实用新型名称
关口计量装置的误差监测系统

摘要
本实用新型提供一种关口计量装置的误差监测系统，包括电压互感器、电流互感器和电能表，还包括电压互感器监测单元、电流互感器监测单元、电能表监测单元和控制系统。电压互感器监测单元通过电压传感器将连接至电压互感器的负端，电流互感器监测单元还连接至电压互感器的二次侧回路，以及连接至电能表的电源端；电能表监测单元通过另一电流传感器连接至电能表的三相主回路，电能表监测单元、电压互感器监测单元和电流互感器监测单元分别连接至所述控制系统。本实用新型可在线采集到电压互感器、电流互感器和电能表的运行参数，能快速准确地确定电能计量装置的误差。
1. 一种关口计量装置的误差监测系统，包括高压电网上安装的电压互感器、电流互感器和电能表，其特征在于，还包括电压互感器监测单元、电流互感器监测单元、电能表监测单元和控制系统；

所述电压互感器监测单元通过电压传感器连接至所述电压互感器的总回路，所述电压互感器监测单元还连接至所述电压互感器的二次侧回路，以及连接至所述电能表的测电压端子；

所述电流互感器监测单元通过电流传感器连接至所述电流互感器的二次侧回路；
所述电能表监测单元通过另一电流传感器连接至电能表的相二次回路；

所述电能表监测单元、所述电压互感器监测单元和所述电流互感器监测单元分别连接至所述控制系统。

2. 根据权利要求1所述的关口计量装置的误差监测系统，其特征在于，还包括温度传感器和湿度传感器；所述温度传感器和湿度传感器都安装在所述电能表的端子箱内，分别连接至所述控制系统。

3. 根据权利要求1所述的关口计量装置的误差监测系统，其特征在于，所述电流传感器为隔离穿芯式霍尔电流传感器。

4. 根据权利要求1所述的关口计量装置的误差监测系统，其特征在于，所述电压传感器为隔离式电压传感器。

5. 根据权利要求1所述的关口计量装置的误差监测系统，其特征在于，每个所述电能表连接有两个电能表监测单元，两个所述电能表监测单元还分别连接至所述控制系统。
关口计量装置的误差监测系统

技术领域
[0001] 本实用新型涉及关口计量装置，特别是涉及一种关口计量装置的误差监测系统。

背景技术
[0002] 发电厂与变电站的高压电能计量装置，关系到发电、输电和配电三方利益。为保证计量准确，高压互感器每 10 年现场检验一次，运行中的电压互感器二次回路电压应定期进行检验，当 35kV 及以上电压互感器二次回路压降，至少每两年检验一次；当二次回路负荷超过互感器额定二次负荷或二次回路压降超差时应及时查明原因并做出处理。
[0003] 电力系统的迅速发展，电力网络的覆盖非常庞大，传统的关口计量装置的误差校验存在以下问题：误差监测需人工现场采集数据，工作量大、工作效率低，人力物力耗费大；定时检验的实时性较差，误差反馈缓慢，无法及时对计量装置进行调整。

实用新型内容
[0004] 基于此，本实用新型提供一种关口计量装置的误差监测系统，工作人员无需到现场即可在线采集到配电网中电压互感器、电流互感器和电能表的运行参数，能快速准确地确定电能计量装置的误差。
[0005] 一种关口计量装置的误差监测系统，包括高压电网上安装的电压互感器、电流互感器和电能表，其中还包括电压互感器监测单元、电流互感器监测单元和电能表监测单元和控制系统；
[0006] 所述电压互感器监测单元通过电压传感器连接至所述电压互感器的总回路，所述电压互感器监测单元还连接至所述电压互感器的二次侧回路，以及连接至所述电能表的测量电压端子；
[0007] 所述电流互感器监测单元通过一电流传感器连接至所述电流互感器的二次侧回路；
[0008] 所述电能表监测单元通过另一电流传感器连接至电能表的三相二次回路；
[0009] 所述电能表监测单元、所述电压互感器监测单元和所述电流互感器监测单元分别连接至所述控制系统。
[0010] 上述关口计量装置的误差监测系统，通过安装在现场的电能表监测单元、电压互感器监测单元和电流互感器监测单元实现对电能表检测数据、电压互感器误差和电流表误差的误差监测，同时将误差数据实时发送至控制系统，工作人员无需至现场，即可通过控制系统分析关口计量装置的误差，减少了大量的人力物力，能对关口计量装置的误差进行实时分析，在发现装置误差超标时能及时做出反馈，实用性强。

附图说明
[0011] 图 1 为本实用新型关口计量装置的误差监测系统在一较佳实施例中的结构示意图。
具体实施方式
[0012] 下面结合实施例及附图对本实用新型作进一步详细说明，但本实用新型的实施方式不限于此。
[0013] 如图1所示，一种关回量计表的误差监测系中，包括高压电网上安装的电压互感器11、电流互感器12和电能表13，其中，还包括电压互感器监测单元31、电流互感器监测单元32、电能表监测单元和控制机33；
[0014] 所述电压互感器监测单元31通过电压传感器21连接至所述电压互感器11的总回路，所述电压互感器监测单元31还连接至所述电压互感器21的二次侧回路，以及连接至所述电测表13的测电压端子；所述电流互感器监测单元32通过电流传感器22连接至所述电流互感器12的二次侧回路，所述电表监测单元33通过另一电流传感器23连接至电能表13的相二次回路，所述电表监测单元33、所述电压互感器监测单元31和所述电流互感器监测单元32分别连接至所述控制系统41；
[0015] 电表监测单元33、电压互感器监测单元31和电流互感器监测单元32都安装在高电压电网现场，根据实际监测范围内的关回量装置，设置相应的电表监测单元33、电压互感器监测单元31和电流互感器监测单元的型号，选择适当的电能表校验仪、电压互感器校验仪和电流互感器校验仪；控制系统41可设置在变电站的控制中心，与电表监测单元33、电压互感器监测单元31和电流互感器监测单元32通过有线连接或无线连接，其中控制系统41可包括站方监测子站和局方监测主站，站方监测子站可供专业人员对电表监测单元33、电压互感器监测单元31和电流互感器监测单元32发送的电表监测数据进行实时分析，再将分析结果发送至局方监测子站，供每个用户实时监测电表的运行情况。
[0016] 电表监测单元33连接至现场的被监测的电表的相二次回路中，被监测电能表13的电表信号包括电压信号、电流信号、脉冲信号，通过电表监测单元33中的切换通道输入电表监测单元33，电表监测单元33对输入的各个信号进行检测，将检测数据与电能表13的检测结果进行对比，同时将电能表13的检测结果和对比结果发送至控制系统41；在一较佳实施例中，每个所述电能表13连接有两个电表监测单元33，两个所述电表监测单元33还分别连接至所述控制系统41，所述电能表监测单元33长期运行可能导致参数误差，可根据实际情况切换使用不同的电表监测单元33，提高设备的使用及维护的可靠性和方便性。
[0017] 在一较佳实施例中，还包括温度传感器和湿度传感器，所述温度传感器和湿度传感器都安装在所述电表13的端子箱内，分别连接至所述控制系统41；温度传感器和湿度传感器可采集到现场的温湿度数据并传至控制系统41，因此可根据关回量装置的误差数据，结合温湿度数据，判断关回量装置的误差数据与环境运行情况的线性关系。
[0018] 所述电压互感器监测单元31通过电压传感器21连接至所述电压互感器11的总回路，电压传感器21采集到电压互感器11总回路的电压，电压互感器11监测单元即可测出电压互感器11的二次负荷值，同时电压互感器监测单元31将采集到的电信号参数和测
出的电压互感器 11 的二次负荷值发送给控制系统 41；在较佳实施例中，所述电压传感器 21 为隔离式电压传感器。

【0019】所述电压互感器监测单元 31 还连接至所述电压互感器 11 的二次侧回路，以及连接至所述电能表 13 的二次侧端子，电压互感器监测单元 31 通过输入的差压信号，测出电压互感器 11 的比值差和相位差，再通过比值差和相位差求出互感器 11 的误差，同时电压互感器监测单元 31 将采集到的差压信号和测出的电压互感器 11 的误差发送给控制系统 41；

【0020】电压互感器监测单元 31 通过比值差和相位差计算出电压互感器 11 的误差的原理如下：

【0021】电压互感器的误差由空载误差和负载误差两部分组成，空载误差为 \(\bar{\delta}_x = -Y_m Z_i \)，负载误差为 \(\bar{\delta}_z = -Y(Z_i + Z_o) \)；其中，\(Y_m \) 为一次回路磁导率，\(Y \) 为电压互感器实际负荷导纳，\(Z_i, Z_o \) 为电压互感器一次内阻和二次内阻抗，\(Y \) 为一次回路电阻和漏电抗值，可以看作常数；\(f \) 为比值差，\(\delta \) 为相位差。\(Y_m = 1/Z_m \) 为一次回路导纳，是一个非线性元件，与外加电压有关；

【0022】所以电压互感器的复合误差为：

\[\bar{\delta} = \bar{\delta}_x + \bar{\delta}_z = -Y_m Z_i - Y(Z_i + Z_o) = f + j\delta; \]

【0023】因此复合误差 \(\bar{\delta} \) 实际是一个向量，由实部比值差 \(f \) 和虚部相位差 \(\delta \) 组成，电压互感器的比值差 \(f \) 、相位差 \(\delta \) （用弧度表示时）和复合误差 \(\bar{\delta} \) 可组成一个误差三角形。

【0024】所述电流互感器监测单元 32 通过所述电流互感器 22 连接至所述电流互感器 12 的二次侧回路，电流互感器 22 采集到电流互感器 12 的二次侧回路电流，电流互感器监测单元 32 即可测出电流互感器 12 的二次负荷值，同时电流互感器监测单元 32 将采集到的电流参数和测出的电流互感器 12 的二次负荷值发送给控制系统 41；在一较佳实施例中，所述电流互感器 22 为隔离穿芯式霍尔电流传感器；

【0025】电流互感器监测单元 32 检测电流互感器 12 的复合误差的原理如下：

【0026】电流互感器的复合误差计算公式为：

\[\bar{\varepsilon} = -(Z_i + Z_o) \times Y + \Delta f; \]

【0027】其中，\(\varepsilon \) 为所述电流互感器的复合误差，\(Z_o \) 为二次绕组内阻抗，\(Z_i \) 为二次负荷阻抗，\(Y \) 为二次磁导率，\(\Delta f \) 为比值差补偿值。

【0028】本实用新型所述的差值监测系统，通过安装在现场的电能表监测单元、电压互感器监测单元和电流互感器监测单元，实现对电能表检测数据、电压互感器误差和电流表误差的差值监测，将误差数据实时发送至控制系统，工作人员无需至现场，即可通过控制系统分析关口计量装置的误差，减少了大量的人力物力，能对关口计量装置的误差进行实时检测，发现装置误差超标时能及时做出反馈，实用性强。

【0029】本实用新型所述的差值监测系统，通过安装在现场的电能表监测单元、电压互感器监测单元和电流互感器监测单元，实现对电能表检测数据、电压互感器误差和电流表误差的差值监测，将误差数据实时发送至控制系统，工作人员无需至现场，即可通过控制系统分析关口计量装置的误差，减少了大量的人力物力，能对关口计量装置的误差进行实时检测，发现装置误差超标时能及时做出反馈，实用性强。

【0030】以上所述实施例仅表达了本实用新型的几种实施方式，其描述较为具体和详细，但并不能因此而理解为对本实用新型专利范围的限制。应当指出的是，对于本领域的普通技术人员来说，在不脱离本实用新型构思的前提下，还可以做出若干变形和改进，这些都属于本实用新型的保护范围。因此，本实用新型专利的保护范围应以所附权利要求为准。
图1