发明名称：带有用于检测弧光放电灯的整流效应的保护电路的镇流器

摘要

一种镇流器，包括用于向放电灯提供交流电压的变换器。当灯接近其寿命的末尾时在灯上形成直流电压分量。该镇流器包括一个用于通过测量这种直流电压分量来监测各个阴极的状态的电路。在这种直流电压分量达到预定的增加量之后，为了避免阴极过热而使变换器截止。由于开路状态或灯漏气而形成的谐振或近谐振模状态也将致使变换器截止。
权利要求书

1. 一种用于具有一对阴极的放电灯的镇流器，其中所说的放电
灯的特征在于，当所说的灯由于其中一个所说的阴极上的发射材料耗
尽而接近寿命的末尾时，灯电压波形便具有直流电压分量，所说的镇
流器包括:

一对适合接收来自交流电源的交流信号的交流输入端；
连接到所说的交流输入端的直流电源装置；
连接到所说的直流电源装置并有一个输出端的变换器装置；
连接到所说的变换器装置的所说的输出端的负载装置，它包括一
个具有近谐振槽状态和谐振槽状态的谐振槽路，所说的谐振槽路包括
带有电感谐振绕组的磁性装置；

第一检测装置，具有适合于连接到所说的放电灯的输入端，用于
检测所说的直流电压分量的增加；

截流装置，连接到所述的第一检测装置的输出端，用于至少响应
所说的直流分量的所说的增加从而使所说的变换器截流；和第二检测
装置，至少用于检测所说的谐振槽路的所说的谐振槽状态，所说的截流
装置用于响应所说的谐振槽状态从而截止所说的变换器。

2. 按照权利要求1所说的镇流器，其特征在于，所说的谐振槽
路包括带有电感谐振绕组的磁性装置，所说的第二检测装置带有连接
到所说的磁性装置的输入端。

3. 按照权利要求2所说的镇流器，其特征在于，所说的第二检
测装置包括用于检测所说的谐振槽状态的装置。

4. 按照权利要求1所说的镇流器，其特征在于，所说的第二检
测装置包括全波桥式整流器和RC积分网络。

5. 按照权利要求1所说的镇流器，其特征在于，所说的用以截
止所说的变换器的装置包括一个光隔离器。

6. 一种装置，其特征在于，包括:

一对适合接收来自交流电源的交流信号的交流输入端；
连接到所说的交流输入端的直流电源装置；
连接到所说的直流电源装置的变换器装置，它包括一对半导体开
关和用以驱动所说的半导体开关的装置；

连接到所说的变换器装置的输出端的负载装置，它包括具有谐振
模状态的谐振槽路和具有一对阴极的放电灯, 所说的谐振槽路包括具有初级电感的磁性装置, 所说的放电灯的特征在于, 当该灯由于在其中一个所说的阴极上的发射材料耗尽而接近其寿命的尾时, 灯电压波形具有一个直流电压分量;

具有连接到所说的磁性装置的输入端的第一检测装置, 用于检测所说的谐振槽路的所说的谐振模状态;

具有适合于连接到所说的放电灯的输入端的第二检测装置, 用于检测所说的直流电压分量的增加;

连接到所说的第一和第二检测装置输出端的装置, 用于响应所说的的第一和第二检测装置从而截止所说的变换器。
说明 书

带有用于检测弧光放电灯的整流效应的保护电路的镇流器

本发明披露和要求保护弧光放电灯保护电路的结构特征，它是对 James L. Lester 等人于 1994 年 5 月提交的美国专利申请 No. 08/237,465 号的相关主题的继续改进，此申请已转让给本申请的受让人。

本发明涉及弧光放电灯、特别是微型和紧凑型荧光灯，并且尤其涉及到带有防止电灯在使用寿命的末尾时过热和防止镇流器元件损坏的电路的电子镇流器。

低压弧光放电灯（例如荧光灯）已是公知技术，这种灯一般包括一对钨丝线圆阴极，钨丝上涂敷有由碱金属氧化物（即 BaO, CaO, SrO）电子发射材料组成的涂层，用以降低阴极逸出功，提高灯的效率。由于涂层在阴极灯丝上的电子发射材料，典型的阴极电压降（catchode fall voltage）约为 10～15V。然而当一个阴极灯丝上电子发射材料耗尽，灯的使用寿命到达末尾时，阴极电压降迅速增加 100V 或更高。如果外部电路不能限制提供给灯的功率，则会使该灯在由阴极电压区承受着附加功率的情况下继续工作。例如，按 0.1A 的电流正常工作的灯，在正常工作期间每个阴极上功率 1～2W。在其寿命的末尾时，耗尽的阴极由于阴极电压降增加，其功率可高达 20W。这种额外功率可能导致灯和夹具局部过热。

小直径（例如 T2 或 1/4 英寸）的荧光灯通常要求非常高的点火电压，需使用开路输出电压超过 1,000V 的镇流器。这样的电压降足以使得一个具有 50～150V 电弧电压降的导通的灯承受耗尽的阴极和 200V 的寿命末尾时的阴极电压。在使用中，因为如此过量的电压主要降落在镇流器的输出阻抗上，所以灯工作在额定电流值的附近。由于这种小直径的 T2 灯的阴极比大直径的灯更靠近内管壁设置，因而较小的阴极功率就会使阴极区玻璃过热。在这样的 T2 直径的灯中，希望把阴极功率的增加限制到 4W 左右，以避免局部过热。

为了避免因过载使电路损坏，进行过多种试验以便在变换器型 (inverter-type）镇流器中提供过压或过流保护。例如，1993 年 11 月 16 日授予 Sun 等人的美国专利 No. 5,262,699 中讨论了这样一种
变换器型镇流器，它带有检测因谐振状态或开路（无负载）状态引起
的电流的相对增加过大的装置。该变换器当灯被移除掉或者灯不能点
燃时总是被截止的。当一个或多个灯电极上的发射材料耗尽从而使灯
不能点燃时，就将引起开路状态。

1985 年 3 月 5 日授予 Nilsson 的美国专利 No. 4,503,363 揭露
了一种变换器型镇流器，该设备具有检测跨在镇流器输出端电压的组
件。当在该组件输入端检测到因灯从其插座移开或因灯不能启辉造成
的开路状态时，该变换器就被截止。

虽然美国专利 No. 5,262,699 和 4,503,363 中的截止电路可以
在检测到电流或电压有较大的增加时而使变换器截止时发挥作用，然
而这些电路对于响应阴极上功率较小的增加却是无效的。

由 OSRAM GmbH 制造的用于使 “Dulux DE” 紧凑型荧光灯工作的
“Quicktronic” 变换器型镇流器，可以通过检测随灯的射频反馈而
增加的电源电压而监测镇流器输入功率的增加。实际上，由于灯电流
在检测范围内在镇流器中几乎是常数，所以可检测到灯电压。为使变
换器截止，要求输入功率增加 6~10W（误差为±2W）。由于上述电压
检测的缺点，这种方法最适合于检测非常大的电压增加，例如灯未启
动或开路状态。而且，这种方法对电路元件公差要求严格，这增加了
成本，也降低了负载的灵活性。

因此，本发明的一个目的是克服已有技术的缺点。

本发明的另一个目的是提供一种变换器截止电路，它能在灯的使
用寿命的末尾因阴极功率的较小增加而引起灯电压的小量增加时对
灯和电路元件提供保护。

根据本发明的一个方面，这些目的通过为带有一对阴极的放电灯
设置的一种镇流器装置来达到。该放电灯的特征是：当灯由于它的其
中一个阴极上的发射材料耗尽从而接近寿命末尾时，灯电压波形具有
直流电压分量。该镇流器包括一对适于接收来自交流电源的交流信号
的交流输入端和一个与该交流输入端相连接的直流电源。变换器连接
到直流电源。负载包括一个具有近谐振模状态和谐振模状态的谐振槽
路，该负载连接到变换器的输出端。一个第一检测器有一个适于与放
电灯连接的输入端，用以检测直流电压分量的增加。一个截止电路连
接到第一检测器输出端，用以至少响应直流分量增加而使变换器截
根据本发明的进一步教导，谐振槽路包括一个带电感谐振槽路绕组的磁性组件，镇流器最好还包括一个具有连接到磁性组件的输入端的第二检测器，用以至少检测谐振槽路的谐振模状态。在优选的实施例中，该第二检测器适合于检测近谐振模状态。

本发明的附加目的，优点和新颖特征将在下面说明，这对本领域技术人员来说通过下面内容的考察将变得很明显，或者可以通过对本发明的实践而得到熟悉。本发明的上述目的和优点可通过在所附权利要求中具体指出的方面和其组合而实现。

通过下面结合附图的有代表性的说明，本发明将更加清楚。图 1 是作为时间的函数的灯电压曲线图，其中，示出当一个灯阴极耗尽时直流分量被引入灯电压波形中的情况；和

图 2 是按照本发明的弧光放电灯镇流器的一个实施例示意图。

为了更好地理解本发明以及它的其他和进一步的目的，优点及其性能，现在结合上述附图通过下文和所附的权利要求进行说明。

图 1 是灯电压作为一个时间周期的函数的曲线图，示出当一个灯阴极耗尽时直流分量引入到灯电压波形中的情况。通常在工作着的弧光放电灯中，如图中具有 50V 电压均方根值的波形 1A 所示出的那样，各阴极的阴极电压降是相等的。由于在此例中用来激励该灯的电流的波形相对于零轴线是对称的，灯电压将保持交流分量而没有直流分量。当在一个电极灯丝上的电子发射材料耗尽、灯寿命接近结束时，灯将出现局部整流，一个直流分量将叠加到灯的总电压上，如波形 1B 和 1C 所示的那样。由于阴极电压降增加，这个耗尽的阴极所消耗的功率增加，如果不加限制，会导致灯和夹具局部过热。

应注意，在相对的一个阴极上的发射材料的耗尽也通过附加一个直流分量（具有相反极性）来表示，但这是在灯电压波形的第二半边中显示出峰值电压具有负增长。

在 T2（即 1/4 英寸）直径的灯中，希望将阴极功率的增加限制到最大约 4W 以避免任何局部过热。对大直径的灯来说，阴极功率可允许的增加能适当地进行调整。在本实施例中，阴极功率增加 4W 相应于总的直流灯电压从 0V 变到约 52V。本发明通过实测与交流分量无关的灯电压波形中的直流分量可监视每个灯电极的情况。
图2示出放电灯DS1的镇流器的优选实施例的示意图。灯DS1是一个弧光放电灯，例如具有相对应的阴极（如灯丝状阴极E1、E2）的低压荧光灯。每个丝状阴极在制造过程中都涂敷了一定量的发射材料。构成负载电路10的一部分的灯DS1经过作为DC/AC变换器来进行工作的振荡器或变换器12而点燃和发电。变换器12接收来自一个与交流电源相连接的直流电源16的已滤波的直流供电。由启动电路14启动变换器12的导通。镇流器可以包括网络18或其等同物以便较正功率因数。为了防止阴极过热，电路20在检测到灯的使用寿命接近末尾时并开始进行整流时，暂时使变换器截止。电路24监视交流输出电压并检测由谐振模状态或近谐振模状态引起的交流输出电压的不正常增加。在检测到例如由一个完全失效的灯（即，无电流流）或已移除的灯引起的谐振模状态时，变换器将暂时截止。电路24也将会检测出产生近谐振模状态并使交流负载电流逐渐增加的漏气的灯。

在图2中，一对输入端IN1，IN2连接到一个例如为108~132V（60Hz）的交流电源。保险丝F1和变阻器RV1串联地跨接在输入端IN1，IN2上，以分别提供对过电流和线电压的过渡过程保护。热保护则由热断路器F2来提供。由电感L1、共模滤波器L4和一对电容器C16和C17组成的电磁干扰过滤器与输入端IN1、IN2和直流电源16的输入端串联连接。

直流电流16按常规设计并与整流桥D1、电容器C8和电阻R13组成。直流电源16的输出端是端点+VCC（示于图2中）。整流桥D1的输出端可连接到功率因数校正网络18，该网络18由电感L2、电容器C1、C2、C5、C6、C10和C11、二极管D6、D7和D18组成。

一个包括（作为主要工作元件的）一对串联连接的半导体开关（例如MOSFET Q1和Q2或合适的双极晶体管（未示出））的变换器12与直流电源16的直流输出端+VCC和接地端并联连接。MOSFET Q1和Q2的基极驱动和开关控制由变压器T1的次级绕组W2和W3提供。变压器T1的电感影响MOSFET Q1和Q2的开频率。变换器12的晶体管开关频率一般大约为30KHz~70KHz。

变换器启动电路14包括电阻R15和电容器C7的串联电路。电阻R15和电容器C7之间的接点连接到双向闸元件D4（即二端交流开关。
元件（diac）的一端。闸元件 D4 的另一端连接到 MOSFET Q2 的栅板或输入端。在灯的正常工作期间，通过使启动电容器 C7 上的电压保持在比闸元件 D4 的阀电压低的电平，从而由于二极管整流器 D5 的作用而使得变压器启动电路 14 变成不能进行工作。

一对齐纳二极管 D14 和 D15 分别保护 MOSFET Q1 和 Q2 的栅极不过压。由晶体管 Q3、二极管 D17 和电阻 R18 组成的电路改善了 MOSFET Q1 的截止功能。由晶体管 Q4、二极管 D16 和电阻 R19 组成的类似电路改善了 MOSFET Q2 的截止功能。由电阻 R6、R22 和电容器 C4 组成的相移网络连接到 MOSFET Q1 的输入端。用类似的方法，由电阻 R7、R23 和电容器 C3 组成的相移网络连接到 MOSFET Q2 的输入端。

负载电路 10 包括变压器 T1 的初级绕组 W1 和电容器 C5 和 C6。初级绕组 W1 构成灯的主要镇流元件。电容器 C5 的另一端连接到灯 DS1 的 LMP2 端。为了在开始启动期间有效地限制因电容器 C5 和 C6 放电引起的峰值灯电流，将电感 L3 与灯 DS1 串联地连接。电容器 C12 阻隔任何直流分量。

放电灯 DS1 的电极 E1、E2 可以以永久固定方式或者借助适合的插座（以便更换灯）连接到镇流器两端。尽管图 2 例示出一种瞬间启动的放电灯（其中每个阳极的引入线短接在一起后连接到各端 LMP1、LMP2），但其它的连接方式也是可能的。

在图 2 所例示的实施例中，用以检测灯 DS1 两端的直流电压的电路 20 包括一由电阻 R1、R20、R2、R3、R4、R5 以及与 R20 并联的电容器 C14 组成的、与灯 DS1 并联连接的 RC 积分网络。此 RC 积分网络和 D2 的开关电流提供出电压分配，以设定被检测的直流电压的跳闸电平（trip level）。电容器 C14 的一端与闸元件 D2 和电阻 17 的组合串联相连接。电阻 R17 一端连接到由二极管 D10、D11、D12 和 D13 组成的全波整流桥网络。

耗尽阴极中的功率的增加与由直流电压检测电路 20 检测到的灯的直流电压的大小成正比。由于部分地是依靠了全波整流全波整流电路的作用，所以借助于该检测和截止电路使两种极性的直流电压都可加以检测，从而，任一个阴极的失效都使变压器截止。灯 DS1（和电容器 C14）上的直流电压的极性取决于发射材料耗尽的阴极。

电路 20 的输出端连接到位于光隔离器（optical isolator）TR1
输入端的 LED。由电阻 R11 和电容器 C11 组成的缓冲器网络对光隔离器 TR1 的输出三端双向可控硅开关元件进行分流。光隔离器 TR1 的三端双向可控硅开关元件的导通使得来自 MOSFET Q1 的栅驱动电流通过电阻 R12 和二极管 D9 旁路到地。结果，变换器 12 暂时截止。

在图 2 中，电路 24 检测电容器 C5、C6、C10 和绕组 W1 的电感的谐振槽状态。电路 24 连接到变压器 T1 的第三级或检测绕组 W4。检测绕组 W4 上的交流电压正比于灯 DS1 上的交流电压。检测绕组 W4 的一端通过二极管 D8 连接到被泄放电阻 R9 旁路的电容器 C9 上。电容器 C9 的正端通过二端交流开关元件 D3 和电阻 R10 连接到光隔离器 TR1 和 LED 输入端。

半导体开关可以用与变换器驱动变压器不同的装置来驱动。例如，半导体开关可以直接用控制逻辑电路驱动。在此例中，变换器驱动变压器用另外的磁性元件（例如有单个检测绕组的电感）来代替。

现在将更详细地讨论箝流器的工作。当输入端 IN1、IN2 连接到合适的交流电源时，直流电源 16 整流和滤波交流信号并产生出一个跨在电容器 C8 上的直流电压。同时，变换器启动电路 14 中的启动电容器 7 开始通过电阻 R15 充电到实际上与阈元件 D4 的阈电压相等的电压。一旦达到阈电压（例如 32V），阈元件便击穿，并将一个脉冲加到 MOSFET Q2 的栅极或输入端。结果，来自直流电源的电流流过电容器 C10、C5、C6 和变压器 T1 的初级绕组 W1 以及 MOSFET Q2。由于在启动期间灯基本上处于开路状态，所以这时无电流流过灯。流过初级绕组 W1 的起始电流在绕组 W3 上建立一个电压，其极性使 MOSFET Q2 通过由电阻 R7、R23 和电容器 C3 组成的相移网络而导通。绕组 W3 上的电压由电 LC 谐振槽路确定的频率进行振铃。当此电压降到低于 MOSFET Q2 的门限时，Q2 截止。由于绕组 W2 和 W3 是处在同一个变压器中而具有相反的级性，所以 MOSFET Q1 开始导通。由于由电容器 C5 和次级绕组 W1 形成的串联谐振电路的作用，这一过程重复进行，使电容器 C5（和灯 DS1）上形成高压。在电容器 C5 上形成的这个高压足以点燃灯 DS1。

当一个阴极灯丝上的发射材料耗尽、灯的使用寿命将结束时，灯将部分地整流并将在电路 20 中的电容器 14 上产生直流电压分量。当在电容器 C14 上形成的电压超过元件 D2 的阈电压时，电容器 14 通过
电阻 17、二极管 D13 和 D11（或者二极管 D10 和 D12，这取决于电容器 C14 上的极性）以及光隔离器 TR1 的 LED 放电。

再例如：如果灯不亮（即无灯电流）、如果灯从电路中去除掉、或者灯漏气时，检测电路 24 就进行检测。在这种状态下镇流器将在电容器 C5、C6、C10 和绕组 W1 的电感的谐振模式或近谐振模式状态下工作。由于串联谐振电路的性质，这些串联谐振元件的组合阻抗将是零，电路中具有的显著的阻抗仅是绕组 W1 的电阻和 MOSFET Q1 和 Q2 的漏-源电阻。在上述情况下，灯电压和谐振槽路的 Q 值增加。因此，电容器 C9 上建立的电压将超过元件 D3 的阈电压，而且将通过电阻 R10 和光隔离器 TR1 的 LED 放电。

当光隔离器的 LED 通过检测电路 20 或 24 中的任一个的作用而导电时，光隔离器 TR1 启动，导致三端双向可控硅开关元件在输出端被分流和 MOSFET Q1 的栅极被连接到地。因为在 MOSFET Q1 的栅极可得到的是被限定的电压，该栅极驱动电压将不足以导通 Q1，导致变换器工作中断。随着镇流器断开，无信号加给电容器 C14 和 C9，它们就分别通过 R20 和 R9 开始放电。TR1 的三端双向可控硅开关元件仍然旁路着，保持 Q1 被偏置成截止状态，而镇流器处于不导通状态。

当切断加到镇流器上的电源后，电容器 C8 上的电压开始通过泄放电阻 R13 放电。在使电容器 C8 上的电压充分下降以使得 TR1 的输出三端双向可控硅开关元件所保持的电流电平不能维持之后，电路复原，并且由于重新接通加到镇流器上的电源，使 MOSFET Q1 和 Q2 的导通被重新启动。

检测谐振模状态或近谐振模状态的选择可通过适当地选择电阻 R8 和 R9 来确定。如果电路 24 被调整成用以检测近谐振模状态，则谐振模状态也将自动被检测，然而，反之并不总是正确的。

在本发明范围内可以对电路 20 和 24 作各种修改，例如采用非锁定光隔离器（non-latching optical isolator），从而为了复原被切断的电路不必切断加到镇流器上的电源，或者采用 SCR 光隔离器（它可以具有两个独立的输入端）。而且，虽然只示出一个灯，但在本发明范围内可以包括任何适当数量的灯。

作为特定的例子（但绝不能被解释为对发明的限定），下列的元件对图 2 所例举的实施例是适用的：
<table>
<thead>
<tr>
<th>零件</th>
<th>种类</th>
<th>参考值</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>电容器</td>
<td>0.33 MFD</td>
</tr>
<tr>
<td>C3, C4</td>
<td>电容器</td>
<td>1500 PFD</td>
</tr>
<tr>
<td>C5</td>
<td>电容器</td>
<td>3300 PFD</td>
</tr>
<tr>
<td>C6</td>
<td>电容器</td>
<td>1800 PFD</td>
</tr>
<tr>
<td>C7</td>
<td>电容器</td>
<td>0.1 MFD</td>
</tr>
<tr>
<td>C8</td>
<td>电容器</td>
<td>47 MFD</td>
</tr>
<tr>
<td>C9</td>
<td>电容器</td>
<td>22 MFD</td>
</tr>
<tr>
<td>C10</td>
<td>电容器</td>
<td>4700 PFD</td>
</tr>
<tr>
<td>C11</td>
<td>电容器</td>
<td>2200 PFD</td>
</tr>
<tr>
<td>C12</td>
<td>电容器</td>
<td>0.01 MFD</td>
</tr>
<tr>
<td>C13</td>
<td>电容器</td>
<td>0.022 MFD</td>
</tr>
<tr>
<td>C14</td>
<td>电容器</td>
<td>4.7 MFD</td>
</tr>
<tr>
<td>C15</td>
<td>电容器</td>
<td>1000 PFD</td>
</tr>
<tr>
<td>C16</td>
<td>电容器</td>
<td>0.01 MFD</td>
</tr>
<tr>
<td>C17</td>
<td>电容器</td>
<td>2200 PFD</td>
</tr>
<tr>
<td>R1 – R5</td>
<td>电阻</td>
<td>100K ohm</td>
</tr>
<tr>
<td>R6, R7</td>
<td>电阻</td>
<td>2.1K ohm</td>
</tr>
<tr>
<td>R8</td>
<td>电阻</td>
<td>11K ohm</td>
</tr>
<tr>
<td>R9</td>
<td>电阻</td>
<td>62K ohm</td>
</tr>
<tr>
<td>R10, R17, R21</td>
<td>电阻</td>
<td>10K ohm</td>
</tr>
<tr>
<td>R11</td>
<td>电阻</td>
<td>200K ohm</td>
</tr>
<tr>
<td>R12</td>
<td>电阻</td>
<td>6.8K ohm</td>
</tr>
<tr>
<td>R13, R16</td>
<td>电阻</td>
<td>360K ohm</td>
</tr>
<tr>
<td>R14</td>
<td>电阻</td>
<td>270K ohm</td>
</tr>
<tr>
<td>R15</td>
<td>电阻</td>
<td>470K ohm</td>
</tr>
<tr>
<td>R18, R19</td>
<td>电阻</td>
<td>4.7K ohm</td>
</tr>
<tr>
<td>R20</td>
<td>电阻</td>
<td>10M ohm</td>
</tr>
<tr>
<td>D1</td>
<td>整流桥</td>
<td>1.5A, 600V</td>
</tr>
<tr>
<td>D2</td>
<td>晶体管</td>
<td>MBS4992</td>
</tr>
<tr>
<td>D3, D4</td>
<td>二端交流开关元件</td>
<td>32V</td>
</tr>
<tr>
<td>D5</td>
<td>二极管</td>
<td>0.5A, 600V</td>
</tr>
<tr>
<td>部件号</td>
<td>功能</td>
<td>规格</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>D6-D9, D18</td>
<td>二极管</td>
<td>0.5A, 400V</td>
</tr>
<tr>
<td>D10-D13, D16, D17</td>
<td>二极管（开关）</td>
<td>75V, 0.45A</td>
</tr>
<tr>
<td>D14, D15</td>
<td>二极管</td>
<td>0.5W, 18V 管</td>
</tr>
<tr>
<td>DS1</td>
<td>微型荧光灯</td>
<td>20 英寸</td>
</tr>
<tr>
<td>F1</td>
<td>保险丝</td>
<td>4A, 125V</td>
</tr>
<tr>
<td>F2</td>
<td>热保护器</td>
<td>IS608-24</td>
</tr>
<tr>
<td>TR1</td>
<td>光电/三端双向可控硅开关元件</td>
<td>1.0 MH</td>
</tr>
<tr>
<td>L1</td>
<td>电感</td>
<td>680 UH</td>
</tr>
<tr>
<td>L2</td>
<td>电感</td>
<td>1.9 MH</td>
</tr>
<tr>
<td>L3</td>
<td>电感</td>
<td>CMN MODE</td>
</tr>
<tr>
<td>L4</td>
<td>变流圈</td>
<td>NFET, IRFU224</td>
</tr>
<tr>
<td>Q1, Q2</td>
<td>晶体管</td>
<td>PNP, PMST3906</td>
</tr>
<tr>
<td>Q3, Q4</td>
<td>晶体管</td>
<td>130C</td>
</tr>
<tr>
<td>T1</td>
<td>变压器</td>
<td>150VAC, 1200A</td>
</tr>
<tr>
<td>RV1</td>
<td>MOV</td>
<td></td>
</tr>
</tbody>
</table>

这里已经展示和说明了一对对灯和电路元件提供保护的变换器截止电路。这些截止电路对电路元件公差要求不严格。

虽然现在这里所展示和说明的是本发明的优选实施例，但是对本领域熟练技术人员来说，显然可做各种改变和改进，它们都不应超出本发明的范围。
图 1

8°灯在 100mA 下工作

电压

时间（微秒）