(19)中华人民共和国国家知识产权局

(12)发明专利

(10)授权公告号 CN 106012271 B
(45)授权公告日 2017.08.25

(21)申请号 201610629345.2
(22)申请日 2016.08.03
(65)同一申请的已公布的文献号
 申请公布号 CN 106012271 A
(43)申请公布日 2016.10.12
(73)专利权人 江南大学
 地址 214122 江苏省无锡市蠡湖大道1800号江南大学纺织服装学院
(72)发明人 马丕波 蒋高明 丛洪莲 章旭红 常玉萍
(74)专利代理机构 无锡中瑞知识产权代理有限公司 32259
 代理人 倪悦晨

(51)Int.Cl.
 D04B 21/00(2006.01)

(54)发明名称
 一种具有负泊松比效应经编间隔织物的制备方法

(57)摘要
 本发明公开了一种具有负泊松比效应经编间
隔织物的制备方法，在较粗机号双针床拉舍尔
经编机上编织基于变化经平和编链经编组织
的单面六角网眼，用刚度较大的单丝以编链组
织相连，按照要求设定每纱数、隔距、送经量
等工艺参数，所得的产品可在下机松弛后自
行产生歪斜变形，其歪斜变形程度则决定了负泊
松比效应，该制备方法得到的负泊松比经编间
隔织物可直接具有一定的负泊松比性能，无需后整
理定型，并且可以通过工艺参数的调整来改变织
物的负泊松比效应。
1. 一种具有负泊松比效应经编间隔隔织物的制备方法，所述织物采用拉舍尔双针床经编机进行编织，其特征在于：所述拉舍尔双针床经编机带有电子送经机构，可实现织造过程中的实时多速分段送经，由至少七把梳栉用来垫纱，从前针床到后针床分别设有梳栉GB1、梳栉GB2、梳栉GB3、梳栉GB4、梳栉GB5、梳栉GB6、梳栉GB7。

梳栉的垫纱和送经情况为：

前表层组织：梳栉GB1和梳栉GB2均1穿1空，编织循环横列数为2×N的经编六角网眼组织；梳栉GB3为满穿，在梳栉GB1和梳栉GB2编织的经编六角网眼组织的基础上编织部分横列缺垫的编链组织，该部分横列缺垫的编链组织以2×N个横列为一个循环，梳栉GB3的送经量要根据每个循环中缺垫和编链的横列数分段多速送经，缺垫横列的送经量应远远小于编链横列的送经量，梳栉GB1和梳栉GB2的送经量，根据织物变形效果以及与梳栉GB3缺垫编链的对应关系，分别进行分段送经，且梳栉GB2的送经量与梳栉GB1的送经量的变化趋势相反。

后表层组织：梳栉GB6和梳栉GB7均1穿1空，编织循环横列数为2×N的经编六角网眼组织；梳栉GB5满穿，在梳栉GB6和梳栉GB7编织的经编六角网眼组织的基础上编织部分横列缺垫的编链组织，该部分横列缺垫的编链组织以2×N个横列为一个循环，梳栉GB5的送经量与梳栉GB3相对应，梳栉GB6的送经量与梳栉GB2相对应，梳栉GB7的送经量与梳栉GB1相对应。

间隔纱：梳栉GB4满穿编织编链组织，线圈为开口和闭口组合配置，在位于前后针床之间隔0-2针距的两枚织针上垫纱成圈，且以2×N个横列为一个循环单元，每连续N个横列的垫纱方向相同，剩余N个横列则更换垫纱方向；

所述N为6.8或10之一。

2. 根据权利要求1所述的具有负泊松比效应经编间隔隔织物的制备方法，其特征在于，所述梳栉GB1、梳栉GB2、梳栉GB3、梳栉GB5、梳栉GB6、梳栉GB7所用纱线为细度大于等于150D的化学纤维复丝。

3. 根据权利要求2所述的具有负泊松比效应经编间隔隔织物的制备方法，其特征在于，所述化学纤维复丝为涤纶复丝、锦纶复丝或聚烯烃纤维复丝中的一种或多种。

4. 根据权利要求1所述的具有负泊松比效应经编间隔隔织物的制备方法，其特征在于，所述梳栉GB4所用纱线为直径大于等于0.07mm的化学纤维单丝。

5. 根据权利要求4所述的具有负泊松比效应经编间隔隔织物的制备方法，其特征在于，所述化学纤维单丝为涤纶单丝。

6. 根据权利要求1所述的具有负泊松比效应经编间隔隔织物的制备方法，其特征在于，所述梳栉GB1和梳栉GB2的垫纱数码不同，且分别为(2-3-2-2/2-1-2-1)×A/(1-0-1-1/1-2-1-1)×A/、(1-0-1-1/1-2-1-1)×A/；所述梳栉GB6和梳栉GB7的垫纱数码不同，且分别为(2-3-2-2/2-1-2-1)×A/(1-0-1-1/1-2-1-1)×A/、(1-0-1-1/1-2-1-1)×A/(2-3-2-2/2-1-2-2)×A/；所述A＝N/2。

7. 根据权利要求6所述的具有负泊松比效应经编间隔隔织物的制备方法，其特征在于，所述梳栉GB3和梳栉GB5的垫纱数码为1-0-0-0/0-1-0-0/(0-0-0-0)×B/0-1-1-1/1-0-0-0/0-1-1-1/0-1-1-1×B/1-0-0-0/0-1-1-1/或1-1-1-0/0-0-0-0/(0-0-0-0)×B/0-1-1-1/1-1-1-1/0-0-0-1/0-1-1-1×B/1-1-1-0/0-0-0-1/；所述B＝N-4。

8. 根据权利要求1、6、7之一所述的具有负泊松比效应经编间隔隔织物的制备方法，其特征在于，所述梳栉GB4的垫纱数码为(1-0-1-0)×C/(0-1-0-1)×C/或(2-1-2-1)×C/(0-1-0-1)×C/；所述C＝N/2。
0-1) \times C/;\text{或}(3-2-3-2) \times C/\text{或}(0-1-0-1) \times C/;\text{之一;所述C=N/2。}

9. 根据权利要求1所述的具有负泊松比效应经编间隔织物的制备方法,其特征在于,经编过程中调整经编机前后针床的隔距大于等于3mm。
说明书

一种具有负泊松比效应经编间隔织物的制备方法

技术领域

[0001] 本发明属于织物纺织领域，特别涉及一种负泊松比织物的制备方法。

背景技术

[0002] 常规材料通常表现为正泊松比，即拉伸时材料垂直于拉伸方向变窄，压缩时垂直于拉伸方向变宽。负泊松比材料又称拉扯材料，则与其相反，即在拉伸时材料垂直于拉伸方向变宽，压缩时材料垂直于压缩方向变窄。通常均衡各向同性材料可能的泊松比范围是$-1 < \nu < 0.5$，而各向异性固体材料的范围可能更大。大多数金属材料的泊松比值在0.25至0.35之间，橡胶的泊松比值接近0.5，几乎不可压缩，木塞的泊松比值接近于0，而具有负泊松比的工程材料几乎是不存在的。目前有大量负泊松比材料被发现，制备与合成，主要可分为天然材料、聚合物、复合材料、织物四大类。与传统材料相比，负泊松比材料的很多性能得到了增强，如机械性能、抗压痕性、断裂韧性、能量吸收性等，从而使其具有更广阔的应用前景。许多学者为解释负泊松比材料产生负泊松比的机理，建立了一系列结构模型，如内凹结构、旋转结构、节点原纤结构、手性结构、液晶模型、螺旋结构等，针织领域的负泊松比纺织材料的研究和开发也主要以这些结构模型为基础。

[0003] 基于螺旋形纱线结构的作用原理，Ugboale等人研究出了由编织经线和针织纱线组成经编针织结构，经编是较粗且刚度较低的长丝编织的开口线圈，高刚度的针织纱则垫在开口线圈中。这种结构在受拉伸时，高刚度针织纱伸直，低刚度长丝缠绕在伸直的针织纱线上，适当地排列多个此类经编可具有实际的负泊松比性能。然而，为了获得所需的负泊松比织物性能，该编织组织结构还需有效的连接方法使其成为片状织物。

[0004] 基于旋转几何结构的作用原理，Ugboale等人又研究出了具有负泊松比的经编衬垫组织，在该结构中，以编织为基础结构，只采用两把梳栉，第一把满穿，编织基础编织，第二把部分穿纱，进行衬垫组织结构编织，其泊松比值受织物密度、线种类及性能等因素的影响。

[0005] Ugboale等人还在非负泊松比的经编六角网眼结构的基础上采用弹弹纱研究出了负泊松比经编结构。在该结构中，采用了两把梳栉垫入涤纶包覆的弹性纱，弹性纱垫在编织方向的线圈中，且能够包覆地织组织线圈的连接点，影响其泊松比的因素有纱线种类、编织横列数和应变程度，其中纱线种类是最重要的影响因素。

[0006] 基于内凹三角或双箭头结构，Alderson等人用经编编织技术进行结构的重建，设计出一系列由负泊松比部分和稳定部分组成的织物结构，主要由开口或闭口的成圈组织构成。该结构在与经向成±45°的方向上具有相对较为显著的负泊松比性能，且不仅在拉伸的第一阶段具有负泊松比性能，且在经过连续拉伸后仍能保持该性能。

[0007] 基于旋转六边形结构，中国专利申请CN104911804A中，马等人在经编六角网眼的基础上加入缺垫编织组织，利用缺垫编织对地组织六角网眼的作用使其失去对称稳定结构，从而产生左右斜面收缩，产生一定的负泊松比效应。该结构的负泊松比性能主要受缺垫编织的垫纱组织，编织及地组织送经量，织物密度等织造参数的影响。
在三维经编结构领域，胡等人设计了表层织物重复单元由两个排成V字形的平行四边形组成的几何结构。该结构的负泊松比性能受到纱线种类、平行四边形两边的长度及其之间的角度、受拉伸方向等影响，其对角线方向的负泊松比性能比纵向的低，比横向的高，且平行四边形两边之间的角度越小，织物结构越紧密，当在织物上施加拉力时，更紧密的织物结构有更好的延展性，从而产生更显著的负泊松比性能。

随着负泊松比材料的迅速发展，目前已经研究出很多负泊松比材料，但负泊松比结构针织物的实现还十分有限。尽管提出了很多潜在应用，但负泊松比结构针织物的实际应用也仍仅限于初级阶段。用常规纱线、常规设备设计和规模化生产可广泛应用于日常生活的负泊松比结构针织物仍是一项挑战。

发明内容

本发明的目的在于提供一种直接通过织造即可获得负泊松比效果的经编间隔织物的制备方法，其织造工艺简单，产品的负泊松比性能好。

为实现上述目的，本发明提供的技术方案为：一种具有负泊松比效应经编间隔织物的制备方法，所述织物采用拉舍尔双针床经编机进行织造。其特征在于：所述拉舍尔双针床经编机带有电子送经机构，实现织造过程中的实时多速分段送经，由至少七把梳栉用来垫纱，从前针床到后针床分别设有梳栉GB1、梳栉GB2、梳栉GB3、梳栉GB4、梳栉GB5、梳栉GB6、梳栉GB7，

梳栉的垫纱和送经情况为：

前表层组织：梳栉GB1和梳栉GB2均1穿1空，编织循环横列数为2×N的经编六角网眼组织；梳栉GB3为满穿，在梳栉GB1和梳栉GB2编织的经编六角网眼组织的基础上编织部分横列缺垫的编链组织，该部分横列缺垫的编链组织以2×N个横列为一个循环，梳栉GB3的送经量要根据每个循环中缺垫和编链的横列数分段多速送经，缺垫横列的送经量应远小于编链横列的送经量，梳栉GB1和梳栉GB2的送经量，根据织物变形效果以及与梳栉GB3缺垫编链的对应关系，分别进行分段送经，且梳栉GB2的送经量与梳栉GB1的送经量的变化趋势相反。

后表层组织：梳栉GB6和梳栉GB7均1穿1空，编织循环横列数为2×N的经编六角网眼组织；梳栉GB5满穿，在梳栉GB6和梳栉GB7编织的经编六角网眼组织的基础上编织部分横列缺垫的编链组织，该部分横列缺垫的编链组织以2×N个横列为一个循环，梳栉GB5的送经量与梳栉GB3相对同，梳栉GB6的送经量与梳栉GB2相对同，梳栉GB7的送经量与梳栉GB1相对同，

间隔纱：梳栉GB4满穿编织编链组织，线圈为开口和闭口组合配置，在位于前后针上相邻0-2针距的两枚针上串纱成圈，且以2×N个横列为一个循环单元，每连续N个横列的垫纱方向相同，剩余N个横列则变换垫纱方向，连续N个横列的同向垫纱，使得间隔纱对该N个横列的表层组织同向施力，利于该N个横列的六角网眼组织向一个方向歪斜；后连续N个横列转换垫纱方向进行同向垫纱，使得间隔纱对后N个横列的表层组织，在与对前N个横列施力相反的方向，同向施力，从而使该N个横列的六角网眼组织向另一个方向歪斜；

所述N为6、8或10之一。
为细度大于150D的化学纤维复丝，所述化学纤维复丝为涤纶复丝、锦纶复丝或聚烯烃纤维中的一种或多种。

进一步的，所述梳栉GB4所用纱线为直径大于0.07mm的化学纤维单丝，所述化学纤维单丝为涤纶单丝。

进一步的，所述梳栉GB1和梳栉GB2的垫纱数值不同，且分别为(2-3-2-2/1-2-2-2)×A/（1-0-1-1/1-2-1-1）×A/；所述梳栉GB6和梳栉GB7的垫纱数值不同，且分别为(2-3-2-2/1-2-2-2)×A/（1-0-1-1/1-2-1-1）×A/；所述梳栉GB3和梳栉GB5的垫纱数值为[1-0-0-0/0-1-0-0/0-0-0-0]×A/；所述梳栉GB4的垫纱数值为(1-0-1)×C/（0-1-0-1）×C/或(2-1-2-1)×C/（0-1-0-1）×C/之一；所述A=C=1/2N,B=N-4。

进一步的，织造过程中调整经编机前后针织的间隔在大于等于3mm，以便所织造的布料间隔大于等于3mm。

采用上述方法织造的织物，前后表层织物的交织结构形态是一系列有序紧密排列的歪斜六角网眼，以类似于刚性六边形的结构左右歪斜，采用符合一定细度和刚度要求的常规化纤复丝和单丝进行织造，在较粗机号双针床拉舍尔经编机上编织基于变化经平和编链经编组织的单面六角网眼，用刚度较大的单丝以编链组织相连；按照要求设定垫纱数值、间隔、设计等工艺参数，所得的成品可在下机松驰后自行产生歪斜变形，其歪斜变形程度则决定了负松比效果。该制备方法得到的负松比经编间隔织物可直接具有一定的负松比性能，无须再整理定型，并且可以通过工艺参数的调整来改变织物的负松比效应。

相比于现有技术，本发明可以获得以下有益效果：

(1) 本发明所采用的织造设备为具备电子送经功能的拉舍尔双针床经编机，是市场现有设备，操作技术成熟，制备方便，易于本发明的成本控制和批量生产；

(2) 本发明所需的原料均为常规化学纤维，原料来源丰富，材料成本较低；

(3) 本发明的负松比效果明显，且经反复拉伸后的效果保持性也较好。

附图说明

[0026] 图1本发明方法制备的负松比经编间隔织物结构示意图；

[0027] 图2本发明方法制备的织物结构单元变形示意图；

[0028] 图3本发明方法制备的织物表层结构示意图；

[0029] 图4本发明方法制备的织物间隔纱示意图；

[0030] 图5本发明方法的单面六角网眼织组织线图。

具体实施方式：

[0031] 为了使本发明目的、技术方案和优点更加清楚，以下结合附图及实施例，对本发明作进一步说明。应当理解，此处描述的具体实施例仅用以解释本发明，但并不用于限定本发明。
说明书

[0032] 本发明实施例的负泊松比经编间隔织物，示意图如图1所示，其表面结构形态是一系列有序紧密排列的斜六角网眼，如图3所示，以类似于刚性六边形的结构左右垂直，结构单元变形示意图为图2所示。

[0033] 本发明实施例的负泊松比经编间隔织物表面织物原料采用细度较大，刚度也较大的常规化学纤维复合，如涤纶复丝、锦纶复丝、聚酯纤维等，其细度要求在150D及其以上；间隔织物主要采用细度较大，硬挺度较高的化纤单丝，如涤纶单丝，其单丝直径要求在0.07mm及其以上。

[0034] 本发明实施例所采用设备为拉舍尔单针床经编机，如卡特迈耶RD7/2-12EN型单针床经编机，要求其带有电子送经机构，可实现改造过程中的实时多段分段送经，要求所用设备拉舍尔单针床经编机至少有7把梳栉和用于垫纱，前表层织物至少采用3把梳栉，后表层织物至少采用3把梳栉，间隔织物至少采用1把梳栉。拉舍尔单针床经编机号与所选用原科粗细相适应，一般为E/2及其以下的梳机号经编机。

[0035] 本发明实施例中，前后表层织物采用循环横列数为12 (或16或20) 的经编六角网眼组织，其经向图如图5所示，2把梳栉 (GB1, GB2/GB6, GB7) 穿纱配置为1穿1空；在经编六角网眼组织的基础上再附加上一把梳栉 (GB3/GB5) 编织部分横向缺坠的编链组织，该梳栉满穿配置；间隔织物为直立结构，如图4所示，间隔织物采用开口线圈和闭口线圈组合配置的编链组织，织造过程中调整经编机后针针的隔距在3mm及其以上，间隔层采用单把梳栉满穿，只在位于不同针床上相对的两枚针上垫纱成圈，且以12 (或16或20) 个横列为一个循环单元，与表层组织相对应，每连续6 (或8或10) 个横列的垫纱方向相同，每隔6 (或8或10) 个横列则变换垫纱方向。

[0036] 本发明的实施例中，单面前梳的送经量要根据每个循环中缺坠和编链的横列数设置分段多速送经，缺坠横列的送经量应远远小于编链横列的送经量；单面六角网眼组织所用两把梳的送经量，根据织物变形结果以及与前梳缺坠编链的对应关系，分别进行分段送经，且两把梳送经量也以一定的对应关系差别化设置；前后单面织物的送经量参数设置为对称对应关系；间隔织物的送经量在参考织物隔距值的基础上，根据织物形状的歪斜方向和单面织物的送经量进行分段送经。

[0037] 本发明的一个实施方式中，不同梳栉 (GB1-GB7) 的垫纱数码及穿针方式如下：

[0038] GB1: (2-3-2-2/1-2-2) ×3/(1-0-1-1/1-2-1-1) ×3/
[0039] GB2: (1-0-1-1/1-2-1-1) ×3/(2-3-2-2/1-2-1-2) ×3/
[0040] GB3: 1-0-0-0/0-1-0-0/(0-0-0-0) ×2/0-1-1-1/0-0-0-0/0-1-1-1/1-0-1-1/(1-1-1-1) ×2/1-0-0-0/0-1-1-1/
[0041] GB4: (1-0-1-0) ×6/(0-1-0-1) ×6/
[0042] GB5: 1-1-1-0/0-0-0-1/(0-0-0-0) ×2/0-0-0-1/1-1-1-0/0-0-0-1/1-1-1-0/(1-1-1-1) ×2/1-1-1-0/0-0-0-1/
[0043] GB6: (1-1-1-0/1-1-1-2) ×3/(2-2-2-3/(2-2-2-1) ×3/
[0044] GB7: (2-2-2-3/(2-2-2-1) ×3/(1-1-1-0/1-1-1-2) ×3/

[0045] 其中，GB1和GB2的垫纱数码可以互换，GB6和GB7的垫纱数码可以互换，GB3和GB5的垫纱数码可以分别取对方的数码值，GB4的垫纱还在前前后针相隔一针距或两针距的织针上垫纱，如GB4: (2-1-2-1) ×6/(0-1-0-1) ×6//或GB4: (3-2-3-2) ×6/(0-1-0-1) ×6//
此外，当以16或20个横列为一个循环时，上述实施例中的重复数相应增加重复数。

【0046】以上所述仅为本发明的优选实施方式，但本发明并不仅限于此，熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。因此，只要是在本发明基本原理基础上所做出的改进与变换，均应视为落入本发明的保护范围内。