The present invention relates to the use of compounds of formula (I) in the treatment of Epidermal Growth Factor Receptor (EGFR) family members dependent diseases or diseases that have acquired resistance to agents that target EGFR family members, use of said compounds for the manufacture of pharmaceutical compositions for the treatment of said diseases, combinations of said compounds with EGFR modulators for said use, methods of treating said diseases with said compounds and pharmaceutical preparations for the treatment of said diseases comprising said compounds alone or in combination, especially with an EGFR modulator.
Use of pyrimidine derivatives for the treatment of EGFR dependent diseases or diseases that have acquired resistance by agents that target EGFR family members.

The present invention relates to the use of specific pyrimidine derivatives in the treatment of Epidermal Growth Factor Receptor (EGFR) family members (including EGFR1 also known as HER1 or Erb-B1; EGFR2 also known as HER2 or Erb-B2; and EGFR3 also known as HER3 or Erb-B3) dependent diseases or diseases that have acquired resistance to agents that target EGFR family members, use of said compounds for the manufacture of pharmaceutical compositions for the treatment of said diseases, combinations of said compounds with EGFR modulators for said use, methods of treating said diseases with said compounds, and pharmaceutical preparations for the treatment of said diseases comprising said compounds, alone or in combination, especially with an EGFR modulator.

Somatic mutations in the tyrosine kinase domain of EGFR has been associated with the clinical response to EGFR tyrosine kinase inhibitor such as Gefitinib (Iressa®) or Erlotinib (Tarceva®) (Paez et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy, science, vol 304, 1497-1500). Acquired resistance to EGFR modulators occurs in patients who initially responded clinically to therapy, but then developed progressive tumors. Refractory response to EGFR kinase inhibitors is exemplified with the secondary resistant mutation T790M (Kobayashi et al.; EGFR mutation and resistance of non-small cell lung cancer to gefitinib, N Engl J Med, Vol 352, 786-792), which is comparable to the resistance mutation(s) observed for Gleevec/Glivec or Dasatinib in chronic myelogenous leukemia (CML) (Gorre et al.; Bcr-Abl point mutants isolated from patients with imatinib mesylate resistant chronic leukemia reamin sensitive to inhibitors of the Bcr-Abl chaperone heat shock protein 90, Blood, vol 100, 3041-3044) or GIST patients (Antonescu et al; Acquired resistance to Imatinib in gastrointestinal stromal tumors occurs through secondary gene mutation, Clin Cancer Res, Vol 11, 4182-4190).

Evidences that activation of the PI3K pathway downstream of activated EGFR exists in the literature. Thus, genetic ablation of the PI3K catalytic subunit (p110) in mouse embryo fibroblast renders cells resistant for transformation by an activated form of EGFR (Zhao et al.; The p110 alpha isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation, PNAS, vol 103, 16296-16300). HER3 (ErbB-3), one of the four member of the EGFR family and partner of HER1 (EGFR1) is often overexpressed in EGFR inhibitors...
sensitive tumors, and that is correlated with constitutive PI3K recruitment and activation (Engelman et al.; ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non small cell lung cancer cell lines, PNAS vol 102, 3788-3793; Sergina et al.; Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER 3). The genetic and biochemical characterization of tumor biopsies and tumor cell lines harboring EGFR amplification and EGFR inhibitor resistance have revealed a constitutive activation status of the PI3K pathway (Engelman et al.; Allelic disruption obscures detection of a biologically significant resistance mutation in EGFR amplified lung cancer, The Journal of Clinical Investigation, vol 116, 2695-2706).

Surprisingly, it has been found that specific pyrimidine derivatives, which have been described in WO07/084786 provoke strong anti-proliferative activity and an in vivo antitumor response of breast and lung cancer cell lines with amplified EGFRs and/or mutated EGFR1 as single agent and in combination with EGFR kinase modulators. Therefore, said compounds are useful for the treatment of EGFR dependent disease.

Specific pyrimidine derivatives which are suitable for the present invention, their preparation and suitable pharmaceutical formulations containing the same are described in WO07/084786 and include compounds of formula I

I

or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, wherein, W is CRW or N, wherein RW is selected from the group consisting of

(1) hydrogen,
(2) cyano,
(3) halogen,
(4) methyl,
(5) trifluoromethyl,
(6) sulfonamido;
R_1 is selected from the group consisting of
(1) hydrogen,
(2) cyano,
(3) nitro,
(4) halogen,
(5) substituted and unsubstituted alkyl,
(6) substituted and unsubstituted alkenyl,
(7) substituted and unsubstituted alkynyl,
(8) substituted and unsubstituted aryl,
(9) substituted and unsubstituted heteroaryl,
(10) substituted and unsubstituted heterocyclyl,
(11) substituted and unsubstituted cycloalkyl,
(12) -COR_1,
(13) -CO_2R_1,
(14) -CONR_1,R_2,
(15) -NR_1,R_2,
(16) -NR_1,COR_1,
(17) -NR_1,SO_2R_1,
(18) -OCOR_1,
(19) -OR_2,
(20) -SR_2,
(21) -SOR_2,
(22) -SO_3R_2, and
(23) -SO_2NR_1,R_2,
wherein R_1 and R_2 are independently selected from the group consisting of
(a) hydrogen,
(b) substituted or unsubstituted alkyl,
(c) substituted and unsubstituted aryl,
(d) substituted and unsubstituted heteroaryl,
(e) substituted and unsubstituted heterocyclyl, and
(f) substituted and unsubstituted cycloalkyl;
R₂ is selected from the group consisting
(1) hydrogen,
(2) cyano,
(3) nitro,
(4) halogen,
(5) hydroxy,
(6) amino,
(7) substituted and unsubstituted alkyl,
(8) -COR₂a, and
(9) -NR₂aCOR₂b,
wherein R₂a and R₂b are independently selected from the group consisting of
(a) hydrogen, and
(b) substituted or unsubstituted alkyl;
R₃ is selected from the group consisting of
(1) hydrogen,
(2) cyano,
(3) nitro,
(4) halogen,
(5) substituted and unsubstituted alkyl,
(6) substituted and unsubstituted alkenyl,
(7) substituted and unsubstituted alkynyl,
(8) substituted and unsubstituted aryl,
(9) substituted and unsubstituted heteroaryl,
(10) substituted and unsubstituted heterocyclyl,
(11) substituted and unsubstituted cycloalkyl,
(12) -COR₃₃,
(13) -NR₃₉R₃b,
(14) -NR₃bCOR₃b,
(15) -NR₃bSO₂R₃b,
(16) -OR₃₉,
(17) -SR₃₉,
(18) -SOR₃₉,
(19) -SO₂R₃₉, and
(20) -SO₂NR₃₉R₃b.
wherein R_{3a} and R_{3b} are independently selected from the group consisting of
(a) hydrogen,
(b) substituted or unsubstituted alkyl,
(c) substituted and unsubstituted aryl,
(d) substituted and unsubstituted heteroaryl,
(e) substituted and unsubstituted heterocyclyl, and
(f) substituted and unsubstituted cycloalkyl; and
R_4 is selected from the group consisting of
(1) hydrogen, and
(2) halogen.

The radicals and symbols as used in the definition of a compound of formula I have the meanings as disclosed in WO07/084786 which publication is hereby incorporated into the present application by reference.

A preferred compound of the present invention is a compound which is specifically described in WO07/084786.

A very preferred compound of the present invention is 5-(2,6-di-morpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-ylamine (Compound A). The synthesis of 5-(2,6-di-morpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-ylamine is described in WO07/084786 as Example 10.

Compounds that target members of the EGFR family according to the present invention include EGFR family kinase modulators, compounds that alter EGFR expression levels or elicit a cellular immune response linked to the expression of EGFR family members in the tumor cells. Preferable EGFR modulators exhibit their activity as inhibitors of EGFR functional activity. Compounds that target members of the EGFR family according to the present invention include without limitation gefitinib, erlotinib, lapatinib, NVP-AEE778, ARRY334543, BIRW2992, BMS690514, pelitinib, vandetanib, AV412, anti-EGFR monoclonal antibody 806, anti-EGFR monoclonal antibody-Y90/Re-188, cetuximab, panitumumab, matuzumab, nimotuzumab, zalutumumab, pertuzumab, MDX-214, CDX110, IMC11F8,
pertuzumab, trastuzumab, zemab®, the Her2 vaccine PX 1041, and the HSP90 inhibitors CNF1010, CNF2024, tanespimycin, alvespimycin, IPI504, SNX5422 and NVP-AUY922.

Short description of the figures

Figure 1 shows the antitumor activity of Compound A against the EGFR inhibitor resistant NSCLC cell line NCI-H1975. Female Harlan athymic mice (n = 6), bearing s.c NCI-H1975 tumors are treated p.o. with the PI3K inhibitor Compound A at 50mg/kg every clay for the duration of the treatment. * p<0.05 (Dunnet's vs controls).

Figure 2 shows the mean body weight of vehicle and Compound A treated groups during the efficacy in vivo study performed with mice bearing the s.c. the EGFR inhibitor resistant NSCLC cell line NCI-H1 975.

Non small cell lung carcinoma cell lines with EGFR mutant forms, but refractory to EGFR inhibition therapy, are valuable models to test the sensitivity of PI3K inhibitors like the compounds of formula I in such genetic background. The NCI-H1975 cell line is such a model as is highly tumorigenic in vivo. Moreover, it contains HER1 bearing the T790M gatekeeper mutation that renders the kinase resistant to catalytic inhibition by compounds such as gefitinib. The in vivo antitumor activity of PI3K inhibitors like the compounds of formula I is tested against this EGFR driven and EGFR tyrosine kinase inhibitor resistant tumor model (Figure 1). Surprisingly administration of Compound A causes in vivo tumor growth inhibition. Compound A is well tolerated - no statistically significant difference in body weight between the control and treatment groups can be observed (Figure 2).

A compound of formula I, especially Compound A, is therefore useful for the treatment of such EGFR dependent diseases, especially malignancies, or EGFR family members acquired resistance driven diseases. Diseases or malignancies with an established or potential molecular link to dysregulation of EGFR activity are, for instance, described in "Mendelsohn and Baselga; Status of Epidermal Growth Factor Receptor Antagonists in the Biology and Treatment of Cancer, Journal of Clinical Oncology, 2787-2799"; "Mendelsohn and Baselga; Epidermal Growth Factor Receptor Targeting in Cancer, Seminars in Oncology, Vol 33, 369-385"; Inmer et al., EGFR kinase domain mutations - functional impact and
relevance for lung cancer therapy, Oncogene, 1-9; Roche-Lima et al., EGFR targeting of solid tumors; Cancer Control, 2007, Vol 14 (3), 295-304) which ad are, including the references cited therein, hereby incorporated into the present application by reference.

According to the present invention the treatment of the following EGFR dependent diseases, especially malignancies, with compounds of formula I, especially Compound A, is preferred:

• non small cell lung carcinoma
• head and neck cancer
• colorectal carcinoma
• breast cancer
• brain malignancies including glioblastoma
• prostate cancer
• bladder cancer
• renal cell carcinoma
• pancreas cancer
• cervical cancer
• esophageal cancer
• gastric cancer
• ovarian cancer
or any combination thereof.

The present invention relates to the use of a compound of formula I as described above, or a tautomer thereof, or a pharmaceutically acceptable salt, or a hydrate or solvate thereof for the manufacture of a pharmaceutical preparation for the treatment of an EGFR dependent disease.

Furthermore, the present invention relates to the use of a compound of formula I, especially 5-(2,6-di-morpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-ylamine for the manufacture of a pharmaceutical preparation for the treatment of an EGFR dependent disease or malignancy or a disease that has acquired resistance to agents that target EGFR family members.
The resistance to the treatment with an EGFR modulator can be acquired during treatment with said EGFR modulator or can be due to a mutation or mutations in the protein.

In particular, the present invention relates to the treatment of a disease or malignancy that is dependent on EGFR family members or has acquired resistance during treatment with an EGFR modulator, with compounds of formula I, especially Compound A or a pharmaceutically acceptable salt thereof. Possible EGFR modulators that upon treatment can result in resistance are, for instance, gefitinib, erlotinib, lapatinib, cetuximab, nimotuzumab, panitumumab, and trastuzumab.

A compound of the formula (I) may also be used for the treatment of EGFR dependent or EGFR acquired resistance diseases in combination with other active compounds for instance the combination partners as disclosed in WO07/084786, more preferred EGFR family targeting agents such as, and without limitation to gefitinib, erlotinib, lapatinib, NVP-AEE778, ARRY334543, BIRW2992, BMS690514, peltinib, vandetanib, AV412, anti-EGFR monoclonal antibody 806, anti-EGFR monoclonal antibody-\(\text{Y90/Re-1}\), cetuximab, panitumumab, matuzumab, nimotuzumab, zalutumumab, pertuzumab, MDX-214, CDX110, IMC11F8, pertuzumab, trastuzumab, zemab®, the Her2 vaccine PX 1041, and the HSP90 inhibitors CNF1010, CNF2024, tanezumymycin alvespimycin, IPI504, SNX5422 and NVP-AUY922

The present invention also relates to a combination treatment of EGFR dependent diseases with a compounds of formula I, especially of a compound selected from the group consisting of (Compound A) and an EGFR modulator selected from the group consisting of gefitinib, erlotinib, lapatinib, NVP-AEE778, ARRY334543, BIRW2992, BMS690514, peltinib, vandetanib, AV412, anti-EGFR monoclonal antibody 806, anti-EGFR monoclonal antibody-\(\text{Y90/Re-1}\), cetuximab, panitumumab, matuzumab, nimotuzumab, zalutumumab, pertuzumab, MDX-214, CDX110, IMC11F8, pertuzumab, trastuzumab, zemab®, the Her2 vaccine PX 1041, and the HSP90 inhibitors CNF1010, CNF2024, tanezumymycin alvespimycin, IPI504, SNX5422 and NVP-AUY922, wherein the active ingredients are present in each case in free form or in the form of a pharmaceutically acceptable salt, and optionally at least one pharmaceutically acceptable carrier, for simultaneous, separate or sequential use for the treatment of non small cell lung carcinoma, head and neck cancer, colorectal carcinoma, breast cancer, brain malignancies including glioblastoma, prostate
cancer, bladder cancer, renal cell carcinoma, pancreas cancer, cervical cancer, esophageal cancer, gastric cancer and/or ovarian cancer.

In particular, the present invention relates to a combination of compound of formula 1 selected from the group consisting of 5-(2,6-di-morpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-ylamine and an EGFR modulator selected from the group consisting of gefitinib, erlotinib, lapatinib, cetuximab, nimotuzumab, panitumumab, and trastuzumab, wherein the active ingredients are present in each case in free form or in the form of a pharmaceutically acceptable salt, and optionally at least one pharmaceutically acceptable carrier; for simultaneous, separate or sequential use for the treatment of non small cell lung carcinoma, head and neck cancer, colorectal carcinoma, breast cancer, brain malignancies including glioblastoma, prostate cancer, bladder cancer, renal cell carcinoma, pancreas cancer, cervical cancer, esophageal cancer, gastric cancer and ovarian cancer.

In another embodiment the present invention relates to a method of treating an EGFR dependent disease or a malignancy, preferably a malignancy, that has acquired resistance to EGFR kinase modulators during treatment with said EGFR modulator, comprising administering a therapeutically effective amount of a specific imidazoquinoline derivative of formula 1, especially preferred 5-(2,6-di-morpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-ylamine (Compound A) or a pharmaceutically acceptable salt thereof, alone or in combination with an EGFR modulator, to a warm-blooded animal in need thereof.

The diseases to be treated by this method are preferentially non small cell lung carcinoma, head and neck cancer, colorectal carcinoma, breast cancer, brain malignancies including glioblastoma, prostate cancer, bladder cancer, renal cell carcinoma, pancreas cancer, cervical cancer, esophageal cancer, gastric cancer and ovarian cancer.

In another embodiment the present invention relates to a pharmaceutical preparation for the treatment of an EGFR dependent disease or a disease that has acquired resistance during treatment with an EGFR modulator comprising a compound of formula 1, especially preferred 5-(2,6-di-morpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-ylamine (Compound A) or a pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable carrier, alone or in combination with an EGFR modulator.
The diseases to be treated by this pharmaceutical preparation are preferentially non small cell lung carcinoma, head and neck cancer, colorectal carcinoma, breast cancer, brain malignancies including glioblastoma, prostate cancer, bladder cancer, renal cell carcinoma, pancreas cancer, cervical cancer, esophageal cancer, gastric cancer and ovarian cancer.

In another embodiment the present invention relates to the use of a compound of formula (I), especially preferred 5-(2,6-di-morpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-ylamine (Compound A) or a pharmaceutically acceptable salt thereof for the treatment of an EGFR dependent disease or disease that has acquired resistance during treatment with an EGFR modulator.

The diseases to be treated by this compounds, alone or in combination with an EGFR modulator, are preferentially non small cell lung carcinoma, head and neck cancer, colorectal carcinoma, breast cancer, brain malignancies including glioblastoma, prostate cancer, bladder cancer, renal cell carcinoma, pancreas cancer, cervical cancer, esophageal cancer, gastric cancer and ovarian cancer.

A compound of the formula (I) may also be used to advantage in combination with known therapeutic processes, for example, hormone therapy or, especially, radiation. A compound of formula (I) may in particular be used as a radiosensitizer, especially for the treatment of tumors which exhibit poor sensitivity to radiotherapy.

Treatment in accordance with the invention may be symptomatic or prophylactic.

By "combination", there is meant either a fixed combination in one dosage unit form, or a kit of parts for the combined administration where a compound of the formula (I) and a combination partner may be administered independently at the same time or separately within time intervals that especially allow that the combination partners show a cooperative, e.g. synergistic effect.

A compound of formula I can be administered alone or in combination with one or more other therapeutic compounds, possible combination therapy taking the form of fixed combinations or the administration of a compound of the invention and one or more other therapeutic compounds being staggered or given independently of one another, or the combined administration of fixed combinations and one or more other therapeutic compounds.
The dosage of the active ingredient depends upon a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound employed. A physician, clinician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition. Optimal precision in achieving concentration of drug within the range that yields efficacy requires a regimen based on the kinetics of the drug's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a drug.

The compounds of the invention may be administered by any conventional route, in particular parenterally, for example in the form of injectable solutions or suspensions, enterally, e.g. orally, for example in the form of tablets or capsules, topically, e.g. in the form of lotions, gels, ointments or creams, or in a nasal or a suppository form. Topical administration is e.g. to the skin. A further form of topical administration is to the eye. Pharmaceutical compositions comprising a compound of the invention in association with at least one pharmaceutical acceptable carrier or diluent may be manufactured in conventional manner by mixing with a pharmaceutically acceptable carrier or diluent.

The pharmaceutical compositions are comprising an amount effective in the treatment of one of the above-mentioned disorders, of a compound of formula I or an N-oxide or a tautomer thereof together with pharmaceutically acceptable carriers that are suitable for topical, enteral, for example oral or rectal, or parenteral administration and that may be inorganic or organic, solid or liquid. There are pharmaceutical compositions used for oral administration especially tablets or gelatin capsules that comprise the active ingredient together with diluents, for example lactose, dextrose, manitol, and/or glycerol, and/or lubricants and/or polyethylene glycol. Tablets may also comprise binders, for example magnesium aluminum silicate, starches, such as corn, wheat or rice starch, gelatin, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidone, and, if desired, disintegrators, for example starches, agar, alginic acid or a salt thereof, such as sodium alginate, and/or effervescent mixtures, or adsorbents, dyes, flavorings and sweeteners. It is also possible to use the pharmacologically active compounds of the present invention in the form of parenterally administrable compositions or in the form of infusion solutions. The
pharmaceutical compositions may be sterilized and/or may comprise excipients, for example preservatives, stabilizers, wetting compounds and/or emulsifiers, solubilisers, salts for regulating the osmotic pressure and/or buffers. The present pharmaceutical compositions, which may, if desired, comprise other pharmacologically active substances are prepared in a manner known per se, for example by means of conventional mixing, granulating, confectioning, dissolving or lyophilising processes, and comprise approximately from 1% to 99%, especially from approximately 1% to approximately 20%, active ingredient(s).
Claims:

1. Use of a compound of formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, wherein,

 W is CR_w or N, wherein R_w is selected from the group consisting of
 (1) hydrogen,
 (2) cyano,
 (3) halogen,
 (4) methyl,
 (5) trifluoromethyl,
 (6) sulfonamido;

 R_1 is selected from the group consisting of
 (1) hydrogen,
 (2) cyano,
 (3) nitro,
 (4) halogen,
 (5) substituted and unsubstituted alkyl,
 (6) substituted and unsubstituted alkenyl,
 (7) substituted and unsubstituted alkynyl,
 (8) substituted and unsubstituted aryl,
 (9) substituted and unsubstituted heteroaryl,
substituted and unsubstituted heterocyclyl,
substituted and unsubstituted cycloalkyl,
-COR₁₂₃,
-CO₂R₁₂₃,
-CO₂R₁₃,
-CONR₁₃R₂₁,
-NR₁₃R₂₁,
-NR₁₃COR₂₁,
-NR₁₃SO₂R₂₁,
-OCORia,
-OR₁₃a,
-SR₁₃a,
-SOR₁₃,
-SO₂R₁₃a, and
-SO₂NR₁₃aR₂₁,
wherein R₁₃a and R₂₁ are independently selected from the group consisting of
(a) hydrogen,
(b) substituted or unsubstituted alkyl,
(c) substituted and unsubstituted aryl,
(d) substituted and unsubstituted heteroaryl,
(e) substituted and unsubstituted heterocyclyl, and
(f) substituted and unsubstituted cycloalkyl;
R₂ is selected from the group consisting
(1) hydrogen,
(2) cyano,
(3) nitro,
(4) halogen,
(5) hydroxy,
(6) amino,
(7) substituted and unsubstituted alkyl,
-COR₂₂, and
-NR₂₂COR₂₂,
wherein R₂₂a and R₂₂b are independently selected from the group consisting of
(a) hydrogen, and
(b) substituted or unsubstituted alkyl;
R₃ is selected from the group consisting of
(1) hydrogen,
(2) cyano,
(3) nitro,
(4) halogen,
(5) substituted and unsubstituted alkyl,
(6) substituted and unsubstituted alkenyl,
(7) substituted and unsubstituted alkynyl,
(8) substituted and unsubstituted aryl,
(9) substituted and unsubstituted heteroaryl,
(10) substituted and unsubstituted heterocyclyl,
(11) substituted and unsubstituted cycloalkyl,
(12) -COR₃a,
(13) -NR₃aR₃b,
(14) -NR₃aCOR₃b,
(15) -NR₃aSO₂R₃b,
(16) -OR₃a,
(17) -SR₃a,
(18) -SOR₃a,
(19) -SO₂R₃a, and
(20) -SO₂NR₃aR₃b.

wherein R₃a and R₃b are independently selected from the group consisting of
(a) hydrogen,
(b) substituted or unsubstituted alkyi,
(c) substituted and unsubstituted aryl,
(d) substituted and unsubstituted heteroaryl,
(e) substituted and unsubstituted heterocyclyl, and
(f) substituted and unsubstituted cycloalkyl; and

R₄ is selected from the group consisting of
(1) hydrogen, and
(2) halogen;

for the manufacture of a pharmaceutical preparation for the treatment of an EGFR dependent disease.
2. The use according to claim 1, where the compound of the formula I is 5-(2,6-di-morpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-yamine (Compound A).

3. The use according to any one of claims 1 to 2, wherein the disease is a malignancy.

4. The use according to any one of claims 1 to 3, wherein said disease is resistant to the treatment with an EGFR modulator.

5. The use according to claim 4, wherein resistance to the treatment with an EGFR modulator has been acquired during treatment with said EGFR modulator.

6. The use according to claim 4, wherein the resistance is due to exon deletions and / or a mutation or mutations in the protein.

7. The use according to claim 4 or 5, wherein the EGFR modulator is selected from the group consisting of gefitinib, erlotinib, lapatinib, cetuximab, nimotuzumab, panitumumab and trastuzumab.

8. The use according to any one of claims 1 to 3, together with an EGFR modulator.

9. The use according to claim 8, wherein the EGFR modulator is selected from the group consisting of gefitinib, erlotinib, lapatinib, NVP-AEE778, ARRY334543, BIRW2992, BMS690514, pelitinib, vandetanib, AV412, anti-EGFR monoclonal antibody 806, anti-EGFR monoclonal antibody- Y90/Re-1 88, cetuximab, panitumumab, matuzumab, nimotuzumab, zalutumumab, pertuzumab, MDX-214, CDX1 10, IMC1 1F8, pertuzumab, trastuzumab, zemab®, the Her2 vaccine PX 1041 , and the HSP90 inhibitors CNF1010, CNF2024, tanespimycin alvespimycin, IPI504, SNX5422 and NVP-AUY922.

10. The use according to any one of claims 1 to 9, wherein the disease to be treated is
- non small cell lung carcinoma
- head and neck cancer
- colorectal carcinoma
- breast cancer
• brain malignancies including glioblastoma
• prostate cancer
• bladder cancer
• renal cell carcinoma
• pancreas cancer
• cervical cancer
• esophageal cancer
• gastric cancer
• ovarian cancer

or any combination thereof.

11. Combination of a compound of formula I selected from the group consisting of 5-(2,6-dimorpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-ylamine (Compound A) and an EGFR modulator selected from the group consisting of gefitinib, erlotinib, lapatinib, NVP-AEE778, ARRY334543, BIRW2992, BMS690514, pelitinib, vandetanib, AV412, anti-EGFR monoclonal antibody 806, anti-EGFR monoclonal antibody-Y90/Re-188, cetuximab, panitumumab, matuzumab, nimotuzumab, zalutumumab, pertuzumab, MDX-214, CDX1 10, IMC1 1F8, pertuzumab, trastuzumab, zemab®, the Her2 vaccine PX 1041, and the HSP90 inhibitors CNF1010, CNF2024, tanspimycin alvespimycin, IPI504, SNX5422 and NVP-AUY922, wherein the active ingredients are present in each case in free form or in the form of a pharmaceutically acceptable salt, and optionally at least one pharmaceutically acceptable carrier, for simultaneous, separate or sequential use for the treatment of non small cell lung carcinoma, head and neck cancer, colorectal carcinoma, breast cancer, brain malignancies including glioblastoma, prostate cancer, bladder cancer, renal cell carcinoma, pancreas cancer, cervical cancer, esophageal cancer, gastric cancer and/or ovarian cancer.

12. A method of treating an EGFR dependent disease or a disease that has acquired resistance during treatment with an EGFR modulator comprising administering a therapeutically effective amount of a compound of formula I, according to any one of claims 1 to 2, to a warm-blooded animal in need thereof.

13. The method according to claim 13, wherein the disease to be treated is a disease according to claim 10.
14. The method according to claim 12 or 13, wherein the compound of formula I is administered together with an EGFR modulator according to claim 9.

15. A pharmaceutical preparation for the treatment of an EGFR dependent disease or a disease that has acquired resistance during treatment with an EGFR modulator comprising a compound of formula I, according to any one of claims 1 to 2 or a pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable carrier.

16. The pharmaceutical preparation according to claim 15, wherein the disease to be treated is a disease according to claim 10.

17. The pharmaceutical preparation according to claim 15 or 16, comprising an EGFR modulator according to claim 9.

18. Use of a compound of formula I, according to any one of claims 1 to 2 or a pharmaceutically acceptable salt thereof for the treatment of an EGFR dependent disease or disease that has acquired resistance during treatment with an EGFR modulator.

19. The use according to claim 18, wherein the disease to be treated is a disease according to claim 10.

20. The use according to claim 18 or 19, together with an EGFR modulator according to claim 9.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K45/06 A61P35/00 A61K31/5377

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, EMBASE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

D: Further documents are listed in the continuation of Box C

* Special categories of cited documents
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "D" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
* "A" document member of the same patent family

Date of the actual completion of the international search: 22 April 2009

Date of mailing of the international search report: 04/05/2009

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2
NL- 2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016

Authorized officer

Herrera, Suzanne
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 2007206048 A1</td>
<td>26-07-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2636993 A1</td>
<td>26-07-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101389622 A</td>
<td>18-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP088630 A</td>
<td>29-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1984350 A1</td>
<td>29-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080096776 A</td>
<td>03-11-2008</td>
</tr>
</tbody>
</table>

		CA 2507100 A1	10-06-2004
		EP 1575940 A1	21-09-2005
		JP 2006514118 T	27-04-2006
		KR 20050085114 A	29-08-2005
		MX PA05005477 A	25-07-2005

Form PCT/ISA/210 (patent family annex) (April 2005)