PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97721161
13 A2

G06 (43) International Publication Date: 12 June 1997 (12.06.97)

(21) International Application Number: PCT/US96/18814 | (81) Designated States: JP, KR, European patent (AT, BE, CH, DE,

(22) International Filing Date: 21 November 1996 (21.11.96)

(30) Priority Data:

08/561,349 Us

21 November 1995 (21.11.95)

(71) Applicant: DIAMOND MULTIMEDIA SYSTEMS, INC.
[US/US]; 2880 Junction Avenue, San Jose, CA 95134 (US).

(72) Inventors: FLORY, Kevin, J.; 523 Klopping Court, Patternson,
CA 95363 (US). KELLER, James, A.; Apartment 304, 1528
Vista Club Circle, Santa Clara, CA 95054 (US).

(74) Agent: ROSENBERG, Gerald, B.; Fliesler, Dubb, Meyer
& Lovejoy, Suite 400, Four Embarcadero Center, San
Francisco, CA 94111-4156 (US).

DK, ES, FlI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report,

(54) Title: MODULAR VIRTUALIZING DEVICE DRIVER ARCHITECTURE

(57) Abstract

A device driver architecture that couples an operating
system to a computer interface of a controller device that
includes a plurality of functional sub-elements. The device
driver includes a plurality of operating system interface ob-
jects each presenting an operating system interface (OSI) to
the operating system, a plurality of computer interface objects
each providing for the generation of programming values to
be applied to the computer interface to establish the operat-
ing mode of a respective predetermined sub-element of the
controller device, and a device driver library of processing
routines callable by each of the plurality of operating sys-
tem interface objects to process data and generate calls to the
plurality of computer interface objects in predetermined com-
binations. The device driver library enables the selection of
an execution context within which to define the generation
and application of the programming values to the computer
interface. The state of the hardware interface is virtualized
and maintained in discrete contexts, allowing for application
specific, dynamic alternation of the state of the hardware in-
terface through essentially context switching private to the
device driver in response to selected operating system events.

10~
([]
DISPLAY f
BUFFEI\!_ N
L
DAC
24 .
GRAPHICS J-3o
CONTROLLER
CPU
S N\ 12
26 o
VIDEO e
CONTROLLER = N 14 16
iy [
o
. MEMORY
28 29
[—%.m ROM] |M19 18
MASS STORAGE
PERIPHERAL
OTHER
PERIPHERAL
Lso

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
[o}]
CcM
CN
Cs
cz
DE
DK

$22RE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Céote d’lvoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Bstonia

Spain

Finland

France

Gabon

ML
MN
MR

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 97/21161 PCT/US96/18814

10

15

20

25

Modular Virtualizing Device Driver Architecture

Background of the Invention
Field of the Invention:

The present invention is generally related to
the design of device drivers utilized in computer
operating systems to define and establish an interface
between the core operating system and typically hardware
devices and, in particular, to a modular device driver
architecture providing a virtualized, context switchable
interface environment within which to operate typically
hardware devices in support of operating system
functions, specifically including information display
functions.

Description of the Related Art:

In conventional computer systems, software
operating systems provide generalized system services to
application programs, including utility and daemon
programs. These system services conventionally include
access to whatever individual hardware peripheral
devices, each generally presenting a well defined
hardware interface to the computer system, may be
attached directly or indirectly to the computer system.
Device drivers, implemented as software modules or
Components that can be integrated into an operating

WO 97/21161 PCT/US96/18814

10

15

20

25

30

-2 -

system, are typically used to provide well defined

-software application program interfaces (APIs) to the

operating system and application programs for each of
the hardware interfaces. Device drivers often provide
a degree of device independence or virtualizing that may
simplify the interaction of an application program or
operating system with the specifics of a particular
class of hardware interface, such as a video controller.
Conventionally, for each implementation underlying a
particular hardware interface, a specific device driver
is used to implement an otherwise common API that is
presented to the application programs and operating
system.

A number of problems are inherent in conventional
device driver designs. First, conventional device
drivers are specific to a particular hardware interface
and the function of the underlying device or controller
system. Thus, whenever a new or different version of a
hardware controller is produced, a new device driver
equally specific to the new or different hardware must
also be developed. Where there are many different
versions of a hardware device, a generally like number
of device drivers must be developed. Alternately,
single combination device drivers may be constructed to
support multiple versions or types of devices. Such
device drivers typically incorporate multiple device
specific drivers that are otherwise substantially
independent of one another into single binary file.

The effective number of device drivers needed to
support a particular piece of hardware is also dependant
on the number and differences in the operating system
environments within which the hardware is to be used.

In all but the most closely related operating systems,

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 3 -

a substantial redevelopment of the device driver is
required to both provide for the proper ability to
incorporate the device driver into a particular
operating system and, perhaps more significantly, to
provide a logically similar though often entirely
different API to the operating system and applications.
Usually, the detailed definition of the API of the
device driver governs the detailed design of the device
driver itself. Consequently, device drivers for the
same hardware but for different operating systems are
often almost completely independently developed.
Another consideration that affects the number of
device drivers that are required to support a particular
hardware controller arises from the nature of other
hardware and systems that are connected to a particular
controller. Again, to provide flexibility in the
detailed construction of computer systems, a hardware
controller may be capable of supporting a number of
distinctly different modes of operation. For example,
a video controller may be able to support a significant
range of video display resolutions and color depths.
However, the range may be constrained by direct
limitations such as the amount of video RAM actually
implemented on a particular video controller and
indirectly by the maximum vertical and horizontal
frequencies of an attached video display. The
requirements of particular applications may also drive
the selection of a particular mode of operation that
must be supported by a device driver. Conventionally,
a number of device drivers are provided with the
hardware controller, each supporting a different set of
one or more modes of operation. One of the provided
device drivers must therefore be selected for operating

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 4 -

system incorporation based directly on the configuration
of the particular computer system. Aside from the
difficulties of picking a device driver that supports
the desired set of operating modes, a substantial
difficulty exists in preemptively determining the
variety of modes that different individual device
drivers are to support. Although the individual drivers
may differ only by some modest amount, their number may
be significant in terms of development.

A second problem, in part a consequence of the
first, is that each device driver must be thoroughly
tested in the full variety of environments that the
device driver may be used in to ensure commercially
acceptable operation. Conventionally, device drivers
are essentially monolithic software modules that are
incorporated bodily into the operating system. As such,
testing of even minor variants of a device driver for a
particular operating system requires that the full suite
of operational function and application compatibility
tests be run to verify correct operation of the device
driver. Selective functional testing is generally
inappropriate due to the real possibility of collateral
operational errors arising from any modification of a
monolithically coded device driver. Given the
substantial number of effectively different device
drivers conventionally supported for a reasonably
complex hardware controller and the size and substantial
extent of corresponding test suites, the testing of
device drivers represents a substantial expense and a
very significant delay in bringing new or improved
versions of a product to market.

A third problem with conventional device driver
designs is that they provide for a substantially static

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 5 -

type of hardware controller management. In general,
device drivers establish a single set of operating
parameters for the hardware controller being managed by
the device driver. The operating system and the
application programs executing on the computer system
all must accept the parameters of this static mode or
essentially fail to operate correctly.

In limited instances, a conventional device driver
may make some modes available or visible to application
programs. To make use of these modes, the device driver
therefore relies on application programs to have
essentially compiled-in hardware dependencies. In such
cases, the application programs may invoke a mode
change, though with potential detrimental effects on the
other executing programs that, even if capable of
invoking a mode switch, are effectively unaware of any
such switch.

Some typically multi-tasking operating systems can
perform limited dynamic hardware controller mode
switching, though only through an operating system
supported state change. In these cases, the operating
system essentially reloads the state of the device
driver and hardware controller consistent with the state
of a new mode of operation. However, there is no direct
relation between the applications executing and the
state of the device driver and hardware controller.
Again, any executing applications are largely if not
completely unaware of any mode switch. Consequently,
the selected mode may be optimal for some executing
application, but not necessarily the application with
current execution focus.

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 6 -

Summary of the Invention

Thus, a general purpose of the present invention is
to provide a flexible, modular device driver
architecture that can provide independent hardware
configuration options on a dynamic reconfiguration
basis.

This 1s achieved in the present invention by
providing a device driver architecture that operates to
couple an operating system, provided in the memory of a
computer system having a processor, to a computer
interface of a controller device that includes a
plurality of functional sub-elements. The device driver
includes a plurality of operating system interface
objects each presenting an operating system interface
(0OSI) to the operating system, a plurality of computer
interface objects each providing for the generation of
programming values to be applied to the computer
interface to establish the operating mode of a
respective predetermined sub-element of the controller
device, and a device driver 1library of processing
routines callable by each of the plurality of operating
system interface objects to process data and generate
calls to the plurality of computer interface objects in
predetermined combinations. The device driver library
enables the selection of execution contexts within which
to define the generation and application of the
programming values to the computer interface.

An advantage of the present invention is that the
state of the hardware interface and, correspondingly,
the state of the controller that presents the hardware
interface, is virtualized and maintained in discrete
contexts. Operational features or modes of a controller
that must otherwise be handled or managed by individual

WO 97/21161 PCT/US96/18814

10

15

20

25

30

-7 -

application programs can be virtualized by operation of
the present invention. The present invention provides
for application specific, dynamic alteration of the
state of the hardware interface through essentially
private context switching implemented by operation of
the device driver. Selected operating system events are
modified or trapped to initiate the creation of new
contexts and the dynamic switching between contexts by
the device driver.

Another advantage of the present invention is that
the device driver provides for a comprehensive
optimization of the functions supported through the
device driver by the controller. The device driver
provides for the virtualization of the API call
interfaces supported by the device driver.
Virtualization of the call interfaces through the use of
operating system interface objects provides specific
support for independently defined APIs and the
translation of functionally equivalent calls to be
supported by substantially common execution streams.

A further advantage of the present invention is
that virtualization of the call interfaces of the device
driver architecturally establishes a common evaluation

of API calls and their parameters, essentially
eliminating any requirement for subsequent parameter
checking within the common execution streams. The

resultant substantially linear execution streams,
coupled with pointer referencing of context data
structures ensures efficient execution performance while
enabling substantially greater functionality than
achievable in conventional monolithic device drivers.
Yet another advantage of the present invention is
that the device driver provides for context dependant

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 8 -

alteration of the substantially linear execution

-Streams. Conversion functions required to enable or

support switching between contexts are supported by
linking the functions directly into the execution
streams so as to minimize repetitive testing to
determine whether a conversion function need be
performed.

A still further advantage of the present invention
is that the device driver incorporates dynamic loading
and configuration of essential functional objects
necessary or optimal to support the particular
controller configuration accessible through the hardware
interface. The device driver responds to encoded
configuration data obtained through the hardware
interface or otherwise from the controller to identify
the independent functional sub-elements constituting the
controller, determines a corresponding set of hardware
interface objects appropriate to support the sub-
elements and dynamically loads and links in the object
set as part of the initialization of the device driver.

Still another advantage of the present invention is
that the device driver supports a variety of hardware
interface objects that are programmable with respect to
certain functional or operational aspects. Based on the
encoded configuration data obtained through the hardware
interface or otherwise from the controller, the device
driver identifies and loads configuration data from
system memory to program the hardware interface objects
with operational configuration data defining details of
how the hardware interface objects will support their
corresponding sub-elements.

Yet still another advantage of the present

invention is that the device driver provides an

WO 97/21161 PCT/US96/18814

10

15

20

25

30

-9 -

established architecture within which new hardware

-interface objects can be developed in substantial

isolation from other hardware interface objects and
other architectural components of the device driver.
The architectural design of the hardware interface
objects themselves also allows substantial configuration
revision and enhancement to be performed through
redefinition of the operational configuration data used
Lo program the corresponding hardware interface objects.
Modification of a device driver to support a revised or
new controller sub-element may be limited to simply
editing a configuration data file as opposed to
preparing source code modifications to the sub-element
corresponding hardware interface object. 1In any case,
compatibility testing can be appropriately limited to
testing the particular hardware interface object that
supports a revised or new sub-element of a controller.

A yet still further advantage of the present
invention is that the device driver provides for
modification of the operating system to enforce a
consistent reporting of the color depth currently
supported by a video display controller. Different
color depth contexts are established for the sget of
executing application with each context corresponding to
the maximum acceptable color depth of one or more
executing applications. As context is changed and where
the maximum color depth of an application exceeds the
color depth capabilities of the video display
controller, color depth conversion functions linked into
appropriate linear execution streams provide for display
data color depth conversion.

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 10 -

Brief Description of the Drawings
These and other advantages and features of the

present invention will become better understood upon
consideration of the following detailed description of
the invention when considered in connection of the
accompanying drawings, in which like reference numerals
designate like parts‘throughout the figures thereof, and
wherein:

Figure 1 is a schematic block diagram of a computer
system constructed in accordance with the present
invention;

Figure 2 provides a schematic block diagram of the
architectural configuration of the present invention
during initialization of the device driver of the
present invention;

Figure 3 provides a flow diagram detailing the
initialization of the present invention;

Figure 4 provides a schematic block diagram of the
architectural configuration of the present invention
during a run time execution of the device driver of the
present invention;

Figure S5a provides a general illustration of the
relationship between plural shell objects defining
device driver context, the Shell Library, and the
physical device structure of the operating system
consistent with the preferred embodiment of the present
invention;

Figure 5b provides a generalized illustration of
the relationship between plural instantiations of a
hardware interface object consistent with a preferred
embodiment of the present invention;

Figure 6a provides a flow diagram describing the

performance of steps in preparing for a context switch

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 11 -

in accordance with the preferred embodiment of the
present invention;

Figure 6éb provides a flow diagram describing the
steps utilized in realizing a new context in accordance
with a preferred embodiment of the present invention;

Figure 7 provides a software flow diagram of the
steps utilized in terminating the operation of a device
driver constructed in accordance with the present
invention;

Figure 8 provides a block diagram of illustrating
the wuse of both real and wvirtual architectural
configurations of the present invention in support of
multiple virtual machines executing within an operating
system consistent with the present invention; and

Figure 9 provides a schematic block diagram of the
architectural configuration of a virtual device driver
constructed in accordance with the present invention.

Detailed Description of the Invention
I. Hardware System Overview:
A computer system 10, suitable for utilization
of the present invention, is shown in Figure 1. The

computer system 10 preferably includes a central
processing unit (CPU) 12 coupled through a system data
bus 14 to a main memory 16 and a mass storage peripheral
18, preferably including a disk drive controller and
hard disk drive unit. For purposes of the present
invention, the operation of the mass storage peripheral
18 is sufficient if the supported function permits the
reading of a certain executable, data and configuration
files from a non-volatile resource. Thus, the mass
storage peripheral 18 may be a communications controller

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 12 -

providing access to a external or remote device or
system that provides for the storage of data readable by
the computer system 10 typically in a file oriented
organization.

A video display controller 19 is also provided as
a peripheral device coupled to the system bus 14. The
hardware implementation of the video display controller
19 is generally conventional in nature for purposes of
the present invention. However, in the context of the
present invention, the video controller 19 is uniquely
described as a collection of logically independent sub-
elements that together comprise the controller 19. The
sub-elements are logically distinguished by their
functional identity particularly with regard to
generally independent operational programmability. That
is, the functional divisions of the hardware
implementation of the controller 19 largely define the
separate sub-elements of the controller 19 for purposes
of the present invention.

Another basis for distinguishing the sub-elements
is the grouping of functions based upon a commonality in
the manner of programming the corresponding sub-element
as a consequence ultimately by the programmed execution
of the CPU 12. Thus, as generally indicated in Figure
1, the sub-elements of the video controller 19
preferably include, but are not limited to, a video
display buffer 20, a digital-to-analog converter (DAC)
22, a video graphics accelerator 24, a video controller
26, a programmable clock generator 28, a hardware cursor
controller, and a coder-decoder unit (CODEC). Each of
these sub-elements of the controller 19 are relatively
independently programmable through a hardware register
interface 30 that is appropriately coupled to the system

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 13 -

bus 14. Thus, the CPU 12 may program and obtain

-information from the sub-elements 20, 22, 24, 26, 28.

The register interface 30 and one or more of the sub-
elements may, as a practical matter, be physically
resident on a single integrated circuit. Co-residency
of sub-elements on a single integrated circuit or the
possibility that sub-elements are accessible through
other sub-elements does not affect functionally
distinguishing sub-elements from one another.

By the programming of the sub-elements 20-28, a
video display 32 is supported for the presentation of
textual and graphical information. In a preferred
embodiment of the present invention, multiple display
windows 34, 36 are supported in combination with a
pointer 38 that can be used to select the current active
or "focus" display window visible on the display 32. A
display window 34, 36 can obtain the current focus
through a number of discrete events. These events
include the launching of a new application program for
execution by the computer system 10. By default, the
main window of a newly launched application obtains the
current focus of the display 32. The pointer 38 can
also be utilized to select a window 34, 36 that is to
receive a focus on the occurrence of a mouse click, for
example. Finally, the display window 34, 36 may receive
focus upon termination of another application. In each
of these circumstances a focus event is produced upon
which the CPU 12, through the execution of the operating
system, can act.

Other peripherals 40 may also exist as components
of the computer system 10. These other peripherals 40
may include complex controllers supporting audio, real-
time video, and other complex multi-function operations

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 14 -

alone or in combination with one another. Such complex

-controllers may be effectively supported by the present

invention provided that the functional operation and
organization of the controller is reasonably sub-divided
as a multiplicity of functional elements that are
programmable directly or indirectly by the CPU 12. For
example, a high-performance audio subsystem presenting
wavetable synthesis, FM synthesis, an equalization
controller, a reverberation controller and multichannel
amplifier sub-elements all directly or indirectly
represented though a register interface presented to the

system bus 14 can be optimally supported by the present
invention.

ITI. Software System Overview:

While the present invention may readily
support any peripheral controller that has any number of
sub-elements, the present invention may be Dbest
understood as applied in the preferred embodiment to the
support and control of the video display controller 19.
Referring now to Figure 2, a preferred device driver
embodiment of the present invention 50 is shown
positioned between the hardware interface, representing
the logical connection of the device driver to the
register interface 30 of the video display controller
15, and an operating system layer 54. The operating
system layer 54 typically includes an operating system
kernel 56 and potentially one or more operating system
extensions 58 that add some basic operating system level
functionality. Finally, the operating system layer 54
may:in turn support one or more application programs 60.

In operation, the application programs 60 obtain
operating system layer 54 support services through an

WO 9721161 PCT/US96/18814

10

15

20

25

30

- 15 -

application program interface (API) that is presented

-effectively as a set of execution entry points that can

be called by the application 60. In accordance with an
embodiment of the present invention, a small sub-set 62
of the operating system kernel API call points are
modified during the initialization of the device driver
50. These modified call points include the entry point
routine that reports a window focus change event to an
application 60 and the entry point routine that reports
the current color depth of the display 32 back to the
application 60. The focus change event is preferably
modified to include a API call to an operating system
extension 58 that provides for additional event
processing in response to a focus change event. This
additional event processing includes ‘performing a
configuration retrieval to obtain data quantifying the
execution environment of an application that is to be
launched generally as a consequence of the focus event.
The data retrieved preferably includes the screen
resolution and color depth configuration desired for the
application being launched.

The modifications of the color depth reporting
routine are made specifically to ensure that the maximum
color depth requested by any application 60 is reported
to the application 60 as being the current color depth
of the display 32. Thus, in accordance with the
preferred embodiment of the present invention, all
applications 60 execute against a completely virtualized
representation of the display 32 particularly with
respect to color depth. That is, the device driver 50
provides full support for whatever color depth is
requested by an application 60, regardless of whether
the requested color depth exceeds the maximum color

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 16 -

depth that can be handled by another application 60 or,

-indeed, the maximum color depth of the display 32

itself.

A. Device Driver Software Architecture -
Upper Level:
The kernel layer 54 connects to the device driver
50 through an operating system API (0/S API) that
provides the operating system kernel 56 and any

extensions 58 with entry points into the device driver
50. Within the device driver 50, the 0/S API is
supported primarily by a number of operating system
interface modules including a Graphics Display Interface
(GDI) module 64, a Direct Draw (DD) module 66, any
number of other modules 68, each representing a present
or future defined APIs, such as Direct 3D (D3D).
Additional API entry points are provided by an operating
system (0/S) module 70, a graphics interface (GRX)
module 71, and a shell module 72. These modules
together present essentially all of the callable entry
points that make up the 0/S API of the device driver 50.

The shell module 72 is the initial component of the
device driver 50 loaded into the memory 16 as part of
the initialization of the operating system kernel 56
during system startup. In a conventional operating
system such as Microsoft MS-Windows ’‘95™, the operating
system kernel 56 will load the shell module 72 into
memory 16 as a consequence of a reference in a standard
initialization configuration file or data base, such as
the MS-Windows ‘95 registry services.

An initialization entry point provided by the shell
module 72 permits the operating system kernel 56 to
initiate the device driver specific initialization of

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 17 -

the device driver 50. As part of this initialization,

- the shell module 72 determines a Board driver, set of

hardware interface modules, and compliment of operating
system interface modules that are required to complete
the implementation device driver 50 to support the 0/S
API that will be presented by the device driver 50 to
the operating system layer 54. In a preferred
empbodiment, these determined additional modules, if not
statically linked to the shell module 72, are
dynamically loaded and then logically linked into the
device driver 50.

In order to establish a call interface to the 0/Ss
API as needed to obtain support services for
initialization of the device driver 50, at least the
operating system module 70 loads as an integral portion
or component of the shell module 72. Preferably, the
GRX module 71 is also loaded with the shell module 72.
As a matter of practical convenience, other commonly
used and default operating system interface modules may
also be statically linked to the operating system module
70.

Particularly as demonstrated by the GDI 64, DD 66,
and D3D 68 modules, the device driver 50 of the present
invention preferably implements the 0/S API of the
device driver 50 in segregated units that are specific
to particular portions of the operating system kernel 56
and/or operating system extensions 58. Thus, in the
preferred embodiment, the GDI module 64 preferably
supports the flat model DIBEngine driver interface
predefined by Microsoft for the MS-Windows '95™
product. Similarly, the Direct Draw module 66 supports
the hardware independent interface for the standard
direct draw API. The D3D module 68 will support the

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 18 -

announced Microsoft Direct 3D API for Windows ‘95™,
Documentation for each of these APIS is available as
part of the Microsoft Software Development Kit (SDK) and
the Microsoft Device Drivers Kit (DDK), available as

. Redmond,
Washington. The dynamic 1loading capability of the

commercial products of Microsoft, Inc

present invention thus allows the comprehensive API
support presented by the device driver 50 to be readily
tailored and extended through the dynamic loading of
additional operating system interface modules.

The shell module 72, including the 0/S and GRX
modules 70,71, presents both conventional and
proprietary API interface parts to the operating system
layer 54 as needed to support both conventional and
proprietary support functions through the operation of
the device driver 50. The conventional API part
includes an initialization entry point that allows the
operating system layer 54 to initiate the initialization
of the shell module 72 upon loading into the memory 16.
A generally standard termination call entry point is
also provided. This entry point allows the operating
system layer 54 to signal the device driver 50 that
shutdown of the operating system layer 54 is imminent
and that an orderly termination of the device driver is
required.

The proprietary API entry points presented by the
shell module 72 include entry points providing for the
reading and writing of data defining the current desktop
presented on the display 32, the current viewport and
certain data defining the operation of the device driver
50. This latter information may include setting the
current physical color depth of the display 32, the
current color and pattern of the display pointer 38, and

WO 9721161 PCT/US96/18814

10

15

20

25

30

- 19 -

a number of largely video hardware specific aspects such

-as the interlace, video sync type, video fast scroll,

and color enable options of the device driver 50.
Finally, the operating system module 72 provides
the device driver support routines that call the
operating system layer 54 to obtain basic operating
system services. In the preferred embodiment of the
present invention, these system services include memory
allocation, freeing of previously allocated memory, the
loading and unloading of dynamic link libraries, memory
management functions such as enabling a memory object to
be executable or to lock a memory object in real memory,
to disable the executable or lock status of memory
objects, to read and write data to defined 1I/0
addresses, and to open, read and close named data files
typically as stored by the mass storage peripheral 18.

B. Device Driver Software Architecture -

Lower Level:

The shell module 72 also provides for a dynamic
configuration of the device driver 50 with respect to
the particular instance of the video display controller
19. While any of a number of functionally similar video
display controllers 19 may be utilized in the computer
system 10, the device driver 50 of the present invention
provides for the dynamic selection and inclusion of a
board driver 74 into the device driver 50 to optimally
support the hardware specifics of the particular video
display controller 19. The shell module 72 selects a
particular board driver 74, from among any number of
variants, that corresponds to the major aspects of the
particular video display controller 19. In practical
terms, the major aspect of a particular video display

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 20 -

controller 19 is the specific architecture of the
integrated circuit graphics accelerator chip or chip set
used in the implementation of the controller 19. Thus,
a single board driver 74 may correspond to a well
defined family of specific variants of the display
controller 19. Other board drivers can be constructed
to correspond to other families of controllers of
different definition.

The board driver 74 provides for an additional
layer of dynamic configuration of the device driver 50
by the selective support of a set of hardware interface
modules. These hardware interface modules are
dynamically loadable as component elements of the device
driver 50 and correspond substantially to the individual
sub-elements of a particular implementation of the video
display controller 19. In a preferred embodiment of the
present invention, the set of hardware interface modules
include a Clock Module 76, DAC Module 78, CODEC Module
80, Hardware Cursor Support Module 82, Video Module 84,
Two Dimensional Graphics Control Module 86, and Three
Dimensional Graphics Control (3D) Module 88. The
particular set of hardware interface modules dynamically
loaded in to the device driver 50 is determined by the
board driver 74 in correspondence to the specific sub-
elements present in the implementation of the video
display controller 19. That is, dependant upon the
specific implementation of the Clock sub-element 28, a
particular and corresponding clock module 76 1is
identified by the board driver 74 and dynamically loaded
into the device driver 50. Consequently, for example,
inclusion of a new version of a DAC sub-element 22 into
the otherwise generally existing design of the video
display controller 19 can be immediately accommodated by

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 21 -

a corresponding revision in the functionality of
essentially only the DAC module 78 of the device driver
50. Thus, the partitioning of sub-element specific
aspects of the device driver 50 into dynamically
loadable modules allows significant revisions in the
ultimate configuration performance and operation of the
device driver 50 to be made in isolation from the rest
of the device driver 50. Such hardware specific changes
are also effectively isolated from the other hardware
interface modules and from the higher layers of the
device driver 50. Testing of a device driver 50
configuration for a new version of the display
controller 19 can therefore be made with confidence
against only the particular new Oor revised hardware
interface module or modules. \

As a practical matter, some of the hardware
interface modules may be statically linked to the board
driver 74. Where a basic compliment of modules will
always or almost always be used with a particular board
driver 74, an optimization is gained by loading the
modules together with the board driver 74. Subsequent
use of a statically 1linked module can also be
effectively overridden by providing a dynamically
linkable module for supporting the corresponding sub-
element. Dynamically loaded modules are preferably used
over corresponding statically linked modules.

IIT. Device Driver Initialization:

The process of initializing the device driver
50 of the present invention is generally illustrated in
Fig: 3. This initialization process will be described
with regard to the preferred embodiment which operates
with the MS-Windows ’‘95™ operating system.

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

40

- 22 -

A. Initial Upper Level Initialization:

In connection with the conventional execution
of the operating system initijalizations, the shell
module 72 is loaded 90 into memory 16 as a consequence
of a conventional system driver reference in the
registry services database file. Once resident in
memory, a call is made to the initialization entry point
of the shell module 72 to initiate the device driver
dependent initializations. The initialization routine
of the shell module 72 provides for the creation 92 of
and a shell object 126 (SHELLOBJ) and then an operating
system object 128 (OSOBJ) at 93.

The shell object is used as a top level data
structure that logically links together the structure of
the device driver 50. The significant elements of the
shell object are identified in Table I.

Table 1

SHELLOBJ
{
/* global state flags */
InitFlags
ModeSetFlags

/* public data */
ViewportXext
ViewportYext
ViewportlLeft
ViewportTop
ViewportRight
ViewportBottom
DesktopXext
DesktopYext
PixelDepth
ColorType
HorzFreq
VertFreq
Interlace
SyncTypes

WO 97/21161

10

15

20

25

30

35

40

45

50

PCT/US96/18814

- 23 -

CursorColor
PanlockOn
FastScrollRate
ColorEnableOn
VideoMemoryOffset
VideoMemoryPool
OffscreenBitmapCache

/* pointers to list of operating system and hardware
interface objects with head and tail pointers to
facilitate pointer list management and pointers
to Board and GRX objects */

FirstObj

BoardObj

GrxApiObj

LastObj

/* storage for the board identifier */
BoardData

/* shell library routine entry points */
ShellModeSet
ShellSetDPMSState
ShellModeDump
ShellGetDesktop
SheliValidateDesktop
SheliGetViewport
ShellValidateViewport
ShellSetViewportPos
ShellStrien

ShellStrtok
ShellStrncmpi
ShellStrcpy

ShellStrcat

ShellPrintStr
ShellScanStr
ShellDebugOut
ShellStringOrdinal
ShellSkipWhitespace
ShellSkipToAfterNull
ShellSkipToAfterCrLf
ShellReadFilelntoBuffer
ShellGetBufferedSection
SheliRepltaceCrLfWithNull
SheliParseSection
ShellLoadObject
ShellUnloadObject
ShellGetModeFileName
ShellRegisterBoardObject
SheltUnregisterBoardObject

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

40

- 24 -

ShellOffscreenBitmaptnit
ShellOffscreenBitmapRegisterMove
ShellOffscreenBitmapUninit
ShellOffscreenBitmapCreate
ShellOffscreenBitmapDestroy
ShellQOffscreenBitmapCache
ShellOftscreenBitmapFlush
ShellOffscreenBitmapFlushAll
ShellOffscreenBitmapCleanBand
ShellOftscreenBitmapCleanAll
ShellMemoryPoolCreate
ShellMemoryPoolDestroy
SheliMemoryPaolSetinform
ShellMemoryPoolAlioc
SheliMemoryPoolAllocMoveable
ShellMemoryPoolAllocFixed
ShellMemoryPoolFree
ShellMemoryPoolCompact
ShellMemoryPoolEnumerate
ShellMemoryPoolGetData
ShellBandListCreate
ShellBandListDestroy
ShellBandListFindByHeight
ShellBandListEnumerate
ShellBandL.istAlloc
ShellBandListFree
ShellRectPoolCreate
ShellRectPoolDestroy
ShellRectPoolAlloc
ShellRectPoolFree
ShellRectPoolGetData

As indicated, the shell object includes some global flag
data, API call entry points, pointers to the high-level
software objects that represent components of the device
driver 50, and a number of shell library routines or
functions used to support the internal operation of the
device driver 50.

The operating system object provides API call
access to operating system layer 54 support functions.
The elements of the operating system object are
identified in Table II.

WO 97/21161 PCT/US96/18814

Table Il

5 0SOBJ

/* General Purpose Operating system APl calls
supported */

OsMemoryAlloc

10 OsMemoryFree
OsbLoadDLL
OsUnloadDLL
OsGetModuleHandle
OsGetProcAddress

15 OsGetModuleProcAddress
OsMapPhysicalAddr
OsMakeSelectorUse32
OsCopyAddrMpping
OsMakeExecutable

20 OsMakeReadWrite
OsMakeSelectorAlias
OsFreeSelectorAlias
OsOutputDebugString
OsUnmapPhysicalAddr

25 OsGetSystemDesktop
OsGetSystemViewport
OsGetSystemTickCount
OsFileFind
OsFileOpen

30 OskFileClose
OsFileRead
OsFileWrite
OsFileSeek

35 /* platform specific utility functions */
OsReadWord
OsWriteWord
OsReadString
OsWriteString

40 OsReadlOByte
OsReadlOWord
OsReadlODword
OsReadIndexed|OBytes
OsWritelOByte

45 OsWritelOWord
OsWritelODword
OsWritelndexedIOBytes
OsWriteFixedIOBytes
OsWriteMemDWord

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

40

- 26 -

OsWriteMemDWordVerify
OsWriteMemWord
OsWriteMemWordVerify
OsWriteMemByte
OsWriteMemByteVerify
OsReadMemDWord
OsReadMemWord
OsReadMemByte
OsMemCopy

/* Low level operating system and Bios call
functions */)
0s4To3
OsInt10
OsFindPCld
OsGetPCICfgRegB
OsGetPCICfgRegW
OsGetPCICfgRegDW
OsSetPCICfgRegB
OsSetPCICfgRegW
OsSetPCICfgRegDW
OsGetBoardData

As indicated by the supported entry points, the 0/S
object provides a call interface to the operating system
layer 54, a call interface to low level and bios
functions, and a call interface to platform specific
functions. This platform specific call interface
represents a number of utility or library routines that
serve to hide platform portability details. Although
not essentially associated with the other functions of
the O/S object, these routines are concentrated here to
collect all platform specific calls and functions in one
module, thereby limiting platform portability changes
substantially to this one module. Furthermore, these
routines are generally best implemented using assembler

coding, as is the rest of the module.

WO 9721161 PCT/US96/18814

10

15

20

25

30

35

40

- 27 -

B. Lower Level Initialization:

The shell module 72 next initiates the dynamic
loading of the remainder of the device driver 50. In
order to identify the correct board driver 74, the shell
module 72 performs an initial assessment 94 of the video
display controller 19 to identify a particular board
type. A board identifier is preferably read from the
controller 19 from a data structure physically resident
on the controller 19 and stored in a "BoardData" field
of the shell object. In a preferred embodiment, the
board identifier is initially stored in a conventional
on-board ROM 29 located on the video display controller
19 that is accessible through the register interface 30.
Table III provides the preferred structure of the board

identifier data structure.

Table 1l
Board_ldentifier:

ID DW "DM"
Revision DB "
StructureSize DB "16"
BoardFamily DB "o"
BoardModel DB "o
ControllerFamily DB "o"
Controller DB Q"
DacType DB "o"
PixelClockType DB "o"
MemoryClockType DB "Q"
MemoryType DB "o
VideoType DB "o"
Oem DB "Qo"
BoardDependantinfo DW "o

The "ID" field provides a static data value that
confirms the board identifier structure as compliant
with the device driver 50. The "Revision" field is used

to define the particular structure of the boarad

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 28 -

identifier structure, should alternate structures be
implemented at some future date. The "StructureSize"
field defines the size of the structure. The
"BoardFamily" field stores a value that can be used to
principally identify the board driver 74 that needs to
be loaded as part of the device driver 50 required to
support this particular instance of the video display
controller 189. The values of the board identifier
structure, including at least the "BoardFamily" value,
are used as a key to perform a key name look-up in a
board.dat file. Preferably, the key is formed as a
simple concatenation of the significant board identifier
field values. The board.dat file is preferably a flat
file correlating keys to corresponding file names of
specific instances of board drivers 74.

Once a particular board driver 74 is identified 94,
the shell module 72 issues a call through the operating
system module 70 to load the board driver 74
corresponding to the key value. In response, the
operating system layer 54 loads 96 the requested board
driver 74 in to the memory 16 and returns a memory
pointer to the shell module 72. The initialization
entry point of the board driver 74 is then called.

As part of the initialization of the board driver
74, a board object 98 1is created. While strictly
representing neither an operating system or hardware
interface module, the board object establishes a basic
data structure form that is used for convenience by the
objects that represent the operating system or hardware
interface modules. The structure of the board object is
provided in Table IV.

WO 97/21161 PCT/US96/18814

- 29 -

Table {V

BOARDOBJ
5 {
OBJHDR

/* public data */
ScreenBaseAddress
10 MmioBaseAdddress
VideoMemorySize
ScreenWidthBytes
BytesPerPxel

15 /* actual modes.dmm file name */
ModeFileName[128]}

/* pointers to a list of the hardware interface objects -
also head and tail pointers to facilitate pointer
20 list management and to support dynamically
loaded objects*/
FirstObj
MemoryClockObj
PixelClockObj
25 CursorQObj
DacObj
DrawengObj
LastObj

30 /* public data of board spatial resolution and color
depth capabilities supported for both
Desktops and Viewports */
NumDesktops
Desktopsl]
35 NumVieworts
Viewports|]

/* painter to in-memory board identifier structure held
by the shell object */
40 BoardData

/* board library entry points */
BoardBlankScreen
BoardSetViewpotPos

45 BoardWaitForVertBiank
BoardReadReg
BoardWriteReg
BoardReadDAC
BoardWriteDAC

50 BoardWriteDACATrray

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

- 30 -

BoardWriteSerialDeviceStart
BoardWriteSerialDevice
BoardWriteSerialDeviceEnd

As part of the board object initialization, a pointer to
the board identifier structure, "BoardData," is obtained
100 from the shell 72. The further fields in the board
identifier structure are then examined to identify the
particular types of each of the sub-elements present on
the video display controller 19. Pre-set coded values
are used to identify the particular instance of a sub-
element. Preferably, the fields of the Board Identifier
in general correspond to the fixed aspects of the sub-
elements of the controller 19. For example, the type of
a DAC or the type of video memory, VRAM or DRAM, may be
provided through the board identifier structure.

Where an aspect of a sub-element is not fixed, as
perhaps being field upgradeable, the particular aspect
needs to be determined by a conventional method. For
example, the amount of display RAM (Video Memory Size)
available on the wvideo display controller 19 may be
changed once the controller has been placed in
operation. The board identifier is, however, static and
established at the time of manufacture of the controller
19. Accordingly, a conventional memory scan routine can
be utilized to accurately determine the total amount of
video memory present on the video display controller 19
in such instances. The display controller 19 may also
not have a board identifier 29, perhaps by virtue of
being a legacy implementation of the controller 19. A
reasonable identificaticn of the sub-elements present on
the controller 19 can then be inferred from information

obtained through a conventional Intl1l0 Bios call.

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

- 31 -

The last field in the Board Identifier structure is
a "BoardDependentInfo" field. This field provides a
word-wide bitmap data area preferably used to flag
additional operational characteristics of a particular
board type and model. These flags are implementation
dependent and uniquely decoded by the board driver 74.
In particular, these flag bits may be used to identify
detailed configuration options that are not otherwise
covered by the other fields of the board identifier.
For example, a flag bit may be used to identify the
existence of a minor sub-element option that may be used
with later versions of the device driver 50.

From the board identifier structure, the board
driver 74 thus determines 102 a particular set of
hardware interface modules that are required to
optimally support the video display controller 19. The
board driver 74 then requests the sequential loading 104
of the identified set of hardware interface modules not
already statically linked with the board module via the
operating system module 70. As each hardware interface
module 76-88 1is loaded into the memory 16, the
initialization routine of each module is called 106 to
establish a corresponding software object. In the
preferred device driver 50, each hardware interface
object is constructed as a data structure containing a
common header portion and a hardware dependent portion.
The common header portion is preferably an object header
data structure (OBJHDR) containing the fields identified
in Table V.

Table V

OBJHDR
{

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

- 32 -

/* universal object information */
HeaderVer
ObjectVer
Module
ObjDatalnstance
RegClassHandler
Objectinit
ObjUninit
ModeSet
SetDPMSState
/* for debug */
ModeDump

The "ObjectVer" field provides a unique identifier
specifying the particular implementation of the hardware
sub-element supported by the encapsulating hardware
interface object. The "Module" field contains the
memory pointer returned from the operating system
pointing to the memory location of the encapsulated
hardware interface module. The "ObjDatalnstance" field
provides a pointer to the private data area reserved
for this instantiation of the hardware interface object.
The "RegClassHandler" field defines whether the
associated hardware sub-element has interface registers
that must be programmed as part of the invocation of a
mode set operation. If the value of the field is null,
then any required mode set programming is hard coded
into the module encapsulated by the hardware interface
object. If the field is not null, then the value of the
field is the pointer to a structure containing defines
of the register names and interface pfocedures that can
be used in support of a mode change. The structure of
the RegClassHandler is shown in Table VI:

WO 9721161 PCT/US96/18814

10

15

20

25

30

35

- 33 -

Table Vi

RegClassHandler
{

"Class_Name"
Class_Index
Class_Max
H/W_lInterface Object
RegClassMap
Read reg
Write_reg
CmdHandler

The "ObjectInit" and "ObjUnInit" fields of the
object header provide call addresses for initializing
and freeing the hardware interface module encapsulated
by the present hardware interface object. The "Mode
Set" field of an object header establishes the hardware
interface module entry point used to signal a mode
change to the hardware interface object. In the
preferred embodiment, three different calls to this
entry point can be made. Each call is distinguished by
the operand of the call to specify that a mode set is
about to occur, to invoke a mode set, and that a mode
set has completed.

Finally the "SetDPMSState" field provides an entry
point for servicing changes in the power management
state of the system 10 that are specific to a particular
module,

Thus, the hardware interface module initialization
routines provide for creation of an instance of an
encapsulating hardware interface object including
storage for the hardware interface dependent portion of
the hardware interface object, initializing the object

specific fields in this instance of the object, and to

WO 97721161 PCT/US96/18814

10

15

20

25

30

35

- 34 -

obtain allocation of any instance data that is to be
maintained private to this instantiation of the hardware
interface object. The pointer to the instance data is
stored in the "ObjDataInstance" field in the object
header. The initialization routine then returns a
pointer to the hardware interface object. This pointer
is stored 108 in a member field of the board object sub-
structure.

A basic hardware interface object, specifically a
clock object, is defined in Table VII.

Table Vil

CLOCKOBJ

OBJHDR

As can be seen, there are no hardware specific functions
associated with a clock sub-element. However, the clock
frequency is a typical programmable aspect of a clock
sub-element and, further, is intimately involved in a
mode set operation. Consequently, the RegClassHandler
field of the object header structure contains a pointer
to a RegClassHandler structure that includes the
necessary register defines to support access to the
interface registers of the <clock sub-element that
ultimately control the clock fregquencies generated on-
board the controller 19.

Table VIII illustrates a somewhat more complex
object defining, for example, the hardware cursor
object.

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

40

- 35 -

Table Vil

CURSQOROBJ
{
OBJHDR
CursorEnable
CursorSet
CursorMove
CursorSetColor

As before, an object header is included as an element of
the cursor object. The CursorEnable field provides a
pointer to an entry point to the hardware cursor
interface module to turn the visibility of the hardware
cursor on or off depending on the state of a call
parameter. The CursorSet field provides a pointer to an
entry point 15 that provides for the setting of the
cursor pattern to the pattern specified by the operand
to the call. The CursorMove field identifies the entry
point to a routine for specify the hot spot of the
cursor on the display 32 by X and Y operands provided
with the call. The CursorSetColor field identifies the
routine used to color expand a two-color cursor
presented on the display 32.

Other hardware interface cobjects include the DAC
object 130 (DACOBJ; Table IX), the Video object 136, the
Graphics object 138 (DRAWENGOBJ; Table X) and 3D
Graphics object 140.

Table IX

DACOBJ
{
OBJHDR
DacBlankScreen
DacSupportGammalnMode

WO 97/21161 PCT/US96/18814

- 36 -

DacGammaEnable
DacPaletteSet

}
5
Table X
DRAWENGOBJ
10
/* The DRAWENGOBJ structure has all the
routines and data needed by the
outside world to communicate with
the DRAWENG DLL. */
15 OBJHDR
MaxScans
PrivateDitherSize
PDevice
PDeviceSize
20 Curves
Lines
Polygonals
Text
Clip
25 Raster
Caps
ExtraCaps
DrawengMiniFuncs
}
30
A substructure referenced by the DrawEngObj
includes a number of basic drawing functions. This
substructure 1is established within the Drawing engine
35 object with a copy of the function pointers begin kept
in the code space of the GDI object to permit direct
access to the functions within the linear execution of
calls from the GDI object in response to API calls. The
substructure is defined in Table XI.
40

Table Xl

DRAWENGMINIFUNCS
45 {

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

40

BeginAccess

EndAccess
CheckAccess
SolidColorRop

NotDst
ColorPatternRop
CacheColorPattern
CacheMonoPattern
MonoPatternExpandRop
ScreenToScreenRop
MemoryToScreenRop
MemoryToScreenRopXlat
MonoToScreenRop
MonoToScreenXparRop
GlyphBIitXpar
SolidLineRop
SolidJointLineRop
MultiSolidColorRop
MultiMonoPatternRop
MulitiMonoPatternXparRop
MultiColorPatternRop
MultiNotDstRop
MultiDitherColorRop
SrcRopSrcKey
SrcRopDstKey
CreatePrivateDither
PrivateDitherRop
Polygon

As demonstrated by these object definitions, each
of the hardware interface modules 76-88 initialize to
establish a corresponding hardware interface cbject that
includes a standardized portion permitting easy
management of the objects and a hardware specific
extension that provides a fixed set of object specific
entry points. These object specific entries are filled
in with pointer references by the initialization routine
of the encapsulated hardware interface module. The
pointer references are to functions within the
encapsulated module that provide the logically
referenced function. Where specific implementation of

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 38 -

the logical function differs based on the current color
depth, screen resolution, or other controller related
characteristic, the encapsulated modules are preférably
implemented with corresponding specific entry points.
A proper subset of entry points are identified by the
pointer references initialized into the object entry
points, thereby implicitly establishing characteristic
appropriate operation during the ongoing operation of
the device driver 50 without repeated run time tests of
the current characteristic state of the controller 19.

Consequently, the individual objects can be
comprehensively managed based on the common OBJHDR
aspects of the object structures while, at the same
time, used to establish well defined entry point
interfaces to each particular type of hardware interface
object independent of underlying functional and
implementation details, particularly including differing
implementations of functions based on characteristics
such as the current color depth and screen resolution.

In the preferred embodiment of the present
invention, where a board.dmm file, identified from the
board identifier, does not explicitly specify the
existence of a clock, DAC or hardware cursor as being
present on the video display controller 19,
corresponding default modules statically linked with the
board driver 74 as default modules are utilized. Thus,
after the set of hardware interface modules have been
identified, loaded and initialized, null pointers in the
board object are detected by the board driver 74. 1If,
for example, a hardware cursor object does not then
exist, the board driver 74 creates the object and
initializes the hardware-dependent entry points to

corresponding default routines within the board driver

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

- 39 -

74. The functionality of a hardware cursor may thereby
be supported through software emulation or, more
typically, as an intrinsic component of another of the
hardware interface objects. In either event, the
default object is 1linked to the board object and
thereafter provides the same intrinsic functionality as
a dynamically loaded and linked hardware cursor object.

C. Upper Level Initialization Completion:

Once the hardware interface objects have been
initialized, the initialization routine of the board
driver 74 returns to the shell module 72. The shell
module 72 then proceeds to create 109 the GRX APT object
71. The GRX object serves as an internal universal or
virtualizing interface to the operating system interface
objects 64, 66, 68. The GRX object 71 presents a
relatively simple interface as set forth in Table XTI.

Table Xii

GRXAPIOBJ
{
OBJHDR
GrxApiFastCopy
GrxApiColorMatch

The GrxApiFastCopy call entry point provides a common
access point usable by all operating system API level
modules, particularly including the shell module, to
manipulate bitmaps located in on-screen and off-screen
video memory. Establishment of a common access point
simplifies video memory management. The GrxApiColor-
Match call entry point also provides a common access

point usable by all of the operating system API level

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 40 -

modules to perform a logical to physical color
translation at the current color depth of the screen 32.

The initialization entry point within the OBJHDR of
the GRX object 71 is called by the shell module 72 to
initiate 110 the establishment of the operating system
interface objects 64, 66, 68. In the preferred
embodiment of the present invention, the GDI and DD
objects 64, 66 are statically identified within the GRX
object initialization routine. Alternﬁtely, or in
addition, operating system interface objects may be
identified by the shell module 72 by reference to an
interface.dat configuration file, The identified
operating system interface modules, if not statically
linked with the shell module 72, are sequentially loaded
112 into the memory 16.

As each operating system module is loaded 112, a
module initialiiation routine 114 is called. The
initialization of each operating system interface module
results in the creation of a corresponding operating
system interface object. As with the hardware interface
objects, the operating system interface objects each
preferably contains an object header substructure
(OBJHDR) that establishes a common basis for
manipulation of the operating system interface objects.
The use of the object header also provides support for
a call to signal a mode change by the device driver 50.
In turn, the operating system objects support, as
needed, private data spaces for each instantiation of
the objects.

The GDI object 120 is created with the definition
given in Table XIIT.

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

40

45

- 41 -

Table X!

GDIOBJ
{

OBJHDR
GdiColorMatch
PDevice
SystemPDevice
Gdilnfo
SystemGdilnfo
VddMagicNumber
VddEntryPoint
Palette
DibengObj
DrawengObj

The GDI object 120 includes or provides a linked
reference to a substructure interface (DibengObj) of the

standard Dib Engine. The substructure is defined in
Table XIV.
Table XV
DIBENGOBJ
{

/* The DisplayDriverFuncs will hold the set of
functions that should be dispatched to for a bitmap
associated with the display device or for a memory
bitmap, depending on whether the identified bitmap is
a device or in-memory bitmap. The appropriate
function pointers are determined at init time so that
they can be copied into the BMP headers easily as the
bitmaps are created. */

OBJHDR
DisplayDriverFuncs
DisplayDriverExtFuncs

The further standard substructures of the DibengObj
are defined in Tables XV and XVI.

WO 97/21161 PCT/US96/18814

- 42 -

Table XV

DISPLAYDRIVERFUNCS
5 {

/* this structure of function pointers is
also added to or copied into
the bitmap headers on device
driver initialization of the

10 bitmap */
Bitblt
Colorinfo
Control
Disable

15 Enable
EnumDFonts
EnumObj
Output
Pixel

20 RealizeObject
StrBlt
ScanLR
DeviceMode
ExtTextOut

25 GetCharWidth
DeviceBitmap
FastBorder
SetAttribute
DibBIt

30 CreateDiBitmap
DibToDevice
SetPalette
GetPalette
SetPaletteTranslate

35 GetPaletteTransiate
UpdateColors
StretchBit
StretchDibits
SelectBitmap

40 BitmapBits
Inquire
Polyline
Polygon
Polyscan

45 Scanline

WO 97/21161 PCT/US96/18814

- 43 -

Table XVI

DISPLAYDRIVEREXTFUNCS
5 {

SetCursorExt
MoveCursorExt
CheckCursorExt
BeginAccess

10 EndAccess
CreateDibDPevice
RealizeObjectExt
DibBItExt
EnumObjExt

15 ExtTextOutExt
UpdateColorsExt
SetPaletteExt
GetPaletteExt
SetPaletteTranslateExt

20 GetPaletteTranslateExt

Tables XV and XVI illustrate the objects defining
25 the Direct Draw object 124.

Table XV

30 DDRAWOBJ

{

/* Remember that this is probabiy going to be
most heavily used in 32bit iand
although it must compile for both. */

35 OBJHDR

ObjinstData;

}
40
Table XVI
DDRAWINSTDATA
{
45 /* Here is the DDRAW instance data structure -- It is

shared between 16 and 32 bit land. */
Reset

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

ThunkReturn
16PDevice16
32PDevice16
16ShellObj16
32ShellObj16
32ShellObj32
16BoardObj16
32BoardObj16
32DrawengObj32
HALCallbacks
HALInfo
DDCallbacks
DDSurfaceCallbacks
DDPaletteCallbacks
VideoMemoryHeap[1]
DbrawModelist

To support use in both 16 and 32 bit environments,
an additional ObjInstData substructure is employed to
provide both 16 and 32 bit pointers to the components of
the device driver 50 in support of both 16 and 32 bit
API calls.

Finally, as the initialization of each the
operating system interface objects is completed, a link
116 is established between the GRX object 71 and the GDI
and DD objects 120, 122. The GRX initialization routine
then returns to the shell. Also, all of the operating
system interface objects are then linked to the shell
object. The initialization routine of the shell module
72 then returns.

IV. Operational State Configuration:

Fig. 4 illustrates the logical configuration
of the device driver 50 during operation in a single
context state and with each operating system and
hardware interface object logically encapsulating a

corresponding executable module. A logically

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 45 -

unencapsulated portion of the sgshell driver 74 remains
resident as a generalized shell library 72'. Similarly,
a logically unencapsulated portion of the board driver
74 remains resident as a board library 74°‘. Both
libraries 72', 74’ function as common resources
supporting the internal function of the device driver
50. Thus, from a driver software perspective, the
initialized device driver 50 is defined by the operating
system interface objects that cohesively establish the
operating system API presented by the device driver 50
and the hardware interface objects that establish the
hardware specific interface between the device driver 50
and the hardware interface registers 30.

A. Upper Level Relationships:
The operating system interface objects,

including a GDI object 120, Direct Draw object 122,
Direct 3D object 124 and Shell object 126, represent a
set of objects that are logically partitioned from one
another by the definition of the partial APIs that they
present to the operating system layer 54. The revision
of existing API call support and the addition of new API
calls to any particular operating system interface
object has, by design, essentially no impact on the
implementation or operation of other operating system
interface objects. Further, support for a new partial
API, either as newly defined by the operating system
layer 54 or to support calls originated directly from an
application 60, can be readily provided through
definition of a corresponding operating system interface
object and encapsulated operating system interface
module. However, if a new or revised API call involves

or requires a significantly different function than any

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 46 -

of the other API calls supported by the existing
operating system interface objects, additional library
routines may need to be added to the shell library 727 .

The shell library 72’ is logically partitioned from
operating system interface modules to provide a library
of routines that serve to establish a set of common, or
virtualized, support functions usable by the full set of
operating system interface objects. Preferably, each of
the operating system interface objects is functionally
constrained to (1) support a well-defined API call set,
(2) provide for parameter validation for each supported
API call, (3) potentially manage a private data space
for data objects that are desired to persist across
context changes in the operation of the device driver
50, (4) 1issue a sequence of one or more virtualized
calls to the shell library 72’ to functionally implement
each of the API calls supported by the object and,
finally, (5) format and return data to the operating
system layer 54 in a manner appropriate for each API
call supported by the object.

As recognized by the present invention, variants of
many calls to the device driver 50 are directed to
different specific APIs. These variants differ in
specific aspects, such as the particular form and
sequence of the operand data provided with the calls.
As such, the validation of the particular operand data
is specific to each API call. Each object therefore
preferably performs API call specific operand validation
and, potentially, conversion of the operand data to a
format that is unified as against other functionally
similar API calls supported by this or other operating
system interface objects. Thus, sets of one or more API

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 47 -

calls are virtualized internally to the device driver
50.

Each operating system interface object manéges a
context specific data space as needed to preserve data
objects related to, derived from, or provided as
operands of the API calls supported by the operating
system interface object. For example, the GDI object
120 may maintain a data object_ defining the resolution
dependant bit-mapped pattern or colors associated with
an instance of the display pointer 38 in a given
context. Consequently, upon resumption of an existing
context, the data object can be used to efficiently re-
realize the instance of the display pointer 38 in this
context. Of particular note is that the re-realization
is supported entirely without any required participation
or even notice to any application program 60 or the
operating system layer 54. The data object, in this
example, is derived from an original data object
provided as an operand of an API call that initially set
the pattern or color of the display pointer 38. As a
new context, involving for example a new color depth, is
Created, a new data object is derived by a color depth
translation from the data object of the prior context.
On a context switch to a pre-existing context, the pre-
existing instance of the data object is reused with the
result that no information is lost in the re-realization
of an instance of the display pointer 38.

Similarly, an instance of the GDI object 120
preferably maintains not only a color palette, in a
palettized color context, but also the forward and
inverse palette translate tables as part of the PDevice
Structure specific to the palettized context. In the

Windows ‘95™ operating system, the operating system

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

- 48 -

layer 54 supports a single pointer to a physical device
(PDevice) structure that is used to maintain certain
information that is passed to display type device
drivers on at least selected calls from the operating
system layer 54. The intent of the PDevice structure is
to provide a augmentable data structure that can be used
by the device driver 50 to generally store hardware
specific configuration data. The present invention not
only utilizes the PDevice structure to store color
translation tables specific to a palettized context, but
generally replicates a new PDevice structure for each
context and augments the structure consistent with the
color depth of the corresponding context. The preferred
structure of the PDevice structure is provided in Table
XVII

Table XVii

PDevice
{

Dibeng

DmmFlags
DibengObj
xCoord

yCoord
BitmapinfoHeader

/* additional fields specific to palettized contexts */
Colorsf0x100]

PaletteTranslateTable[0x100]
InversePaletteTranslateTable[Ox 1001

Maintenance of color palette translate tables
effectively as a context specific persistent data object
allows rapid restoration of the color palette and
translate tables on a context switch to the palettized

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 49 -

context. Maintaining the color palette translate tables
as part of the PDevice structure also supports
continuing palette based drawing operations particﬁlarly
during non-palettized contexts and, potentially, during
other palettized contexts that use an independent
PDevice structure with independent color palette and
translate table definitions. 1In either event, ongoing
drawing operations driven from applications executing
logically against a palettized context can be correctly
translated to the color depth or color palette of the
current active context by translating or resolving the
drawing commands against the color palette data and
translate table of the corresponding context. That is,
the drawing commands of applications 60 executing
logically against a non-currently active context are
effectively re-realized as needed by reference to the
data objects of a non-current context to perform the
drawing commands at the color depth of the current
context. The data objects of a non-current context can
be located Dby searching the data structures,
specifically the shell objects that are used to define
each context.

In the preferred embodiment of the present
invention, the operating system interface objects
represent a rather thin layer. API calls are preferably
virtualized at a high level into substantially linear
call sequences to the shell library 72' and hardware
objects 130-140 as appropriate to define threads of
execution for each of the specific API calls supported
by the interface objects. In general, maximizing the
use of common calls to the routines in the shell library
72" is desired. Conversely, limiting the function of
the operating system interface objects to substantially

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 50 -

data validation, Dbasic data transformations and
specification of the linear execution thread for each
supported API call is desired. '

In the Windows ‘95™ implementation, the operating
system layer 54 issues fairly atomic API calls to the
device driver 50. Consequently, almost all of the
operating system interface objects will make only a few
calls the shell 1library 72’ and hardware interface
objects to functionally implement the execution thread
needed to perform an API call. Where expedient for
performance or where usage is substantially limited to
a particular API call, some executive functions can be
performed by the operating system interface object. 1In
particular, an initial clipping and translation of
coordinates may be performed by an operating system
interface object in concert with operand validation in
response to an API call to draw an object. More
substantial routines or routines more likely to be
required by multiple API calls, such as the routines
used to establish storage of a new persistent data
object, to perform a color depth translation to derive
the content of the new data object from another, and to
then realize a drawing operation to the screen 32 are
preferably implemented as appropriate in the shell
library 72’ and hardware interface objects.

Thus, for example, a first API call is made by the
operating system 54 to a corresponding operating system
interface object to request the creation of a desired
new data object and to ultimately receive back a pointer
to the object. The virtualized linear thread of calls
begins with a call to the shell library 72’ that in turn
requests allocation, locks in memory and returns a

pointer to the resulting object. The shell library 72,

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 51 -

in performing these requests, sequentially calls on the
operating system interface object 128 as needed to relay
required operating system API calls to the opefating
system layer 54. This linearization of the individual
functions supported by the shell library 72’ is made
possible by the preemptive operand wvalidation and
virtualization performed by the operating system
interface objects. The operand data is established
before the shell library 72’ or any of the hardware
interface objects are called in a form and format proper
for each processing step that follows from a particular
APTI call. Consequently, most if not essentially all
conditional branches for handling exceptional conditions
or to determine whether data is available or in an
acceptable format for processing are obviated below the
level of the operating system interface objects; without
ongoing conditional ©branching to check for the
existence, form and format of operand data, the
implementation of the virtualized API calls becomes
substantially linearized. Furthermore, the
initialization of the hardware interface objects with
function pointers to current color depth and resolution
appropriate functions eliminates ongoing conditional
branching to check and adjust for the current operating
state of the display 32.

A next API call to an operating system object may
then direct the conversion of an identified data object
in the newly created data object. Subsequent API calls
through an operating system interface object can the
specify performance of specific drawing operations using
the prior created and converted API call identified data
object. Each API drawing call is executed by the

receiving operating system interface object by again

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 52 -

issuing a substantially linear sequence of one or more
calls to the shell library 72’ and hardware interface
objects as appropriate to realize the particular dfawing
operation.

Thus, each of the operating system interface
objects are defined to maximize the virtualization of
calls by performing operand verification and format
conversion while including a minimum of duplicate code.
Use of the shell library 72’ is therefore maximized, yet
without an execution performance penalty due to any
repeated revalidation, conversion or reformatting of the
original operand data. Furthermore, the operating
system interface objects are provided with direct
function call access to the hardware interface cbjects
through immediately available function pointers and
without the need to continuously re-evaluate and adjust
for the operating characteristics of the controller 19.

The shell 1library 72’ may also provide for the
effective expansion and implementation of common
virtualized calls received from the operating system
interface objects. Such calls to the shell library 72°'
are preferably expanded into typically short,
substantially linear call sequences directed to the
hardware interface objects to invoke, in turn, hardware
specific functions. The particular set or subset of the
hardware interface objects called by the shell library
72’ is highly dependent on the particular call received
from an operating system interface object. However,
each of the calls made by the shell library 72’ retain
an effective virtual relationship with the set of
hardware interface objects as a consequence of the
virtualized definition of the hardware interface object

data structures. That is, the structure definition of

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 53 -

the hardware interface objects is essentially fixed for
each object type independent of the implementation of
the specific hardware interface module encapsulafed by
the object. Consequently, calls from the operating
system interface objects as well as the shell library
72' to the hardware interface objects are abstracted
from the actual implementation of the hardware interface
modules. By use of the short substantially linear call
sequences used to implement the API calls, the speed of
execution of the virtualized API calls is maximized.

B. Lower Level Configuration Relationships:

The hardware interface objects are similar to
the operating system interface objects in that they are
preferably realized as a thin layer that defines the
hardware specific operations needed to interface with
the interface registers 30 of the controller 19. The
hardware interface objects are preferably functionally
constrained to (1) support a well-defined set of
operations specific to a particular type of hardware
sub-element, (2) provide for at least the logical
programming of relevant hardware interface registers to
implement the function of each supported operation, (3)
potentially manage a private data space for data objects
that are desired to persist across context changes in
the operation of the device driver 50, and, finally, (4)
return certain data read directly or indirectly from the
interface registers 30.

The operations supported by a particular type of
hardware interface object are defined as part of the
object structure. In general, a call to a hardware
interface object results in the generation of a

reference to one or more registers of the interface

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 54 -

registers 30 and a string of data values to be

programmed into the referenced registers. Preferably,
the actual programming of registers is perforﬁed in
response to a call to the board library 74‘. As with
the shell 1library 72', the board library 74’

concentrates the generalized or common routines used by
the hardware interface objects. Thus, the duplication
of code is generally reduced and the detailed register
interface routines, including the routines for locating,
defining and managing the display buffer 20 within the
address space of the memory 16, are largely located in
a well defined location essentially isolated from all
other aspects of the device driver 50. Preferably, the
one significant exception to this occurs in relation to
the graphics hardware interface object 138. For
performance purposes, this object preferably operates
directly against the register interface 30 and the
display buffer 20. Accordingly, the board library 74’
preferably provides a routine that returns the current
location and definition of the display buffer 20. It is
anticipated that the video and 3D hardware interface
objects 136, 140 will also benefit by having direct
access to hardware interfaces of the corresponding sub-
elements of the controller 19.

Consequently, an efficient 1layered virtualized
relationship between the operating system interface
objects through to the hardware interface objects is
established by the present invention. This virtualized
relationship is readily demonstrated by tracing the
execution flow of two different API calls to the device
driver 50.

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 55 -

V. Operational State Context and Mode Switching:

In the preferred embodiments of the present
invention, the video display controller 19 is opérable
at many different horizontal and vertical, or spatial,
resolutions and at many different color depths.
Conventional computer systems 10 often execute a
multiplicity of applications 60 that operate optimally
against different spatial resolutions and color depths.
Indeed, the spatial and color depth requirements and
operational limitations of applications 60 that attempt
to co-execute on the computer system 10 can limit co-
execution to spatial resolutions and color depths that,
if not mutually exclusive, are often non-optimal for the
continued execution of the applications 60.

The architecture of the device driver 50, in
accordance with the present invention, provides for the
performance of mode switches, alone and in combination
with context switches in the operating state of the
device driver 50. Both mode switches and context
switches are performed and particularly are managed
essentially independent of the context state of the
applications 60 and of the operating system layer 54.
Mode switches alone may be performed where data specific
to a particular aspect of an existing mode must persist
across the mode switch. A context switch is performed
by the device driver 50 in combination with a mode
switch to provide for persistent storage of mode data in
an independent context. Thus, device driver context
switches can be used to support stateful controller mode
changes by storage of state and mode specific data in
persistent data objects associated with specific
contexts. Management of the contexts and performance of
context switches by the device driver 50 allows context

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 56 -

switching without alteration of an application programs
60 and with only a few specific modifications being made
to the operating system kernel 56.

A. Constant Context Mode Switch:

To support mode switches, the operating system
kernel 56 is modified by installation of a patch 62 to
the kernel 56 that will issue an API call directing the
device driver 50 to switch the video display controller
19 to a spatial resolution pre-selected for the
application 60 whose window has the current pointer
focus. More advanced operating systems 54 may
intrinsically provide for the generation of an event
that can be used without the need to install an
operating system patch. Preferably, the patched in mode
set API call is hooked to the shell object and provides
the desired new spatial resolution of the physical
display 32. The API call will also specify a color
depth in combination with the desired spatial
resolution. If both the desired color depth and spatial
resolution are the same as the current color depth and

spatial resolution, the API call simply returns. If
only the spatial resolution differs, then only a mode
switch need be performed. The controller mode set

change needed to perform the mode switch is performed in
the then current context of the device driver 50.

In accordance with the preferred embodiment of the
present invention, a mode set change within a single
context is performed largely under the control of the
shell object 126 and shell library 72’. The API call to
the shell object 126 specifies that a mode set is tc be
performed. The shell object 126 calls through the 0/S
object 128 to the operating system layer 54 to obtain

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 57 -

the desired color depth and spatial resolution. The
shell object 126 first validates the returned operands
specifying the desired spatial resolution. The set mode
routine of the shell library 72’ is then called by the
shell object 126 to sequentially call each of the
operating system and hardware interface objects, first
with a "mode is about to change" operand, then with a
"mode change" operand, and finally with a "mode has
changed" operand.

The first call with the "mode is about to change"
operand initiates the sequence of events within the
device driver 50 necessary to quiesce the state of the
driver 50 with respect to the controller 19. In
particular, mode set routine of the shell library 72’
operates to identify each of the operating system and
hardware interface objects within the current context
that need to participate in the mode set. These
interface objects are identified as those having a valid
or non-null pointer to an object gspecific
RegClassHandler structure. Mode set calls are then
placed in sequence to each of the participating objects.
In response, each object 1in sequence executes to save
current state data to system data structures, such as
the current PDevice and GDI_Infotable structures, or to
the private data space of the object itself as
appropriate to establish a well defined execution state
within the current context. When the last participating
object has returned, operation of the device driver 50
has been essentially quiesced. The shell library 72’
then returns to the shell object 126.

The second mode set call, specifying "mode change,"
is then issued by the shell object 126 to the shell
library 72'. The board library 74’, upon being called

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 58 -

by the shell library 72’ with the "mode change" operand,
constructs a "SectionName" that corresponds to the
desired combination of spatial resolution and.color
depth. 0/s API calls are then made through the
operating system interface object 128 to scan a
modes.dmm configuration file, preferably having a
structure syntax generally the same as that of the
system.ini file, to locate a section identified by the
given "SectionName". In a Windows ’95™ implementation,
the SectionHeader defining a spatial resolution of
1024x768 with an 8 bit per pixel color depth is
specified as "[1024,768,8]."

The text following the given SectionHeader is read
in and parsed by the shell library 72’. This text
represents a structured specification of the particular
mode set instructions that must be performed against
each participating sub-element of the controller 19 to
set a new controller mode of operation. The mode set
instructions are, in the preferred embodiment, 1line
oriented statements structured in comma delimited terms
as REGISTERCLASS, COMMAND, and arguments. In the
preferred embodiment, the "class name" field of the
RegClassHandler structure will be correlated to the
REGISTERCLASS term of an instruction to ultimately
determine which sub-element of the controller 19 that is
to be programmed in response to a particular
instruction.

There are presently four directly executed
commands: run (RUN), read/mask/write (RMW), delay (DLY)
and Intl0 (I10). A fifth instruction supported in the
preferred embodiment of the present invention is an
include directive pseudo instruction that directs the
parsing routine of the shell library 72’ to logically

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 59 -

include, and thereby parse, instructions found under an
include directive specified SectionName in the modes . dmm
file. The run command has the following instruction
format:

REGISTERCLASS, RUN, REGISTERNAME, value1, value2, value3, ...

The REGISTERNAME term provides a logical name that
can be traced, using the REGISTERCLASS association,
through a RegClassHandler structure to a RegClassMap
structure. The logical REGISTERNAME name is defined in
the RegClassMap against a logical port address that can
ultimately be resolved to a specific register within the
register interface 30. 1In execution of the instruction,
the parsing routine of the shell library 72’ writes the
port address of REGISTERNAME with the first wvalue,
"valuel." The next sequential port address identified
in the RegClassMap is then written with the second
value, value2. Thus, logically sequential port
addresses are written with successive values until all
of the value provided with the particular run command
have been written.

The read/mask/write command has following
instruction format:

REGISTERCLASS, RMW, REGISTERNAME, ANDMask, XORMask

In execution of this instruction, the parsing
routine of the shell library 72' first reads in the
value from the port address corresponding to
REGISTERNAME, performs a binary AND of the value with
ANDMask, and performs a binary XOR of the resultant with

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 60 -

XORMask. The resultant is then written back to the
REGISTERNAME port address.

The delay command has following instruction fbrmat:

SHELL, DLY, DelayValue

The RegisterClass of this instruction is always
"SHELL, " since no hardware interface object is directly
related to the executiono of the instruction. In
executing this instruction, the parsing routine of the
shell library 72’ implements either a software or
hardware based wait for a period of time specified by
DelayValue, preferably as a multiple of 50 microseconds.
The delay instruction is wuseful where hardware
programming setup times must be respected, but a
register readable ready signal is not provided by the
hardware. The parsing routine simply continues after
expiration of the delay time period.

The Intl0 command has following instruction format:

SHELL,110,EAX,EBX,ECX,EDX

Again, the RegisterClass of this instruction is
always "SHELL," since no hardware interface object is
directly related to the executiono of the instruction.
The parsing routine of the shell library 72’ implements
this instruction by calling the O0/S object 128 to
perform a software interrupt 10 and provide the
arguments of the instruction in the corresponding CPU
registers at the time of the interrupt.

Finally, the include command has the following
specific instruction format:

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 61 -

SHELL, INC, SectionName

The include command instructs the parsing routine
of the shell library 72’ to effectively suspend parsing
of the current section of the modes.dmm file and parse
the section identified by "SectionName. ™" Parsing of the
suspended section resumes after the included section has
been parsed by the shell library 72'.

In executing the instructions provided by the
modes.dmm file, the shell library 72’ utilizes the
REGISTERCLASS term to associate a particular instruction
with a corresponding hardware interface object. Since
the instructions are directed to ultimately programming
the operating mode of the controller 19, the operating
system interface objects, in the preferred embodiment of
the present invention, are not referenced by any
REGISTERCLASS term of the instructions.

As an instruction is executed, Read_reg and
Write_reg entries in the corresponding RegClassHandler
Structure are called by the parsing routine to perform
the read/write operations required in the execution of
the instruction. Since the RegClassHandler structure is
object specific, the Read_reg and Write reg functions
are also specific to the particular object identified by
the REGISTERNAME term.

In the preferred embodiment of the present
invention, each object’s Write_reg function provides for
the effective translation of a register/argument pair,
as obtained in the execution of an instruction, to a
hardware specific representation of the registers that
are to be actually written. The register/argument pairs
are written effectively by the execution of the
instructions to a flat, Ssequential logical register

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 62 -

model. The Write reg functions convert the pairs to a
sub-element hardware specific model. For example, in
the specific circumstance of the DAC interface 6bject
130, the conversion is to a multiplexed register model
that requires a base physical register to be programmed
with a 1logical register index wvalue and a next
sequential base register that is programmed with the
value to be stored in the indexed logical register.
Thus, while sequential registers are referenced in the
calls to the Write reg function of the DAC interface
object 130, a single pairing of physical base registers
are written by the function.

Each object’s Read reg function performs a similar
conversion. The referenced 1logical register is
converted to a reference to a corresponding physical
base register. In the case of the DAC interface object
130, the conversion includes programming the base
physical register with the index defining the logical
register so that the correct value may be read out.

Other interface objects may provide for the
conversion of the flat sequential register model of the
instructions to a serial, or bit sequential, model as
appropriate to program another sub-element of the
controller 19. Thus, the sequential register/argument
pairs are converted into a logical register index value
followed by a bit serial sequence of program values
appropriate to program a specific sub-element of the
controller 19.

As an example, a Diamond Stealth 64 Video DRAM
video controller, utilizing an S3 Vision868 graphics
accelerator chip, can be selectively programmed to
enable graphics mode:

WO 97/21161 PCT/US96/18814

10

15

20

25

30

35

40

- 63 -

[GraphicsEnable]

CRT, RUN, LAW POSITION_1, OxF0, 0x00
CRT, RMW, LAW_ CONTROL, OxEC 0x13

CRT, RMW, EXT_MEM_CONTROL_l 0xE4, 0x18

disable graphics mode:

[GraphicsDisable]
CRT, RMW, LAW_CONTROL, OxEC, 0x00
CRT, RMW, EXT MEM CONTROL 1, OxE4, 0x00

and swtich to a 1024x768x8 mode:

(1024, 768, 8]

CRT,RUN, LOGICAL_LINE_LENGTH, 0x80

CRT,RUN, EXT MODE, 0x00

CRT, RUN, EXT_SYSTEM CONTROL_2, 0x00

CRT,RUN, EXT_SYSTEM CONTROL_1, 0x00

CRT,RUN,MEM_CONFIG, 0x89

SEQ, RMW, UNLOCK_EXTENSIONS, 0x00, 0x06

SEQ, RUN, CLOCKING _MODE, OxOl OxOf 0x00, 0x0e, 0x00

GRX,RUN, SET _ RESET DATA 0x00 0x00, 0x00
0x00, 0x00, 0x00, 0x05, 0x0f Oxff

ATR,RUN,PALETTE_0,0x00,0x01,0x02,0x03,0x04,0x05,
0x14,0x07,0x38,0x39, 0x3a, 0x3b, 0x3c, 0x3d,
0x3e,0x3f,0x01, 0x00, 0x0f, 0x00, 0x00

SEQ, RMW, UNLOCK_EXTENSIONS, 0x00, 0x00

CRT,RMW, EXT RAMDAC CONTROL Oxfe 0x01

DIR,RUN,DACRS10 PORT, 0x00

CRT, RMW, EXT__RAMDAC_CONTROL , 0xfe, 0x00

In the preferred embodiment, the Write reg and
Read reg functions of the hardware interface objects
utilize a number of functions in the board library 74°
to actually perform hardware read and write operations
against the register interface 30. This additional
level of indirection allows for the different hardware
sub-elements of the controller 19 to exist at different
physical addresses depending on the particular model of
the controller 19. Thus, while a particular hardware
interface object fully represents the particular

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 64 -

programming of a sub-element of the controller 19, the
board library 74’ implicitly locates the sub-element
within the physical address space of the computer éystem
10. Consequently, the base physical register identified
by the DAC interface object through a Write reg function
call is 1logically relative to the DAC sub-element
itself. The board 1library 74’ supplies a physical
addressing offset for the DAC base physical registers to
locate the registers within the physical system address
space of the register interface 30.

In order to establish physical addressing offsets,
the board library 74’ provides a number of read and
write routines that are, in turn, specific to the major
types of sub-elements of the controller. For example,
the «clock interface object, though controlling a
specific and well defined sub-element of the controller
19, typically references a programmable clock generator
located within or accessible through the registers
associated with the DAC sub-element. Thus, the physical
addressing offset provided by the board library 74’ for
both the DAC and Clock interface objects will be the
same.

The board 1library 74’ preferably supports a
BoardRead reg and BoardWrite reg functions for hardware
interface objects that address a flat sequential
physical register set. BoardRead DAC, BoardWrite DAC
and BoardWrite DAC Array functions are provided by the
board library 74' to support reading and writing of
multiplexed registers and to write the color palette
array located within the physical register address space
of the DAC sub-element as established by the controller
19.

W0 97/21161 PCT/US96/18814

10

15

20

25

30

- 65 -

Finally, BoardWrite_SerialDevice_ start, and
BoardWrite_SerialDevice_end functions are provided to
support serial write operations to serially progfammed
sub-elements of the controller 19.

Once the instructions scanned from the modes.dmm
file have been executed, the operating mode of the
controller 19 has been changed to correspond to the
desired spatial resolution and color depth. The shell
library 72’ then calls each of the mode set functions of
the participating set of interface objects with "change
mode" as the operand to the call. The interface objects
utilize this call to execute any sub-element specific
routines needed to establish the new operating mode of
the controller 19. Any required programming of
registers in the register interface 30 or direct
manipulation of the of the display buffer 20 can be
performed at this time. When the last of the interface
objects returns from this mode set call, the shell
library 72' returns to the shell object 126.

The third and final call, with a "mode has changed"
operand, is then made by the shell library 72’ to each
of the interface objects participating in the mode set.
Preferably, the participating hardware interface objects
are called prior to the operating system interface
objects. As each interface object is called, the object
eéxecutes any hardware specific operation necessary to
support the operation of corresponding sub-element of
the controller 19 in the new operating mode of the
controller 19. In general, the hardware interface
objects simply return in response to this call. An
exception exists where a particular object has
implementation dependencies based on spatial resolution,
color depth or other device characteristics. Where a

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 66 -

module encapsulated by a hardware interface object, such
as the Graphics object 138, presents multiple routines
supporting the same logical function distinguisﬁed by
color depth, for example, function pointers in the call
entry points of the object structure are updated to
point to the routines appropriate for the new color
depth.

The operating system interface objects preferably
utilize this "change mode" call to re-realize data
objects existent in the current context so as to
correspond to the display resolution, color depth or
other device characteristics of the new operating mode
of the controller 19. Specifically, operating system
interface objects such as the GDI object may be managing
bit map data objects that represent features visible on
the display 32. Thus, a particular operating system
object may preferably first copy any changed hardware
interface object function pointers frequently used by
the operating system interface object into the local
code space of the operating system interface object in
support of expedient call dispatch. A linear
interpolation of the bit maps is then preferably
performed to adjust the actual bit map resolution data
object to match the new spatial resolution of the
display 32.

The operating system interface objects finally
respond to the "mode has changed" mode set call by
directing, as needed, corresponding update operations to
effectively refresh the display 32. Such updates are
specifically performed for any operating system
interface object that has re-realized a data object that
is visible on the display 32 in the new operating mode

of the controller 19. Once the screen refresh has

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 67 -

completed, the shell library mode set routine returns to
the shell object which, in turn, returns from the mode
set API call. The process of changing the mode within

a current context is thus completed.

A. Combined Context and Mode Switch:

A context switch is performed in combination

with a mode switch to support, in a preferred
embodiment, the mode set of the controller 19 to a new
color depth. API calls on behalf of applications 60
that execute in expectation of a particular color depth
that differs from that of the current operating mode of
the controller 19 must be conformed to the current color
depth. Particularly where such API calls are made to
the device driver 50 in reliance on the existence of a
persistent palette or color map, support of contexts is
desirable if not necessary. An alternative may be
supported by the operating system. A callable entry
point into the operating system kernel 56 may provide
for color depth translation of all resident bit maps at
or above the 0/S API call interface to a target color
depth. However, issues may exist as to the efficiency
and reversibility of such translations and the potential
incompatibility of applications and device drivers that
interoperate with the operating system layer 54 based on
persistent assumptions about the constant form and
format of bit maps that are actually wvariable.
Consequently, context switching that is isolated to
within the device driver itself will likely be more
robust and portable among different operating system
implementations.

Palettes and other persistent data are maintained

by each context and are therefore available for

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 68 -

reference even when such contexts are not currently
active. A context is created by default during the
initialization of the device driver 50. Additional
contexts are created as needed in response to API calls
made to the device driver 50 for mode changes to new
color depths.

Referring now to Figure 5a, the shell library 72’
manages a memory pool 148 including at least initially
a single shell object 150 and potentially the additional
shell objects 152, 154, 156. Each of the shell objects
150, 152, 154, 156 represents an independent context
within the device driver 50. One or more of the shell
objects 150, 152, 154, 156 may exist at any time within
the pool 148 as appropriate to represent a color depth
of one or more then currently executing applications 60.
Contexts, including the context represented by the shell
object 150, may be later closed if no then executing
application 60 references the color depth supported by
the context. The shell 1library 72', in addition to
managing the pool of shell objects 148, also maintains
a current context pointer 158. This pointer 158 is used
to identify the particular shell object 150, 152, 154,
156 that corresponds or logically defines the current
cperating mode of the controller 19,

As generally shown in Figure Sb, the use of shell
objects to define contexts in the operation of the
device driver 50 permits the instantiation of distinct
interface objects 170, 172 in respective contexts within
the device driver 50. With each instantiation of an
interface object 170, 172, a private data space 174, 176
is allocated and associated with a respective interface
object 170, 172. However, all instantiations of a

particular interface object 170, 172 encapsulate, in

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 69 -

common, a shared interface module 178. In the execution
of the interface module 178, reference to the private
data spaces 174, 176 is enabled through indepéndent
pointers established in the respective interface objects
170, 172. Consequently, the interface module 178 is
implicitly connected in a specific context to the
correct object; the module 178 is not required to
explicitly manage aspects of the existence of multiple
contexts. Rather, the function of context management
and manipulation is concentrated in and performed by the
routines of the shell library 72’.

The process of performing a context switch occurs
according to the process steps illustrated in Figures 6a
and 6b. A context switch begins with a currently active
context instantiation 150 of the shell object receiving
an API call that at least inferentially specifies a mode
change to an operating mode that requires persistence of
some aspect of the current mode, such as a mode change
to a color depth different from that of the current
context. As before, the shell object 150 performs the
initial validation of the operands of the APT call,
determines that a context switch is called for, and
issues a create new context call 180 to the shell
library 72’. The shell library 72’ examines each of the
existent instantiations of the shell object that may
then exist within the context pool 148 to determine
whether a context having the desired color depth already
exists 184. If an instantiation of a shell object
exists, such as shell object 152, with the desired color
depth, the create new context call to the shell library
72’ returns to the shell object 150.

If, however, the desired context does not then
exist, a new shell object instantiation will be created

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 70 -

186. Prior to creation of this new shell object, if the
context change is the first such change requiring
support for a previously unsupported color depth, the
shell library 72’ may be modified to include support for
the corresponding color depth conversion. In the
preferred embodiment of the present invention, the shell
library 72’ is modified on creation of the second
existent context to include support for all possible
color depth conversions merely as a matter of
convenience. Specifically, a routine for determining
and converting between the current and target color
depths is patched directly into the code of the shell
library 72' so as to obviate the constant conditional
testing of whether color depth conversion might be
applicable to each and every drawing operation even when
only a single context is in use.

The color depth routines of the present invention
provide for on-the-fly conversion of device dependant
, 24 and 32 bits.
Translations between 16, 24 and 32 bit color depths are
performed by directly mapping between the RGB color
value tuples stored for each display pixel at the

bit maps between color depths of 8, 16

current display color depth. Translations from a
palettized color space using an 8 bit per pixel color
index are performed by first looking up the RGB color
value tuple in the PDevice stored color palette and
translation tables of the source application’s context
and then, again, performing a direct RGB color mapping
to the current display color depth.

Conversion on the fly from a 16, 24 or 32 bit color
depth to an 8 bit palettized form is somewhat more
involved. The translation requires a search of the 8
bit color space for a best fit for each RGB tuple being

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 71 -

converted. In general, a least mean square algorithm
can be used to find a best fit color mapping. A
significant performance improvement can be achieved by
caching translated colors. For example, a basic cache
table with 8,192 32 bit cache entries can be used in
translating 32 bit RGB tuples to 8 bit palette index.
Each 10 bit RGB value is precision reduced by three
bits, resulting in a 21 bit tuple. Thus, an 8 bit
palette index value, determined by doing an on the fly
least mean square best fit match against the current
color palette, can be cached with each 21 bit tuple to
establish a quick conversion lookup table. Subsequent
color conversions can then first search the table for
pre-converted palette indices. Consequently, all color
depth conversions can be directly supported by the shell
library 72’ as part of each API initiated drawing
operation.

The instantiation of a new shell object is
performed by calling the initialization routine of the
shell interface module. As with the original
initialization of the device driver 50, a new shell
object instantiation, now shell cbject 152, is allocated
and initialized. An initialization call is then made to
the board library 74’. Since the board library 74’,
like the shell library 72’, is a constant across all
operating modes of the controller 19, the necessary
references to the board library 74’, as distinct from
references to the individual hardware interface objects,
are connected to the new shell object 152. The board
library 74’ then calls the initialization routines of
each of the hardware interface modules in sequence to
Create new instantiations of the objects and to connect
the objects to the board structure of the new shell

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 72 -

object 152. Constants across color depth switches, such
as the contents of the RegClassHandler structures of
each of the modules may be either fully re-created or
simply copied or referenced from the objects of the
current context. For example, in the initialization of
the Graphics hardware interface object 138, a new
private hardware accelerator code data object may be
created. The code stored by this data object could be
initialization constants or sequencer code that will be
downloaded to initialize the hardware accelerator of the
graphics sub-element of the controller 19. Different
sequencer code sets and sub-sets may thus be managed by
the Graphics interface object in different contexts.
This capability is of particular significance where the
accelerator code might be dynamically swapable in the
operation of the graphics sub-element within a single
operating mode as required, perhaps, to adjust the
acceleration algorithms for optimal execution of
different drawing command sets. The board library
initialization routine then returns to the shell library
727 .

The initialization routines of the remaining
operating system interface modules are then called to
complete the initialization of the new shell object 152.
Each module creates a new instantiation of a
corresponding interface object, creates any necessary
private data space for the object, and then connects the
object to the new shell object 152. In particular, the
initialization of the Direct Draw operating system
interface object 122 provides for the creation of a new
context specific PDevice structure and, potentially, a
new GDI_Infotable structure. As with the hardware

interface objects, the data stored by these structures

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 73 -

may be completely re-created or data from the
corresponding structures of the current context can be
used to initialize the new structures. Howevef, the
data in the new PDevice structure is specifically
modified to define the color depth of the new context.
Similarly, the pixel depth field of the GDI_Infotable is
modified to reflect the new color depth as well.
Pointers to these two pew structures, which are
thereafter managed by the shell 1library 72', are
logically associated with the shell object 152 of the
new context.

Consequently, a full compliment of both operating
system and hardware interface objects is created to
define a context that is logically distinct from the
current context represented by the shell object 150.
Execution then returns from the shell library 72’ to the
shell cobject 150.

The shell object 150 next issues 200 a call to the
board library 72’ to realize a new context. The shell
object 150 provides operands sufficient to identify the
characteristics of the new context including, in the
preferred embodiment, the desired color depth and
spatial resolution for the desired operating mode of the
controller 19. In response, the shell library 72’
searches the context pool 148 to select a shell object,
such as shell object 152, that corresponds td the
desired new context.

In preparation for actually performing the context
switch, the shell library 72’ then issues a mode set
call with a "mode is about to change" operand to each
interface object that will participate in the mode set
206. As before, each of the participating interface
objects save any state related information into the

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 74 -

corresponding private data spaces to ensure that such
information will persist across not only the mode
switch, but the context switch as well. .

On the return from the last of the participating
interface objects, the shell library 72’ installs the
new shell object 152 as the shell objects that defines
the current context. Concurrently, the shell library
72’ establishes the PDevice structure and GDI_Infotable
structures logically associated with the shell object
152 as the structures that will be referenced by the
operating system layer 54 in subsequent API calls to the
device driver 50.

The parsing routine of the shell library 72’ is
then called to execute the instructions necessary to
implement the mode switch. The processing and execution
of these instructions are consistent with the necessary
processing to implement a simple mode switch that does
not involve a context switch by the device driver 50.

Once the mode set instructions have been executed,
the shell library 72’ issues a mode set call with a
change mode operand to each of the participating
objects. As before, each of the objects may execute any
object specific routines necessary to implement or
support the new operating mode of the controller 19,
such as downloading new sequencer code to the graphics
accelerator sub-element.

Finally, the shell library 72' issues a mode set
call to each of the participating objects with a "mode
has changed" operand. In response, each of the
participating objects execute to establish the operating
environment of the controller 19 including, for example,
reallocating the use of memory in the display buffer 20
and establishing the position of the hardware cursor on

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 75 -

the display 32. 1In addition, a call is made through the
operating system object 128 to request a fall screen
refresher. In response, the operating system kernel 56
coordinates a series of calls to the device driver 50
providing pointer references to the bit maps that are
visible on the display 32. As each bit map is processed
through the device driver 50, any required color depth
translations are appropriately performed by the shell
library 72°'.

On return from the last participating object, the
shell library 72' returns effectively through the shell
object 152 to the operating system layer 54.
Consequently, the device driver 50 has completed both a
mode switch and context switch essentially independent
of and without the involved participation of the
application 60 or the operating system layer 54.

VI. Operational State Termination:

Finally, the present invention provides for a
process of terminating the operation of the device
driver 50, generally as shown in Figure 7.
Implementations of the operating system kernel 56, such
as specifically Windows ’95™, provide a shutdown APT
call as a standard call issued to each of the device
drivers within a computer system 10 upon termination of
the operating system kernel 56. On receipt of the
shutdown API call, the shell object of the currently
active context, such as shell object 152, operates to
disable processing of any further API calls by the
device driver 50 by terminating acceptance 222 of
subsequently received API calls by the operating system
interface modules. Consequently, the device driver 50

can then perform a shutdown in an orderly manner without

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 76 -

being disturbed by the receipt of an unexpected API
call.

A default section of the modes.dmm configuration
file is then read and executed by the parsing routine of
the shell library 72'. The instructions provided by
this default section are utilized to set a default
operating mode 224 for the controller 19. The
controller 19 is thus established in a known stable
state appropriate for potential use subsequent to the
shutdown of the operating system kernel 56.

The shell library 72’ then operates to free the
system memory used by the interface objects and modules
of the device driver 50. Specifically, the shell
library 72’ operates to identify each existent context
of the device driver 50. For each identified context
228, the shell library 72’ calls the board library 74’
to sequentially free each of the hardware interface
objects specific to the particular context 230. The
board 1library 74’, in turn, calls each hardware
interface object associated with the shell object of the
identified context. With the freeing of the last object
associated with a hardware interface module, the memory
space associated with both the object and module are
freed. Once all of the hardware interface objects for
all contexts have been freed, the board library 74’ is
again called to free its own memory 232.

The shell library 72’ calls each of the operating
system interface objects 234 for each existent context
to free the memory space associated with the objects and
corresponding modules. The shell objects defining the
existent contexts of the device driver 50 are also
freed. The shell library 72’ then terminates 236,

effectively freeing the associated memory, and execution

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 77 -

returns to the operating system kernel 56 to continue
termination of the operating system layer 54.

V. Virtualized Driver Operation:
In the preferred Microsoft Windows '95

environment, a need exists to support legacy
applications running in a so-called Dos-Box protected
execution space. Protected execution, relevant to a
preferred implementation of the present invention, is
provided in either a full screen or a windowed mode.
Legacy applications are permitted to directly access and
program the controller 19 in the full screen mode. 1In
the windowed mode, a virtualizing device driver,
typically referred to as a VxD driver, is provided to
emulate the hardware registers expected by the legacy
application. In order to co-exist and co-execute with
other windowed application, the VXD driver is expected
to provide a window relative emulation of the hardware
programming dynamically provided by the 1legacy
application. Typically, VxD drivers are again
implemented as singular monolithic software modules that
support an emulation of the entirety of a specific
implementation of a controller 19. Consequentially,
conventional VxD drivers encounter the same problems
associated with conventional device drivers.

As generally shown in Figure 8, the architecture of
the device driver 50 of the present invention can be
directly and effectively adopted to implement VxD
drivers, including specifically, a virtual display
driver (VDD). A device driver 50 as described above
preferably operates in support of a Windows (Win1lé)
virtual machine (VM) 240 established in a conventional

manner within the operating system layer 54. A Dos VM

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 78 -

242 provides the Dos-Box protected execution space for
legacy applications that may attempt to directly access
the hardware 30. A version 50’ of the device driQer S0
is provided to trap, evaluate and as appropriate emulate
the consequences of hardware access attempts issued by
or from within the Dos VM 242. The VDD 50’, on becoming
active in support of windowed mode execution of an
application within the . Dos VM 242, selectively
establishes an access trap for the I/O or memory space
corresponding to the register interface 30 through a
conventional use of the operating system. This access
trap is in general released when Dos VM 242 switches to
a full screen mode or when execution moves to another
virtual machine 240, 244. The access trap is reasserted
when execution returns to the Dos VM 242 in the windowed
mode or upon a switch from the full screen mode to the
windowed mode.

Whenever the access trap detects an access attempt,
the VDD 50’ is provided the access characterizing
information obtained by the trap. Specifically, the
board library 74", as shown in Figure 9, is provided
with the access attempt information by the operating
system 54 1logically through the connection 2456.
Preferably, the components of the VDD 50’ implement a
single context version of the display driver 50.
However, multiple contexts can be readily supported as
appropriate to support multiple controllers 19 under the
Dos VM 242.

Within a single context, the hardware interface
objects 130’, 132’, 134’, and 138’ operate to store the
access characterizing data so as to maintain a
representation of the intended state of the display

based on the successive attempts to directly access the

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 79 -

hardware. Preferably, the RegClassMap structures
associated with the hardware interface objects are
augmented with pointers to storage space for the state
information associated with each class of hardware sub-
elements. The hardware interface objects also provide
emulation routines that generate operating system calls
with the assistance of the 0/S object 128’ to cause the
display of a suitable representation of the intended
screen appearance. These calls are applied to the
operating system layer 54 and, in turn, suitably routed
to the display driver 54. Upon a switch to a full
screen mode, the display state maintained by the
hardware interface objects can be used directly to
establish the intended display state by applying the
state data to the register interface 30.

The parser routine of the device driver 50’ is used
effectively in reverse to analyze the access
characterizing information. Preferably, the access
traps serve to characterize access attempts to device
classes implicitly by the assignment of addresses to
class trap handlers. Thus, the class, address and value
provided with the access are collected by the trap
handlers and provided to the reverse parser routine.
Thus, with each trapped access attempt, the access
related data is stored in the corresponding RegClassMap
identified storage. The reverse parser also performs an
analysis against the register definitions ultimately
determined from the class register instructions stored
in the modes.dmm file. The result of the analysis is a
logical determination of whether the register intended
to be written is an index register, or other management
function register, or a data register. Where, the

intended register 1is an index register or other

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 80 -

management function register, the resulting change in
state is recorded. Where the intended register is a
data register, the new state of the register is reéorded
and then a determination is made as to whether some
emulation is required. Depending on the particular
register being written, no emulation may be required or
the full index and data access operation may then be
performed.

Consequently, substantially the same hardware and
operating system interface object definitions are
preferably used and, further, the same methods of
selecting between multiple functions that support
differing display characteristics can be used to select
among display characteristic emulation routines
implemented by the encapsulated hardware interface
modules. Where the parser routine detects an
identifiable mode set, the shell object 126’ may be
called via the 0/S object 128’ to perform a mode set
operation as previously described. The substantially
linear call sequences implemented by the operating
system objects 120', 122’', 126’ are directly enabled.
The function call relation between the operating system
interface objects and the remainder of the VDD 50’ is
therefore the same as in the case of the device driver
50.

V. Conclusion:

Thus, a highly optimal device driver
architecture suitable for supporting a complex and
multi-function peripheral controller as well as
operating as a virtual device driver has been described.
The architecture of the described device driver directly

supports dynamic configuration of the device driver at

WO 97/21161 PCT/US96/18814

10

15

20

25

- 81 -

load time to specifically match the hardware
configuration of the peripheral controller as preferably
determined directly from the hardware on a pef-sub-
element detailed basis, that employs a modular
architecture specifically supporting functional
isolation of module changes in correspondence with
specifics sub-element designs, that provides for an
efficient mechanism for performing mode switches of the
operating state of the controller, that provides an
efficient mechanism for maintenance and management of
persistent data independent of mode switches through the
support of independent context selectively with the
performance of mode switches, and that provides for the
efficient management of color depth transformation in
video display controller applications. Furthermore,
notwithstanding the modular complexity of the
architecture, the supported interoperative relationship
between the modules enables substantially 1linearized
call sequences to virtualize and implement the operating
system API calls.

In view of the above description of the preferred
embodiments of the present invention, many modifications
and variations of the disclosed embodiments will be
readily appreciated by those of skill in the art. It is
therefore to be understood that, within the scope of the
appended claims, the invention may be practiced
otherwise than as specifically described above.

W0 97/21161 PCT/US96/18814

10

15

20

25

30

- 82 -

Claims

1. A device driver operable to coupie an
operating system, provided in the memory of a computer
system having a processor, to a computer interface of a
controller device having a plurality of functional sub-
elements, said device driver comprising:

a) a plurality of operating system interface
objects each presenting an operating system interface
(0SI) to said operating system;

b) a plurality of computer interface objects
each providing for the generation of programming values
to be applied to said computer interface to establish
the operating mode of a respective predetermined
functional sub-element of said controller device;

c) a device driver library of processing
routines callable by said plurality of operating system
interface objects to process data and generate calls to
said plurality of computer interface objects in
predetermined combinations, wherein at least one of said
plurality of operating system interface objects and said
plurality of computer interface objects is a discrete
dynamically loadable object.

2. The device driver of Claim 1 wherein a
predetermined one of said operating system interface
objects presents a system call operating system
interface to said operating system and wherein said
device driver library is coupled to said predetermined
one of said operating system interface objects to direct
the issuance of system calls through said system call
operating system interface to request operating system

services, including the dynamic loading of said one of

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 83 -

said plurality of operating system interface objects and
said plurality of computer interface objects.

3. The device driver of Claim 2 wherein said
device driver library includes a routine for reading
type data corresponding to a predetermined one of said
plurality of functional sub-elements, said device driver
library responsively providing for the selection of a
predetermined system call to direct the discrete dynamic
loading of a predetermined one of said computer
interface objects to generate programming values to be
applied through said computer interface to establish the
operating mode of said predetermined one of said
plurality of functional sub-elements of said controller

device.

4. A device driver for use in an operating system
in support of a hardware interface of a computer system,
said device driver comprising:

a) an application interface module coupleable
to an operating system to provide a predetermined
application program interface for a predetermined
function of a hardware component of a computer system,
said application interface module providing for the
generation of a sequence of one or more library function
calls;

b) a device driver library module coupled to
said application interface module to receive said
library function calls, said device driver library
module providing for the execution of said library
function calls in a predetermined one of a potential
plurality of execution contexts to generate a sequence
of one or more board object calls; and

WO 97/21161 PCT/US96/18814

10

i5

20

25

30

- 84 -

c) a plurality of board object modules coupled
to said device driver library module to receive said
board object calls, each of said plurality of.board
object modules providing for the execution of a
respective predetermined board object call within said
predetermined one of said execution contexts to generate
hardware control signals, said plurality of board object
modules being coupleable to a hardware interface to
provide said hardware control signals to said hardware

interface.

5. The device driver of Claim 4 wherein said
plurality of board object modules include a data storage
area for storing data representative of the state of
said hardware interface.

6. The device driver of Claim 5 wherein said
plurality of board object modules potentially include a
plurality of said data storage areas and wherein each of
said potential plurality of data storage areas stores
data representative of a respective state of said
hardware interface.

7. The device driver of Claim 6 wherein said
plurality of board object modules operate in dependance
on predetermined constant data values, wherein said
plurality of ©board object modules includes a
programmable data table for storing a set of data
values, said programmable data table initially storing
a default set of constant data values, and wherein said
device driver library module provides an operational set
of constant data values for in said programmable data
table.

WO 97121161 PCT/US96/18814

10

15

20

25

30

- 85 -

8. The device driver of Claim 7 wherein said
device driver library module determines to provide said
operational set of constant data values in respohse to
identification data obtained from said hardware

interface.

9. The device driver of Claim 8 wherein said
identification data obtained from said hardware
interface is encoded, wherein said device driver library
module provides for the decoding of said identification
data into a plurality of hardware identifiers, and
wherein said device driver library module determines
said operational set of constant data values in
correspondence with said plurality of hardware
identifiers.

10. The device driver of Claim 9 wherein said
device driver library module includes storage for
references to each of said potential plurality of
execution contexts, wherein execution of a predetermined
one of said library function calls includes generation
of a predetermined sequence of said board object calls,
wherein each of said plurality of board object modules
include a memory space for the storage of hardware state
definition data, and wherein

11. A modular device driver for coupling a device
independent interface of an operating system executable
within the memory of a computer system including a
central processor to a device dependant hardware
interface of a peripheral device including a plurality
of programmable functional components, said device
independent interface including a pPlurality of call

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 86 -

interfaces including a first interface for requesting
system services and a second interface, said modular
device driver comprising: '

a) a library module including an
initialization routine and a library interface to said
first interface;

b) an operating system interface module
implementing a predetermined operating system interface
corresponding to said second interface; and

¢} a plurality of functional component modules
responsive to said 1library module and discretely
coupleable to respective functional components to
provide device dependant programming of said functional

components.

12. The modular device driver of claim 11 wherein
said initialization routine provides for an
identification of said plurality of programmable
functional components, said initialization routine
directing the dynamic loading of selected ones of said
plurality of functional component modules corresponding
to said identification and integration of said selected
ones with said library module.

13. The modular device driver of claim 12 wherein
each of said functional component modules correspond to
one of a plurality of families of like functions and
wherein each of said functional components modules
corresponding to a predetermined like function family
implement a like interface to said library module,
whereby said functional component modules implement
functional component independent families of library
module interfaces.

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 87 -

14. The modular device driver of claim 11 or 13
wherein said plurality of functional component modules
are respectively specific to the implementation of said
functional components, wherein a predetermined
peripheral device implements a subset of said plurality
of said functional components, and wherein said
initialization routine operates to dynamically load a
corresponding set of said functional component modules.

15. The modular device driver of claim 14 wherein
said peripheral device is encoded with data identifying
said subset of said plurality of said functional
components implemented by said peripheral device.

16. The device driver subsystem for a computer
system providing a peripheral bus for interconnecting a
controller with a central processing unit and a program
memory including an operating system providing a device
driver interface, said device driver subsystem
comprising:

a) a plurality of functional sub-elements
coupleable to said peripheral bus, each of said
functional sub-elements including a programmable
interface;

b) a device driver core loadable by said
operating system into said program memory and a
plurality of hardware interface modules selectively
loadable by said device driver core into said program
memory, said hardware interface modules providing for
the selective programming of said functional sub-
elements.

WO 97/21161 PCT/US96/18814

10

15

20

25

30

- 88 -

17. The device driver subsystem of claim 16
wherein said device driver core includes a first library
portion that is independent of the implementation of
said plurality of functional sub-elements and a second
portion that is dependant on the implementation of said
plurality of functional sub-elements, and wherein said
second portion provides an device driver interface to
each of said programmable interfaces of said functional
sub-elements.

18. The device driver subsystem of claim 17
wherein said second portion provides a common interface
to said hardware interface modules through which said
hardware interface modules can program said programmable
interfaces of said functional sub-elements.

19. The device driver subsystem of claim 18
wherein first portion of said device driver core
selectively loads said second portion dependant on a
first identification of said plurality of functional
sub-elements and wherein said second portion selectively
loads said plurality of functional sub-elements based on
a second identification of said plurality of functional
sub-elements.

20. The device driver subsystem of claim 19
wherein said first portion of said device driver core
loads a plurality of operating system interface modules
based on an identification of said operating system.

WO 97/21161

1/8

PCT/US96/18814

10~\\
(" A
DISPLAY
BUFFER
\(38
22 ‘20 N Ty |
A\ L 34)
DAC
24~ N
GRAPHICS 30
CONTROLLER
W CPU
- \\¥12
26 .
VIDEO =
CONTROLLER z 14 16
L [
(a
: MEMORY
gﬁﬂ\ [29
CLOCK rRoM| [\19 18
[
MASS STORAGE
PERIPHERAL
OTHER
PERIPHERAL
T
FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 97/21161 PCT/US96/18814
2/8
60
APPLICATION
. . APPL
62~ " API
N
54— 0/S 0/S
KERNEL EXTENSION
55/ 56 0/5
2 * API
S O A A H i
1 70 |]
A | 61| | Do | | D3D |
! 0/S | SHELL |
i : 64 55] 55-/ E
! } I
N ') l
E 50 70/ 5
} }
| [s
| 1
i BOARD.DLL i
| I
!)
| {
i — y |
] vl
| |
] |
1 |
s |
| : |
| | |
: i |
1 {
| CLK| | DAC| | CODAC CURSOR | | VIDEO| |GRAPHICS | | 3D | |
t i
75 78 ve] 82 ‘81 “EE -89 |
- , H/W
_52 O I/F
FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 97/21161

0/S Init

|

0/S Loads
Shell Driver

ng

Establish
Shell Object

[58

Establish 0/S
API Interface
Object

/—QW

Identify Board
Type

[SE

Load Correct
Board Driver

/rSB
Establish

Board Object

3/8

100
[

Evaluate
Board H/W

Identifier

102
[

Determine
H/W Interface
Objects

104
[

Load H/W

Interface
Objects

106
/r

Initialize Each
Object

107
[

Link Each
Object to
Board Object

108
r

Link Board
Object to
Shell Object

PCT/US96/18814

109
/-

Establish
GRXAPI
Object

110
[

Determine
0/S Interface

Object Set

112
r

Load API
Interface
Objects

114
/_

Initialize Each
API Object

116
[

Link API
Objects to

GRXAPI
Object

Link GRXAPI
Object to
Shell Object

FI6. 3

SUBSTITUTE SHEET (RULE 26)

Return

118

WO 97/21161

4/8

PCT/US96/18814

e B I O Bt <
v Ve {0 | a2 | 125
o/s | | ep1 DD D3D | ., . . |SHELL
0BJ | | OBJ || oBJ 0BJ OBJ
28
50‘\ [72/
SHELL LIBRARY
() ‘ I)
132 134 136 138
[47 [4] [[
DAC | | CLK | |CURSOR| |VIDEO| |GRePHICS| | 3D
0BJ | | 0BJ || OBJ 0BJ 0BJ 0BJ
|
[74/
BOARD LIBRARY
[30

SUBSTITUTE SHEET (RULE 26)

H/W

FIG. 4

WO 9721161

PCT/US96/18814
5/8

160— PHISICAL SHELL LIBRARY| 72’

DEVICE

——

1524/

148

SHELL
OBJECT

150
FIG. bA
170,
I
OBJECT
174~ _____5r—~\\
PRIVATE 1/F
DATA
172 MODULE
L 178
—w__| I/F
OBJECT
176 .‘jfi’
PRIVATE
DATA
v FIG. bA

SUBSTITUTE SHEET (RULE 26)

WO 9721161

PCT/US96/18814
6/8
180
/_ Realize | 200
Determine New
to Switch Context
Context
1682 Identify //rEUE
/— Requested
Check for Context
Target Feature
Context
1854 Selt?ct Shel|/204
Y Object for
Context
N [185
Issue Mode 206
Create Neyt Change Msqg T
Shell Objec to Each
/rIBB Object
Initialize
Each Object .
in New ssue 208
Context Change K
Mode to
//ng A Each Object
Link Each 240
Object to /[
New Shell Issue Mode
Obiect Change
iy Done to
Each Object
Return —— | Return
FI6. 64 FIG. 68

SUBSTITUTE SHEET (RULE 26)

WO 97721161

PCT/US96/18814

7/8

220
/F /7219
Shutdown Destroy
All Contexts H/W
Objects For
/r222 Each
Context
Disable
APIs of 0/S
Interface [e32
Objects Release
Memory for
254 Board
/F Driver
Set H/W
Modes to /E94
Default Release
Values Memory for
Shell Object
/é?E
Destroy 0/S /ﬁgﬂs
Interface Terminate
Objects Shell Driver
/223 ‘
Identify Return
Each
Allocated
Context

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 97/21161 PCT/US96/18814

8/8
[EWO 0/S [EM? [ng
Win16 Dos Network aa
VM M VM
50/ 50 "
Device 30 /
. vDD VND
Driver
30
/— \£W5
H/W
FIG. 8
1207
246
o Mini VDD
API ..
Obj
/‘Z?”
Shell Library
]
130

DAC CLK Cursor Graphics
Obj Obj Obj Obj
132 134" 1387

Board Library

Lo
FIG. 9 7

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

