« UK Patent Application « GB « 2 266 823..A

(43) Date of A publication 10.11,1993

(21) Application No 9208610.7 (51) INTCLS
GO6F 3/033 // G09G 5/08
(22) Date of filing 21.04.1992
(52) UKCL (Edition L)
H4T TBLC T130 T143
(71) Applicant G4A AKS
International Business Machines Corporation

(56) Documents cited

(Incorporated in the USA — New York) None
Armonk, New York 10504, United States of America (58) Field of search
UK CL (Edition K) H4T TBEX TBLA TBLC TBLM
(72) Inventor TBLX
Brian Cummins INT CLS GO6F 3/023 3/033, GO9G 1/00 5/08

Online databases: WPI
(74) Agent and/or Address for Service
F N Blakemore
IBM UK Ltd, Intellectual Property Dept, Hursley Park,
Winchester, Hampshire, S021 2JN, United Kingdom

(54) Correlation of cursor position in a computer system

(57) A computer system 10 comprises a processor unit 14, a keyboard 16, a screen 12 and a2 mouse 18. A user uses the
mouse to control the position of a cursor 20 on the screen, and also to indicate a selected cursor position. To correlate this
position with shapes 40, 42 on the display, to determine which if any shapes have been selected, the computer first
determines whether a pick rectangle around the selected cursor position overlaps a bounding rectangle 40, 42 around a
shape. Those shapes for which an overlap is found are re-drawn into a bit map in memory, which is then examined to see if
this drawing process has resulted in a change to the bit map. Any shapes which produce a change in the bit map must
overlap the pick rectangle, and so are correlated with the cursor position.

127

40 M

50

V £€¢899¢ ¢ 9

40 —

50~

1/2

APPLICATION
PROGRAM

™~ 30

i

OPERATING
SYSTEM

18

212

CURSOR POSITION 200
SELECTED o
DETERMINE THE PICK 202

RECTANGLE

CREATE BITMAP }+—— 204

' 206
EXAMINE BOUNDING

RECTANGLE

OVERLAP
WITH PICK
RECT. ?
208

210—— CLEAR BITMAP

212~ DRAW SHAPE TO BITMAP

BITMAP NO

CHANGED ?

214

216 —— ADD TO SELECTED LIST

ANOTHER YES

SHAPE 7

218

220

2266823

CORRELATION OF CURSOR POSITION IN A COMPUTER SYSTEM

In a conventional computer system processes are managed by an operating system
such as DOS or OS/2, which in turn supports an application progam such as a word
processor or spreadsheet. The application program is largely responsible for
determining what input or output is neccssary, but only communicates with the
input/output devices via the operating system. Thus the application program might
send a request for a particular output message to the operating system, which is then

responsible for writing the message onto the output display screen.

The actual display on the screen at any onc time is determined by the contents
of a hardware frame buffer. This buffer usually contains the actual pixel intensities
and colours, although there can be another hardware logic processing stage between
the frame buffer and the screen itself (for example the frame buffer may contain text
strings which the logic then processes into pixel patterns). Thus in order to change the
display, the operating system updates the framc buffer, and the output on the screen
then alters accordingly. The frame buffer and logic are implemented in hardware
because the data rate to the screen is very high (typically of the order of Megabytes
per second) - this is also the rcason that image processing imposes such large

computing overheads.

Many modern operating systems provide a graphical user interface (GUI) in
which the user can control the position of a cursor on the screen by moving a mouse
device. The operating system monitors the physical movement of the mouse and
translates this into the corresponding screcn position of the cursor. To select a
particular point on the screen, the user presses a button on the mouse when the cursor
coincides with that point. Again, this user selection of a particular position is first
received by the operating system beforc forwarding to the application program.

Typically the selected position might represent the user’s choice of one of several icons

2

or other shapes currently displayed on the screen. These shapes can represent for

example files to be processed or components of a drawing to be manipulated.

The present invention is concerned with the correlation of a cursor-selected
position with the displayed shapes, to determine which shape (or shapes) the user has
actually chosen. This correlation is sometimes provided by the operating system, but
if not, the application program must do the correlation itself. In either case, the process

must complete in a fraction of a second unless the user is to notice an intrusive delay.

Whilst it is relatively casy for thc user to discern which shape is being selected,
this is a much more difficult task for the software controlling the computer (whether
operating system or application program). It is straightforward enough to obtain the
contents of any one screen pixel by interrogating the frame buffer, but this only reveals
the current value of the pixel. This will therefore not allow a distinction to be made
between for example two shapes that have the same intensity and colour. Furthermore,
because of the high data rate involved it is not possible to separately store scrcen data,
with added information to identify the shapes. Although in theory the correlation
could be performed by re-calculating the pixels occupicd by every shape - indeed this
is how the operating system draws thc shapc in the first place - this is far too expensive
in terms of computer processing time and cannol be done anything like quickly
enough. Time constraints become cven morce acute if the user sclected position has to

be checked against many different shapes displayed simultancously on the screen.

One way of reducing the amount of computation required is to calculate a
bounding rectangle for each shape. The bounding rectangle is defined as the smallest
rectangle (with horizontal and vertical edges) that completely encloses a particular
shape. The selected position is then correlated not against the shape itself but against
the bounding rectangle instead. This approach is much simpler computationally and
therefore faster, but can produce an incorrect correlation if the selected position is

outside a particular shape, but within its associated bounding rectangle.

3

The prior art therefore docs not disclosc an accurate but computationally
efficient pick correlation facility to allow the computer to to determine which shape

or shapes a user has selected.

Accordingly, the present invention provides a method of correlating a cursor
position with displayed shapes in a computer system including storage means, means
for displaying the shapes and a cursor, and user input means for moving the cursor
and selecting a cursor position;

said method comprising the steps of:

displaying one or more shapes on thc display means;

determining the bounding rectangle of cach displayed shape, and storing
information representative of the shapc and bounding rectangle;

responsive to the user sclecting a cursor position, determining a select region for
that position;

examining the bounding rectangle of cach displayed shape to determine whether

it overlaps the select region;

and characterised by:

creating a bit map in the storage means corresponding to the select region;

drawing each shape whose bounding rectangle overlaps the select region into the
bit map;

and examining the bit map to determine whether any shape has written into the

select region of the bit map, and if so correlating that shape with the cursor position

selected by the user.

Thus the present invention adopts a two-part approach to correlation, using
bounding rectangles in a first pass for specd, followed by a second pass to maintain
full accuracy whilst still minimising overall processing time. The examination of
bounding rectangles in the first pass quickly climinates shapes that are not close to the
selected cursor position. The second pass then cxamines any remaining shapes, to
provide an exact determination of correlation. This is achieved by re-drawing the

remaining shapes into a specially created bit map in memory. The bit map is defined

4

so as to correspond to a region of predctermined sizc around the selected cursor
position. This select region, which is usually rcctangular, is effectively a predefined
margin of error that has been attributed to the user’s positioning of the cursor. Since
the select region which is typically only a few pixels across is much smaller than the
whole screen, candidate shapes can be rapidly re-drawn, parts of shapes outside the
select region being simply ignored. The bit map is small enough to keep in RAM, and
so can be accessed quickly to determinc which (if any) of the redrawn shapes have
written pixels to it. Any shape that changes pixcls in the bit map is considered to be
correlated with the user’s selected position. It is up to the designer of the calling
procedure to decide what action to take if morc than one shape (or zero) is found to
be correlated. The method of the present invention can be implemented either as part

of the computer operating system, or by an application program.

Preferably the bit map is created with onc bit per pixel, as opposed to the
several bytes per pixel of the screen image. All arcas of a shape, whether partially
shaded, or light or dark solid colour, arc therefore effectively depicted in monochrome
at a single intensity (black or zero is convenicnt). This simplified representation is quite
sufficient to determine whether a shapc overlaps the sclect region, is faster to re-draw,

and requires far less storage than a bit map with scveral bytes per pixel.

It is further preferred that the step of determining whether a shape whose
bounding rectangle overlaps the sclect region has been written to the bit map
comprises rcading the bit map after cach shapc has been drawn, and examining
whether any bits in the map have been changed. Thus after each shape is drawn into
the bit map, the bit map is checked 1o scc if any bits have been altered by drawing
that shape. If any have, then that shape must overlap the select region, and so that
shape is one that the user may have sclected. A list can then be created of correlated

shapes.

An alternative approach is if each pixel in the bit map corresponds to three
bytes of information (eg 255 intensity levels in each of three colours), so that each pixel

has 24 bit positions associated with it. Provided that no more than twenty-four shapes

{ 5

are displayed at any particular time, the first shape can be drawn into the first bit
position, the second into the second, etc. At the cnd, the value for each pixel can then
be read out and the correlated shapes uniquely determined from the bit positions that
have been altered. This approach has the advantage of reading the bit map fewer
times, but requires much larger storage space for the bit map and is limited in the

number of shapes that it can handle.

Preferably the steps of examining the bounding rectangle, drawing each shape,
and examining the bit map are performed in succession for cach shape. This allows the
correlation procedure to be terminated for cxample as soon as the first shape
(corresponding perhaps to the uppermost on the screen) to be correlated. A different
approach would be to first make a list of thosc shapes whose bounding rectangle
intersects the select region, and then draw the shapes in this list into the bit map. This
is less efficient if only a limited number of correlated shapes are to be detected because

it calculates bounding rectangle intersections for ecvery shape.

The invention also provides a computer system including storage means, means
for displaying shapes and a cursor, uscr input means for moving the cursor on the
display means and for sclecting a cursor position, and means for correlating the
selected cursor position with displayed shapcs;

said correlating means comprising:

means for determining the bounding rectangle of cach displayed shape;

means for storing information representative of the shape and bounding
rectangle;

means responsive to the user selccting a cursor position for determining a select
region for that position;

means for examining the bounding rectangle to determine whether it overlaps
the select region;

and characterised by:

means for creating a bit map in the storage mcans corresponding to the select

region;

(6

means for drawing cach shape whosc bounding rectangle overlaps the select
region into the bit map;

and means for examining the bit map to determine whether any shape has
written into the select region of the bit map, and if so correlating that shape with the

cursor position selected by the uscr.

An embodiment of the invention will now be described in more detail, with
reference to the following drawings:

Figure 1 is a schematic diagram of a typical computer system;

Figure 2 is a schematic diagram illustrating the interaction between an
application program and an operating system; and

Figure 3 is a flow chart illustrating a method in accordance with the invention.

Figure 1 illustrates a computer system 10 including a screen 12, processor unit
14, keyboard 16 and mouse 18. With the mouse, the user can change the position of
a cursor 20 displayed on the screen. Typically input from the mouse and output to the
screen are handled by BIOS code 34 (see Figure 2), which can be treated for present
purposcs as parf of the operating system 32. The following description will assume that
the correlation of the cursor position is performed by an application program, but it

could equally well be implemented as part of the computer operating system.

In order to draw a particular shapc 40, 42 on the screen 12, the application
program calls an appropriate subroutine of the operating system, and passes to it
various parameters specifying the shape to be drawn (size, position etc). Typically
other subroutines might also be called, for example to initialise drawing operations.
The subroutine calls and associated paramcters that are available in the DOS
Windows operating system from Microsoft Corporation are described in “The
Microsoft Windows Software Devclopment Kit Reference Vols 1 and 2”7 (Document
Number SY0302a-300-R00-1089) - analogous proccdures exist in other programming
environments. The operating system then sends appropriate commands to the device

drivers to draw the requested shapc on the screen. Generally the application program

{ 7

works in pre-defined x-y coordinates, which the operating system translates into actual

pixel positions.

When the application program requests a shape to be drawn on the screen, it
also calculates the bounding rectangle for that particular shape. For shapes such as a
circle or square it is very simple to determine the bounding rectangle. For arbitrary
polygons, these can be represented as a plurality of lines, and the bounding rectangle
for the polygon calculated relatively simply as the smallest rectangle that encloses the
bounding rectangle of every line. For curves the bounding rectangle can either be
obtained by a more sophisticated calculation, or by splitting the curve into a scries of
very short straight line segments and following the procedure for a polygon. Bounding
rectangles 50, 52 are shown in Figure 1 for shapes 40, 42, although normally of course
the bounding rectangles do not appear on the screen. It can be seen that the arca of
a bounding rectangle can be considerably more than that of the shape itself (especially

if the shape represents a “line”).

The application program maintains a table containing an identification of each
shape currently displayed on the screen, and also of the associated bounding rectangle.
Typically bounding rectangles arc defined in terms of the X-Y coordinates of the
bottom-left and top-right corners. A new entry is made in this table for each new
shape displayed on the screen, whilst the entry is delcted if the shape is removed from

the screen.

When the user selects a particular position on the screen, normally using a
button 118 on the mouse 18, the opcrating system returns to the application program
the current position of the cursor 20 (in x-y coordinates, rather than pixel coordinates).
The application then converts this position into a pick rectangle around the cursor.
The pick rectangle has horizontal and vertical edges centered on the exact cursor
position and defines an area which it is assumed that the user has sclected all of - any
shape that overlaps any of the pick rectangle is correlated with the sclected cursor
position. Thus the pick rectangle cffectively gives the user some margin for error in

positioning the cursor, which is particularly uscful in attempting to select a small or

L 8

narrow object, such as a line. Often the user can actually control the size of the pick
rectangle, and indeed it is possible to use a 1x1 rectangle, in which case the cursor

must lie on exactly the same pixel as the shape to be selected.

To perform the pick correlation, the application program then examines each
entry in its table of displayed shapes to sce if the pick rectangle intersects the bounding
rectangle of the shape. The process for determining whether two rectangles overlap is
straightforward and well-known to the skilled man. Those shapes which are found to
overlap the pick rectangle are then re-drawn. This is done by calling essentially same
operating system subroutines as used to draw the shapes on the screen, but this time
specifying (i) that the “screen” sizc is cqual to that of the pick rectangle; (ii) that there
is only one bit per pixel; and (ii) instcad of drawing to the screen, the pixel values are
to be written into a file in memory. The re-drawing can be performed very quickly
because factors (i) and (ii) above mcan that the cffective size of the screen is very
small. Thus any portions of a shape outside the pick rectangle (which is typically only
1% of the width of the full screen) are ignored, and the number of bits per pixel is also
reduced. Any part of the shape, whether shaded or not, whatever its colour, is

represented by a bit value of 1.

After the shape has been drawn, the program requests the contents of the bit
map back from the operating system (this is of course possible because the bit map has
been written to memory rather than the screen). The bit map is examined to see if any
of the bits have non-zero values. If the bit map contains only zeros, then the shape has
not written to any pixels in the pick rcctnngic, and so that particular shape is not
correlated with the selected cursor position. In other words, the selected cursor position
lies inside the bounding rectangle of that shape, but outside the shape itself. The
program can then go on to examine the bounding rectangle for the next displayed
shape. If however a non-zero value is found (ic a bit set to 1), then this indicates that
this particular shape has written to the bit map, and so overlaps the pick rectangle.
This shape is therefore identified as being correlated with the selected cursor position.
The bit map must now be reset to zero before the process can continue to search for

other correlated shapes (unless of course the application program is only interested in

L 9

first correlated shape). If more than one shape is found to be correlated with the
selected cursor position, it is up to the application program to decide what action to
take next - eg whether it accepts the multiplc shapes, whether it wants the user to
reselect, or whether it perhaps wants to repeat the above process using a smaller

effective pick rectangle to hunt for the correlated shape closest to the actual cursor

position.

The above process is illustrated in the flow chart of Figure 3, and the
corresponding code is listed in Table 1. Table 2 gives a list of the Windows subroutines
called, and a brief explanation of what cach docs. The first two sections of code in
Table 1 set up parameters which arc under the control of the application program -
the size of the pick rectangle, and the maximum acceptable number of “hits” (ie shapes
that are correlated with the cursor position). Normally the same values for these

parameters arc used for many correlations, and so their values will be preset before the

correlation starts.

The correlation proper begins with reccipt of the selected cursor position 200
from the operating system, which allows the pick rectangle to be calculated in a
straightforward manner 202. The bit map corresponding in size to the pick rectangle
is then created 204 by sections 5-9 of the code of Table 1. Note that the bit map is
created at the start of the correlation, and is therecafter available for each shape as
required. A slight complication is that in Windows the memory allocated must be a
whole number of words (a word is two bytes). The calculation for “bitwidth” in section
5 takes this into account (note that both “bitwidth” and “bitsize” are actually a number
of bytes). As a result, the memory allocated may be slightly larger than the pick

rectangle.

The bounding rectangle of each displayed shape from the array “bound_rect”
in section 11 is examined 206 to see whether it overlaps the pick rectangle 208, starting
at the bottom of the array which corresponds to the most recently drawn shapes. If an
overlap is found, the bit map is first clearcd to zero 210 in case a previous shape has

written to it, and then the shape is drawn into the bit map 212 using the function

< 10

draw_shape”. This function masks off any part of the shape outside the pick rectangle
(section 13) to speed up the correlation if the graphics engine of the operating system
would otherwise process features outside the bit map before actually drawing the

shape.

Once the shape has been drawn, the portion of memory holding the bit map is
read out and checked (a byte at a time) to scc if any bits have been altered from zero
214. Although the memory allocation for the bit map may be larger than the pick
rectangle, the masking process of “draw_shapc” cnsures that any bits outside the pick
rectangle will be zero (alternatively the loop limits in section 15 could be adjusted
appropriately so as to only search those bits actually in the pick rectangle). If any non-
zero bits are found (section 16), then this indicates that the shape is corrclated with
the selected cursor position. This hit is then saved 216 before the ncxt shape is
processed 218. The correlation ends 220 when all the displayed shapes have been
examined, or when the specified maximum nu mber of hits has been obtained (section
19 - this possibility is not shown in Figure 3). The latter case may occur for example,
when the application program is only interested in the first (ie top) shape selected, in
which case MAXSEL would be sct to 1. At this stage the bit map can be deleted, the
memory allocation released, and the application program can decide how to process

the correlated shapes (sections 20-23).

« 11
Table 1

Code for Correlation of Cursor Position

/* 1: Set Pick Aperture size */

pickapp.cx = ...

pickapp.cy = ...

/* 2: set the maximum number of hits allowed */

maxsel = ...

/* 3: get the select point in terms of windows pels */

select_point.x v

select_point.y

/* 4: set the pick rectangle extents around the select point */

]

pick_rect.left select_point.x - pickapp.cx;

I

pick_rect.top select_point.y - pickapp.cy;

pick_rect.right select_point.x + pickapp.cx;

pick_rect.bottom = select_point.y + pickapp.cy;

/* 5: allocate memory for the bitmap */

bitwidth = (2 * pickapp.cx + 15) / 16 * 2;

bitsize = 2 * pickapp.cy * bitwidth;

hmem = GlobalAlloc(GMEM_MOVEABLE | GMEM_DISCARDABLE, (DWORD)bitsize);

bits = GlobalLock(hmem);

/* 6: Create bitmap memory Device Context */

hdcMemory = CreateCompatibleDC((HDC)NULL);

/* 7: generate a monochrome bitmap to do drawing in */
hbitmap = CreateBitmap(2 * pickapp.cx, 2 * pickapp.cy, 1, 1, bits);
holdbitmap = SelectObject(hdcMemory, hbitmap);

12

/* 8: set the drawing objects for the bitmap */

initial_pen = SelectObject(hdclMemory, GetStockObject(WHITE_PEN)) ;
initial_brush = SelectObject(hdcMemory, GetStockobject (WHITE_BRUSH)) ;
initial_font = SelectObject(hdcMemory, GetStockObject (SYSTEM_FONT)) ;

/* 9: set the colour for the bitmap */
SetTextColor (hdcMemory, (COLORREF)OXOOFFFFFF);
SetBkColor (hdcMemory, (COLORREF)OxX00FFFFFF);

/* 10: loop backward down the list of draw shapes */
for (i = draw_segments; i >= 0; i--)

{

/* 11: see if the bounds array intersects with the pick rectangle */
if (IntersectRect(&dummy_rect, &pick_rect, bound_rect[i]))

{
/* 12: clear the bitmap to zero */

PatBlt(hdcMemory, 0, O, 2 * pickapp.cx, 2 * pickapp.cy, BLACKNESS) ;

/* 13: draw the shape into the bitmap */
/* use our own draw_shape function */

drav_shape (hdcMemory, &pick_rect, shape[il):

/* 14: get the bitmap bits into memory we can address */

GetBitmapBits(hbitmap, (DWORD)bitsize, bits);

13

/% 15: check the bits in the bitmap to see if any are not zero */
bit_on = FALSE;

for (ibit = 0; ibit < bitsize; ibit++)

{
if (bits[ibit] != (char)0)
{
bit_on = TRUE;
break;
}
3

/* 16: check if any bits were on */

if (bit_on == TRUE)

{
/* 17: save away the shape id for later processing */
array[hits] = shape[il];
/* 18: increment hits array index */
hits++;
/* 19: see if we reached the limit of hits required */
if (maxsel-- <= 0)
break;
3

/* 20: tidy up the gdi objects that we may have created */
SelectObject(hdcMemory, initial_pen);
SelectObject(hdcMemory, initial brush);
Selectobject(hdcMemory, initial font);

14

/* 21: tidy up the bitmap stuff */
SelectObject(hdcMemory, holdbitmap);
DeleteObject(hbitmap);
GlobalUnlock(hmem) ;

GlobalFree (hmem) ;

/* 22: delete memory device context */

DeleteDC(hdcMemory);

/* 23: Bnalyse the result */
if (hits > 0)
{

Table 2

List of Windows Subroutines called

GlobalAlloc() " _ allocate memory from the global heap
GlobalLock() - Get pointer to memory block
CreateCompatibleDC() - Create memory device context
CreateBitmap() - Create memory bitmap

SelectObject() - Select object to be used in subsequent GDI drawing
SetTextColor() - Sets the text colour

SetBkColor() - Set the background colour

IntersectRect() - Create the intersection of two rectangles
PatB1lt() - Create a bit pattern

GetBitmapBits() - Copies bitmap bits into a buffer
Globalunlock() - Unlocks a global memory block
GlobalFree() - Frees a global memory block

DeleteDC() - Delete memory device context

J 16

Claims

1. A method of correlating a cursor position with displayed shapes in a computer
system including storage means, means for displaying the shapes and a cursor, and
user input means for moving the cursor and selecting a cursor position;

said method comprising the steps of:

displaying one or more shapes on the display means;

determining the bounding rectangle of cach displayed shape, and storing
information representative of the shape and bounding rectangle;

responsive to the user selecting a cursor position, determining a select region for
that position;

examining the bounding rectangle of cach displayed shape to determine whether
it overlaps the select region;

and characterised by:

creating a bit map in the storage means corresponding to the select region;

drawing each shape whose bounding rectangle overlaps the select region into the
bit map;

and examining the bit map to determinc whether any shape has written into the
select region of the bit map, and if so corrclating that shape with the cursor position

selected by the user.

2. A method of correlating according to claim [, wherein the step of examining the
bit map comprises reading the bit map after cach shape has been drawn, and

determining whether any bits in the map have been changed.

3. A method of correlating according to claim 2, wherein the bit map is created

with one bit per pixel.

J 17
4. A method of correlating according to any preceding claim, wherein said steps
of examining the bounding rectangle, drawing each shape, and examining the bit map

are performed in succession for each shape.

5. A method of correlating according to any preceding claim, wherein the select

region is rectangular in shape.

6. A method of correlating according to any preceding claim, wherein the
bounding rectangle of irregular curves arc determined by treating them as consisting

of a multitude of straight-line segments.

7. A computer system including storage means, means for displaying shapes and
a cursor, user input means for moving the cursor on the display means and for
selecting a cursor position, and means for correlating the selected cursor position with
displayed shapes;

said correlating means comprising:

means for determining the bounding rectangle of each displayed shape;

means for storing information representative of the shape and bounding
rectangle;

means responsive to the user selecting a cursor position for determining a select
region for that position;

means for examining the bounding rectangle to determine whether it overlaps
the select region;

and characterised by:

means for creating a bit map in the storage means corresponding to the select
region;

means for drawing each shape whosc bounding rectangle overlaps the select
region into the bit map;

and means for examining the bit map to determine whether any shape has
written into the select region of the bit map, and if so correlating that shape with the

cursor position selected by the user.

ratents Act 197/

Appllcauun HUHJYocl

Examiner's report to the Comptroller under

Section 17 (The Search

Report) ' 920

8610.7

Relevant Technical fields

(i) UK CI (Edition X)

(ii) Int Cl (Edition 5)

Databases (see over)
(i) UK Patent Office

i)
(’ ONLINE DATABASES:

HAT (TBEX, TBLA, TBLC, TBLM,
TBLX)

GO6F 3/023, 3/033, GO9G 1/00,

5/08

WPI

Search Examiner

P J EASTERFIELD

Date of Search

7 AUGUST 1992

Documents considered relevant following a search in respect of claims

1 TO 7
Category ldentity of document and relevant passages Relevant to
(see over) claim(s)
NONE
. &2
SF2(p) Kim - doc99\fil000234

- -

Category Identity of document and relevant passages Relevant
to claim(s)

Categories of documents

X: Document indicating lack of novelty or of P: Document published on or after the declared
inventive step. priority date but before the filing date of the

.. . . . resent application.
Y: Document indicating lack of inventive step if P PP . .
combined with one or more other documents of the E: Patent document published on or after, but with
same category. priority date earlier than, the filing date of the

e . present application.
A: Document indicating technological background .
and/or state of the art. &: Member of the same patent family,

corresponding document.

Databases: The UK Patent Office database comprises classified collections of GB, EP, WO and US
pater_ﬂ: specifications as outlined periodically in the Official Journal (Patents). The on-line databases
considered for search are also listed periodically in the Official Journal (Patents).

Published 1993 at The Patent Office, Concept House, Cardiff Road, Newport, Gwent NP9 1RH. Further copies may be obtained from
Sales Branch, Unit 6, Nine Mile Point, Cwmfelinfach, Cross Keys, Newport, NP1 7HZ. Printed by Multiplex techniques Itd, St Mary Cray, Kent.

o

