

제3절 (병도의 표시가 없는 한, 가능한 모든 종류의 역내 권리의 보호를 위하여): WIPO PCT WO 2013/094883 A1

제4절 (병도의 표시가 없는 한, 가능한 모든 종류의 역내 권리의 보호를 위하여): 특허협력조약에 의하여 공개된 국제출원

제5절 (병도의 표시가 없는 한, 가능한 모든 종류의 역내 권리의 보호를 위하여): 국제공개번호

제6절 (병도의 표시가 없는 한, 가능한 모든 종류의 역내 권리의 보호를 위하여): 2013년 6월 27일 (27.06.2013)
명세서
발명의 명칭: 아세틸화 셀룰로오스 에테르와 그의 제조방법, 및 상기 아세틸화 셀룰로오스 에테르를 포함하는 물품

기술분야
[1] 아세틸화 셀룰로오스 에테르와 그의 제조방법, 및 상기 아세틸화 셀룰로오스 에테르를 포함하는 물품이 개시된다. 보다 상세하게는, 0.1~0.4의 질보기 밀도를 갖는 아세틸화 셀룰로오스 에테르와 그의 제조방법, 및 상기 아세틸화 셀룰로오스 에테르를 포함하는 물품이 개시된다.

배경기술

[4] 상기와 같은 수용성 고분자인 셀룰로스 에테르의 유기용매에 대한 용해성을 향상시켜 유기용매에 녹는 증점제, 바인더, 수처리용 멤브레인 등의 박소제로 활용하기 위하여, 한국공개특허 제2011-0089662호는 상기 셀룰로오스 에테르에 아세틸기를 도입하여 제조한 아세틸화 셀룰로오스 에테르를 개시하고 있다. 그러나, 이렇게 제조된 아세틸화 셀룰로오스 에테르는 질보기 밀도가 낮아 상업적인 사용이 제한되는 문제점이 있다. 즉, 상업적인 사용을 확대하기 위해서는 제품(즉, 아세틸화 셀룰로오스 에테르)의 날림 방지, 포장성 개선, 저장용기(예를 들어, 샌드보)내에서의 호흡성 개선 및 압출기 혼합에서의 제품의 유동성 개선 등의 과제가 해결되어야 하며, 이러한 과제의 해결은 제품의 질보기 밀도의 증가를 통해서 달성될 수 있다.

발명의 상세한 설명

기술적 과제
[5] 본 발명의 일 구현에는 0.1~0.4의 질보기 밀도를 갖는 아세틸화 셀룰로오스 에테르를 제공한다.

과제 해결 수단
[8] 본 발명의 일 측면은,
[9] 1~2의 알킬기 치환도(DS), 0~1의 하드록시알킬기 치환도(MS) 및 1~2의 아세틸기 치환도(DS); 몇
[10] 0.1~0.4의 겉보기 밀도를 갖는 아세틸화 섬모로스 에테르를 제공한다.
 군으로부터 선택된 적어도 1종의 섬모로스 에테르가 아세틸화되어 형성된
 것일 수 있다.
[12] 본 발명의 다른 측면은,
[14] 상기 물품은 포장재, 섬유, 가전제품 케이스, 메탈 패스트 또는 분리막용
 소재일 수 있다.
[15] 본 발명의 또 다른 측면은,
[16] 1~2의 알킬기 치환도(DS), 0~1의 하드록시알킬기 치환도(MS) 및 1~2의
 아세틸기 치환도(DS)를 갖는 아세틸화 섬모로스 에테르를 유기용매에
 용해시켜 아세틸화 섬모로스 에테르 용액을 얻는 단계; 및
[17] 상기 아세틸화 섬모로스 에테르 용액에 물을 첨가하여 아세틸화 섬모로스
 에테르를 석출하는 단계를 포함하는 아세틸화 섬모로스 에테르의 제조방법을
 제공한다.
[18] 상기 유기용매는 메탄올, 아세트산, 아세톤, 디에틸포름아미드, 디메틸
 섬포사이드 및 1-메톡시-2-프로판올로 이루어진 군으로부터 선택된 적어도
 1종의 화합물을 포함할 수 있다.
[19] 상기 아세틸화 섬모로스 에테르의 제조방법은 상기 석출된 아세틸화
 섬모로스 에테르를 세정 및 건조하는 단계를 더 포함할 수 있다.
발명의 효과
[20] 본 발명의 일 구현예에 따른 아세틸화 섬모로스 에테르는 유기용매에 용해될
 수 있으며, 이에 따라 유기용매를 활용하여 제품화할 수 있는 포장용 필름, 섬유
 물품 및 고강도 소재로서의 수처리용 멤브레인용 등의 막 소재로 활용될 수
 있다. 또한, 상기 아세틸화 섬모로스 에테르는 겉보기 밀도가 높아 흐름성이
 개선되어, 압출기 피터에서의 흐름성 개선, 비산 방지 및 사이로내에서의 흐름성
 개선 효과를 얻을 수 있으므로 다양한 상업적 용도에 활용될 수 있다.
발명의 실시를 위한 형태
[21] 이하에서는 본 발명의 일 구현예에 따른 아세틸화 섬모로스
 에테르(acetylated cellulose ether)와 그의 제조방법, 및 이를 포함하는 물품에
 대하여 상세히 설명한다.
[22] 본 발명의 일 구현예에 따른 아세틸화 섬모로스 에테르는 1~2의 알킬기
 치환도(DS), 0~1의 하드록시알킬기 치환도(MS) 및 1~2의 아세틸기 치환도(DS);
 및 0.1~0.4의 겉보기 밀도(bulk density)를 갖는다. 본 명세서에서, “겉보기
밀도”란 어떤 물질의 질량을 그 물질이 차지하는 부피로 나누어준 값을 의미한다.

상기 아세틸화 센텔로오스 에테르는 1-2의 알킬기 치환도(DS) 및 0-1의 히드록시알킬기 치환도(MS)를 갖는 센텔로오스 에테르가 아세틸화되어 형성될 수 있다. 여기서, 알킬기는 1-16의 탄소수를 가질 수 있다. 상기 아세틸화 센텔로오스 에테르의 제조시 출발물질로서 센텔로오스가 사용될 수도 있고, 상기 치환도(DS, MS) 범위를 갖는 센텔로오스 에테르가 사용될 수도 있다.

상기 알킬기 치환도(DS) 범위 및 상기 히드록시알킬기 치환도(MS) 범위로 갖는 센텔로오스 에테르를 아세틸화하면, 물에는 용해되지 않으면서도 아세톤과 같은 유기용매에는 잘 용해되며, 고분자량을 가져서 기계적 강도가 우수한 아세틸화 센텔로오스 에테르를 얻을 수 있다. 이에 대하여는 후술하기로 한다.

상기 아세틸화 센텔로오스 에테르는 1-2의 아세틸기 치환도(DS)를 가질 수 있다.

또한, 상기 아세틸화 센텔로오스 에테르는 0.1-0.4(예를 들어, 0.1-0.3)의 길보기 밀도를 가질 수 있다. 상기 아세틸화 센텔로오스 에테르의 길보기 밀도가 상기 범위이내이면, 호흡성이 개선되어 암호기피에서의 호흡성 개선, 비산 방지 및 사이로(silo)내에서의 호흡성 개선 효과를 얻을 수 있으므로 다양한 산업적 용도에 활용될 수 있는 아세틸화 센텔로오스 에테르를 얻을 수 있다.

상기 아세틸화 센텔로오스 에테르는 메틸센텔로오스, 히드록시.fromCharCode(10356)폼메틸센텔로오스 및 히드록시에틸메틸센텔로오스로 이루어진 군으로부터 선택된 적어도 1종의 센텔로오스 에테르가 아세틸화되어 형성될 것일 수 있다.

또한, 상기 아세틸화 센텔로오스 에테르를 아세톤에 용해시킨 용액(아세틸화 센TEL로오스 에테르의 농도: 2중량%)의 점도는, 브룩필드 점도계로 측정할 때, 20℃ 및 20rpm의 조건에서, 5~100,000cps(centipoise)일 수 있다. 상기 점도가 상기 범위이내이면, 상기 아세틸화 센텔로오스 에테르의 기계적 강도가 우수하다.

상기 아세틸화 센텔로오스 에테르는 180~250℃의 용융점을 가질 수 있다. 상기 용융점이 상기 범위이내이면, 상기 아세틸화 센TEL로오스 에테르는 사출과 같은 용융가공에 적응될 수 있다.

이하, 본 발명의 일 구현에 따른 아세틸화 센TEL로오스 에테르의 제조방법에 대하여 상세히 설명한다.

먼저, 센텔로오스의 수산기를 에테르화하여 센텔로오스 에테르를 제조한다. 즉, 센TEL로오스의 에테르화 반응에 의해서, 센TEL로오스 구조와의 수산기 중 일부를 blocking하거나, 상기 수산기 중의 수소를 다른 치환체(예를 들어, 후술하는 R1~R2, 등)로 치환함으로써 센TEL로오스 에테르를 형성한다. 이때, 센TEL로오스의 주체는 전단되지 않고 유지되지만, 센TEL로오스 내의 수소결합이 파괴되어 상기 센TEL로오스가 비결정 구조로 변환되기 때문에 고분자량의
수용성 설태로스 에테르가 암여진다. 이후, 상기 제조된 수용성 설태로스 에테르에 포함된 수산기 중의 수소원자를 아세틸기(CH₃CO)로 치환하여(이 치환 반응을 아세틸화라고 함) 수분용성 아세틸화 설태로스 에테르를 제조한다. 하기 화학식 1 및 2에 설태로스의 기본 반복단위인 무수글루코오스(anhydroglucose)가 차례로 에테르화 및 아세틸화되어 아세틸화 설태로스 에테르의 기본 반복단위로 전환되는 과정을 나타내었다.

화학식 1

[32]

화학식 2

[33]

상기 화학식 1은 설태로스가 에테르화되어 허드록시알킬릴킬킬킬Kill

[34]

상기 화학식 2는 설태로스가 에테르화되어 허드록시알킬릴킬킬킬Kill

[35]

상기 화학식 1에서, R₁ 및 R₂는, 서로 독립적으로, H, CH₃, CH₂CH₂OH 또는 CH₃CH(OH)₂일 수 있고, R₃는 H 또는 CH₃일 수 있다.

[36]

상기 화학식 2에서, R₄ 및 R₅는 각각 H 또는 CH₃이고, 상기 R₁ 및 R₂ 중 적어도 대체용지 (규칙 제26조)
본 명세서에서, 치환도(DS: degree of substitution)란 무수글루코오스 단위당 알킬기로 치환된 수산기의 평균 개수를 의미한다. 무수글루코오스 단위당 최대 3개의 수산기가 존재하므로, 단판능성 치환체로 치환될 경우에는 이론적인 최대 치환도(DS)는 3이다. 그러나, 다판능성 또는 종합성 치환체는 무수글루코오스 단위에 포함된 수산기의 수소와 반응할 뿐만 아니라 자기 자신들과도 반응하므로, 치환도(DS)가 3으로 한정되지 않는다. 또한 본 명세서에서, 치환도(MS: degree of molar substitution)란 무수글루코오스 단위당 다판능성 또는 종합성 치환체의 몫수를 의미한다. 이러한 치환도(MS)의 이론적인 최대값은 존재하지 않는다.

본 발명의 일 구현예에 따른 아세틸화 셜로로스 에테르는 셜로로스 에테르에 존재하는 대부분의 수산기 중의 수소가 소수성기인 아세틸기로 치환된 것일 수 있다. 따라서, 상기 아세틸화 셜로로스 에테르는 물에는 용해되지 않지만, 유기용매에는 용해되는 성질을 갖는다.

상기와 같이 제조된 아세틸화 셜로로스 에테르는 실 모양의 형상 및 0.1 미만의 점보기 밀도를 갖는다.

다음에, 0.1 미만의 점보기 밀도를 갖는 실 모양의 아세틸화 셜로로스 에테르를 유기용매에 용해시켜 아세틸화 셜로로스 에테르 용액을 얻는다.

상기 유기용매는 메탄올, 아세트산, 아세트온, 디메틸포름아미드(DMF), 디메틸 섬복사이드(DMSO) 및 1,4-디옥시-2-프로판올(MP)로 이루어진 금으로부터 선택된 적어도 1종의 화합물로 포합할 수 있다.

이어서, 상기 아세틸화 셜로로스 에테르 용액에 물을 첨가(예를 들어, 적가)하여 아세틸화 셜로로스 에테르를 석출한다. 상기 물의 첨가는 상기 아세틸화 셜로로스 에테르의 석출이 지속될 때까지 수행될 수 있다. 즉, 상기 물의 첨가는 100중량%의 유기용매의 농도가 80중량% 이하, 70중량% 이하, 50중량% 이하, 40중량% 이하, 30중량% 이하, 20중량% 이하, 10중량% 이하로 최적될 때까지 수행될 수 있다. 상기 석출된 아세틸화 셜로로스 에테르는 동근 입자 모양의 형상 및 0.1~0.4의 점보기 밀도를 갖는다.

끝으로, 상기 석출된 아세틸화 셜로로스 에테르를 세정 및 건조한다. 상기 세정은, 예를 들어, 파라핀의 물을 세정액으로 사용하여 실시될 수 있으며, 상기 건조는 60~100℃에서 30분~10시간 동안 진행될 수 있다.

한편, 본 발명의 일 구현예에 따른 물품은 상기 아세틸화 셜로로스 에테르를 포함한다. 이러한 물품은, 예를 들어, 상기 물품은 포장제, 섬유, 가전제품 케이스, 메탈 페이스트 또는 분리막(수처리용 밀브레인, 기체 분리막 또는 전지 분리막 등)용 소재일 수 있다.

이하, 설치예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 설치예들에 한정되는 것은 아니다.
실시에

제조에 1~7: 아세틸화 설탕로오스 에테르의 제조

교반기가 장착된 3L 반응기에, 설탕로오스 에테르 제품(삼성정밀화학 제조) 70g, 아세트산 무수물 1120g 및 피리딘 350g을 투입한 후, 200rpm으로 교반하면서 90℃에서 3시간 동안 반응시키 아세틸화 설탕로오스 에테르를 제조하였다. 이어서, 반응기 내용물을 끓이 제워진 18L의 응고욕(coagulating bath)에 분사하여 응고시키 후 세척한 물로 5회 세척한 후 건조하여 실 모양의 아세틸화 설탕로오스 에테르를 얻었다. 각 실헤에서 사용된 설탕로오스 에테르 제품의 메틸기 치환도(DS), 히드록시프로필기 치환도(MS), 히드록시에틸기 치환도(MS) 및 각 설탕로오스 에테르에 포함된 무수글루코오스 단위당 사용된 아세트산 무수물의 몰비를 하기 표 1에 나타내었다.

표 1

<table>
<thead>
<tr>
<th>설탕로오스 에테르 제품</th>
<th>아세트산 무수물/무수글루코오스 단위(몰비)</th>
</tr>
</thead>
<tbody>
<tr>
<td>메틸기 치환도(DS)</td>
<td>히드록시프로필기 치환도(MS)</td>
</tr>
<tr>
<td>제조예 1</td>
<td>1.80</td>
</tr>
<tr>
<td>제조예 2</td>
<td>1.58</td>
</tr>
<tr>
<td>제조예 3</td>
<td>1.35</td>
</tr>
<tr>
<td>제조예 4</td>
<td>1.91</td>
</tr>
<tr>
<td>제조예 5</td>
<td>1.40</td>
</tr>
<tr>
<td>제조예 6</td>
<td>1.65</td>
</tr>
<tr>
<td>제조예 7</td>
<td>1.81</td>
</tr>
</tbody>
</table>

실시예 1~7: 아세틸화 설탕로오스 에테르의 후처리

상기 제조에 1~7에서 제조된 각 아세틸화 설탕로오스 에테르를 하기 표 2에 열거된 100중량%의 농도를 갖는 유기용매에 녹여 아세틸화 설탕로오스 에테르
용액을 제조한 후, 상기 용액에 물을 참가하여 아세틸화 셀룰로오스 에테르를 석출하였다. 이어서, 상기 석출된 아세틸화 셀룰로오스 에테르를 과량의 물로 세정하고, 80°C에서 6시간 동안 건조하여 둥근 입자 모양의 아세틸화 셀룰로오스 에테르를 얻었다. 이 경우, 물의 참가량이 증가함에 따라 유기용매의 농도가 감소하게 되는데, (i) 석출 개시 시점에서의 유기용매의 농도와 이때 석출된 아세틸화 셀룰로오스 에테르의 질보기 밀도(B/D), 및 (ii) 그 이후 최대값의 질보기 밀도를 갖는 시점에서의 유기용매의 농도와 이때 석출된 아세틸화 셀룰로오스 에테르의 질보기 밀도(B/D)를 각각 측정하여 하기 표 2에 나타내었다. 여기서, 상기 각 석출된 아세틸화 셀룰로오스 에테르의 질보기 밀도(B/D)는 GASA 비중계(홍진정밀, HJ-6010)를 사용하여 측정하였다.
[Table 2]

<table>
<thead>
<tr>
<th>사용 유기용매 및 석출시 농도</th>
<th>설시례 1</th>
<th>설시례 2</th>
<th>설시례 3</th>
<th>설시례 4</th>
<th>설시례 5</th>
<th>설시례 6</th>
<th>설시례 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>메탄올 60중량%</td>
<td>-</td>
<td>0.19</td>
<td>-</td>
<td>0.17</td>
<td>0.18</td>
<td>-</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>30중량%</td>
<td>-</td>
<td>0.20</td>
<td>-</td>
<td>0.19</td>
<td>0.19</td>
<td>-</td>
</tr>
<tr>
<td>초산 40중량%</td>
<td>0.31</td>
<td>-</td>
<td>0.23</td>
<td>0.18</td>
<td>-</td>
<td>0.27</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20중량%</td>
<td>0.29</td>
<td>-</td>
<td>0.25</td>
<td>0.19</td>
<td>-</td>
<td>0.25</td>
</tr>
<tr>
<td>아세톤 76중량%</td>
<td>-</td>
<td>0.25</td>
<td>-</td>
<td>0.17</td>
<td>-</td>
<td>0.22</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40중량%</td>
<td>-</td>
<td>0.27</td>
<td>-</td>
<td>0.19</td>
<td>-</td>
<td>0.23</td>
</tr>
<tr>
<td>DMF 80중량%</td>
<td>0.28</td>
<td>-</td>
<td>0.20</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>40중량%</td>
<td>0.25</td>
<td>-</td>
<td>0.21</td>
<td>-</td>
<td>0.19</td>
<td>-</td>
</tr>
<tr>
<td>DMSO 85중량%</td>
<td>-</td>
<td>0.21</td>
<td>-</td>
<td>0.14</td>
<td>0.20</td>
<td>-</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>30중량%</td>
<td>-</td>
<td>0.20</td>
<td>-</td>
<td>0.16</td>
<td>0.21</td>
<td>-</td>
</tr>
<tr>
<td>MP 50중량%</td>
<td>-</td>
<td>0.19</td>
<td>-</td>
<td>0.16</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10중량%</td>
<td>-</td>
<td>0.20</td>
<td>-</td>
<td>0.17</td>
<td>-</td>
<td>0.17</td>
</tr>
</tbody>
</table>

[55] 상기 표 2를 참조하면, 설시례 1~7에서 제조된 아세틸화 섬플로오스 에테르는 0.14~0.31의 결보기 밀도를 갖는 것으로 나타났다. 또한, 유기용매의 종류에 따라 석출 게시 시점이 다름 것으로 나타났는데, 100중량%의 메탄올을 사용한 경우는 60중량%로 회석되었을 때 석출이 개시되어 30중량%로 회석되었을 때 석출이 완료되었다. 100중량%의 초산을 사용한 경우는 40중량%로 회석되었을 때
석출이 개시되어 20중량%로 화석되었을 때 석출이 완료되었다. 100중량%의
아세톤을 사용한 경우는 76중량%로 화석되었을 때 석출이 개시되어 40중량%로
화석되었을 때 석출이 완료되었다. 100중량%의 DMF를 사용한 경우에는
80중량%로 화석되었을 때 석출이 개시되어 40중량%로 화석되었을 때 석출이
완료되었다. 100중량%의 DMSO를 사용한 경우는 85중량%로 화석되었을 때 석출이
개시되어 30중량%로 화석되었을 때 석출이 완료되었다. 100중량%의
MP를 사용한 경우는 50중량%로 화석되었을 때 석출이 개시되어 10중량%로
화석되었을 때 석출이 완료되었다.

[57] 비교예 1~7: 후처리되지 않은 아세틸화 셜롤로오스 에테르
[58] 제조예 1~7에서 제조된 각 아세틸화 셜롤로오스 에테르를 후처리 하지 않은
상태에서, 검보기 밀도(B/D), 아세틸기 치환도 및 점도를 측정하여 그 결과를
하기 표 3에 나타내었다.
[59] 표 3
[Table 3]

<table>
<thead>
<tr>
<th></th>
<th>비교예</th>
<th>비교예</th>
<th>비교예</th>
<th>비교예</th>
<th>비교예</th>
<th>비교예</th>
<th>비교예</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>검보기 밀도 (ml/g)</td>
<td>0.05</td>
<td>0.03</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>아세틸기 치환도(DS)</td>
<td>1.16</td>
<td>1.35</td>
<td>1.56</td>
<td>1.03</td>
<td>1.53</td>
<td>1.48</td>
<td>1.14</td>
</tr>
<tr>
<td>점도** (cps)</td>
<td>400</td>
<td>65,000</td>
<td>35,000</td>
<td>3,000</td>
<td>40,000</td>
<td>25,000</td>
<td>48,000</td>
</tr>
</tbody>
</table>

[60] * 아세틸기 치환도의 측정방법: 상기 각 아세틸화 셜롤로오스 에테르의 비누화
반응에 의해 형성되는 유리 아세트산을 알칼리로 정제하여, 상기 각 아세틸화
셜롤로오스 에테르의 아세틸기 치환도(DS)를 측정하였다(ASTM D871-96).
[61] ** 점도의 측정: 상기 각 아세틸화 셜롤로오스 에테르를 아세톤에 용해시킨
용액(아세틸화 셜롤로오스 에테르의 농도: 2중량%)의 점도를, 브록필드
점도계로 20°C 및 20rpm의 조건에서 측정하였다.
[62] 상기 표 3을 참조하면, 비교예 1~7(즉, 제조예 1~7)에서 제조된 아세틸화
셜롤로오스 에테르는 0.03~0.08의 검보기 밀도, 1.03~1.56의 아세틸기 치환도 및
400~65,000cps의 점도를 갖는 것으로 나타났다.
참고로, 상기 실시에 1~7에서 제조된 아세틸화 셜룰로오스 에테르는 상기 비교에 1~7에서 제조된 아세틸화 셜룰로오스 에테르 대비 결보기 밀도는 서로 상이하지만, 동일한 아세틸기 치환도 및 질도를 갖는다.

본 발명은 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
청구범위

[청구항 1] 1-2의 알킬기 치환도(DS), 0~1의 허드록시알킬기 치환도(MS) 및 1-2의 아세틸기 치환도(DS) 및 0.1~0.4의 접조기 밀도를 갖는 아세틸화 센툼로오스 에테르.

[청구항 2] 제1항에 있어서,
메틸센툼로오스, 허드록시프로필매틸센툼로오스 및 허드록시에틸매틸센툼로오스로 이루어진 군으로부터 선택된 적어도 1종의 센툼로오스 에테르가 아세틸화되어 형성된 아세틸화 센툼로오스 에테르.

[청구항 3] 제1항 또는 제2항에 따른 아세틸화 센툼로오스 에테르를 포함하는 물품.

[청구항 4] 제3항에 있어서,
상기 물품은 포장재, 섬유, 가전제품 케이스, 메탈 케이스트 또는 분리박용 소재인 물품.

[청구항 5] 1-2의 알킬기 치환도(DS), 0~1의 허드록시알킬기 치환도(MS) 및 1-2의 아세틸기 치환도(DS)를 갖는 아세틸화 센툼로오스 에테르를 유기용매에 용해시켜 아세틸화 센툼로오스 에테르 용액을 얻는 단계; 및 상기 아세틸화 센툼로오스 에테르 용액에 물을 첨가하여 아세틸화 센툼로오스 에테르를 식출하는 단계를 포함하는 아세틸화 센툼로오스 에테르의 제조방법.

[청구항 6] 제5항에 있어서,
상기 유기용매는 메탄올, 아세트산, 아세톤, 디메틸포름아미드, 디메틸설크사이드 및 1-메톡시-2-프로판올로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함하는 아세틸화 센툼로오스 에테르의 제조방법.

[청구항 7] 제5항에 있어서,
상기 식출된 아세틸화 센툼로오스 에테르를 세정 및 건조하는 단계를 더 포함하는 아세틸화 센툼로오스 에테르의 제조방법.
A. CLASSIFICATION OF SUBJECT MATTER

C08B 11/08(2006.01)i, C08L 1/26(2006.01)i, C08J 5/18(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C08B 11/08; C08B 13/00; G02B 5/30; C08J 5/18; C08B 3/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models: IPC as above

Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS (KIPO internal) & Keywords: acetyl, cellulose, ether

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR 10-2011-0089662 A (SAMSUNG FINE CHEMICALS CO.,LTD) 09 August 2011 See abstract; claims 1-6; paragraphs 3-17; 54</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>JP 08-337601 A (DAICEL CHEM IND LTD) 24 December 1996 See abstract; claims 1-15; paragraphs 3-11; 27-33</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 2005-283997 A (DAICEL CHEM IND LTD) 13 October 2005 See paragraphs 1-8, 10, 11, 17-20, 54, 55, 72-80, 83-91, 126; claims 1-6</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 6047603 B2 (DAICEL CHEM IND LTD) 22 June 1994 See abstract; the claims</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 02-129201 A (KANEGAFUCHI CHEM IND CO LTD) 17 May 1990 See abstract; the claims</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

26 MARCH 2013 (26.03.2013)

Date of mailing of the international search report

26 MARCH 2013 (26.03.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office

Government Complex-Daejeon, 189 Sseoma-ro, Daejeon 302-701,

Republic of Korea

Facade No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 2011-093573 A1</td>
<td>04.08.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1154118 A</td>
<td>09.07.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 03-942666 B2</td>
<td>11.07.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 05919920A A</td>
<td>06.07.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 05962677A A</td>
<td>05.10.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 96-30413 A1</td>
<td>03.10.1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 04562699A A</td>
<td>15.04.1986</td>
</tr>
<tr>
<td>JP 02-129201 A</td>
<td>17.05.1990</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
국제조사보고서

A. 발명이 속하는 기술분야 (국제특허분야
IPC)
C08B 11/08(2006.01)i, C08L 1/26(2006.01)i, C08J 5/18(2006.01)i

B. 조사된 분야
조사된 최소문헌 (국제특허분야)
C08B 11/08; C08B 13/00; G02B 5/30; C08J 5/18; C08B 3/06

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국특허권(한국특허권실명부) 및 통합특허권실명부: 조사된 최소문헌에 기재된 IPC
일본특허권(일본특허권실명부) 및 통합특허권실명부: 조사된 최소문헌에 기재된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 카워드: 아세틸, 셀룰로스, 에테르

C. 관련문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 참조항</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR 10-2011-0089062 A (삼성정밀화학 주식회사) 2011.08.09 요약: 충구항 1-6; 식별번호 3-17; 54 참조</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 2005-283997 A (DAICEL CHEM IND LTD) 2005.10.13 식별번호 1-8, 10, 11, 17-20, 54, 55, 72-80, 83-91, 126; 충구항 1-6 참조</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 6017603 B2 (DAICEL CHEM IND LTD) 1994.06.22 요약: 충구항 참조</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 02-129201 A (KANEGAFUCHI CHEM IND CO LTD) 1990.05.17 요약: 충구항 참조</td>
<td>1-7</td>
</tr>
</tbody>
</table>

추가 문헌이 (계속)에 기재되어 있습니다. ❌ 대응특허에 관한 범위를 참조하십시오.

* 인용된 문헌의 특별 카테고리:
 "A" 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌
 "E" 국제출원일보다 빠른 출원일 또는 우선일을 가진 국제출원일 이후에 공개된 출원일 또는 특허 문헌
 "L" 우선권증서에 담기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(이유)를 명시하기 위하여 인용된 문헌
 "O" 구두, 사전, 후속 또는 기타 수단을 연결하고 있는 문헌
 "P" 우선일 이후에 공개되었으나 국제출원일 이전에 공개된 문헌

국제조사의 실시 완료일
2013년 03월 26일 (26.03.2013)

국제조사보고서 반송일
2013년 03월 26일 (26.03.2013)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 정서로 189, 4층 (문양동, 정부대전청사)
전화번호 82-42-472-7140

식 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 2011-093573 A1</td>
<td>2011.08.04</td>
</tr>
<tr>
<td>JP 08-337601 A</td>
<td>1996.12.24</td>
<td>CN 1078594 C</td>
<td>2002.01.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1154118 A</td>
<td>1997.07.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0763544 A1</td>
<td>1997.03.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 03-942668 B2</td>
<td>2007.07.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 05919920A A</td>
<td>1999.07.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 05862278A A</td>
<td>1999.10.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 96-30413 A1</td>
<td>1996.10.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 04582599A A</td>
<td>1986.04.15</td>
</tr>
</tbody>
</table>

시작 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)