Asynchronous time division communication system wherein user stations (US1/2), each with an associated send and receive circuit (SEND1/2, REC1/2), are coupled with a packet switching network (PSN). Each send circuit includes a send clock (OSC) and each receive circuit is provided with a receive clock (POSC), controlling the reading of a packet buffer circuit (PFIFO), and with a computer (COMP) which regulates the receive clock (POSC) in such a way that the filling level of the buffer circuit remains substantially constant.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France
AU	Australia	GA	Gabon
BB	Barbados	GB	United Kingdom
BE	Belgium	HU	Hungary
BG	Bulgaria	IT	Italy
BJ	Benin	JP	Japan
BR	Brazil	KP	Democratic People's Republic of Korea
CF	Central African Republic	KR	Republic of Korea
CG	Congo	LI	Liechtenstein
CH	Switzerland	LK	Sri Lanka
CM	Cameroon	LU	Luxembourg
DE	Germany, Federal Republic of	MC	Monaco
DK	Denmark	MG	Madagascar
FI	Finland	ML	Mali
MR	Mauritania	MW	Malawi
NL	Netherlands	NO	Norway
RO	Romania	SD	Sudan
SE	Sweden	SN	Senegal
SU	Soviet Union	TD	Chad
TG	Togo	US	United States of America
ASYNCHRONOUS TIME DIVISION COMMUNICATION SYSTEM

The present invention relates to an asynchronous time division communication system including at least one node with a switching network to which a plurality of user stations are coupled via transmission lines and which is adapted to interconnect said user stations, each user station being able to transmit data packets in a synchronous way and being associated to a send circuit and a receive circuit which are coupled to said transmission links and said receive circuit including a buffer circuit wherein data packets are submitted to a predetermined delay before being transmitted to the associated user station.

Such a communication system is known in the art, e.g. from the Belgian patent no. 903261. In this known system the receive clock is adjusted after the first received data packet has been submitted to the established delay and in this way its phase is in fact synchronized with the phase of the user send clock. However, this is unsufficient because the frequencies of both these clocks, although nominally the same, may in fact be different so that the buffer circuit may become empty or overflow, with the result that bits of the received data packets become lost.

An object of the present invention is to provide a communication system of the above type, but wherein the
user receive clock and the user send clock are
synchronised in such a way that the buffer circuit is
prevented from emptying or overflowing.

According to the invention this object is achieved
due to the fact that each user station transmits data
packets at the rhythm of a user send clock present
therein and that each receive circuit includes
synchronizing means to synchronize a receive clock,
present therein and by which said data packets are read
from said buffer circuit and transferred to the
associated user station, with said user send clock by
assessing the packet filling level of said buffer circuit
and by regulating the frequency of said receive clock in
function of said filling level in such a way that said
filling level is substantially maintained at a wanted
value.

Because in this way the filling level of the
buffer circuit is maintained substantially constant no
information of data packets received may be lost.

Another characteristic of the present
communication system is that said send circuit includes
means for measuring the frequency of the user send clock
and for transmitting a measure of said frequency to said
receive circuit under the form of a control packet and
that said synchronizing means present in said receive
circuit regulate the frequency of said receive clock by
means of said transmitted measure.

Thus an initial synchronization of the user send
and receive clocks is realised.

Still another characteristic of the present
communication system is that said synchronizing means
include a computer coupled to said buffer circuit and
provided with a bidirectional counter which is stepped
each time a data packet is read from and written into
said buffer circuit due to which the state of said
counter indicates the real packet filling level of the buffer circuit.

Another characteristic of the present communication system is that said computer is able to assess the occurrence of a change of the real packet filling level by a predetermined value, to measure the time between two successive such changes and to regulate the frequency of said user receive clock in function of said measured time.

Thus a fine adjustment of the frequency of the user receive clock is realised, due to which it is better synchronized with the user send clock than following the above mentioned initial synchronisation.

Another characteristic of the present communication system is that said computer is able to calculate a mean packet filling level after measuring time has elapsed, by taking the mean of m successively registered real filling levels.

Still another characteristic of the present communication system is that said computer is able to assess the occurrence of a change of the mean filling level by a predetermined value, to measure the time between two successive such changes, and to regulate the frequency of the user receive clock in function of the time measured.

By using the mean filling level instead of the real filling level the influence on this filling level of stochastic delays to which the data packets may be submitted in the system, is considerably reduced due to which the number of fine adjustments of the user receive clock is decreased.

The above mentioned and other objects and features of the invention will become more apparent and the invention itself will be best understood by referring to the following description of an embodiment taken in
conjunction with the accompanying drawings wherein:

Fig. 1 represents an asynchronous time division multiplex communication system according to the invention;

Fig. 2 is a diagram used to illustrate the operation of this system.

This asynchronous communication system includes one or more nodes which are coupled by means of transmission lines, but for reasons of simplicity only one of these nodes is represented in relative detail in the drawing. The system includes a packet switching network PSN with a plurality of input and output terminals to which user stations having associated send and receive circuits are coupled via respective transmission lines. In the drawing only two pairs of input and output terminals I1, O1 and I2, O2 and two user stations US1 and US2 with associated send and receive circuits SEND1, REC1; SEND2, REC2 are shown. The data output DS1 and the send clock output CLS of the user station US1 are connected to the send circuit SEND1 which is coupled with the input terminal I1 of PSN via the transmission line IL1, whilst the output terminal O1 of PSN is coupled via the transmission line OL1 with the receive circuit REC1 coupled with the data input DR1 of US1. In an analogous way REC2 and SEND2 are connected to PSN and US2.

Since the send circuit SEND1 and SEND2 are identical and because this is also true for the receive circuits REC1 and REC2, in the drawing only the send circuit SEND1 of US1 and the receive circuit REC2 of US2 are represented in detail.

The send circuit SEND1 includes a packet processing circuit PPC1 and a frequency measuring circuit FMC which comprises an oscillator OSC (common to REC1 and SEND1), a divider DIV and a counter CR. These circuits
are coupled in the shown way between the data and clock outputs DS1 and CLS of the user station US1 and the input terminal I1 of PSN.

The receive circuit REC2 includes a computer COMP, a packet processing circuit PPC2, a packet buffer circuit PFIFO and a programmable oscillator POSC. These circuits are also coupled in the shown way between the output terminal O2 of PSN and the data and clock inputs DR2 and CLR of the user station US2.

When the user stations US1 and US2 wish to exchange data, two unidirectional connections are established between US1 and US2 during a signalling phase. This happens after the exchange of control packets. These connections are the following:

- from US1 to US2 via SEND1, I1, PSN, OL2 and REC2;
- from US2 to US1 via SEND2, I2, PSN, OL1 and REC1.

After the end of this signalling phase the stations US1 and US2 may start with the exchange of data. The data stream which is for instance transmitted by the station US1 appears at the data output DS1 thereof and is transmitted together with the user send clock signal CLS to the send circuit SEND1 associated to US1. Therein this data stream is transformed into packets in the packet processing circuit PCC1 which is controlled by the clock signal CLS, and these data packets are then supplied to the input terminal I1 of the switching network PSN via the transmission line I1I. By the switching network PSN these code packets are switched to the output terminal O2 and from there they are transmitted to the packet processing circuit PCC2 via the transmission line OL2. From there they are stored in the packet buffer circuit PFIFO via the output DP. Subsequently they are read from this PFIFO and transformed into a data stream, both under the control of the user receive clock signal CLR provided by the
programmable oscillator POSC. This data stream which appears at the output DR2 of PFIFO and this clock signal CLR are finally applied to the like named inputs DR2 and CL2 of the user station US2.

If the transmitted data are asynchronous data the user stations US1 and US2 need not to be synchronised. However, this is necessary when these stations wish to exchange synchronous data, e.g. telephone data at 64 kbit/sec., such as will be assumed in the following, because in an asynchronous system the frequency of the receive clock POSC in the receive circuit REC2 cannot be recovered from the incoming data stream. Synchronous data are to be understood as data streams having a constant bit speed. To damp the statistical delays of such data streams to a certain extent an additional delay is realised in the buffer circuit PFIFO. The value of this additional delay is for instance chosen in the way described in the above mentioned Belgian patent. However, as already mentioned the measure is unsufficient when the frequency of the user send clock signal CLS deviates from the user receive clock signal CLR, although these clock signals have the same frequency, because the buffer circuit PFIFO may thus become empty or overflow, information loss being the result.

The synchronizing means described hereafter synchronize the clock signal CLR with the clock signal CLS which nominally have the same frequency, e.g. 64 kHz. This happens during a first phase by realising an initial synchronization by adjusting the frequency of the receive clock POSC in the station US2 and which provides the clock signal CLS to the frequency of the clock signal CLS, this frequency or a measure thereof being transmitted from the station US1 to the station US2 during this first phase. During a second phase a fine adjustment of the initial synchronization is then
realised by executing a measurement and regulation algorithm. The latter consists in assessing the packet filling level of the buffer circuit PFIFO, i.e. the number of packets stored therein, at regular moments and to adjust the frequency of CLR on the basis thereof.

The first phase is performed at the end of the above mentioned signalling phase. During this first phase the frequency of the clock signal CLS is measured in the send circuit SEND1 by means of the frequency measuring circuit FMC which comprises the oscillator OSC, the divider DIV and the counter CR, as mentioned above. This happens by deriving, by division, a time base with a period of for instance 1 second from the frequency of the oscillator OSC. During this period the counter CR then counts the number of periods of the user send clock CLS. In other words, the frequency of this clock signal CLS is measured and is for instance equal to P periods per second. This value is transferred to the packet processing circuit PPC1 which as a consequence thereof assembles a control packet whose data is constituted by this frequency value P. This control packet is transmitted via the switching network PSN to the packet processing circuit PCC2 and is processed therein. The frequency value P stored in this packet is transferred to the computer COMP which uses the value to adjust the frequency of the programmable oscillator POSC in such a way that it becomes equal to P periods per second, i.e. the frequency of OSC.

The above described initial synchronization of the clock signals CLS and CLR is not perfect, e.g. due to errors in the frequency measurement of CLS and the limited accuracy of the oscillator OSC due to age and temperature. This is the reason of the fine adjustment performed during the second phase described hereafter.

During this second phase which starts as soon as
data packets are stored in the buffer circuit PFIFO, the computer COMP, and more particularly a bidirectional counter CRI, receives from this buffer circuit a signal each time a packet enters this circuit and also when a packet leaves this circuit, the circuit being read under the control of the clock signal CLR. In this way the computer from the contents of CRI knows the number of packets Xi present in the buffer circuit, i.e. the real filling level of this buffer circuit. The variations of this filling level are due not only to the difference between the frequencies of the send and receive clock signals CLS and CLR, but also to stochastic delays of the packets during their transmission in the system.

If these stochastic delays were not existing then the computer COMP could regulate the frequency of the clock signal CLR in the following way.

In the assumption that n is the nominal value of Xi, a possible series of values of Xi is for instance ..., n, ..., n, n+1, ..., n+1, n+2, ..., n+2

Each time a packet leaves the buffer circuit, i.e. after each packet reading period, the computer assesses whether or not the filling level Xi of this buffer circuit has changed by one unity and measures the time y, e.g. in packet read periods, between the changes of this filling level, on the one hand from n to n+1 and on the other hand from n+1 to n+2. It thus obtains a measure of the difference between the frequencies of CLS and CLR. When this frequency difference for instance amounts to Z, expressed in fraction of the nominal value of CLR, then the computer may bring back the filling level of the buffer circuit PFIFO to the nominal value n by changing the clock POSC, providing CLR, by -2Z during a time interval 2Y.

This measurement and regulation algorithm is not simply indicated for being used in case stochastic delays
occur, because the value X_i may then change too many times and because this would then each time give rise to an adjustment of the clock frequency of the clock CLR. The principle of this measurement and regulation algorithm, i.e. the assessment of the changes of the filling level of the buffer circuit PFIFO and the measurement of the time between such changes may however also be maintained in the case of stochastic delays.

To considerably decrease the influence of these stochastic delays on the measurement and regulation algorithm and in order not to be compelled to perform numerous adjustments of the clock CLR, the use in this algorithm of the mean filling level, i.e. the mean of X_i instead of real filling level X_i has been thought of. Indeed, in this way the measurement and regulation algorithm becomes less sensitive to variations of X_i due to stochastic delays.

However, the real probability distribution of X_i is unknown, so that also neither the real mean X_g nor the real standard deviation of this probability distribution are known. A good approximation of X_g may however be obtained by calculating the mean X of m successive filling levels X_i, during a measuring time equal to m packet filling periods, m having to be sufficiently large as will be explained later.

Because the frequencies of the clock signals CLS and CLR differ only slightly, the time period during which a variation by one unity of the mean filling level may occur is relatively large compared to the measuring time. For this reason the filling level cannot change by more than one unity during such a measuring time and the variations of this filling level are thus only caused by stochastic delays.

For these reasons and if one would know the real mean X_g of X_i then one would be able to check the
variation by one unity of the real mean filling level X_g
by calculating if the following relation is satisfied or
not,$\quad X_g \geq q + 1/2 \quad (1)$
wherein q is the mean real filling level accepted after a
previous calculation and is an integer, and by:
accepting that the new mean filling level is
$q + 1$ when $X_g \geq q + 1/2$
accepting that the new mean filling level q is still equal
to the previous one when
$X_g < q + 1/2$
In the following only the plus sign is considered
for simplicity reasons.
As already mentioned X_g is however not known. But
when the value of m is chosen sufficiently large – which
is the case here as will become clear later – then the
probability distribution of the mean X tends to a normal
distribution, this distribution having a mean and a
$\frac{S^2}{m}$
variance which are equal to X_g and $\frac{S}{m}$ respectively.
Hereby X_g and S are the mean and the standard deviation
of the real probability distribution respectively. The
standard deviation s of each series of X_i's hereby is a
proper estimation of S and may therefore be used instead
of S. Instead of using the real mean filling level X_g
and the real standard deviation the computer may thus
operate with the calculated mean filling level and with
the standard deviation s.
Instead of checking the relation (1) during the
execution of the measuring and regulation algorithm the
computer could check, after each measuring time
comprising m packet read periods, if
$\quad X \geq p + 1/2 \quad (2)$
wherein X and p are the newly calculated filling level
and the filling level accepted after a previous
calculation respectively and wherein \(p \) is an integer. In reality the computer checks if
\[X \geq p + 1/2 - D \] (3)
wherein \(D \) is a safety margin the reason of which will be explained later.

More particularly:
- if \(X \geq a - D \), with \(a = p + 1/2 \), then the computer concludes that a change with one unity of the mean filling level has taken place and that \(p \) is the newly accepted filling level;
- if \(X < a - D \), then it concludes that no change of the mean filling level with one unity has occurred and that the accepted filling level is still \(p \).

However, by proceeding in this way errors occur with respect to the theoretical case which would consist in checking whether or not the real mean \(X_g \) has exceeded the value \(a \).

A first possible error is that although \(X_g \geq a \) it is assessed that
\[X < a - D \] (4)
The worst case is obviously that this assessment is made when \(X_g = a \).

A second possible error is that although \(X_g < a \), it is assessed that
\[X \geq a - D \] (5)
The probabilities \(R_1 \) and \(R_2 \) of the occurrence of these errors may be calculated as follows because - as already mentioned - the distribution of the mean \(X \) is a normal distribution if \(m \) is sufficiently large. When \(F \) is the normal cumulative distribution function, \(R_1 \) is given by:

\[R_1 = F \left(\frac{(a-D) - X_g}{S/\sqrt{m}} \right) \] (6)

As already mentioned the worst case occurs when it
is assessed, although \(X_g = a \), that \(X < a - D \). If this is so, it follows from the relation (6) that:

\[
D = F^{-1} \left((1 - R_l) \frac{S}{V_m} \right)
\]

wherein \(F^{-1} \) is the inverse of the function \(F \).

As already mentioned above, \(s \) may be substituted for \(S \). Moreover, if it is assumed that the maximum delay which a packet may undergo is smaller than half the mean time elapsing between the receipt of two such packets, the real filling level \(X_i \) of the buffer circuit cannot change by more than one unity during a measuring time. The maximum value of \(s \) is therefore equal to \(\frac{1}{2} \). Because this maximum value only occurs in the proximity of a change of the filling level and because it are just these changes which are of importance, the substitution of \(s \) by this maximum has no appreciable influence. Moreover, in this way the computer load is decreased because it has not to calculate the value of \(s \) after each measurement.

For this reason, a \(\frac{1}{2} \) is substituted for \(S \) in the relation (7), so that if \(R_l \) is for instance limited to the value 0.001, it follows from the relation (7) that

\[
D = \frac{1.55}{V_m}
\]

from which it follows that \(D \) and \(m \) are dependent from each other.

The probability \(R_2 \) may be written as follows:

\[
R_2 = 1 - F \left(\frac{(a-D) - X_g}{S/V_m} \right)
\]

From the relations (6) and (9) it may be derived that when \(X_g = a - 2D \) the value of \(R_2 \) is equal to the value (0.0001) or \(R_l \) when \(X_g = a \). On the other hand, the value of \(R_2 \) for \(X_g = a \) is equal to \(1 - R_l \), i.e. 0.9999.

The curve of the probability \(P' \) (\(X_g > a \)) that it is accepted on the basis of the measuring and regulation
algorithm that \(X_g \geq a \), is represented in Fig. 2.
Therefrom it follows that this probability:
- is equal to 99.9% when \(X_g = a \);
- amounts to 0.1% when \(X_g = a - 2D \);
- is equal to 50% when \(D = 0 \).

By using the safety margin \(D \) when executing the algorithm the computer thus assesses with a probability of 99.9% instead of with a probability of 50% (without the use of \(D \)) that \(X_g \geq a \) when it finds that \(X \geq a - D \).

From the curve shown it also follows that:
- when \(X_g < a - 2D \), there is nearly never concluded that \(X_g \geq a \);
- when \(X_g \geq a \), there is nearly always concluded that \(X_g \geq a \).

In other words, the acceptance of \(X_g \geq a \) is only uncertain for values of \(X_g \) comprised between \(a \) and \(a - 2D \).

From the above it follows that the computer by executing the measurement and regulation algorithm may assess the increase by one unity of the filling level of the buffer circuit PFIFO with a maximum inaccuracy of 2D. Since the computer performs this assessment after every \(m \) packet read periods, a time of approximately \(m \) such periods may have elapsed since the assessed change. In other words, the time measured, e.g. \(t_l \) expressed in packet read periods, is inaccurate with a maximum error equal to \(m \) also expressed in packet read periods.

The computer performs such a time measurement each time a change is found and when two successive changes in the same sense have occurred it measures the time \(y = t_2 - t_1 \) between these two changes. Thus it does not perform a measurement when these two changes occur in a different sense because in this way a regulation is automatically performed. Because both the errors 2D and \(m \) of each of these measurements occur in the same sense, 2D and \(m \) are also the errors on the measured value \(y \). This means that
the total relative error R on this value y is given by

$$R = 2D + \frac{m}{y}$$

(10)

By taking the relation (8) into account, the relation (10) becomes

$$R = \frac{3.1}{V_m} + \frac{m}{y}$$

(11)

From this relation it follows that the maximum value M of m, i.e. the one which makes the relative error R minimum, is given by

$$M = 1.339 \cdot y^{2/3}$$

(12)

This means that this maximum value M of m is dependent on the measured value y, expressed in packet reading periods. Because y on the one hand indicates after how many such periods a change by one packet of the filling level of the buffer circuit has been detected and because one, on the other hand, knows the frequency difference of the clock OSC and POS corresponding to such a one packet read period, the frequency difference of the clocks may be derived from the measurement of y and thus be corrected by an adjustment of the receive clock POS. The value M of m has to be selected for the values of y which will occur most frequently and once this value of m has been selected the value of D is determined by means of the formula (8).

While the principles of the invention have been described above in connection with specific apparatus, it is to be clearly understood that this description is made only by way of example and not as a limitation on the scope of the invention.
CLAIMS

1. Asynchronous time division communication system including at least one node with a switching network (PSN) to which a plurality of user stations (US1/2) are coupled via transmission links (ILL/2, OLL/2) and which is adapted to interconnect said user stations, each user station (US1, US2) being able to transmit data packets in a synchronous way and being associated to a send circuit and a receive circuit (SEND1/2, REC1/2) which are coupled to said transmission links and said receive circuit (REC2) including a buffer circuit (PFIFO) wherein data packets are submitted to a predetermined delay before being transmitted to the associated user station (US2), characterized in that each user station (US1) transmits data packets at the rhythm of a user send clock (OSC, CLS) present therein and that each receive circuit (REC2) includes synchronizing means (PCC2, COMP) to synchronize a receive clock (POSC), present therein and by which said data packets are read from said buffer circuit (PFIFO) and transferred to the associated user station (US2), with said user send clock (OSC, CLS) by assessing the packet filling level of said buffer circuit (PFIFO) and by regulating the frequency of said receive circuit clock (POSC, CLR) in function of said filling level in such a way that said filling level is substantially maintained at a wanted value.

2. Communication system according to claim 1,
characterized in that said send circuit (SEND1) includes means (FMC) for measuring the frequency of the user send clock (OSC, CLS) and for transmitting a measure (P) of said frequency to said receive circuit (REC2) under the form of a control packet and that said synchronizing means (PPC2, COMP) present in said receive circuit (PPC2, COMP) regulate the frequency of said receive clock (POSC, CLR) by means of said transmitted measure (P).

3. Communication system according to claim 1, characterized in that said synchronizing means (PPC1, COMP) include a computer (COMP) coupled to said buffer circuit (PFIF0) and provided with a bidirectional counter (CRI) which is stepped each time a data packet is read from and written into said buffer circuit to which the state of said counter indicates the real packet filling level (Xi) of the buffer circuit.

4. Communication system according to claim 3, characterized in that said computer (COMP) is able to assess the occurrence of a change of the real packet filling level with a predetermined value (1), to measure the time (y) between two successive such changes and to regulate the frequency of said user receive clock (POSC, CLR) in function of said measured time (y).

5. Communication system according to claim 3, characterized in that said computer (COMP) is able to calculate a mean packet filling level (X) after measuring time has elapsed, by taking the mean of m successively registered real filling levels.

6. Communication system according to claim 5, characterized in that said measuring time is equal to m packet reading periods from the buffer circuit (PFIFO).

7. Communication system according to claim 5, characterized in that said computer (COMP) is able to assess the occurrence a change of the mean filling level (X) with a predetermined value, to measure the time (y)
between two successive such changes, and to regulate the frequency of the user receive clock (POSC, CLR) in function of the time measured (y).

8. Communication system according to claim 4 or 7, characterized in that said predetermined value is equal to 1.

9. Communication system according to claim 4 or 7, characterized in that said computer (COMP) measures the time (y) between two successive changes of the real (Xi) or mean (X) filling level when then two changes occur in the same sense.

10. Communication system according to claim 7, characterized in that the system is such that the change of the mean packet filling level (X) during said measuring time is at most equal to 1 and that each time said computer (COMP) finds out that the calculated mean filling level (X) exceeds or does not exceed said previous mean filling level (P) with at least a 1/2, it assumes that the new mean filling level is equal to the previous mean filling level plus 1 (P + 1) and to the previous mean filling level respectively.

11. Communication system according to claim 7, characterized in that the system is such that the change of the mean packet filling level (X) during said measuring time is at most equal to 1 and that each time said computer (COMP) finds out that the calculated mean filling level exceeds or does not exceed a previous mean filling level (P) with at least 1/2 - D, it assumes that the new mean filling level is equal to the previous mean filling level plus 1 (P + 1) and to the previous mean filling level respectively, D being a safety margin.

12. Communication system according to claim 11, characterized in that D is proportional to V_m^{-1}.

13. Communication system according to claim 12, characterized in that m is so chosen that it is
proportional to $y^{2/3}$, y being said time measured.
I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC:

IPC: H 04 L 11/20; H 04 J 3/06

II. FIELDS SEARCHED

Minimum Documentation Searched:

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 4</td>
<td>H 04 L; H 04 J</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched:

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>FR, A, 2579047 (COCHENNEC et al.) 19 September 1986 see page 2, line 20 - page 3, line 30; page 4, line 9 - page 7, line 37</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>BE, A, 903261 (BELL) 19 March 1986 cited in the application</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 0041429 (ETAT FRANCAIS) 9 December 1981 see page 2, line 37 - page 3, line 23; page 4, lines 9-22; page 4, line 35 - page 6, line 37; page 10, lines 20-26</td>
<td>1,3</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4359770 (SUZUKA) 16 November 1982 see abstract; column 3, lines 16-28</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 0113307 (SERVEL) 11 July 1984</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: **3rd June 1988**

Date of Mailing of this International Search Report: **29 JUN 1988**

International Searching Authority: **EUROPEAN PATENT OFFICE**

Signature of Authorized Officer: **P.C.G. VAN DER PUTTEN**

Form PCT/ISA/210 (second sheet) (January 1985)
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. EP 8800178
SA 21091

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 17/06/88. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR-A- 2579047</td>
<td>19-09-86</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 57057056</td>
<td>06-04-82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4434498</td>
<td>28-02-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1169946</td>
<td>26-06-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A,B 2538976</td>
<td>06-07-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 59135994</td>
<td>04-08-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1224556</td>
<td>21-07-87</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.