(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
6. Juni 2002 (06.06.2002)

(51) Internationale Patentklassifikation: H01L 21/3213,
21/306

(21) Internationales Aktenzeichen: PCT/EP01/13527

(22) Internationales Anmeldedatum:

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): INFINEON TECHNOLOGIES AG [DE/DE]; St.-
Martin-Strasse 53, 81669 München (DE).

(72) Erfinder: und

(75) Erfinder/Anmelder (nur für US): GEYER, Stefan
[DE/DE]; Schaufussstrasse 42, 01277 Dresden (DE).

(74) Anwalt: BEHNISCH, Werner; Reinhard, Skuha, Weise
& Partner GbR, Postfach 44 01 51, 80750 München (DE).

(78) Bestimmungsstaaten (national): JP, KR, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(10) Internationale Veröffentlichungsnummer
WO 02/45148 A2

(54) Title: CLEANING SOLUTION FOR SEMICONDUCTOR WAFERS IN THE BACK-END-OF-LINE

(54) Bezeichnung: REINIGUNGSLÖSUNG FÜR HALBLEITERSCHEIBEN IM BEOL-BEREICH

(57) Abstract: The invention relates to a cleaning solution for semiconductor wafers in the back-end-of-line (BEOL). Said solution contains water, tetramethylammonium hydroxide (TMAH) and ethylene glycol. The invention also relates to the use of such cleaning solutions and a method for cleaning semiconductor wafers in the BEOL.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft eine Reinigungslösung für Halbleiterscheiben im BEOL-Bereich, enthaltend Wasser, Tetramethylammoniumhydroxid (TMAH) und Ethyenglykol, die Verwendung derartiger Reinigungslösungen sowie ein Verfahren zum Reinigen von Halbleiterscheiben im BEOL-Bereich.
Reinigungslösung für Halbleiterscheiben im BEOL-Bereich

Die vorliegende Erfindung betrifft eine Reinigungslösung für Halbleiterscheiben im BEOL-Bereich, die Verwendung derartiger Reinigungslösungen sowie ein Verfahren zum Reinigen von Halbleiterscheiben im BEOL-Bereich.

Hintergrund der Erfindung

Es ist bekannt, dass Korrosion ein elektrochemischer Vorgang ist. Ein elektrochemischer Vorgang kann sich jedoch
nur dann abspielen, wenn das Korrosionsmedium eine entsprechen hohe elektrische Leitfähigkeit besitzt. Durch Zumischen schlecht elektrisch leitender Flüssigkeiten (organische Flüssigkeiten) zu gut elektrisch leitenden Flüssigkeiten (wässerige Säure-, Salz- oder Basenlösungen) unterdrückt man bewusst oder unbewusst die Leitfähigkeit der Mischung und damit automatisch auch das Korrosionsverhalten der Mischung. So sind die derzeit eingesetzten Reinigungslösungen für Halbleiterscheiben im BEOL-Bereich wie EKC 265 (Firma EKC) oder ACT 935 (Ashland) Lösungen mit geringer Leitfähigkeit, d. h. mit einem geringen Anteil Wasser und einem großen Anteil organischer Substanzen. EKC 265 und ACT 935 sind Mischungen aus ca. 15 Gewichtsprozent Wasser, ca. 15 Gewichtsprozent Hydroxylamin, ca. 5 Gewichtsprozent Brenzatechin und ca. 65 Gewichtsprozent eines Alkanolamines, wobei das Alkanolamin in EKC 265 Diglykolamin und in ACT 935 Ethanolamin ist.

Obwohl der weitaus größte Teil aller Schaltkreisverdrahtungen derzeit aus Aluminium oder Aluminiumlegierungen besteht, sind beispielsweise auch Kupferverdrahtungen denkbar.

Im BEOL-Bereich werden die zuvor im FEOL-Bereich hergestellten Transistoren hauptsächlich durch Aluminiumleiterbahnstrukturen verbunden. Beim Reinigen kommt es darauf an, die durch Plasmaätzung hergestellten Aluminiumleiterbahnstrukturen von Plasmaätzrückständen zu befreien, ohne dabei die Aluminiumleiterbahnstrukturen auch nur minimal anzutasten und zu schädigen.

Es sind zwar auch kostengünstige saure und wasserhaltige Lösungen wie verdünnte Schwefelsäure mit Wasserstoffperoxid und Flußsäurespuren (z.B. DSP = diluted sulfuric acid peroxid mixture) im Einsatz, allerdings ist ihre Wirkung in bezug auf die Partikelentfernung und Verhinderung von Korrosion nicht so ausgeprägt wie bei den alkalischen wasserarmen Systemen EKC 265 und ACT 935. Auch haben sie oft den Nachteil, dass eine häufige Bestandteilskontrolle und damit eine häufige Qualitätskontrolle notwendig ist, was die Kostengünstigkeit in bezug auf die Ausgangsmaterialien teilweise wieder zunichte macht.

Die US 5,989,353 beschreibt eine Zusammensetzung zur Reinigung von Wafersubstratoberflächen im FEOL-Bereich, die Tetramethylammoniumhydroxid und Wasser und Ethylen glykol enthalten kann, wobei mindestens ungefähr 40 Gewichtsprozent der Reinigungszusammensetzung Wasser ist.
Die EP 578 507 A2 betrifft eine Reinigungslösung, die mindestens eine nukleophile Aminverbindung mit Oxidations- und Reduktionspotentialen aufweist.

Die US 5,855,811 beschreibt eine Fluorwasserstoffsäure enthaltende Reinigungslösung, die weiterhin Wasser, Tetramethylammoniumhydroxid und Ethylen glykol enthalten kann.

Die US 5,139,607 beschreibt eine alkalische Reinigungslösung, die 10 - 30 Gewichtsprozent eines Tetrahydrofurfurylalkohols und ungefähr 10 - 30 Gewichtsprozent eines Reaktionsprodukts des Furfurylalkohols mit einem Alkylenoxid enthält, wobei weiterhin Wasser, Tetramethylammoniumhydroxid und Ethylen glykol enthalten sein können.

Die Reinigungslösungen EKC 265 und ACT 935 sowie im Stand der Technik bekannte Reinigungslösungen für den BEOL-Bereich haben überdies den Nachteil, dass die Reinigung stets bei erhöhter Temperatur erfolgt, was einen zusätzlichen Energieaufwand und einen zusätzlichen Verfahrensschritt, nämlich das Erhitzen der Lösungen, mit sich bringt.

Es ist daher ein Ziel der vorliegenden Erfindung, eine Reinigungslösung bereitzustellen, die die oben aufgeführten Nachteile nicht aufweist.

Halbleiterqualität aus handelsüblichem Ethylenglykol erzeugt werden. Die erfindungsgemäße Reinigungslösung kann daher beim Anwender, bspw. in einer Fabrik für Schaltkreisfertigung (FAB), selbst hergestellt werden.

Weitere Bestandteile, z.B. 1 Gew.-% Propylyenglykol, können erfindungsgemäß zusätzlich in der Reinigungslösung enthalten sein, solange dadurch die erfindungsgemäße Reinigungswirkung nicht beeinträchtigt wird.

Bevorzugt beträgt der Wassergehalt höchstens 40 Gewichts-
prozent, bezogen auf die Reinigungslösung, noch bevorzug-
ter 6 – 25 Gewichtsprozent. Durch den niedrigen Wasseran-
teil können korrosive Reaktionen vermieden werden und
gleichzeitig wird eine sehr gute Reinigungswirkung für
die im BEOL-Bereich eingesetzten Materialoberflächen er-
zielt.

Die Reinigungslösung der vorliegenden Erfindung enthält
bevorzugt keine zusätzlichen Bestandteile, wie Oxidati-
ons- und/oder Reduktionsmittel, beispielsweise Amine,
Hydrazine oder Hydroxylamin, keine weiteren ätzenden Be-
standteile, wie beispielsweise Fluorwasserstoffsäure, o-
der die Atemwege reizende Bestandteile wie Tetrahydrofur-
furylalkohol oder ähnliche. Es war überraschend, daß eine
Zusammensetzung, die keine derartigen Oxidations- oder
Ätzmittel enthält und einen vergleichsweise geringen Was-
sergehalt aufweist, zur rückstandsfreien Entfernung von
Verunreinigungen auf Waferoberflächen im BEOL-Bereich bei
gleichzeitiger zuverlässiger Korrosionsverhinderung ge-
währleisten kann, wobei zudem die Reinigung bei Raumtem-
peratur durchgeführt werden kann.

Eine besonders bevorzugte Reinigungszusammensetzung be-
steht aus 25 Volumenprozent einer 25 gewichtsprozentigen
wässerigen TMAH-Lösung und 75 Volumenprozent Ethylen gly-
kol.

Die Reinigungslösung ist besonders zur Nachreinigung
plasmageätzter und plasmaentlackter Aluminiumleiterband-
strukturen geeignet.
Die erfindungsgemäße Reinigungslösung ist jedoch auch als universelle BEOL-Reinigungslösung einsetzbar, da sie mit den Materialien Al, Aluminiumlegierungen, Ti, TiN, W, Cu, Ta, TaN, SiO₂, SOG, BSG, PSG und BPSG ausgezeichnet verträchtlich ist.

Anschließend erfolgt ein Spülen der Halbleiterscheibe, wobei mindestens ein Mal mit Ethylenglykol, bevorzugt zwei Mal mit Ethylenglykol, und anschließend mit entionisiertem Wasser gespült wird. Die Spülzeiten betragen bevorzugt jeweils ungefähr zwei Minuten für die Ethylenglykolspülungen und ungefähr eine Minute für die Wasserspülung. Anschließend wird die Halbleiterscheibe getrocknet, bspw. in einem Stickstoffstrom. Spülen und Trocknen erfolgt nach im Stand der Technik bekannten Verfahren. Das Spülen mit Ethylenglykol hat im Vergleich zu den bekann-
ten Reinigungslösungen EKC 265 und ACT 935 den Vorteil, dass nicht mit Isopropanol, das leicht entzündlich ist (Flammpunkt 12° Celsius) gespült werden muss, wodurch die Brandgefahr aufgrund größerer Mengen an Isopropanol beseitigt wird. Der Flammpunkt von Ethylenglykol beträgt dagegen 111°C. Bei diesem erfindungsgemäßen Verfahren wird erreicht, dass Plasmaätzrückstände völlig beseitigt werden und gleichzeitig keine Anzeichen für eine Korrosion erkennbar sind.

Insgesamt zeigt die Reinigungslösung der vorliegenden Erfindung eine gute Ätzrückstandsentfernung und Entfernung sonstiger Partikel bei sicherer Korrosionsverhinderung, insbesondere Aluminiumkorrosionsverhinderung, in einem weiten Prozessfenster. Weites Prozessfenster bedeutet in diesem Zusammenhang, dass weder die Zeit noch die genaue Zusammensetzung der Lösung immer genau kontrolliert werden müssen, da die erfindungsgemäße Reinigungslösung sowohl über einen weiten Zeitbereich als auch über einen großen Konzentrationsbereich im wesentlichen gleich wirkt. Das Prozessfenster für das jeweilige Substrat kann von einem Fachmann ermittelt werden.
Die Erfindung wird im folgenden anhand von Beispielen erläutert, die den Umfang der Erfindung jedoch nicht beschränken sollen.

5 Figuren

Fig. 1 zeigt die Ätzrate einer Lösung, bestehend aus Ethylen glykol und 25 gewichtsprozentiger wässriger TMAH-Lösung auf ein Al-Substrat mit 0,5 Gewichtsprozent Cu in nm/min in Abhängigkeit des Gehalts an 25 gewichtsprozentiger wässriger TMAH-Lösung.

Fig. 2 zeigt rasterelektronenmikroskopische Aufnahmen eines Testwafers nach Plasmaätzbehandlung und Restphotolackentfernung vor Behandlung mit der erfindungsgemäßen Reinigungslösung. Fig. 2a zeigt eine größere metallisierte Fläche (Metal-1-Stack) in einem Bereich in der Wafermitte. Fig. 2b zeigt einen ebensolchen Bereich am Waferrand. Fig 2c zeigt eine Bereich in der Wafermitte mit zusätzlich Leiterbahnen. Fig 2d zeigt einen ebensolchen Bereich am Waferrand.

Fig. 3 zeigt rasterelektronenmikroskopische Aufnahmen der in Figur 2 a bis d abgebildeten Bereiche nach Behandlung mit der erfindungsgemäßen Reinigungslösung.

Beispiele

1.

Es wurde getestet, wie sich durch Zusatz von Ethylen glykol zu 25 gewichtsprozentiger wässriger Tetramethylammoniumhydroxidlösung die Ätzrate der Lösung gegenüber einem Aluminiumsubstrat (Aluminiumleiterbahnmaterial, Al mit

2.

Ein Testwafer mit typischem Metal-1-Stack in 0,2 µm-Technologie (SiO₂-Basis, 10 nm Ti, 230 nm Al-0,5 Gewichtsprozent Cu, 5 nm Ti, 40 nm TiN, 60 nm organischer ARC (Anti Reflex Coating – vernetztes Polysulfon) und 780 nm Photolack) wurde belichtet, entwickelt, mit Chlor Ätzchemie der Metal-Stack plasmageätzt und mit Sauer stoff-Downstream-Plasma der Restphotolack und der Rest organische ARC in einer typischen dafür vorgesehenen Anlage (Plasmaätzer) verbrannt. Anschließend wurde der Testwafer im Rasterelektronenmikroskop untersucht. Fig. 2a zeigt eine größere metallisierte Fläche (Metal-1-Stack) in einem Bereich in der Wafermitte. Fig. 2b zeigt einen ebensolchen Bereich am Waferrand. Fig 2c zeigt einen Bereich in der Wafermitte und zusätzlich Leiterbah-
nen. Fig 2d zeigt einen ebensolchen Bereich am Waferrand. Es sind jeweils deutliche Plasmaätzrückstände in Form hellerer unregelmäßiger Bereiche erkennbar.

Anschließend wurde der Testwafer der erfindungsgemäßen Nachreinigung zur Entfernung der Plasmaätzrückstände zugeführt. Dafür wurde der Testwafer neun Minuten bei 23°C Celsius in eine erste Photoschale mit einer Mischung aus 250 ml 25 gewichtsprozentiger wässeriger Tetramethylammoniumhydroxidlösung (Microposit MF 250 Developer (Shipley)) und 750 ml Ethylenglykol Ethylen glykol VLSI Selectipur (Merck)) gelegt. Anschließend wurde der Testwafer mit einer Pinzette für zwei Minuten bei 23°C Celsius in eine zweite Photoschale, gefüllt mit 1000 ml Ethylen glykol überführt und daran anschließend zwei Minuten lang bei 23°C Celsius in eine dritte Photoschale, ebenfalls gefüllt mit 1000 ml Ethylen glykol, überführt.

Nach dieser Tauchprozedur in die erfindungsgemäße Reinigungslösung und die zwei Ethylen glykol spülbaender wurde der Testwafer mit entionisiertem Wasser eine Minute lang mit der Handbrause gespült und anschließend mit der Stickstoffpistole trocken geblasen und wieder im Elektronen-mikroskop untersucht. An den Bereichen, die vorher deutliche Plasmaätzrückstände aufgewiesen (s. Figur 2), waren nun keine Plasmaätzrückstände mehr erkennbar, und es waren auch keinerlei korrosive Ätzgrübchen vorhanden, d. h. die Reinigung war völlig erfolgreich (siehe Fig. 3a bis 3d).

3.
Zur Auslotung des Prozessfensters wurde ein weiterer Testwafer drei Minuten lang bei 23°C Celsius mit der er-

Die Vorteile der Erfindung können wie folgt zusammengefasst werden:

- Entfernung des mutationsverdächtigen Hydroxylamins aus der Lösung;
- Entfernung des braune Flecken erzeugenden Brenzkatechins aus der Lösung;
- Verbilligung der Lösung durch kostengünstige Ausgangsstoffe und eine Selbstherstellung der Lösung beim Anwender;
- Reinigung bei Raumtemperatur;
- Ausschalten der Brandgefahr durch Spülung mit Lösungsmittel mit hohem Flammpunkt;
- Gute biologische Abbaubarkeit sämtlicher Bestandteile der Reinigungslösung;
- Gesundheitliche Unbedenklichkeit der Inhaltsstoffe der Reinigungslösung.
5 Patentansprüche

1. Reinigungslösung für Halbleiterscheiben im BEOL-Bereich, dadurch gekennzeichnet, dass sie Wasser, Tetramethylammoniumhydroxid (TMAH) und Ethylenglykol enthält.

4. Reinigungslösung nach Anspruch 1, dadurch gekennzeichnet, dass sie aus 25 Volumenprozent einer 25 gewichtsprozentigen wässerigen Tetramethylammoniumhydroxidlösung und 75 Volumenprozent Ethylenglykol besteht.

5. Reinigungslösung nach einem oder mehreren der vorhergehenden Ansprüche zur Reinigung von Halbleiterscheiben im
BEOL-Bereich, die die Materialien Al, Al-Legierungen, Ti, TiN, W, Cu, Ta, TaN, SiO₂, SOG, BSG, PSG und/oder BPSG, aufweisen.

5 6. Reinigungslösung nach einem oder mehreren der vorliegen- den Ansprüche zur Reinigung plasmageätzter und/oder plasmaentlackter Aluminiumleiterbahnstrukturen auf Halbleiterscheiben.

14. Verfahren zur Reinigung von Halbleiterscheiben im BEOL-Bereich mit den Schritten:
 a) Inkontaktnbringen der zu reinigenden Halbleiterscheibe mit einer Reinigungslösung, enthaltend Wasser, Tetramethylammoniumhydroxid und Ethylenglykol;
 b) Einwirkenlassen der Reinigungslösung auf die Halbleiterscheibe;
 c) Spülen der Halbleiterscheibe.

16. Verfahren nach Anspruch 14 oder 15,
dadurch gekennzeichnet,
dass die Reinigungslösung 6-25 Gewichtsprozent Wasser, 2-7 Gewichtsprozent Tetramethylammoniumhydroxid und 68-90 Gewichtsprozent Ethylenlykol enthält.

17. Verfahren nach einem oder mehreren der Ansprüche 14-16,
dadurch gekennzeichnet,
dass die Reinigungslösung aus 25 Volumenprozent einer 25 gewichtsprozentigen wässerigen Tetramethylammoniumhydroxidlösung und 75 Volumenprozent Ethylenlykol besteht.

18. Verfahren nach einem oder mehreren der Ansprüche 14-17 zur Reinigung von Halbleiterscheiben im BEOL-Bereich, die die Materialien Al, Al-Legierungen, Ti, TiN, W, Cu,
Ta, TaN, SiO₂, SOG, BSG, PSG und/oder BPSG, aufweisen.

20. Verfahren nach einem oder mehreren der Ansprüche 14-19,
dadurch gekennzeichnet,
dass das Inkontaktbringen für 3-30 Minuten, bevorzugt 5-20 Minuten, besonders bevorzugt für 5-10 Minuten erfolgt.

21. Verfahren nach einem oder mehreren der Ansprüche 14-20,
dadurch gekennzeichnet,
dass das Spülen mindestens einmal, bevorzugt zwei Mal mit Ethylen glykol und anschließend mit entionisiertem Wasser erfolgt.

22. Verfahren nach einem oder mehreren der Ansprüche 14-21, dadurch gekennzeichnet, dass die Reinigungslösung und die Spüllösung Raumtemperatur aufweisen.
Ätzrate = f (Mischungsverhältnis Ethyenglykol zu 25%igem Tetramethylammoniumhydroxid)