Abstract:

The Applicant: ExxonMobil Chemical Company, Law Technology, P. O. Box 2149, Baytown, TX 77522-2149 (US).

Publication: WO 2015/094696 A1

Title: PROCESS FOR CONVERTING OXYGENATES TO AROMATIC HYDROCARBONS

Abstract:

Embodiments of the invention provide processes for catalytically converting oxygenates to hydrocarbon products having an increased C6-C9 aromatics content therein. Particular processes include (a) providing a first mixture comprising ≥ 10.0 wt.% of at least one oxygenate, based on the weight of the first mixture; (b) contacting the first mixture with a catalyst to convert the first mixture to a product stream including water, one or more hydrocarbons, hydrogen, and one or more oxygenates, wherein the catalyst comprises at least one molecular sieve and at least one element selected from Groups 2-14 of the Periodic Table and the hydrocarbons comprise ≥ 30.0 wt.% of aromatics, based on the weight of the hydrocarbons in the product stream; and (c) separating from the product stream at least one water-rich stream, at least one aromatic-rich hydrocarbon stream, and at least one aromatic-depleted hydrocarbon stream.
WO 2015/094696

Published:

— with international search report (Art. 21(3))
PROCESS FOR CONVERTING OXYGENATES TO AROMATIC HYDROCARBONS

INVENTORS: John D. Ou, Machteld Mertens, Linelle F. Jacob, Stephen J. McCarthy, Rohit Vijay, Jeevan Abichandani

CROSS REFERENCE TO RELATED APPLICATIONS

FIELD OF THE INVENTION

[0002] Embodiments of the invention relate to processes for converting oxygenates to aromatic hydrocarbons. In particular, embodiments of the invention related to the conversion of methanol to C6-Cs aromatic hydrocarbons.

BACKGROUND OF THE INVENTION

[0003] Aromatic hydrocarbons, such as benzene, toluene, xylene, etc. are useful as fuels, solvents, and as feeds for various chemical processes. Of the aromatics, those having 6 to 8 carbon atoms (e.g., benzene, toluene, and xylene) are especially desired. Para-xylene ("p-xylene") is particularly useful for manufacturing phthalic acids such as terephthalic acid, which is an intermediate in the manufacture of synthetic fibers such as polyester fibers.

[0004] One conventional process for producing aromatics involves reacting an oxygenate, such as methanol, in the presence of zeolite, such as ZSM-5, to produce water and a hydrocarbon product containing aromatics. See, e.g., CD. Chang and A.J. Silvestri, Journal of Catalysis 47, p. 249 (1977), which discloses a process featuring high methanol conversion in approximately stoichiometric yield to produce about 44 wt.% hydrocarbon and about 56 wt.% of water, based on total product weight. Water and a portion of the hydrocarbon are condensed by exposing the product to a temperature < 100°C, with the vapor being recycled.
to the reactor inlet. The vapor, which comprises about 20 wt.% of the hydrocarbon product, contains primarily C1-C4 paraffin and C2-C4 olefin. At a reaction temperature of about 370°C and a liquid hourly space velocity (LHSV) of approximately 1.0 hr⁻¹, approximately 80 wt.% of the hydrocarbon product comprises gasoline boiling-range hydrocarbons, including C6-C11 aromatics. Under these conditions, the hydrocarbon product comprises approximately 30 wt.% of C6-Cs aromatics and approximately 10 wt.% of C9+ hydrocarbon, primarily 1,2,4,5-tetramethylbenzene (i.e., durene). Durene can be removed by selectively hydrotreating the aromatic portion of the hydrocarbon product.

[0005] It is desired to convert oxygenates to hydrocarbons with an increase in the relative amount of C6-Cs aromatics in the hydrocarbon product as the C6-Cs aromatics are commercially useful. It is particularly desired to do so without increasing (i) the relative amount of durene in the aromatic portion of the hydrocarbon product to avoid extensively treating the product to remove durene toxic and/or (ii) the rate of catalyst deactivation. It is even more desired to do this while increasing the relative amount of p-xylene in the hydrocarbon product since p-xylene is the most commercially desired of the C6-Cs aromatics.

SUMMARY OF THE INVENTION

[0006] It has been found that oxygenates can be catalytically converted to hydrocarbon products having an increased C6-Cs aromatics content in the hydrocarbon product compared to conventional processes. The process utilizes a catalyst comprising (i) ≥ 10.0 wt.% of at least one molecular sieve and (ii) ≥ 0.1 wt.% of at least one element selected from Groups 2-14 of the Periodic Table. The invention is based in part on the discovery that utilizing one or more elements from Groups 2-14 of the Periodic Table provides the catalyst with a dehydrogenation functionality that surprisingly produces molecular hydrogen and an increased aromatics yield, but without producing a significant amount of carbon monoxide.

[0007] It has also been found that recycling and combining at least a portion of the aromatics in the hydrocarbon product with the oxygenate unexpectedly leads to one or more of the following advantages. In particular embodiments, recycling and combining at least a portion of the aromatics in the hydrocarbon product provides an increase in the relative amount of aromatics in the hydrocarbon product. The increase in aromatics may be achieved without a significant increase in the rate of catalyst deactivation and/or without a significant increase in the relative amount of durene in the aromatic portion of the hydrocarbon product. Advantageously and contrary to expectations, recycling and combining with the oxygenate at least a portion of the aromatics in the hydrocarbon product does not suppress methanol conversion to aromatic products. Under particular conditions, recycling of the aromatics can
actually provide an overall increase in product aromatics content. Surprisingly, the catalyst may not experience a significant increase in deactivation rate, e.g., from over-reacting the recycled aromatics, even at elevated reaction temperatures (e.g., end of run conditions). And under certain conditions, the relative amount of durene in the aromatic portion of the product may not increase, even though recycling of xylenes to a chemical environment rich in CH₂ fragments would be expected to result in alkylation to C₉⁺ aromatics. At least a portion of the olefins and paraffins in the hydrocarbon product may be recycled as well, leading to further conversion of the olefins and paraffins to aromatics without causing a significant increase in catalyst deactivation.

[0008] The process can be operated continuously, semi-continuously, or even in batch mode. The catalyst can be located within a reactor, e.g., in one or more fixed beds. More than one reactor can be utilized, the reactors being arranged, e.g., in series, parallel, or series-parallel.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Figure 1 illustrates a process according to an embodiment of the invention.

[0010] Figure 2 illustrates a process according to an embodiment of the invention wherein an aromatic-rich hydrocarbon stream is separated into first, second and third streams.

[0011] Figure 3 illustrates a process according to an embodiment of the invention wherein the first stream is separated into a first oxygenate stream and a second aromatics-rich stream comprising C₆ and/or C₇ aromatics.

[0012] Figure 4 illustrates a process according to an embodiment of the invention wherein the second stream is separated into a second oxygenate stream and a third aromatics-rich stream.

[0013] Figure 5 illustrates a process according to an embodiment of the invention wherein the third stream is separated into a third oxygenate stream and a fourth aromatics-rich stream comprising C₉⁺ aromatics.

DETAILED DESCRIPTION

[0014] The present process is useful for the conversion a first mixture comprising oxygen-containing organic compounds (i.e., "oxygenates") into hydrocarbon products where the conversion is carried out by an exothermic catalytic reaction.

[0015] As used herein the phrase "at least a portion of" means 1.0 to 100.0 wt.% of the process stream or composition to which the phrase refers. The upper limit on the range to which the phrase "at least a portion of" refers, may be 1.0 wt.%, 2.0 wt.%, 5.0 wt.%, 10.0 wt.%, 20.0 wt.%, 25.0 wt.%, 30.0 wt.%, 40.0 wt.%, 50.0 wt.%, 60.0 wt.%, 70.0 wt.%, 75.0
wt.%, 80.0 wt.%, 90.0 wt.%, 95.0 wt.%, 98.0 wt.%, 99.0 wt.%, or 100.0 wt.%. The lower limit on the range to which the phrase "at least a portion of" refers may be selected from 1.0 wt.%, 2.0 wt.%, 5.0 wt.%, 10.0 wt.%, 20.0 wt.%, 25.0 wt.%, 30.0 wt.%, 40.0 wt.%, 50.0 wt.%, 60.0 wt.%, 70.0 wt.%, 75.0 wt.%, 80.0 wt.%, 90.0 wt.%, 95.0 wt.%, 98.0 wt.%, 99.0 wt.%, or 100.0 wt.%. Ranges expressly disclosed include combinations of any of the above-enumerated upper and lower limits; e.g., 10.0 to 100.0 wt.%, 10.0 to 98.0 wt.%, 2.0 to 10.0, 40.0 to 60.0 wt.%, etc.

[0016] The initial feedstream or "first mixture" used herein is a hydrocarbon-containing composition including one or more oxygenates. Typically, the first mixture comprises ≥ 10.0 wt.% of at least one oxygenate, based on the weight of the first mixture. The upper limit on the amount of oxygenate(s) in the first mixture may be 10.0 wt.%, 12.5 wt.%, 15.0 wt.%, 20.0 wt.%, 25.0 wt.%, 30.0 wt., 35.0 wt.% 40.0 wt.%, 45.0 wt.%, 50.0 wt.%, 55.0 wt.%, 60.0 wt.%, 65.0 wt.%, 70.0 wt.%, 75.0 wt.%, 80.0 wt.%, 85.0 wt.%, 90.0 wt.%, 95.0 wt.%, 99.0 wt.%, 99.5 wt.%, or 100.0 wt.%. The lower limit on the amount of oxygenate in the first mixture may be 10.0 wt.%, 12.5 wt.%, 15.0 wt.%, 20.0 wt.%, 25.0 wt.%, 30.0 wt.%, 35.0 wt.% 40.0 wt.%, 45.0 wt.%, 50.0 wt.%, 55.0 wt.%, 60.0 wt.%, 65.0 wt.%, 70.0 wt.%, 75.0 wt.%, 80.0 wt.%, 85.0 wt.%, 90.0 wt.%, 95.0 wt.%, 99.0 wt.%, 99.5 wt.%, or 100.0 wt.%.

Ranges expressly disclosed include combinations of any of the above-enumerated upper and lower limits; e.g., 10.0 to 100.0 wt.%, 12.5 to 99.5 wt.%, 20.0 to 90.0, 50.0 to 99.0 wt.%, etc.

[0017] As used herein the term "oxygenate," and "oxygenate composition," and the like refer to oxygen-containing compounds having 1 to about 50 carbon atoms, 1 to about 20 carbon atoms, 1 to about 10 carbon atoms, or 1 to about 4 carbon atoms. Exemplary oxygenates include alcohols, ethers, carbonyl compounds, e.g., aldehydes, ketones and carboxylic acids, and mixtures thereof. Particular oxygenates include methanol, ethanol, dimethyl ether, diethyl ether, methylethyl ether, di-isopropyl ether, dimethyl carbonate, dimethyl ketone, formaldehyde, and acetic acid.

[0018] In particular embodiments, the oxygenate comprises one or more alcohols, preferably alcohols having 1 to about 20 carbon atoms, 1 to about 10 carbon atoms, or 1 to about 4 carbon atoms. The alcohols useful as first mixtures may be linear or branched, substituted or unsubstituted aliphatic alcohols and their unsaturated counterparts. Non-limiting examples of such alcohols include methanol, ethanol, propanols (e.g., n-propanol, isopropanol), butanols (e.g., n-butanol, sec-butanol, tert-butyl alcohol), pentanols, hexanols, etc. and mixtures thereof. In any embodiment described herein, the first mixture may be one or more of methanol, and/or ethanol, particularly methanol. In any embodiment, the first
mixture may be methanol and dimethyl ether.

[0019] The oxygenate, particularly where the oxygenate comprises an alcohol (e.g., methanol), may optionally be subjected to dehydration, e.g., catalytic dehydration over γ-alumina. Typically, such catalytic dehydration decreases the amount of water in the oxygenate by converting a portion of the water and alcohol to an ether, e.g., dimethyl ether (DME), in the first mixture. Further optionally, at least a portion of any methanol and/or water remaining in the first mixture after catalytic dehydration may be separated from the first mixture.

[0020] In any embodiment, one or more other compounds may be present in the first mixture. Some common or useful such compounds have 1 to about 50 carbon atoms, 1 to about 20 carbon atoms, 1 to about 10 carbon atoms, or 1 to about 4 carbon atoms. Typically, although not necessarily, such compounds include one or more heteroatoms other than oxygen. Some such compounds include amines, halides, mercaptans, sulfides, and the like. Particular such compounds include alkyl-mercaptans (e.g., methyl mercaptan and ethyl mercaptan), alkyl-sulfides (e.g., methyl sulfide), alkyl-amines (e.g., methyl amine), alkyl-halides (e.g., methyl chloride and ethyl chloride). In particular embodiments, the first mixture includes one or more of ≥ 1.0 wt.% acetylene, pyrolysis oil or aromatics, particularly C₆ and/or C₇ aromatics. The upper limit on the amount of such other compounds in the first mixture may be 2.0 wt.%, 5.0 wt.%, 10.0 wt.%, 15.0 wt.%, 20.0 wt.%, 25.0 wt.%, 30.0 wt.%, 35.0 wt.%, 40.0 wt.%, 45.0 wt.%, 50.0 wt.%, 60.0 wt.%, 75.0 wt.%, 90.0 wt.%, or 95.0 wt.%.

The lower limit on the amount of such other compounds in the first mixture may be 2.0 wt.%, 5.0 wt.%, 10.0 wt.%, 15.0 wt.%, 20.0 wt.%, 25.0 wt.%, 30.0 wt.%, 35.0 wt.%, 40.0 wt.%, 45.0 wt.%, 50.0 wt.%, 60.0 wt.%, 75.0 wt.%, or 90.0 wt.%. Ranges expressly disclosed include combinations of any of the above-enumerated upper and lower limits; e.g., 1.0 to 10.0 wt.%, 2.0 to 5.0 wt.%, 10.0 to 95.0 wt.%, wt.%, 15.0 to 90.0 wt.%, 20.0 to 75.0 wt.%, 25.0 to 60 wt.%, 30.0 to 50 wt.%, 35.0 to 45 wt.%, about 40.0 wt.%, etc.

[0021] The catalyst used herein is a composition of matter comprising a molecular sieve and a Group 2-14 element of the Periodic Table. In this sense, the term "comprising" can also mean that the catalyst can comprise the physical or chemical reaction product of the molecular sieve and the Group 2-14 element. Optionally, the catalyst may also include a filler or binder and may be combined with a carrier to form slurry.

[0022] For the purposes of this description and claims, reference to a group number for an element corresponds to the current IUPAC numbering scheme for the periodic table. Therefore, a "Group 4 metal" is an element from Group 4 of the Periodic Table, e.g., Hf, Ti,
or Zr. The more preferred molecular sieves are SAPO molecular sieves, and metal-substituted SAPO molecular sieves. In particular embodiments, one or more Group 2 elements (e.g., Be, Mg, Ca, Sr, Ba, and Ra) may be used. In other embodiments, one or more Group 3 elements (e.g., Sc and Y), a Lanthanide (e.g., La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), and/or an Actinide may be used. Catalysts comprising at least one Group 4 transition metal (e.g., Ti, Zr, and Hf) may be particularly useful. Likewise, some catalysts may benefit from the presence of at least one Group 5 and/or Group 6 element (e.g., V, Nb, Ta, Cr, Mo, and W). One or more Group 7-9 element (e.g., Mn, Tc, Re, Fe, Ru, Os, Co, Rh, and Ir) may also be used. In some embodiments, the Group 2-14 element comprises one or more Group 11 and/or Group 12 elements (e.g., Cu, Ag, Au, Zn, and Cd) may be used. In still other embodiments, one or more Group 13 elements (B, Al, Ga, In, and Tl) may be used. In a preferred embodiment, the metal is selected from the group consisting of Zn, Cd, Ag, and Cu, ideally Zn.

[0023] The molecular sieve comprises ≥ 10.0 wt.% of the catalyst. The upper limit on the amount of molecular sieve in the catalyst may be 10.0 wt.%, 12.5 wt.%, 15.0 wt.%, 20.0 wt.%, 25.0 wt.%, 30.0 wt.%, 35.0 wt.% 40.0 wt.%, 45.0 wt.%, 50.0 wt.%, 55.0 wt.%, 60.0 wt.%, 65.0 wt.%, 70.0 wt.%, 75.0 wt.%, 80.0 wt.%, 85.0 wt.%, 90.0 wt.%, 95.0 wt.%, 99.0 wt.%, 99.5 wt.%, or 100.0 wt.% The lower limit on the amount of molecular sieve in the catalyst may be 10.0 wt.%, 12.5 wt.%, 15.0 wt.%, 20.0 wt.%, 25.0 wt.%, 30.0 wt.%, 35.0 wt.% 40.0 wt.%, 45.0 wt.%, 50.0 wt.%, 55.0 wt.%, 60.0 wt.%, 65.0 wt.%, 70.0 wt.%, 75.0 wt.%, 80.0 wt.%, 85.0 wt.%, 90.0 wt.%, 95.0 wt.%, 99.0 wt.%, 99.5 wt.%, or 100.0 wt%. Ranges expressly disclosed include combinations of any of the above-enumerated upper and lower limits; e.g., 10.0 to 20.0 wt.%, 12.5 to 25.0 wt.%, 20.0 to 50.0, or 40.0 to 99.0 wt.%.

[0024] As used herein the term "molecular sieve" refers to crystalline or non-crystalline materials having a porous structure. Microporous molecular sieves typically have pores having a diameter of ≤ about 2.0 nm. Mesoporous molecular sieves typically have pores with diameters of about 2 to about 50 nm. Macroporous molecular sieves have pore diameters of > 50.0 nm. The upper limit on the pore diameter may be 1.0x10⁴ nm, 5.0x10³ nm, 2.50x10² nm, 1.00x10³ nm, 5.00x10² nm, 2.50x10² nm, 1.25x10² nm, 7.50 nm, 50.0 nm, 40.0 nm, 30.0 nm, 20.0 nm, 10.0 nm, or 5.0 nm. The lower limit on the pore diameter may be 5.00x10³ nm, 2.50x10² nm, 1.00x10³ nm, 5.00x10² nm, 2.50x10² nm, 1.25x10² nm, 75.0 nm, 50.0 nm, 40.0 nm, 30.0 nm, 20.0 nm, 10.0 nm, 5.0 nm, 4.0 nm, 3.0 nm, 2.0 nm, 1.0 nm or less. Ranges of the pore diameters expressly disclosed include combinations of any of the above- enumerated upper and lower limits. For example, some molecular sieves may have pore
diameters of about 1.0 to > 5.00x10³ nm, 2.0 to 5.00x10³ nm, 2.0 to 1.0x10³ nm, 2.0 to 5.00x10² nm, 2.0 to 2.50x10² nm, 2.0 to 1.25x10² nm, 2.0 to 75.0 nm, 5.0 to 75.0 nm, 7.5 to 75.0 nm, 10.0 to 75.0 nm, 15.0 to 75.0 nm, 20.0 to 75.0 nm, 25.0 to 75.0 nm, 2.0 to 50.0 nm, 5.0 to 50.0 nm, 7.5 to 50.0 nm, 10.0 to 50.0 nm, 15.0 to 50.0 nm, 20.0 to 50.0 nm, or 25.0 to 50.0 nm, etc.

[0025] Additionally or alternatively, some molecular sieves useful herein are described by a Constraint Index of about 1 to about 12. The upper limit on the range of the Constraint Index may be about 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, or 2.0. The lower limit on the range of the Constraint Index may be about 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, or 1.0. Ranges of the Constraint Indices expressly disclosed include combinations of any of the above-enumerated upper and lower limits. For example, some molecular sieves have a Constraint Index of 1.0 to about 10.0, 1.0 to about 8.0, 1 to about 6.0, 1 to about 5.0, 1 to about 3.0, 2.0 to about 11.0, 3.0 to 10.0, 4.0 to 9.0, or 6.0 to 9.0, etc. Constraint Index is determined as described in U.S. Patent No. 4,016,218, incorporated herein by reference for details of the method.

[0026] Particular molecular sieves are zeolitic materials. Zeolitic materials are crystalline or para-crystalline materials. Some zeolites are aluminosilicates comprising [SiO₄] and [AlO₄] units. Other zeolites are aluminophosphates (A1PO) having structures comprising [A1O₄] and [P0₄] units. Still other zeolites are silicoaluminophosphates (SAPO) comprising [SiO₄], [AlO₄], and [P0₄] units.

[0027] Non-limiting examples of SAPO and A1PO molecular sieves useful herein include one or a combination of SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, A1PO-5, A1PO-11, A1PO-18, A1PO-31, A1PO-34, A1PO-36, A1PO-37, A1PO-46, and metal containing molecular sieves thereof. Of these, particularly useful molecular sieves are one or a combination of SAPO-18, SAPO-34, SAPO-35, SAPO-44, SAPO-56, A1PO-18, A1PO-34 and metal containing derivatives thereof, such as one or a combination of SAPO-18, SAPO-34, A1PO-34, A1PO-18, and metal containing derivatives thereof, and especially one or a combination of SAPO-34, A1PO-18, and metal containing derivatives thereof.

[0028] Additionally or alternatively, the molecular sieves useful herein may be characterized by a ratio of Si to Al. In particular embodiments, the molecular sieves suitable herein include those having a Si/Al ratio of about 10 to 100, preferably about 10 to 80, more preferably about 20 to 60, and most preferably about 20 to 40.
In an embodiment, the molecular sieve is an intergrowth material having two or more distinct crystalline phases within one molecular sieve composition. In particular, intergrowth molecular sieves are described in U.S. Patent Application Publication No. 2002-0165089 and International Publication No. WO 98/15496, published April 16, 1998, both of which are herein fully incorporated by reference.

Particular molecular sieves useful in this invention include ZSM-5 (U.S. Patent No. 3,702,886 and Re. 29,948); ZSM-11 (U.S. Patent No. 3,709,979); ZSM-12 (U.S. Patent No. 3,832,449); ZSM-22 (U.S. Patent No. 4,556,477); ZSM-23 (U.S. Patent No. 4,076,842); ZSM-34 (U.S. Patent No. 4,079,095) ZSM-35 (U.S. Patent No. 4,016,245); ZSM-48 (U.S. Patent No. 4,397,827); ZSM-57 (U.S. Patent No. 4,046,685); and ZSM-58 (U.S. Patent No. 4,417,780). The entire contents of the above references are incorporated by reference herein. Other useful molecular sieves include MCM-22, PSH-3, SSZ-25, MCM-36, MCM-49 or MCM-56, with MCM-22. Still other molecular sieves include Zeolite T, ZK5, erionite, and chabazite.

The catalyst also includes at least one element selected from Groups 2-14 of the Periodic Table. Typically, the total weight of the Group 2-14 elements is ≥ 0.1 wt.% based on the total weight of the catalyst. Typically, the total weight of the Group 2-14 element is < about 10.0 wt.%, based on the total weight of the catalyst. Thus, the upper limit on the range of the amount of the Group 2-14 elements added to the molecular sieve may be 10.0 wt.%, 9.0 wt.%, 8.0 wt.%, 7.0 wt.%, 6.0 wt.%, 5.0 wt.%, 4.0 wt.%, 3.0 wt.%, 2.0 wt.%, 1.0 wt.%, or 0.1 wt.%. The lower limit on the range of the amount of the Group 2-14 elements added to the molecular sieve may be 10.0 wt.%, 9.0 wt.%, 8.0 wt.%, 7.0 wt.%, 6.0 wt.%, 5.0 wt.%, 4.0 wt.%, 3.0 wt.%, 2.0 wt.%, 1.0 wt.%, or 0.1 wt.%. Ranges expressly disclosed include combinations of any of the above enumerated upper and lower limits; e.g., 0.1 to 10.0 wt.%, 0.1 to 8.0 wt.%, 0.1 to 6.0 wt.%, 0.1 to 5.0 wt.%, 0.1 to 4.0 wt.%, 0.1 to 3.0 wt.%, 0.1 to 2.0 wt.%, 0.1 to 1.0 wt.%, 1.0 to 10.0 wt.%, 1.0 to 9.0 wt.%, 1.0 to 8.0 wt.%, 1.0 to 7.0 wt.%, 1.0 to 6.0 wt.%, 1.0 to 5.0 wt.%, 1.0 to 4.0 wt.%, 1.0 to 3.0 wt.%, etc. Of course, the total weight of the Group 2-14 elements shall not include amounts attributable to the molecular sieve itself.

Particular molecular sieves and Group 2-14-containing derivatives thereof have been described in detail in numerous publications including for example, U.S. Patent No. 4,567,029 (MeAPO where Me is Mg, Mn, Zn, or Co), U.S. Patent No. 4,440,871 (SAPO), European Patent Application EP-A-0 159 624 (E1APSO where E1 is Be, B, Cr, Co, Ga, Fe, Mg, Mn, Ti, or Zn), U.S. Patent No. 4,554,143 (FeAPO), U.S. Patent Nos. 4,822,478,

[0033] In one embodiment, the molecular sieve as modified by the Group 2-14 element is a ZSM-5 based molecular sieve and the Group 2-14, element is selected from elements of Groups 11-12, particularly Zn.

in their entirety.

[0035] A process for converting an oxygenate-containing first mixture to a hydrocarbon stream containing aromatic molecules in the present of the catalyst described above will now be described. Figure 1 schematically illustrates a process 100 wherein an oxygenated-containing feed is provided via line 101 to a reactor 103 and/or, optionally, to an optional dehydration unit 102 and then or to a reactor 103. Reactor 103 may be any reactor suitable for converting an oxygenate-containing first mixture to an aromatics-containing hydrocarbon effluent. In any embodiment, the reactor 103 may include one or more batch reactor or fixed bed reactor having the catalyst therein. Where reactor 103 includes more than one reactor, the reactors may be arranged in any suitable configuration, e.g., in series, parallel, or series-parallel. Typically, but not necessarily, the reactor 103 is a fixed-bed reactor.

[0036] Reactor 103 is operated under conditions to produce a product stream comprising water, one or more hydrocarbons, hydrogen, and one or more oxygenates, wherein said one or more hydrocarbons comprise ≥ 30.0 wt.% of aromatics, based on the weight of said one or more hydrocarbons in the product stream. In particular embodiments, the amount of aromatics in the hydrocarbon may be 30.0 to 100.0 wt.%, 40.0 to 100.0 wt.%, 50.0 to 100.0 wt.%, 60.0 to 100 wt.%, 70.0 to 100.0 wt.%, 80.0 to 100.0 wt.%, 90.0 to 100.0 wt.%, 95.0 to 100 wt.%; 30.0 to 95.0 wt.%, 40.0 to 95.0 wt.%, 50.0 to 95.0 wt.%, 60.0 to 95 wt.% 70.0 to 95 wt.%, 80.0 to 95.0 wt.%, 90.0 to 95.0 wt.% 30.0 to 90.0 wt.% 40.0 to 90.0 wt.%, 50.0 to 90.0 wt.% 60.0 to 90 wt.% 70.0 to 90.0 wt.% 80.0 to 90.0 wt.% 90.0 to 90.0 wt.% 30.0 to 80.0 wt.% 40.0 to 80.0 wt.% 50.0 to 80.0 wt.% 60.0 to 80 wt.% 70.0 to 80.0 wt.% 30.0 to 70.0 wt.% 40.0 to 70.0 wt.% 50.0 to 70.0 wt.% 60.0 to 70 wt.% 30.0 to 60.0 wt.% 40.0 to 60.0 wt.% about 50.0 wt.% 30.0 to 40.0 wt.% 30.0 to 50.0 wt.% or 40.0 to 50.0 wt.%.

[0037] In particular embodiments, the aromatics comprise ≥ 10.0 wt.% paraxyylene based on the weight of the aromatics. The upper limit on the amount of para-xylene in the aromatics of the hydrocarbon component of the product stream may be 10.0 wt.%, 20.0 wt.%, 30.0 wt.%, 40.0 wt.%, 45.0 wt.%, 50.0 wt.%, 55.0 wt.%, 60.0 wt.%, 65.0 wt.%, 70.0 wt.%, 80.0 wt.%, 90.0 wt.%, 95.0 wt.%, or 100.0 wt.%. The lower limit of the amount of para-xylene in the aromatics portion of the hydrocarbon of the product stream exiting reactor 103 may be 10.0 wt.%, 20.0 wt.%, 30.0 wt.%, 40.0 wt.%, 45.0 wt.%, 50.0 wt.%, 55.0 wt.%, 60.0 wt.%, 65.0 wt.%, 70.0 wt.%, 80.0 wt.%, 90.0 wt.%, 95.0 wt.%. Ranges of temperatures expressly disclosed include combinations of any of the above-enumerated upper and lower limits, e.g., 10.0 to 95.0 wt.%, 20.0 to 80.0 wt.%, 30.0 to 70.0 wt.%, 40.0 to 60.0 wt.%, 10.0 to 50.0 wt.%, 20.0 to 60.0 wt.%, or 30.0 to 50.0 wt.%, etc.
In particular embodiments, the hydrocarbons of the product stream comprises ≥ 80.0 wt.% of aromatics, based on the weight of the hydrocarbon, and ≤ 30.0 wt.% of the aromatics comprise durene, based on the weight of the aromatics. In particular embodiments, the amount of aromatics in the hydrocarbon of the product stream may be 80.0 to 100.0 wt.%, 85.0 to 100.0 wt.%, 90.0 to 100.0 wt.%, 95.0 to 100.0 wt.%, 80.0 to 95.0 wt.%, 85.0 to 95.0 wt.%, 90.0 to 95.0 wt.%, 80.0 to 90.0 wt.%, or 85.0 to 95.0 wt%; and the amount of durene in the aromatics comprises 0 to 30.0 wt.%, 0 to 25.0 wt.%, 0 to 20.0 wt.%, 0 to 15.0 wt.%, 0 to 10.0 wt.%, 0 to 5.0 wt.%, 0 to 2.5 wt.%, 0 to 1.0 wt.%, 1.0 to 30.0 wt.%, 1.0 to 25.0 wt.%, 1.0 to 20.0 wt.%, 1.0 to 15.0 wt.%, 1.0 to 10.0 wt.%, 1.0 to 5.0 wt.%, 1.0 to 2.5 wt.%, 2.5 to 30.0 wt.%, 2.5 to 25.0 wt.%, 2.5 to 20.0 wt.%, 2.5 to 15.0 wt.%, 2.5 to 10.0 wt.%, 2.5 to 5.0 wt.%, 5.0 to 30.0 wt.%, 5.0 to 25.0 wt.%, 5.0 to 20.0 wt.%, 5.0 to 15.0 wt.%, 5.0 to 10.0 wt.%, 10.0 to 30.0 wt.%, 10.0 to 25.0 wt.%, 10.0 to 20.0 wt.%, 10.0 to 15.0 wt.%, 15.0 to 30.0 wt.%, 15.0 to 25.0 wt.%, 15.0 to 20.0 wt.%, 20.0 to 30.0 wt.%, 20.0 to 25.0 wt.%, or 25.0 to 30.0 wt.%.

One of the products in the product stream exiting reactor 103 is hydrogen. Preferably hydrogen is present in an amount ≥ 0.05 wt.%. The upper limit on the amount of hydrogen in some embodiments is 5.0 wt.%, 4.0 wt.%, 3.0 wt.%, 2.0 wt.%, 1.0 wt.%, 0.50 wt.%, 0.40 wt.%, 0.30 wt.%, 0.20 wt.%, 0.10 wt.%, or 0.05 wt.%. The lower limit on the amount of hydrogen in some embodiments is 5.0 wt.%, 4.0 wt.%, 3.0 wt.%, 2.0 wt.%, 1.0 wt.%, 0.50 wt.%, 0.40 wt.%, 0.30 wt.%, 0.20 wt.%, 0.10 wt.%, or 0.05 wt.%. Ranges of temperatures expressly disclosed include combinations of any of the above-enumerated upper and lower limits, e.g., 0.05 wt.% to about 5.0 wt.%, 0.10 to 4.0 wt.%, 0.2 to 3.0 wt.%, 0.4 to 2.0 wt.%, or 0.5 to 1.0 wt.%.

In particular embodiments, the product stream from reactor 103 comprises ≤ 1.0 wt.% carbon monoxide, the weight percent of carbon monoxide being based on the total weight of the product stream. Exemplary amounts of carbon monoxide include 0 to 1.0 wt.%, 0 to 0.9 wt.%, 0 to 0.8 wt.%, 0 to 0.7 wt.%, 0 to 0.6 wt.%, 0 to 0.5 wt.%, 0 to 0.4 wt.%, 0 to 0.2 wt.%, 0 to 0.1 wt.%, 0.1 to 0.9 wt.%, 0.1 to 0.8 wt.%, 0.1 to 0.7 wt.%, 0.1 to 0.6 wt.%, 0.1 to 0.5 wt.%, 0.1 to 0.4 wt.%, 0.1 to 0.3 wt.%, 0.1 to 0.2 wt.%, 0.2 to 0.9 wt.%, 0.2 to 0.8 wt.%, 0.2 to 0.7 wt.%, 0.2 to 0.6 wt.%, 0.2 to 0.5 wt.%, 0.2 to 0.4 wt.%, 0.2 to 0.3 wt.%, 0.3 to 0.9 wt.%, 0.3 to 0.8 wt.%, 0.3 to 0.7 wt.%, 0.3 to 0.6 wt.%, 0.3 to 0.5 wt.%, 0.3 to 0.4 wt.%, 0.4 to 0.9 wt.%, 0.4 to 0.8 wt.%, 0.4 to 0.7 wt.%, or 0.4 to 0.6 wt%. Low carbon monoxide production is desirable in combination with higher hydrogen combinations in some embodiments.
[0041] The particularly desirable combination of products in the reactor effluent is provided by selection of reaction conditions for use in combination with the molecular sieve and Group 2-14 element. Thus, in particular embodiments, the reactor 103 is operated at a weight hourly space velocity (WHSV) in the range of from 0.50 to 12.0 hr⁻¹. The WHSV may be 0.5 to 11.0 hr⁻¹, 0.5 to 10.0 hr⁻¹, 0.5 to 9.0 hr⁻¹, 0.5 to 7.0 hr⁻¹, 0.5 to 6.0 hr⁻¹, 0.5 to 5.0 hr⁻¹, 0.5 to 4.0 hr⁻¹, 0.5 to 3.0 hr⁻¹, 0.5 to 2.0 hr⁻¹, 0.5 to 1.0 hr⁻¹, 1.0 to 11.0 hr⁻¹, 1.0 to 10.0 hr⁻¹, 1.0 to 9.0 hr⁻¹, 1.0 to 7.0 hr⁻¹, 1.0 to 6.0 hr⁻¹, 1.0 to 5.0 hr⁻¹, 1.0 to 4.0 hr⁻¹, 1.0 to 3.0 hr⁻¹, 1.0 to 2.0 hr⁻¹, 2.0 to 11.0 hr⁻¹, 2.0 to 10.0 hr⁻¹, 2.0 to 9.0 hr⁻¹, 2.0 to 7.0 hr⁻¹, 2.0 to 6.0 hr⁻¹, 2.0 to 5.0 hr⁻¹, 2.0 to 4.0 hr⁻¹, 2.0 to 3.0 hr⁻¹, 3.0 to 11.0 hr⁻¹, 3.0 to 10.0 hr⁻¹, 3.0 to 9.0 hr⁻¹, 3.0 to 7.0 hr⁻¹, 3.0 to 6.0 hr⁻¹, 3.0 to 5.0 hr⁻¹, 3.0 to 4.0 hr⁻¹, 4.0 to 11.0 hr⁻¹, 4.0 to 10.0 hr⁻¹, 4.0 to 9.0 hr⁻¹, 4.0 to 7.0 hr⁻¹, 4.0 to 6.0 hr⁻¹, or about 0.50 hr⁻¹.

[0042] Additionally or alternatively, the first mixture comprising the oxygenate is exposed in reactor 103 to a temperature ≥ 400°C and a pressure ≥ 2 bar absolute. In particular embodiments, the temperature may be 400.0 to 700.0°C. The upper limit on the range of temperatures may be 400.0°C, 425.0°C, 450.0°C, 475.0°C, 500.0°C, 525.0°C, 550.0°C, 600°C, 650°C, or 700°C. The lower limit on the range of the temperature of reactor 103 may be 400.0°C, 425.0°C, 450.0°C, 475.0°C, 500.0°C, 525.0°C, 550.0°C, 600°C. Ranges of temperatures expressly disclosed include combinations of any of the above-enumerated upper and lower limits. Such temperature ranges may be used in combination with a reactor pressure of 2.0 to 500.0 bar absolute. In particular embodiments, the upper limit on the range of pressures may be 10.0 bar absolute, 50 bar absolute, 75.0 bar absolute, 100.0 bar absolute, 125.0 bar absolute, 150.0 bar absolute, 175.0 bar absolute, 200.0 bar absolute, 250.0 bar absolute, 300.0 bar absolute, 350.0 bar absolute, 400 bar absolute, or 450 bar absolute, and the lower limit may be 2.0 bar absolute, 5.0 bar absolute, 10.0 bar absolute, 50 bar absolute, 75.0 bar absolute, 100.0 bar absolute, 125.0 bar absolute, 150.0 bar absolute, 175.0 bar absolute, 200.0 bar absolute, 250.0 bar absolute, or 300.0 bar absolute. Ranges and combinations of temperatures and pressures expressly disclosed include combinations of any of the above-enumerated upper and lower limits.

[0043] The product stream from reactor 103 is provided via a line 104 to first separation unit 105 for separation into (i) at least one water-rich stream 106, (ii) at least one aromatic-rich hydrocarbon stream 107, and (iii) at least one aromatic-depleted hydrocarbon stream 108. First separation unit 105 may be any suitable separation means, e.g., distillation tower, simulated moving-bed separation unit, high pressure separator, low pressure separator, flash drum, etc. Optionally, at least a portion of aromatics-rich hydrocarbon stream 107 may be
recycled to reactor 103 via recycle line 107a, e.g., by combination directly or indirectly with the first mixture in line 101. In particular embodiments, wherein \(\geq 50.0 \) wt.\%, 50.0 to 100 wt.\%, 60.0 to 95.0 wt.\%, 70.0 to 90.0 wt.\%, 80.0 to 85.0 wt.\%, of the first mixture's aromatics are the recycled aromatics, weight percents being based on the total amount of aromatics in the first mixture.

[0044] Optionally, at least a portion of aromatic-depleted hydrocarbon stream 108 exiting first separation unit 105 may be recycled to reactor 103, e.g., by combination, directly or indirectly, with line 101. In another embodiment, oxygenates in aromatics-depleted hydrocarbon stream 108 may be recovered therefrom. At least a portion of the recovered oxygenates may thereafter be provided to reactor 103. Additionally or alternatively, at least one of ethylene, propylene, and butylenes may be recovered from at least a portion of the aromatics-depleted hydrocarbon stream 108.

[0045] With continuing reference to Figure 1, Figure 2 schematically depicts a process 200 according to particular embodiments. The aromatic-rich hydrocarbon stream 107 is provided to a second separation unit 209 configured to separate the aromatic-rich stream into (i) at least one first stream 210 comprising oxygenate and \(C_6 \) and/or \(C_7 \) aromatics, (ii) at least one second stream 211 comprising oxygenate and \(C_8 \) aromatics, and (iii) at least one third stream 212 comprising oxygenate and \(C_{9+} \) aromatics. Second separation unit 209 may be any device or process suitable for performing such a separation, e.g. distillation tower, simulated moving-bed separation unit, high pressure separator, low pressure separator, flash drum, etc.

[0046] With continuing reference to Figures 1 and 2, Figure 3 schematically depicts a process 300 according to particular embodiments. Optionally, the first stream 210 may be provided to a third separation unit 313 configured to separate from the first stream 210 a first oxygenate stream 314 and a second aromatics-rich stream 315, the aromatics-rich stream 315 comprising \(C_6 \) and/or \(C_7 \) aromatics. Optionally, at least a portion of first oxygenate stream 314 may be recycled to reactor 103, e.g., by combining with the first mixture in line 101, e.g., via line 107a. Third separation unit 313 may be any separation unit suitable for such a separation, e.g., distillation tower, simulated moving-bed separation unit, high pressure separator, low pressure separator, flash drum, etc. In particular embodiments, the second aromatics-rich stream 315 is provided to a recovery unit 316 for recovering benzene and or toluene therefrom via line 317. At least a portion of residual fraction 318 exiting recovery unit 316 may be combined with the first mixture and provided to the reactor 103 via line 101, e.g., via recovery line 107a. Optionally, at least a portion of the second aromatics-rich stream 315, benzene, or toluene 317 is provided to a toluene alkylation, toluene disproportionation or
transalkylation unit to produce xylenes (not shown in Figure 3). Toluene alkylation is described in more detail in, for example, U.S. Patent Nos. 6,423,879; 6,642,426; 6,388,156; 7,799,962; 8,048,388; 8,399,727; and 8,344,197. Toluene disproportionation is described in more detail in, for example, U.S. Patent Nos. 5,993,642; 6,039,864; 6,198,013; and 6,486,373. Transalkylation is described in more detail in, for example, U.S. Patent Nos. 7,553,791; 8,071,828; 8,183,424; and 8,481,443.

With continuing reference to Figures 1-3, Figure 4 schematically depicts a process 400 according to particular embodiments. Such embodiments, which may optionally include the separation scheme of process 300, include separating from the second stream 211 a second oxygenate stream 419 and a third aromatics-rich stream 420 in a fourth separation unit 421. Fourth separation unit 421 may be any device or process suitable for performing such a separation, e.g., distillation tower, simulated moving-bed separation unit, high pressure separator, low pressure separator, flash drum, etc. Optionally, at least a portion of second oxygenate stream 419 may be recycled to reactor 103, e.g., by combining directly or indirectly with the first mixture in line 101, e.g., via recycle line 107a. Typically, the third aromatics-rich stream 420 comprises C₈+ aromatics. Third aromatics-rich stream 420 may be provided to a second recovery unit 422 for recovering para-xylene therefrom. At least a portion of residual fraction 423 exiting recovery unit 422 may be combined with the first mixture and provided to the reactor 103 via line 101, e.g., via recycle line 107a. Optionally, at least a portion of the para-xylene depleted residual fraction 423 may be sent to a xylenes isomerization unit to produce a mixed xylenes stream from which para-xylene may be recovered.

With continuing reference to Figures 1-4, Figure 5 schematically depicts a process 500 according to particular embodiments. Process 500 may, additionally or alternatively, include separating third stream 212 by any suitable means 524 into a third oxygenate stream 525 and a fourth aromatics-rich stream 526, the fourth aromatics-rich stream comprising C₉+ aromatics. Optionally, at least a portion may be recycled to reactor 103, e.g., by combining directly or indirectly with the first mixture in line 101, e.g., via recycle line 107a. Fourth aromatics stream 526 may optionally be provided to a transalkylation unit 527 to transalkylate at least a portion of the fourth aromatics-rich stream to produce xylenes. Optionally, at least a portion of third oxygenate stream 525 and/or at least a portion of residual fraction 528 exiting transalkylation unit 527 may be recycled, directly or indirectly, to reactor 103, e.g., by combining with the first mixture in line 101 via recycle line 107a.

It has also been found that recycling and combining at least a portion of the
aromatics in the hydrocarbon product with the oxygenate unexpectedly leads to one or more of the following advantages. In particular embodiments, recycling and combining at least a portion of the aromatics in the hydrocarbon product provides an increase in the relative amount of aromatics in the hydrocarbon product. The increase in aromatics may be achieved without a significant increase in the rate of catalyst deactivation and/or without a significant increase in the relative amount of durene in the aromatic portion of the hydrocarbon product. Advantageously and contraire to expectations, recycling and combining with the oxygenate at least a portion of the aromatics in the hydrocarbon product does not suppress methanol conversion to aromatic products. Under particular conditions, recycling of the aromatics can actually provide an overall increase in product aromatics content. Surprisingly, the catalyst may not experience a significant increase in deactivation rate, e.g., from over-reacting the recycled aromatics, even at elevated reaction temperatures (e.g., end of run conditions). And under certain conditions, the relative amount of durene in the aromatic portion of the product may not increase, even though recycling of xylenes to a chemical environment rich in CH₂ fragments would be expected to result in alkylation to C₆ aromatics. At least a portion of the olefins and paraffins in the hydrocarbon product may be recycled as well, leading to further conversion of the olefins and paraffins to aromatics without causing a significant increase in catalyst deactivation.

[0050] The embodiments of the invention are illustrated in the following examples.

Example 1

[0051] A first mixture comprising 100 wt.% methanol is fed to a fixed bed reactor operated at 450°C and 15 psig. The reactor is packed with a catalyst comprising a ZSM-5 molecular sieve loaded with 1 wt.% Zn and operated a WHSV of 2 lir-1. In this example, essentially all of the feed is converted into hydrocarbons. The effluent stream from the reactor is separated into an aromatic and non-aromatic stream. The aromatics stream contains benzene, toluene, C₅ aromatics, and C₈+ aromatics which are sent to a nearby aromatics plant for further processing by transalkylation, toluene alkylation, toluene disproportionation, or xylenes isomerization. The non-aromatic stream contains light gases and oxygenates, C₁ to C₅ olefins and paraffins and a mixture of C₅+ non-aromatics. This non-aromatic overhead stream from the separator is then sent to an olefins plant for further processing. Table 1 shows the resulting product distribution.

<table>
<thead>
<tr>
<th>Product</th>
<th>Wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₅-C₄ paraffins</td>
<td>16.6</td>
</tr>
</tbody>
</table>
Example 2

A first mixture comprising 100% methanol is fed to the reactor under substantially the same conditions as in Example 1. In this example, however, benzene and toluene in the product stream are recycled back into the reactor. The product distribution, which is shown in Table 2 shows a higher selectivity towards aromatics, particularly the C₈ and C₉+ aromatics.

Table 2. Reactor product distribution for methanol feed containing benzene and toluene

<table>
<thead>
<tr>
<th>Product (%)</th>
<th>Wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁-C₄ paraffins</td>
<td>9.2</td>
</tr>
<tr>
<td>Ethylene</td>
<td>1.2</td>
</tr>
<tr>
<td>Propylenes</td>
<td>1.0</td>
</tr>
<tr>
<td>Butylenes</td>
<td>0.5</td>
</tr>
<tr>
<td>C₅+</td>
<td>1.1</td>
</tr>
<tr>
<td>Benzene</td>
<td>3.1</td>
</tr>
<tr>
<td>Toluene</td>
<td>16.9</td>
</tr>
<tr>
<td>C₈ Aromatics</td>
<td>33.1</td>
</tr>
<tr>
<td>C₉+ Aromatics</td>
<td>29.5</td>
</tr>
<tr>
<td>H₂</td>
<td>1.7</td>
</tr>
<tr>
<td>Oxygenates</td>
<td>2.6</td>
</tr>
<tr>
<td>Methanol Conversion</td>
<td>100%</td>
</tr>
<tr>
<td>Benzene Conversion</td>
<td>55.5%</td>
</tr>
<tr>
<td>Toluene Conversion</td>
<td>54.5%</td>
</tr>
</tbody>
</table>

Example 3

In this example, a first mixture comprising methanol may be provided to a fixed bed reactor which is operated at 400°C and 1 atm. The reactor is packed with a catalyst comprising a ZSM-5 molecular sieve loaded with 1 wt.% Zn and having a Si:Al ratio of 100 to 10,000 and operated a WHSV of 6 h⁻¹. The product stream comprises 17.2 wt.% C₆-C₉ aromatic compounds.

Example 4
Example 3 is substantially repeated, except that the reactor temperature is 500°C. The product stream comprises 19.4 wt.%, C₆-C₉ aromatic compounds.

The description and examples above support one or more of the following more specific Embodiments.

Embodiment 1. An aromatic production process, comprising (a) providing a first mixture comprising ≥10.0 wt.% of at least one oxygenate, based on the weight of the first mixture; (b) contacting said first mixture with a catalyst to convert said first mixture to a product stream comprising water, one or more hydrocarbons, hydrogen, and one or more oxygenates, wherein A) said catalyst comprises at least one molecular sieve and at least one element selected from Groups 2-14 of the Periodic Table; B) said one or more hydrocarbons comprise ≥30.0 wt.% of aromatics, based on the weight of said one or more hydrocarbons in the product stream; and C) separating from said product stream (i) at least one water-rich stream, (ii) at least one aromatic-rich hydrocarbon stream, and (iii) at least one aromatic-depleted hydrocarbon stream.

Embodiment 2. A process according to Embodiment 1, wherein the first mixture comprises ≥90.0 wt.% of methanol and/or DME, and wherein the process further comprises separating from the aromatic-rich hydrocarbon stream (i) at least one first stream comprising oxygenate and C₆ and/or C₇ aromatics, (ii) at least one second stream comprising oxygenate and C₈ aromatics, and (iii) at least one third stream comprising oxygenate and C₉+ aromatics.

Embodiment 3. A process according to any embodiment encompassed by Embodiment 2, further comprising contacting at least a portion of the first stream with the catalyst in step (b).

Embodiment 4. A process according to any embodiment encompassed by Embodiment 2, further comprising separating from the first stream a first oxygenate stream and a second aromatics-rich stream, the aromatics-rich stream comprising C₆ and/or C₇ aromatics.

Embodiment 5. A process according to any embodiment encompassed by Embodiment 4, further comprising recovering benzene and/or toluene from the second aromatics-rich stream.

Embodiment 6. A process according to any embodiment encompassed by Embodiments 4 or 5, further comprising sending at least a portion of the second aromatics-rich stream or benzene and/or toluene to a toluene alkylation, toluene disproportionation, or transalkylation unit to produce xylenes.
[0062] Embodiment 7. A process according to any embodiment encompassed by Embodiment 2, further comprising separating from the second stream a second oxygenate stream and a third aromatics-rich stream, the third aromatics rich stream comprising C₈+ aromatics.

[0063] Embodiment 8. A process according to any embodiment encompassed by Embodiment 7, further comprising recovering para-xylene and a para-xylene depleted stream from the third aromatics-rich stream.

[0064] Embodiment 9. A process according to any embodiment encompassed by Embodiment 8, further comprising sending at least a portion of para-xylene depleted stream to a xylenes isomerization unit to produce a mixed xylenes stream and recovering para-xylene from the mixed xylenes stream.

[0065] Embodiment 10. A process according to any embodiment encompassed by Embodiment 2, further comprising separating from the third stream a third oxygenate stream and a fourth aromatics-rich stream, the fourth aromatics-rich stream comprising C₉+ aromatics.

[0066] Embodiment 11. A process according to any embodiment encompassed by Embodiment 10, further comprising transalkylating at least a portion of the fourth aromatics-rich stream to produce xylenes.

[0067] Embodiment 12. A process according any embodiment encompassed by any of Embodiments 4, 7, or 10, further comprising contacting at least a portion of the first, the second, or the third oxygenate streams with the catalyst in step (b).

[0068] Embodiment 13. A process according to any of Embodiments 1-12, further comprising contacting at least a portion of the aromatic-depleted hydrocarbon stream with the catalyst in step (b).

[0069] Embodiment 14. A process according to any of Embodiments 1-13, further comprising recovering oxygenates from the aromatic-depleted hydrocarbon stream.

[0070] Embodiment 15. A process according to any embodiment encompassed by Embodiment 14, comprising contacting the catalyst in step (b) with at least a portion of the recovered oxygenates.

[0071] Embodiment 16. A process according to any embodiment encompassed by Embodiment 14 or 15, further comprising recovering at least one of ethylene, propylene, and butylene from at least a portion of the aromatic-depleted hydrocarbon stream.

[0072] Embodiment 17. An oxygenate conversion process, the process comprising: (a)
providing a first mixture, the first mixture comprising \(\geq 10.0 \) wt.% oxygenate based on the weight of the first mixture; (b) exposing the first mixture at a temperature \(\geq 400^\circ \text{C} \) at a pressure \(\geq 2 \) bar absolute in the presence of a catalyst to convert \(\geq 90.0 \) wt.% of the first mixture's oxygenate to (i) water, (ii) hydrocarbon, and (iii) \(\leq 1.0 \) wt.% carbon monoxide, the weight percents being based on the weight of oxygenate in the first mixture, wherein (A) the catalyst comprises \(\geq 10.0 \) wt.% of at least one molecular sieve and \(\geq 0.1 \) wt.% of at least one element selected from Groups 2-14 of the Periodic Table, the weight percents being based on the weight of the catalyst, (B) the hydrocarbon comprises \(\geq 50.0 \) wt.% of aromatics, based on the weight of the hydrocarbon; and (C) separating the aromatics from one or more of (i) at least a portion of the water produced in step (b), (ii) any unreacted oxygenate, or (iii) at least a portion of the hydrocarbon.

[0073] Embodiment 18. A process according to any embodiment, wherein (i) the first mixture comprises \(\geq 25.0 \) wt.% oxygenate, based on the weight of the first mixture, and (ii) the oxygenate comprises \(\geq 90.0 \) wt.% based on the weight of the oxygenate of one or more of alcohol, ether, carboxylic acid, carbon monoxide, or carbon dioxide.

[0074] Embodiment 19. A process according to any embodiment, wherein the oxygenate comprises \(\geq 99.0 \) wt.% of methanol and/or dimethylether.

[0075] Embodiment 20. A process according to any embodiment encompassed by Embodiments 17-19, wherein the oxygenate comprises \(\geq 99.0 \) wt.% of methanol, the exposing of step (b) is conducted at a WHSV in the range of from 0.5 to 12 hr\(^{-1}\), the hydrocarbon comprises \(\geq 80.0 \) wt.% of aromatics, based on the weight of the hydrocarbon, and \(\leq 30.0 \) wt.% of the aromatics comprise durene, based on the weight of the aromatics.

[0076] Embodiment 21. A process according to any embodiment, wherein the first mixture further comprises \(\geq 10.0 \) wt.% aromatics, based on the weight of the first mixture.

[0077] Embodiment 22. A process according to any embodiment encompassed by Embodiments 17-21, further comprising recycling at least a portion of the separated aromatics from step (c) to step (a), wherein \(\geq 50.0 \) wt.% of the first mixture's aromatics are the recycled aromatics.

[0078] Embodiment 23. The process of any embodiment, wherein the molecular sieve comprises ZSM-5, and the Group 2-14 element comprises Zn.

[0079] While the present invention has been described and illustrated by reference to particular embodiments, those of ordinary skill in the art will appreciate that the invention lends itself to variations not necessarily illustrated herein. For this reason, then, reference should be made solely to the appended claims for purposes of determining the enforceable
scope of the present invention.

[0080] All documents described herein are incorporated by reference for purposes of all jurisdictions where such practice is allowed, including any priority documents and/or testing procedures to the extent they are not inconsistent with this text, provided however, that any priority document not named in the initially filed application or filing documents is NOT incorporated by reference herein. As is apparent from the foregoing general description and the specific embodiments, while forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited thereby. Likewise, the term "comprising" is considered synonymous with the term "including." Likewise whenever a composition, an element or a group of elements is preceded with the transitional phrase "comprising," it is understood that we also contemplate the same composition or group of elements with transitional phrases "consisting essentially of," "consisting of," "selected from the group of consisting of," or "is" preceding the recitation of the composition, element, or elements and vice versa.
CLAIMS

What is claimed is:

1. An aromatic production process, comprising:
 (a) providing a first mixture comprising ≥ 10.0 wt.% of at least one oxygenate, based on the weight of the first mixture;
 (b) contacting said first mixture with a catalyst to convert said first mixture to a product stream comprising water, one or more hydrocarbons, hydrogen, and one or more oxygenates, wherein
 (1) said catalyst comprises at least one molecular sieve and at least one element selected from Groups 2-14 of the Periodic Table,
 (2) said one or more hydrocarbons comprise ≥ 30.0 wt.% of aromatics, based on the weight of said one or more hydrocarbons in the product stream; and
 (c) separating from said product stream (i) at least one water-rich stream, (ii) at least one aromatic-rich hydrocarbon stream, and (iii) at least one aromatic-depleted hydrocarbon stream.

2. The process of claim 1, wherein the first mixture comprises ≥ 90.0 wt.% of methanol and/or dimethylether and wherein the process further comprises separating from the aromatic-rich hydrocarbon stream (i) at least one first stream comprising oxygenate and C₆ and/or C₇ aromatics, (ii) at least one second stream comprising oxygenate and C₈ aromatics, and (iii) at least one third stream comprising oxygenate and C₉+ aromatics.

3. The process of claim 2, further comprising contacting at least a portion of the first stream with the catalyst in step (b).

4. The process of claim 2 or 3, further comprising separating from the first stream a first oxygenate stream and a second aromatics-rich stream, the aromatics-rich stream comprising C₆ and/or C₇ aromatics.

5. The process of claim 4, further comprising recovering benzene and/or toluene from the second aromatics-rich stream.

6. The process of claim 4 or 5, further comprising sending at least a portion of the second aromatics-rich stream to a toluene alkylation, toluene disproportionation or transalkylation unit to produce xylenes.

7. The process of claim 4, 5 or 6, further comprising contacting at least a portion of the first oxygenate stream with the catalyst in step (b).
8. The process of claim 2, further comprising separating from the second stream a second oxygenate stream and a third aromatics-rich stream, the third aromatics-rich stream comprising C_{8+} aromatics.

9. The process of claim 8, further comprising recovering para-xylene and a para-xylene depleted stream from the third aromatics-rich stream.

10. The process of claim 9, further comprising sending at least a portion of para-xylene depleted stream to a xylenes isomerization unit to produce a mixed xylenes stream and recovering para-xylene from the mixed xylenes stream.

11. The process of claim 8, 9 or 10, further comprising contacting at least a portion of the second oxygenate stream with the catalyst in step (b).

12. The process of claim 2, further comprising separating from the third stream a third oxygenate stream and a fourth aromatics-rich stream, the fourth aromatics-rich stream comprising C_{9+} aromatics.

13. The process of claim 12, further comprising transalkylating at least a portion of the fourth aromatics-rich stream to produce xylenes.

14. The process of claim 12 or 13, further comprising contacting at least a portion of the third oxygenate stream with the catalyst in step (b).

15. The process of any one of claims 1-14, further comprising contacting at least a portion of the aromatic-depleted hydrocarbon stream with the catalyst in step (b).

16. The process of any one of claims 1-15, further comprising recovering oxygenates from the aromatic-depleted hydrocarbon stream.

17. The process of claim 16, comprising contacting the catalyst in step (b) with at least a portion of the recovered oxygenates.

18. The process of claim 16, further comprising recovering at least one of ethylene, propylene, and butylenes from at least a portion of the aromatic-depleted hydrocarbon stream.

19. The process of any one of claims 1-18, wherein the molecular sieve comprises ZSM-5, and the element comprises Zn.

20. An oxygenate conversion process, the process comprising:
(a) providing a first mixture, the first mixture comprising \(\geq 10.0 \) wt.% oxygenate based on the weight of the first mixture;
(b) exposing the first mixture at a temperature \(\geq 400^\circ\text{C} \) at a pressure \(\geq 2 \) bar absolute in the presence of a catalyst to convert \(\geq 90.0 \) wt.% of the first mixture's
oxygenate to (i) water, (ii) hydrocarbon, and (iii) \(\leq 1.0 \text{ wt.\%} \) carbon monoxide, the weight percents being based on the weight of oxygenate in the first mixture, wherein

1. the catalyst comprises \(\geq 10.0 \text{ wt.\%} \) of at least one molecular sieve and \(\geq 0.1 \text{ wt.\%} \) of at least one element selected from Groups 2-14 of the Periodic Table, the weight percents being based on the weight of the catalyst, and

2. the hydrocarbon comprises \(\geq 50.0 \text{ wt.\%} \) of aromatics, based on the weight of the hydrocarbon; and

(c) separating the aromatics from one or more of (i) at least a portion of the water produced in step (b), (ii) any unreacted oxygenate, and/or (iii) at least a portion of the hydrocarbon.

21. The process of claim 20, wherein (i) the first mixture comprises \(\geq 25.0 \text{ wt.\%} \) oxygenate, based on the weight of the first mixture, and (ii) the oxygenate comprises \(\geq 90.0 \text{ wt.\%} \) based on the weight of the oxygenate of one or more of alcohol, ether, carboxylic acid, carbon monoxide, or carbon dioxide.

22. The process of claim 20 or 21, wherein the oxygenate comprises \(\geq 99.0 \text{ wt.\%} \) of methanol and/or dimethylether.

23. The process of claim 20, 21 or 22, wherein the oxygenate comprises \(\geq 99.0 \text{ wt.\%} \) of methanol, the exposing of step (b) is conducted at a weight hourly space velocity in the range of from 0.5 to 12 hr\(^{-1}\), the hydrocarbon comprises \(\geq 80.0 \text{ wt.\%} \) of aromatics, based on the weight of the hydrocarbon, and \(\leq 30.0 \text{ wt.\%} \) of the aromatics comprise durene, based on the weight of the aromatics.

24. The process of any one of claims 20-23, wherein the first mixture further comprises \(\geq 10.0 \text{ wt.\%} \) aromatics, based on the weight of the first mixture.

25. The process of any one of claims 20-24, further comprising recycling at least a portion of the separated aromatics from step (c) to step (a), wherein \(\geq 50.0 \text{ wt.\%} \) of the first mixture's aromatics are the recycled aromatics.

26. The process of any one of claims 20-25, wherein the molecular sieve comprises ZSM-5, and the element comprises Zn.
INTERNATIONAL SEARCH REPORT

PCT/US2014/068607

A. CLASSIFICATION OF SUBJECT MATTER

INV. C97C1/20 C07C15/02 C10G3/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07C C10G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronis database consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2013/165725 AI (CHEWTER LESLIE ANDREW) [NL] ET AL 27 June 2013 (20 13-06-27)</td>
<td>1-3, 15</td>
</tr>
<tr>
<td>Y</td>
<td>abstract</td>
<td>4-14, 16-26</td>
</tr>
<tr>
<td></td>
<td>figure 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph s [0022] - [0024]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph s [0033], [0037] - [0051]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>example 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1-14</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 2013/156323 AI (MONDAL KARTICK CHANDRA) [INJ] 20 June 2013 (2013-06-20)</td>
<td>1, 19-22, 26</td>
</tr>
<tr>
<td>Y</td>
<td>abstract</td>
<td>2-18, 23-25</td>
</tr>
<tr>
<td></td>
<td>paragraph s [0009], [0015] - [0020], [0024]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>example 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tables 1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1-16</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search

27 February 2015

Date of mailing of the international search report

05/03/2015

Name and mailing address of the ISA/Authorized officer

European Patent Office, P.B. 5618 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax (+31-70) 340-3018

Dunet, Guillaume

Form PCT/ISA/210 (second sheet) (April 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 101 823 929 A (UNIV TSINGHUA) 8 September 2010 (2010-09-08)</td>
<td>1-3, 19-22, 24-26</td>
</tr>
<tr>
<td>Y</td>
<td>abstract figures 1-3 examples 1-7 cl aims 1-10</td>
<td>4-18</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2009/021726 A1 (SAUDI BASIC IND CORP [SA]; KARIM KHALID [SA]; AL-OTAIBI NAIF [SA]; ZAH) 19 February 2009 (2009-02-19) abstract examples 1-5 tables 1, 2 cl aims 1-12</td>
<td>1-26</td>
</tr>
<tr>
<td>Y</td>
<td>YOSHIHIRO INOUE ET AL: "Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites", MICROPOROUS MATERIALS, vol. 4, no. 5, August 1995 (1995-08) pages 379-383, XP055157473, ISSN: 0927-6513, DOI: 10.1016/0927-6513 (95)00020-A abstract page 379, right-hand column page 380; table 1 page 381; figures 1, 2; table 2 page 383, right-hand column, last paragraph</td>
<td>1-26</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2013165725 AI 27-06-2013 NON E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2013158323 AI 20-06-2013 CN 104053504 A 17-09-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2794101 AI 29-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140113963 A 25-09-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013158323 AI 20-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013091824 AI 27-06-2013</td>
</tr>
<tr>
<td>CN 101823929 A 08-09-2010 NON E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002099249 AI 25-07-2002</td>
</tr>
<tr>
<td>Wo 2009021726 AI 19-02-2009 CN 101778808 A 14-07-2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101815692 A 25-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2183203 AI 12-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2188234 AI 26-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5543347 B2 09-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010535623 A 25-11-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010535826 A 25-11-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100054827 A 25-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100054828 A 25-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010185033 AI 22-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010234658 AI 16-09-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009021726 AI 19-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009021727 AI 19-02-2009</td>
</tr>
</tbody>
</table>