的化合物为式(II)的4-
甲基-3-[[4-(3-吡啶基)-2-喹啶基]氨基]-N-[5-(4-甲基-1H-咪唑-1-基)-3-(三氟甲基)苯基]苯甲酰胺及其N-氧化物和药学上可接受的盐:

![化学结构式](image)

（II）

在任何情况下，当引用的专利申请或科学出版物特别用于述及式(I)化合物时，这些出版物中的终产物、药物制剂以及权利要求均引入本申请作为参考。

由编码、通用名或商品名标示的活性成分的结构可以通过新版“The Merck Index”标准大案或数据库查找，例如 Patents International(如 IMS World Publications)。其相应的内容也引入本文作为参考。

申请人惊喜地发现，式(I)化合物具有治疗性能，特别是可以用作PDGFRα(血小板衍生的生长因子α, 也可以缩写为PDGRA)的抑制剂，特别是用于治疗和预防TEL-PDGFβ和FIP1L1-PDGFβα 诱导的疾病，例如HES、CEL和对伊马替尼有耐药性的HES。

在上下文中采用的FIP1L1-PDGFβα 代表基因FIP1L1(FIP1 like 1)与PDGFβα的融合产物。在上下文中采用的TEL-PDGFβ代表基因TEL与PDGFβ的融合产物。

化合物(II)能够抑制采用 TEL-PDGFβ转化的Ba/F3 细胞，也能够有效抑制TEL-PDGFβ酪氨酸的自磷酸化以及已知的PDGFRβ信号中间体(包括PLC 和PI3K)的磷酸化。化合物(II)也能够抑制采用 TEL-PDGFβ T6811 突变体转化的Ba/F3 细胞，该突变体为与BCR-ABL 中T3151 突变(它导致了对伊马替尼的耐药性)同源的突变。

所以，本发明涉及式(I)化合物在制备药物中的用途，所述药物用于治
疗 FIP1L1-PDGFRα-和 TEL-PDGFRβ 诱导的骨髓增生性疾病或其它与 FIP1L1-PDGFRα-或 TEL-PDGFRβ 诱导能够激活 PDGFR 的相似突变有关的疾病。

本文中所用术语“FIP1L1-PDGFRα 诱导的骨髓增生性疾病”包括但不限于慢性嗜酸性粒细胞白血病、嗜酸粒细胞增多综合征对伊马替尼有耐药性的嗜酸粒细胞增多综合征。该术语也特别包括由 FIP1L1-PDGFRα 突变导致的疾病，特别是 FIP1L1-PDGFRαT674I 突变导致的疾病。

本发明更特别涉及式(I)化合物在制备用于治疗下列疾病的药物中的用途：骨髓单核细胞白血病、慢性嗜酸性粒细胞白血病、CMML 嗜酸粒细胞增多综合征、对伊马替尼有耐药性的嗜酸粒细胞增多综合征和对伊马替尼有耐药性的骨髓单核细胞白血病。

在另一个实施方案中，本发明提供了治疗 FIP1L1-PDGFRα-和 TEL-PDGFRβ 诱导的骨髓增生性疾病的药物，它包括给予需要此类治疗的哺乳动物治疗有效量的式(I)化合物或其药学上可接受的盐或其前药。

优选本发明提供治疗患有 FIP1L1-PDGFRα-或 TEL-PDGFRβ 诱导的骨髓增生性疾病的哺乳动物(尤其是人类)的方法，它包括给予需要此类治疗的哺乳动物 FIP1L1-PDGFRα 或 TEL-PDGFRβ 抑制剂的 4-甲基-3-[[4-(3-吡啶基)-2-嘧啶基]氨基]-N-[5-(4-甲基-1H-咪唑-1-基)-3-(三氟甲基)苯基]苯甲酰胺(化合物(II))或其药学上可接受的盐。

优选所述方法用于治疗 FIP1L1-PDGFRα 诱导的骨髓增生性疾病。

更优选所述方法用于治疗嗜酸粒细胞增多综合征或对伊马替尼有耐药性的嗜酸粒细胞增多综合征。

在另一个实施方案中，本发明涉及式(I)化合物在制备用于治疗 FIP1L1-PDGFRα-或 TEL-PDGFRβ 诱导的骨髓增生性疾病的药物组合物中的用途，更优选用于治疗骨髓单核细胞白血病、慢性嗜酸性粒细胞白血病、嗜酸粒细胞增多综合征或对伊马替尼有耐药性的嗜酸粒细胞增多综合征。

在本说明书中，术语“治疗”包括预防性治疗以及治愈性治疗或疾病抑制性治疗，包括对具有患病风险或疑似具有患病风险的患者以及已患病患
者的治疗。该术语还包括用于延缓疾病进程的治疗。

本文中所用术语“治愈性治疗”是指能够有效治疗正在进行的疾病发作，包括 FIP1L1-PDGFRA-或 TEL-PDGFBR 诱导的骨髓增生性疾病。

术语“预防”是指对疾病包括 FIP1L1-PDGFRA-或 TEL-PDGFBR 诱导的骨髓增生性疾病的发作和复发的预防。

本文中所用术语“延缓进程”是指在待治疗疾病发作之前或发作的初级阶段给予患者活性化合物，其中患者例如在相应疾病的前期被诊断，或者患者处于病症中（例如药物治疗期间）或由于意外导致的病症中，在这些情况下，很有可能发展为相应的疾病。

这些无法预见的性能意味着式(I)化合物特别适用于生产用于治疗包括 FIP1L1-PDGFRA-或 TEL-PDGFBR 诱导的骨髓增生性疾病在内的疾病的药物。

该作用在临床上可能特别与患有嗜酸粒细胞增多综合征或对伊马替尼有耐药性的嗜酸粒细胞增多综合征的患者相关。

为证明式 (I) 化合物特别适用于治疗 FIP1L1-PDGFRA-或 TEL-PDGFBR 诱导的骨髓增生性疾病并具有良好的治疗范围和其它优点，可以通过技术人员所熟知的方法进行临床试验。

能够抑制 FIP1L1-PDGFRA 或 TEL-PDGFBR 活性从而用于治疗 FIP1L1-PDGFRA-或 TEL-PDGFBR 诱导的骨髓增生性疾病的式(I)化合物的精确剂量取决于多个因素，包括宿主、待治疗病症的性质和严重性、给药的模式。式 I 化合物可以通过各种途径给药，包括口服给药，胃肠外给药，例如，静脉、腹膜内、肌肉、皮下、肿瘤内或直肠给药，或者肠道给药。优选式 I 化合物通过口服给药，优选日剂量为 1-300 mg/kg 体重，或者对于较大的灵长类动物，日剂量为 50-5000 mg，优选 500-3000 mg。优选口服日剂量为 1-75 mg/kg 体重，或者，对于较大的灵长类动物，日剂量为 10-2000 mg，可以单剂量给药或者多剂量给药，例如每天二次。

通常，初期给予小剂量，然后逐渐增加剂量直到确定待治疗宿主的最佳剂量。剂量的上限取决于副作用，可以通过对待治疗的宿主的临床试验加以确定。
式(I)化合物可以单独使用或者与至少一种在这些病理状态下使用的其它药用活性化合物组合使用。这些活性化合物可以在相同药物制剂中组合应用，或者以组合制剂“套盒”的形式组合应用，也就是说组合成分可以独立给药或通过不同的组合使用以不同量的组合成分使用，即同时或在不同时间点使用。套盒的成分可以例如同时给药或者按顺序交替(即在不同的时间点)给药，套盒的任何成分均可采用相同的时间间隔或不同的时间间隔给药。与式(I)化合物组合应用的化合物的非限定性实例为细胞毒化疗药物，例如阿糖胞苷、柔红霉素、阿霉素、环磷酰胺、VP-16 或伊马替尼等。另外，式(I)化合物可以与其它信号转导抑制剂或其它致癌基因靶向药物组合应用，预期能够产生有显著的协同作用。

本发明也涉及上文所选的式(I)化合物与伊马替尼的组合应用，用于治疗上文中所述的疾病和病症。此类组合的给药可以同时进行，例如以固定的、组合的药用组合物或制剂的形式，或者按顺序或交替给药。目前优选采用上文所述剂型的式(I)化合物和在美国以GLEEVEC®、在欧洲以GLIVEC®上市的伊马替尼的给药以及这些剂型的设定的剂量。

采用上述组合对FIP1L1-PDGFRA或TEL-PDGFRβ诱导的骨髓增生性疾病疾病的治疗可以是所谓的一线治疗，即用于治疗刚刚诊断出来并且没有进行任何化疗等的疾病，或者它可以是所谓的二线治疗，即用于治疗那些已经采用伊马替尼或式(I)化合物治疗过的疾病，这取决于疾病的严重性或阶段以及患者的整体情况。

用于治疗FIP1L1-PDGFRA或TEL-PDGFRβ诱导的骨髓增生性疾病疾病的式(I)化合物的疗效可以通过下列实施例的结果说明。这些实施例只是用于说明本发明，在任何情况下并非用于限定其范围。

构建

将MSCV-IRES-GFP [MSCV-GFP] 和 TEL-PDGFRβ

细胞培养、逆转录病毒生产和 Ba/F3 细胞的转导

将 293T 细胞在 Dulbecco 改良 Eagle 培养基 (DMEM) + 10% 胎牛血清 (FBS) 中进行培养。将 Ba/F3 细胞在 RPMI 1640(RPMI)+10%FBS +1ng/mL 小鼠白细胞介素(IL)-3 中进行进行培养。产生逆转录病毒的上清液，用于转化 Ba/F3 细胞。在 IL-3 存在下，采用 1 mg/mL G418 筛选 T/P MSCV-neo 和 T/F MSCV-neo 细胞系 8-10 天。在没有 IL-3 的 RPMI 中，筛选 F/P MSCV-GFP 细胞系 7-10 天。在 2 μg/mL 嘌呤霉素中，筛选 PDGFRA D842V MSCV-puro 细胞系 7-14 天。转化的 Ba/F3 细胞在没有 IL-3 的 RPMI 中生长。

IL-3 非依赖性细胞增殖分析

根据供应商的说明书，采用 Perkin Elmer Life Sciences (Cat. No: 6016947) 的荧光 ATP 检测分析试剂盒 AtpliteTM 测定化合物对细胞存活和繁殖的作用。该分析系统根据由 ATP 与加入的荧光素酶和 D-荧光素的反应引起光 (荧光) 的产生而建立。

将在 RPMI 1640 (Invitromex, Cat.No.: L0501) 、10% 胎牛血清 (Amimed, Cat.No.: 2-01F86-1) 、2 mM L-谷氨酰胺 (Gibco) 悬浮液中生长的 Ba/F3 FIP-PDGFRα 和 Ba/F3 Tel-PDGFRβ 细胞系以每孔 10000 个细胞的密度接种于黑色 96 孔组织培养板 (Packard)，每孔中加入所述细胞系的 50 μL 完全培养基，然后每孔立即加入 50 μL 2 倍浓缩的化合物 (双份) 的系列两倍稀释液。采用不含化合物的细胞作为对照，不含细胞的培养基用于测定分析的基线信号。培养 70 小时 (37°C, 5% CO2) 后，通过每孔加入 50 μL 的哺乳动物细胞溶解溶液 (试剂盒提供) 并在轨道平板震荡器中以 700 rpm 速度震荡 5 分钟将细胞溶解。随后，加入 50 μL 底物溶液 (荧光素酶和 D-荧光素)，震荡 5 分钟并使平板暗-适应 10 分钟后，采用 Packard TopCount 测定光发射。
以细胞培养的总生长抑制率（TGI）测定化合物活性，并计算如下：减去基线信号后，将自对对照细胞获得的信号作为100%。化合物的作用通过对照信号的减少百分数表示。通过图解外推法自剂量响应曲线圈定TGI_{50}值。

IC_{50}值<100 nM的化合物（II）能够抑制Ba/F3 FIP-PDGFRα和Ba/F3 Tel-PDGFRβ两种细胞的增殖。

BCR-ABL中T315I突变导致了对伊马替尼的耐药性，并且任何已知的小分子酪氨酸激酶抑制剂均不能抑制该突变。TEL-PDGFRβ中的类似突变为T681I，该突变也导致了伊马替尼-耐药性。IC_{50}值<25 nM的化合物（II）能够抑制TEL-PDGFRβ T681I突变转化的Ba/F3细胞，该值与非突变TEL-PDGFRβ融合的值相似。

Western印迹法

对于F/P: 将Ba/F3细胞采用指定浓度的化合物（II）在不含FBS或IL-3的RPMI中培养4小时。将细胞在缓冲液[含有1MNa_{2}EDTA、1MNaF、0.1% Triton X-100、200mM Na_{3}VO_{4}、200mM 苯基氧化砷和完全蛋白酶抑制剂片剂（Roche）的PBS]中溶解。将50μg蛋白溶解产物与还原SDS上样缓冲液+二硫苏糖醇（Cell Signaling）混合，然后在10-12%SDS-PAGE凝胶（Tris-HCl预制凝胶，Bio-Rad）上电泳并转移到硝基纤维素膜上。采用的抗体为：磷酸-PDGFRα（Tyr 720）、PDGFRα 951、Stat5-b（Santa Cruz）；磷酸-Stat5（Tyr 694）（Cell Signaling）；抗兔-过氧化物酶（Amersham Pharmacia Biotech）。

对于T/P: 在进行细胞溶解之前，将稳定表达T/P或T/F的Ba/F3细胞采用血清饥饿法在普通RPMI 1640中处理4小时。通过离心使得细胞抽提物澄清，然后用于免疫沉淀反应或免疫印迹法。酶联免疫印迹法的步骤根据下列描述进行。采用的抗体包括：兔抗-PDGFRβ血清（Pharmingen）；兔抗-PI3K（p85）血清；鼠抗磷酸酶氨酸4G10（Upstate Biotechnology）；抗FGFR3抗体，磷酸-PI3K p85（Tyr-508）（Santa Cruz Biotechnology）；PLCγ，磷酸-PLCγ（Tyr-783）（Cell Signaling）。

小鼠的骨髓移植和药物治疗

小鼠的骨髓抑制试验如前所述进行。采用上清液（加上 polybrene，10
μg/mL)，将 MSCV-GFP 逆转录病毒上清液通过转染 Ba/F3 细胞进行效价测定，转导后 48 小时，通过流动血细胞计数仪分析 GFP+ 细胞的百分数。采用 5-氟尿嘧啶 (150 mg/kg，腹膜内注射) 将 Balb/C 供体小鼠 (Taconic) 处理 5～6 天。收集供体小鼠的骨髓细胞，用红细胞溶解缓冲液处理，在移植培养基 (RPMI + 10%FBS + 6 ng/mL IL-3、10 ng/mL IL-6 和 10 ng/mL 干细胞因子) 中培养 24 小时。将细胞采用逆转录病毒上清液 (1mL 上清液中含有 4 × 10^6 细胞，加上 polybrene) 通过旋转感染 (spin infection) 处理，以 2500 rpm 离心 90 分钟。24 小时后，重复旋转感染，然后洗涤细胞，再悬浮于 Hank 氏平衡盐溶液中，然后以 0.5-1 × 10^6 细胞/小鼠的剂量将其注射到接受致命照射 (2 × 450 rad) 的 Balb/C 小鼠 (Taconic) 的侧尾静脉中。采用的化合物 (II) 为粉末形式，在 NMP (N-甲基-2-吡咯烷酮，Aldrich) 中制备为储备液，注射时用聚乙二醇 300 (Sigma) 稀释。移植后 11 天开始，每 24 小时用 22 号管饲针头通过经口管饲法将动物采用 75 mg/kg/天的化合物 (II) 或安慰剂 (聚乙二醇，与化合物 (II) 的体积相同) 处理。当动物明显脾大时或者垂死时将其处死，或者，如果还是健康时，在安慰剂组中最后的动物被处死后的 7 天处死。

小鼠骨髓增生性疾病分析

采用肝素处理的玻璃毛细管自眼窝后槽收集外周血，通过自动全血和分类血细胞计数仪和涂布剂 (采用 Wright 和 Giemsa 染色) 进行分析。通过细胞滤器压紧组织制备牌和骨髓的单细胞悬浮液，然后进行红细胞溶解。将细胞在 90%FBS、10%DMSO 中冷冻。

对于组织病理学研究，将组织在 10% 中性缓冲的福尔马林中固定至少 72 小时，在乙醇中脱水，二甲苯中清除，在全自动分析仪 (Leica) 中用石蜡浸润。将得自石蜡包埋的组织切片 (4 μm) 置于带电玻片上，在二甲苯中脱去石蜡，通过分级乙醇溶液再水合，用苏木精和曙红染色。

对于流动血细胞计数研究，将细胞在 PBS+1% 牛血清蛋白 (BSA) 中洗涤，在冰上用 Fc-Block (BD Pharmingen) 包封 10 分钟，在冰上用单克隆抗体在 PBS + 1% BSA 中染色 20 分钟。采用的抗体为：别藻蓝蛋白 (APC)-共轭的 Gr1、CD19 和 TCRB；藻红蛋白 (phycoethrin) (PE)-共轭的 Mac-1、
B220 和 CD3(BD Pharmingen)。流动血细胞计数分析在 FACSCalibur 仪器上进行，采用 CellQuest 软件进行分析。通过采用 7AAD(BD Pharmingen) 将细胞培养 5 分钟然后进行流动血细胞计数评价存活率。根据细胞存活率(采用前向角散射光和 7AAD)和 GFP 进行正性分级，从该亚类中分析 10,000 个用于标记物表达的事件。

采用双侧 Mann-Whitney U-检验(Wilcoxon rank sum test)，评价化合物(II)处理组和安慰剂处理组在存活时间、白血细胞计数和脾脏重量之间的差别的统计学意义。

小鼠 BMT 分析显示化合物(II)能够有效治疗 TEL-PDGFRβ和 FIP1L1-PDGFRα诱导的骨髓增生性疾病。

小鼠骨髓移植方案用于制备由 TEL-PDGFRβ和 FIP1L1-PDGFRα引起的骨髓增生性疾病模型。通过将这些融合激酶的逆转录病毒转导进 5FU 处理的供体小鼠的骨髓细胞中，然后将其移植到经过致命照射的受体中，从而产生快速致命的骨髓组织增殖表型，其特征在于骨髓支配的白细胞增多，脾脏肿大和髓外造血。

将供体骨髓细胞采用表达 TEL-PDGFRβ 或 FIP1L1-PDGFRα 的小鼠逆转录病毒载体转导并移植进受体中。将 T/P 或 F/P 移植的小鼠分成两组，采用每日口服管饲安慰剂或者采用化合物(II)进行处理，剂量为 150 mg/kg/天，移植后第 11 天开始。

TEL-PDGFRβ安慰剂组发展为完全的渗透性骨髓增生性疾病，平均潜伏期为 17 天；所有的 T/P 处理的动物由于疾病的发展在第 18 天时死亡。相反，所有化合物(II)处理组的动物在前面定义的研究终点(安慰剂动物死亡时间后 7 天)仍然存活，化合物(II)组中存活率具有统计学意义的延长(26天；p<0.001)。与安慰剂处理动物相比，化合物(II)处理动物在总白细胞数(WBC)(安慰剂为 563.7×10^6 细胞/mL，而化合物(II)为 18.6×10^6 细胞/mL，p<0.05)和脾脏重量(安慰剂为 802.5 mg，而化合物(II)为 350.0 mg，p<0.01)方面也具有统计学意义的减少(表 1)。
表 1
化合物(II)对 TEL-PDGFRβ和 FIP1L1-PDGFRα诱导的骨髓增生性疾病特征的作用

<table>
<thead>
<tr>
<th></th>
<th>TEL-PDGFRβ 安慰剂</th>
<th>TEL-PDGFRβ 化合物(II)</th>
<th>FIP1L1-PDGFRα 安慰剂</th>
<th>FIP1L1-PDGFRα 化合物(II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC(×10^6/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均值</td>
<td>563.7</td>
<td>18.6</td>
<td>569.7</td>
<td>5.6</td>
</tr>
<tr>
<td>标准差</td>
<td>96.0</td>
<td>8.8</td>
<td>88.2</td>
<td>2.3</td>
</tr>
<tr>
<td>中值</td>
<td>583.4</td>
<td>15.9</td>
<td>613.2</td>
<td>4.7</td>
</tr>
<tr>
<td>范围</td>
<td>459.3-648.3</td>
<td>10.9-33.5</td>
<td>452.8-659.2</td>
<td>4.0-9.6</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>脾脏重量(mg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均值</td>
<td>802.5</td>
<td>350.0</td>
<td>731.8</td>
<td>88.0</td>
</tr>
<tr>
<td>标准差</td>
<td>214.8</td>
<td>89.0</td>
<td>120.0</td>
<td>21.7</td>
</tr>
<tr>
<td>中值</td>
<td>800</td>
<td>340</td>
<td>700</td>
<td>100</td>
</tr>
<tr>
<td>范围</td>
<td>380-1130</td>
<td>250-470</td>
<td>575-880</td>
<td>50-100</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>肝脏重量(mg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均值</td>
<td>1746.3</td>
<td>1492.5</td>
<td>1666.4</td>
<td>1128.0</td>
</tr>
<tr>
<td>标准差</td>
<td>546.9</td>
<td>103.3</td>
<td>135.5</td>
<td>90.9</td>
</tr>
<tr>
<td>中值</td>
<td>1910</td>
<td>1535</td>
<td>1596</td>
<td>1090</td>
</tr>
<tr>
<td>范围</td>
<td>590-2410</td>
<td>1320-1590</td>
<td>1550-1830</td>
<td>1080-1290</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
患有 TEL-PDGFRβ诱导的疾病的安慰剂处理小鼠的造血器官的组织病理学表明成熟骨髓形态的大量浸润，完全改变了正常的脾脏结构。进一步的研究表明具有成熟骨髓形态占据完全优势的明显的高白细胞性骨髓。在肝脏中观察到髓外造血，在外周血中观察到明显的白细胞增多。与安慰剂处理的对照组相比，尽管也存在骨髓扩张的迹象，但 TEL-PDGFRβ 化合物(II)处理小鼠的器官的组织病理学实验表明非常少见严重骨髓增生性疾病。与安慰剂处理组相比，尽管 TEL-PDFGRβ 化合物(II)处理动物的脾脏结构也会发生改变时，但是其脾脏的红髓和白髓可以保存的相对完好。与安慰剂处理动物中观察到的骨髓占据优势的情况相比，化合物(II)处理动物脾脏的其它分析也证明脾脏红髓似乎被成熟骨髓形态和红细胞成分的混合物扩张。在化合物(II)处理动物的骨髓中也观察到相似的改变，尽管白细胞过多，但与安慰剂处理组中骨髓细胞在骨髓中完全占据优势的情况相比，它仍然显示了骨髓细胞和红细胞成分的混合物。最后，TEL-PDGFRβ 化合物(II)处理动物中肿瘤发生明显减少也反映在这些动物的肝结切片中，它显示只有髓外造血的病灶斑，而在安慰剂处理动物中观察到广泛的肝脏损害。

与正常脾脏相比，T/P 安慰剂处理动物脾脏的 FACS 分析显示 Gr1+/Mac1+ 细胞的明显增加和 B 淋巴细胞(B220+, CD19+)的降低。在组织病理学研究的证据中，化合物(II)处理动物显示了相似的骨髓增生的模式，但与安慰剂相比，Gr1+/Mac1+ 细胞的百分率保持降低，而 B220+/CD19+的百分率略有增加。

在 FIP1L1-PDGFRα骨髓移植试验中，在安慰剂组和化合物(II)组之间观察到更大的差异。安慰剂处理动物很快发展成致命的骨髓增生性疾病，与前面所述的 FIP1L1-PDGFRα的情况相似。所有的安慰剂动物均由于疾病在 24 天时死亡，而所有的化合物(II)处理动物直到 33 天本研究中止时仍然保持存活和健康。与安慰剂处理相比，化合物(II)处理使得 WBC(安慰剂为 569.7 × 10^6 细胞/mL，而化合物(II)为 5.6 × 10^6 细胞/mL, p<0.01)和脾脏重量(安慰剂为 731.8 mg，而化合物(II)为 88.0 mg, p<0.01)表(1)显著降低。
组织病理学和 FACS 分析显示在 FIP1L1-PDGFRα 安慰剂处理动物中出现严重的骨髓增生性疾病，脾脏和骨髓中成熟骨髓成分的大量浸润以及安慰剂处理组肝脏中广泛的髓外造血也对此加了证明。相反，化合物 (II) 处理动物造血器官的试验显示正常脾脏结构保持非常好，并且红髓中成熟骨髓成分的量显著减少，这些动物的脾细胞的流动血细胞分析对此也加以确证。药物处理动物的骨髓切片也显示其较安慰剂处理动物具有显著的改善，脂肪空间再现时几乎没有白细胞，骨髓成分与红细胞成分的比例更加正常。最后，在这些药物处理动物中化合物 (II) 的功效可以通过在其肝脏中没有出现任何髓外造血而证明。

临床研究

评价化合物 (II) 对 FIP1L1-PDGFR-α 转录水平和对取自血液和/或骨髓的恶性细胞中 c-kit/ PDGFR-a 的突变情况的作用。HES、SM 和 CEL 可以产生自新的融合酶：FIP1L1-PDGFR-α。SM 也可以产生自 KIT 基因中激活的突变。用于基线 FIP1L1-PDGFR-α 转录的 Q-RT-PCR，循环 1：第 15 天，循环 1、2、3：第 28 天，每第 3 个循环交替一次循环，研究结束。c-kit、PDGFR-a 的突变分析。三个不同的组，每一个包括下列患者人群：HES/CEL。终点：治疗 3 个月后响应率。