(11) EP 0 753 048 B1

## (12)

## **EUROPEAN PATENT SPECIFICATION**

- (45) Date of publication and mention of the grant of the patent:15.07.1998 Bulletin 1998/29
- (21) Application number: 95911339.0
- (22) Date of filing: 16.03.1995

- (51) Int Cl.<sup>6</sup>: **C11D 17/00**, C11D 3/18, C11D 1/72
- (86) International application number: PCT/EP95/00990
- (87) International publication number: WO 95/27034 (12.10.1995 Gazette 1995/43)

## (54) **DETERGENT COMPOSITIONS**

WASCHMITTELZUSAMMENSETZUNGEN COMPOSITIONS DETERGENTES

- (84) Designated Contracting States: CH DE ES FR GB IT LI NL SE
- (30) Priority: **31.03.1994 GB 9406460 15.07.1994 GB 9414323**
- (43) Date of publication of application: 15.01.1997 Bulletin 1997/03
- (73) Proprietors:
  - UNILEVER PLC
     London EC4P 4BQ (GB)
     Designated Contracting States:
     GB
  - UNILEVER N.V.
     3013 AL Rotterdam (NL)
     Designated Contracting States:
     CH DE ES FR IT LI NL SE
- (72) Inventors:
  - GARRETT, Peter, Robert Mold Clwyd CH7 5EH (GB)
  - GILES, Dennis
     Wirral Merseyside L63 0EH (GB)

(74) Representative: Fransella, Mary Evelyn et al

Unilever PLC
Patent Division
Colworth House
Sharnbrook
Bedford MK44 1LQ (GB)

(56) References cited:

EP-A- 0 164 467 EP-A- 0 368 146 EP-A- 0 418 986 CA-A- 2 013 431 GB-A- 2 194 547 GB-A- 2 259 518

 JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, vol. 6, no. 5, 1985
 WILMINGTON, DELAWARE, USA, pages 523-537, C.SOLANS ET AL. 'Evaluation of textile detergent efficiency of microemulsions in systems of water, nonionic surfactant and hydrocarbon at low temperature' cited in the application & CHEMICAL ABSTRACTS, vol. 104, no. 6, 10 February 1986 Columbus, Ohio, US; abstract no. 35923w, page 112;

EP 0 753 048 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

## Description

#### **TECHNICAL FIELD**

The present invention relates to detergent compositions containing a surfactant and a solvent in the form of an oilin-water microemulsion.

## BACKGROUND AND PRIOR ART

Liquid detergent and cleaning compositions in the form of microemulsions, both oil-in-water and water-in-oil, have been disclosed in the prior art.

EP 137 616A (Procter & Gamble) discloses liquid detergent compositions prepared from conventional detersive surfactants and other conventional detergent ingredients, plus a grease-cutting solvent. The compositions contain fatty acids or soaps (5-50 wt%) as detergency builders and are formulated as stable oil-in-water microemulsions. The preferred surfactant systems comprise sulphonate or sulphate type anionic surfactants with minor amounts of ethoxylated nonionic surfactants such as C<sub>14-15</sub> alcohol ethoxylates (7EO). Detergency builders may be present in amounts of 0.5-15 wt%, citrates being preferred.

EP 164 467A (Procter & Gamble) discloses laundry detergents and hard surface cleaners comprising oil-in-water microemulsions, containing alkylbenzene and olefin solvents, plus surfactants and substantial amounts of fatty acid soap. The compositions may contain ethoxylated nonionic surfactants, for example, C<sub>14-15</sub> alcohol ethoxylate (7EO). Compositions containing sodium citrate as builder are disclosed.

In "Evaluation of Textile Detergent Efficiency of Microemulsions in Systems of Water, Nonionic Surfactant and Hydrocarbon at Low Temperature", J Dispersion Science and Technology, 6(5), 523-537 (1985), Marcel Dekker Inc, C Solans, J Garcia Dominguez and S E Friberg describe the use of such microemulsions for washing under conditions of minimum mechanical energy and at low temperatures. The systems studied contain C<sub>12</sub> alkyl ethoxylate (4EO) nonionic surfactant, water and hexadecane, and optionally small amounts of cosurfactant (sodium dodecyl sulphate), or electrolyte (sodium tripolyphosphate or sodium citrate).

GB 2 194 547A (Colgate-Palmolive) discloses a clear single-phase liquid pre-spotting composition in the form of a microemulsion (oil-in-water or water-in-oil), solution or gel, comprising 10-70 wt% alkane (solvent), 4-60 wt% nonionic surfactant, optional cosurfactants and/or cosolvents, and 1-80 wt% water. It is suggested that builders such as sodium sesquicarbonate might be included, preferably at levels of 5 wt% and above. Unbuilt water-in-oil microemulsions are specifically disclosed which contain the short-chain nonionic surfactant Neodol 91-6 alone or in conjunction with a longer-chain ( $C_{14-15}$ ) ethoxylated nonionic surfactant.

CA 2 013 431A (Pennzoil Products Company) discloses unbuilt microemulsion cleaners for engine cleaning and degreasing, containing solvents and nonionic surfactants.

GB 2 259 518A (Shell) discloses unbuilt microemulsion cleaning compositions for use in seawater, containing anionic and nonionic surfactants, aromatic hydrocarbon and water.

## **DEFINITION OF THE INVENTION**

The present invention provides a fabric washing detergent composition comprising an organic surfactant system and a non-aqueous solvent which together with water form a stable oil-in-water microemulsion, the composition comprising:

- (i) from 2 to 40 wt% of an organic surfactant system comprising:
  - (a) 50-100 wt% of ethoxylated alcohol nonionic surfactant having an average alkyl chain length of less than C<sub>12</sub> and a content of C<sub>10</sub> material (based on the alcohol) of at least 45 wt%;
  - (b) optionally up to 50 wt% of co-surfactant other than ethoxylated alcohol nonionic surfactant,
  - (ii) from 0.5 to 55 wt% of non-aqueous solvent,
  - (iii) from 0.1 to 5 wt% of water-soluble detergency builder selected from sodium tripolyphosphate and polymeric detergency builders,
  - (iv) water and optional minor ingredients to 100 wt%,

2

20

5

10

15

25

30

35

40

45

50

## DETAILED DESCRIPTION OF THE INVENTION

The present inventors have now discovered that built detergent compositions in oil-in-water microemulsion form, formulated with specific nonionic surfactants having short alkyl chains and specific builders, are capable of sufficiently rapid cleaning and stain removal to render them useful as pretreatment products as well as main wash products.

Rapidity of cleaning effect is of critical importance for a pretreatment product which is required to work within a short time period. The present invention enables detergent compositions to be formulated which are highly effective main wash products and yet which also offer a potent pretreatment facility.

The compositions are also suitable for use in machine washing employing automatic dosing systems, for example, as described and claimed in US 4 489 455 (Procter & Gamble). This patent describes and claims apparatus and process for washing textiles based on utilising strictly limited or controlled quantities of an aqueous wash liquor, ranging from (at least) just enough to be distributed evenly and completely over the whole wash load, to (at most) about five times the dry weight of the washload.

In the compositions of the invention, which are preferably liquid, the ethoxylated nonionic surfactant and the solvent are so chosen, and are present in amounts such that, together with water, they form a stable oil-in-water microemulsion in which the solvent is within the micelles of the surfactant.

### The ethoxylated nonionic surfactant

10

15

20

25

30

35

40

50

55

The ethoxylated nonionic surfactant has an average alkyl chain length which is less than 12 carbon atoms. Preferably the average alkyl chain length is within the range of from 9 to 11 carbon atoms, and most preferably the average alkyl chain length is about  $C_{10}$ .

The ethoxylated nonionic surfactant is also characterised by a high content of  $C_{10}$  material: at least 45 wt%, preferably at least 50 wt% and most preferably at least 70 wt% (all based on the alcohol).

The remainder of the ethoxylated nonionic surfactant may be of predominantly shorter or longer chain length, but advantageously the total content of  $C_{10}$  and shorter-chain material is at least 60 wt%, and more preferably at least 75 wt% (all based on the alcohol).

Suitable materials are the Novel (Trade Mark) 1012 series ex Vista, which are narrow-range-ethoxylated materials consisting mainly of  $C_{10}$  chains, available in various average degrees of ethoxylation. The chain length distribution of these materials (based on the alcohol) is typically  $C_{10}$  84 ± 4%,  $C_{12}$  8.5 ± 2%,  $C_{14}$  6.5 ± 2%.

A class of broader-range-ethoxylated materials suitable for use in the invention is the Dobanol (Trade Mark) 91 series ex Shell, which consist mainly of  $C_9$ ,  $C_{10}$  and  $C_{11}$  chains. The chain length distribution of these materials (based on the alcohol) is typically  $C_9$  18%,  $C_{10}$  50%,  $C_{11}$  32%.

Other short chain nonionic surfactants are described in detail in WO 94 11487A (Unilever). These include the Lialet (Trade Mark) 91 series ex Enichem, the Synperonic (Trade Mark) 91 series ex ICI, and a C<sub>10</sub> Inbentin (Trade Mark) material ex Kolb

Commercial ethoxylated nonionic surfactants are generally mixtures containing a spread of chain lengths about an average value. If desired, a mixture of two or more commercial materials may be used provided that the overall average chain length of all nonionic surfactant present is less than  $C_{12}$  and provided that sufficient  $C_{10}$  material is present in the overall mixture.

The average degree of ethoxylation may suitably range from 2 to 8, and preferably from 2 to 6, in order to give optimum HLB (hydrophilic-lipophilic balance) values corresponding to optimum oily soil detergency.

The HLB value suitably ranges from 8 to 14, preferably from 8 to 12.5, and more preferably from 9 to 10.

## 45 The optional cosurfactant

If desired, a cosurfactant which is not an ethoxylated alcohol may be present, provided that at least 50 wt% of the surfactant system is constituted by ethoxylated nonionic surfactant. The co-surfactant may be, for example, a nonionic surfactant other than an ethoxylated alcohol, or an anionic sulphate or sulphonate type detergent, such as alkylbenzene sulphonate or primary alcohol sulphate. It is generally preferred that the surfactant system should contain not more than 40 wt% of anionic surfactant.

The surfactant system as a whole constitutes from 2 to 40 wt% of the composition, preferably from 5 to 40 wt%, more preferably from 5 to 30 wt% and advantageously from 5 to 25 wt%, of the composition.

## The non-aqueous solvent

The non-aqueous solvent, which constitutes from 0.5 to 55 wt%, preferably from 0.5 to 20 wt%, of the composition, may be any solvent valuable in the removal of oily soil which exhibits a sufficiently low interfacial tension towards the

ethoxylated nonionic surfactant to form a stable oil-in-water microemulsion.

The solvent may range from wholly non-polar paraffinic materials, for example, alkanes, to more polar materials such as esters. Preferred solvents are C<sub>12-16</sub> alkanes, for example, dodecane, tetradecane and hexadecane, hexadecane being especially preferred.

When the solvent is an alkane, the optimum amount present depends on the chain length. For hexadecane, from 0.5 to 20 wt%, preferably from 5 to 15 wt% and more preferably from 7.5 to 15 wt%, is suitable; for tetradecane, 15 to 30 wt% is preferred, and for dodecane, 25 to 55 wt% is preferred.

The weight ratio of non-aqueous solvent (alkane) to ethoxylated nonionic surfactant is also dependent on chain length. For hexadecane, it lies suitably within the range of from 0.5:1 to 2:1, and is advantageously about 1:1.

#### The detergency builder

It has been found that the detergency of the microemulsion system, as compared to the detergency of the same amount of surfactant alone, is significantly increased if there is also present a detergency builder selected from sodium tripolyphosphate and polymeric detergency builders. The amount of builder that can be incorporated without destabilising the microemulsion is not, however, unlimited. The builder present in an amount of from is 0.1 to 5 wt%, preferably from 0.2 to 3 wt%, more preferably from 0.5 to 3 wt% and is selected from sodium tripolyphosphate and polymeric detergency builders.

Preferred polymeric builders for use in the present invention are polymeric polycarboxylate builders, for example, acrylic, maleic and itaconic acid polymers. Polymers that may be used include polyacrylates, acrylic/maleic copolymers such as Sokalan (Trade Mark) CP5 and CP7 ex BASF, and the polyvinyl acetate/polyitaconic acid polymers described and claimed in WO 93 23444A (Unilever). These polymers are highly weight-effective builders which can be used in amounts that give significant building without destabilising the microemulsion.

The invention is further illustrated by the following non-limiting Examples, in which parts and percentages are by weight unless otherwise stated.

## **EXAMPLES**

#### Detergency assessment

Oily soil detergencies were assessed by measuring the percentage removal of radio-labelled model soils by means

Soiled cloths (5 cm x 5 cm squares of knitted polyester) carrying a mixture of radiolabelled triolein and radiolabelled palmitic acid were prepared as follows. Each cloth was soaked in 0.18 ml of a toluene solution containing 3.33 g 95% triolein (radiolabelled) and 1.67 g 99% palmitic acid (radiolabelled) per 100 ml. The cloths were then allowed to equilibrate for 3 hours.

Each composition under test was applied to a fabric square at ambient temperature at a level designed to give a liquor to cloth ratio of 1:1. The contact time was varied from 5 to 30 minutes to examine kinetic effects. The cloth was then transferred, using tweezers, to an open bottle containing 15 ml of water (20° French hard) held within a shaker bath maintained at 25°C. The cloth was then rinsed for 2 minutes at a 100 rpm setting of the shaker bath (this gave a gentle to and fro motion to the rinse liquor within the bottle).

After rinsing the liquor was sampled with an automatic pipette (3 x 1 ml aliquots). These aliquots were transferred to plastic vials and were then mixed with 10 ml quantities of scintillator solution prior to being counted on a liquid scintillation counter. The counts (disintegrations per minute, "DPMs") were used to calculate the percentage removal for each soil component under each condition examined. Standards were taken during the initial soiling procedure to give an average figure for the DPMs added in 0.18 ml of soiling solution.

## Compositions

Liquid detergent compositions were prepared to the formulations (in parts by weight) given in the tables that follow. Soil removal (detergency) results are shown after the tables of compositions.

The compositions of Examples 1 to 3 and Comparative Examples A, X, P, D, M, N and H containing a solvent (hexadecane) were in microemulsion form, while the compositions of Comparative Examples B, Y, C, Q, E, F and G, which did not contain a solvent, were not.

The ingredients used may be identified as follows:

<sup>1</sup>Novel (Trade Mark) 1012-52 ex Vista Chemicals: chain length distribution as described previously, 4EO

10

5

15

20

25

30

35

45

40

50

<sup>2</sup>Dobanol (Trade Mark) 91-2.5 ex Shell: chain length distribution as described previously, 2.5EO.

These two nonionic surfactants were used together in a weight ratio of 3:1. The combined nonionic surfactant contained about 75 wt% (based on the alcohol) of  $C_{10}$  material, and about 80 wt% (based on the alcohol) of  $C_{10}$  and shorter-chain material. The HLB value was about 9.5.

<sup>3</sup>Novel (Trade Mark) 1412-4.4EO ex Vista Chemicals: C<sub>12-14</sub>,4.4EO.

<sup>4</sup>Sodium tripolyphosphate.

<sup>5</sup>Ethylenediamine tetracetic acid, tetrasodium salt.

<sup>6</sup>Copolymer of maleic and acrylic acids, sodium salt: Sokalan (Trade Mark) CP5 ex BASF.

<sup>7</sup>Copolymer of polyvinyl acetate and itaconic acid, sodium salt, as described and claimed in WO 93 23444A (Unilever).

## Comparative Examples A, B, X and Y: no builder

| 20 |
|----|
|----|

15

25

30

35

40

45

50

| Example                                           | Α     | В     | Х     | Υ     |
|---------------------------------------------------|-------|-------|-------|-------|
| Nonionic:                                         |       |       |       |       |
| C <sub>10</sub> EO <sub>4</sub> <sup>1</sup>      | 7.5   | 7.5   | -     | -     |
| C <sub>9-11</sub> EO <sub>2.5</sub> <sup>2</sup>  | 2.5   | 2.5   | -     | -     |
| C <sub>12-14</sub> EO <sub>4.4</sub> <sup>3</sup> | -     | -     | 10.0  | 10.0  |
| Hexadecane                                        | 10.0  | -     | 10.0  | -     |
| Water (20°FH)                                     | 80.0  | 90.0  | 80.0  | 90.0  |
|                                                   | 1ōō.ō | ĪŌŌ.Ō | 1ōō.ō | ĪŌŌ.Ō |

The soil removal results for Examples A and B containing short-chain nonionic surfactant were as follows:

| Soak/contact time (minutes) | Soil removal (%) |      |        |         |
|-----------------------------|------------------|------|--------|---------|
|                             | Triolein         |      | Palmit | ic acid |
|                             | Α                | В    | Α      | В       |
| 5                           | 32.0             | 9.8  | 28.7   | 21.2    |
| 10                          | 34.6             | 11.9 | 32.6   | 25.4    |
| 15                          | 33.7             | 15.0 | 30.3   | 31.6    |
| 20                          | 33.8             | 15.1 | 31.4   | 30.4    |
| 30                          | 26.9             | 14.4 | 25.6   | 39.6    |

These results show that, in the absence of builder, in the removal of triolein the microemulsion gave substantially better soil removal throughout the 30-minute test period. The microemulsion also offered a significant kinetic advantage over the non-microemulsion system. With palmitic acid, the advantage was kinetic only.

The corresponding results for Comparative Examples X and Y using longer-chain nonionic surfactant were as follows:

| Soak/contact time (minutes) | Soil removal (%) |      |        |         |
|-----------------------------|------------------|------|--------|---------|
|                             | Tric             | lein | Palmit | ic acid |
|                             | Х                | Υ    | Х      | Υ       |
| 5                           | 9.4              | 9.4  | 29.2   | 14.2    |

(continued)

| Soak/contact time (minutes) | Soil removal (%) |      |        |         |
|-----------------------------|------------------|------|--------|---------|
|                             | Triolein         |      | Palmit | ic acid |
|                             | Х                | Υ    | Х      | Υ       |
| 10                          | 14.6             | 9.5  | 33.1   | 15.2    |
| 15                          | 19.7             | 11.3 | 34.4   | 20.5    |
| 20                          | 25.5             | 13.6 | 37.3   | 23.5    |
| 30                          | 31.9             | 17.0 | 37.8   | 29.4    |

On triolein, the microemulsion system X finally gave results comparable with those obtained from microemulsion system A, but required the full 30 minutes to do so; the use of short-chain nonionic surfactant clearly gives a significant kinetic advantage. The non-microemulsion system Y was poor, comparable to the non-microemulsion system B.

On palmitic acid, however, the longer-chain nonionic surfactant apparently benefited more than the shorter-chain material from microemulsification.

Example 1, Comparative Examples C, P and O: sodium tripolyphosphate builder

5

10

15

20

25

30

35

40

45

50

55

| Example                                           | 1             | С             | Р             | Q             |
|---------------------------------------------------|---------------|---------------|---------------|---------------|
| Nonionic:                                         |               |               |               |               |
| C <sub>10</sub> EO <sub>4</sub> <sup>1</sup>      | 7.5           | 7.5           | -             | -             |
| C <sub>9-11</sub> EO <sub>2.5</sub> <sup>2</sup>  | 2.5           | 2.5           | -             | -             |
| C <sub>12-14</sub> EO <sub>4.4</sub> <sup>3</sup> | -             | -             | 10.0          | 10.0          |
| Hexadecane                                        | 10.0          | -             | 10.0          | -             |
| STP <sup>4</sup>                                  | 0.8           | 0.9           | 0.8           | 0.9           |
| Water (20°FH)                                     | 80.0<br>100.8 | 90.0<br>100.9 | 80.0<br>100.8 | 90.0<br>100.9 |

The soil removal results for Examples 1 and C containing short-chain nonionic surfactant were as follows:

| Soak/contact time (minutes) | Soil removal (%) |          |      |         |
|-----------------------------|------------------|----------|------|---------|
|                             | Tric             | Triolein |      | ic acid |
|                             | 1                | C        | 1    | O       |
| 5                           | 36.2             | 22.2     | 49.6 | 47.3    |
| 10                          | 50.7             | 26.3     | 60.1 | 50.7    |
| 15                          | 58.7             | 26.9     | 60.7 | 50.0    |
| 20                          | 60.8             | 28.5     | 63.6 | 54.7    |
| 30                          | 63.8             | 26.1     | 63.5 | 55.6    |

Comparison of these results with those of Comparative Examples A and B shows that both systems performed better in the presence of the highly efficient builder, sodium tripolyphosphate. However, the difference in performance between the microemulsion and the non-microemulsion was substantially increased, very high figures being obtained with the microemulsion. Also, palmitic acid removal was always better with the microemulsion system than with the comparative system.

The corresponding results for Comparative Examples P and Q using longer-chain nonionic surfactant were as follows:

| Soak/contact time (minutes) | Soil removal (%) |      |        |         |
|-----------------------------|------------------|------|--------|---------|
|                             | Triolein         |      | Palmit | ic acid |
|                             | Р                | σ    | Ρ      | σ       |
| 5                           | 7.5              | 20.8 | 46.5   | 37.1    |
| 10                          | 12.3             | 26.0 | 51.6   | 42.0    |
| 15                          | 17.7             | 31.1 | 51.7   | 44.8    |
| 20                          | 22.9             | 33.1 | 54.8   | 49.0    |
| 30                          | 39.5             | 34.8 | 55.9   | 53.8    |

On triolein, the microemulsion P gave significantly worse results than the microemulsion 1, and was also slow to reach the maximum value. Of the four systems only 1 gave really high values. The non-microemulsion systems Q and C gave similar results, showing no benefit for the use of short-chain nonionic surfactant in the non-microemulsion system.

On palmitic acid, little difference was observed between the various systems.

# Comparative Examples D and E: EDTA builder

| Example                                          | D     | Е     |
|--------------------------------------------------|-------|-------|
| Nonionic:                                        |       |       |
| C <sub>10</sub> EO <sub>4</sub> <sup>1</sup>     | 7.5   | 7.5   |
| C <sub>9-11</sub> EO <sub>2.5</sub> <sup>2</sup> | 2.5   | 2.5   |
| Hexadecane                                       | 10.0  | -     |
| EDTA <sup>5</sup>                                | 0.8   | 0.9   |
| Water (20°FH)                                    | 80.0  | 90.0  |
|                                                  | ĪŌŌ.Ē | ĪŌŌ.Ē |

Soil removal results were as follows:

| Soak/contact time (minutes) | Soil removal (%) |      |        |         |
|-----------------------------|------------------|------|--------|---------|
|                             | Triolein         |      | Palmit | ic acid |
|                             | D                | Е    | D      | Е       |
| 5                           | 32.0             | 16.4 | 44.5   | 39.7    |
| 10                          | 45.0             | 17.0 | 48.7   | 40.7    |
| 15                          | 45.6             | 19.3 | 46.2   | 45.7    |
| 20                          | 48.4             | 21.2 | 47.4   | 46.2    |
| 30                          | 36.0             | 18.8 | 44.3   | 53.4    |

These results show a similar pattern to that seen with sodium tripolyphosphate builder, but the benefit was smaller. With palmitic acid, only a kinetic advantage was seen.

The following Examples show that much better detergency could be achieved using polymeric builders.

# Example 2, Comparative Examples F and M: acrylate/maleate copolymer builder

| Example                                           | 2   | F   | М    |
|---------------------------------------------------|-----|-----|------|
| Nonionic:                                         |     |     |      |
| C <sub>10</sub> EO <sub>4</sub> <sup>1</sup>      | 7.5 | 7.5 | -    |
| C <sub>9-11</sub> EO <sub>2.5</sub> <sup>2</sup>  | 2.5 | 2.5 | -    |
| C <sub>12-14</sub> EO <sub>4.4</sub> <sup>3</sup> |     | -   | 10.0 |

7

5

10

15

20

25

30

35

40

45

55

(continued)

| Example                             | 2                    | F                    | М                    |
|-------------------------------------|----------------------|----------------------|----------------------|
| Hexadecane                          | 10.0                 | 1                    | 10.0                 |
| AA/MA <sup>6</sup><br>Water (20°FH) | 0.8<br>80.0<br>100.8 | 0.9<br>90.0<br>100.9 | 0.8<br>80.0<br>100.8 |

The soil removal results were as follows:

Triolein Palmitic acid 2 F Μ 2 F Μ 5 12.5 6.0 49.4 27.2 39.0 41.4 10 53.4 16.5 8.5 54.1 34.3 41.6 15 56.2 17.1 12.6 56.4 36.4 45.6 20 18.6 49.6 59.8 18.6 59.8 37.4 33.6 30 58.7 19.2 62.1 42.7 55.0

These Examples show the benefits of a microemulsion system and of the use of short-chain nonionic surfactant.

# Example 3, Comparative Examples G and N: polyvinyl acetate/itaconate) builder

| Example                                          | 3             | G             | Ν             |
|--------------------------------------------------|---------------|---------------|---------------|
| Nonionic:                                        |               |               |               |
| C <sub>10</sub> EO <sub>4</sub> <sup>1</sup>     | 7.5           | 7.5           | -             |
| C <sub>9-11</sub> EO <sub>2.5</sub> <sup>2</sup> | 2.5           | 2.5           | -             |
| C <sub>12-14</sub> EO <sub>4.4</sub> 3           | -             | -             | 10.0          |
| Hexadecane                                       | 10.0          | -             | 10.0          |
| PVA/IA <sup>7</sup>                              | 0.8           | 0.9           | 0.8           |
| Water (20°FH)                                    | 80.0<br>100.8 | 90.0<br>100.9 | 80.0<br>100.8 |

The soil removal results were as follows:

|    | Triolein |      | Palmitic acid |      |      |      |
|----|----------|------|---------------|------|------|------|
|    | 3        | G    | N             | 3    | G    | Ν    |
| 5  | 32.3     | 16.0 | 3.4           | 52.3 | 33.9 | 41.4 |
| 10 | 45.5     | 17.9 | 5.3           | 61.6 | 41.4 | 43.8 |
| 15 | 50.3     | 20.7 | 7.9           | 63.4 | 45.3 | 47.1 |
| 20 | 58.2     | 20.2 | 13.6          | 67.0 | 47.4 | 49.5 |
| 30 | 64.3     | 20.2 | 30.1          | 64.7 | 48.4 | 53.8 |

 $\label{thm:complex} These \ Examples \ show \ the \ benefits \ of \ a \ microemulsion \ system \ and \ of \ the \ use \ of \ short-chain \ nonionic \ surfactant.$ 

8

5

10

15

20

25

30

35

40

45

50

## Comparative Example H: sodium citrate builder

| _ |  |
|---|--|
|   |  |

| Example                               | Н     |
|---------------------------------------|-------|
| Nonionic:                             |       |
| C <sub>10</sub> EO <sub>4</sub> 1     | 7.5   |
| C <sub>9-11</sub> EO <sub>2.5</sub> 2 | 2.5   |
| Hexadecane                            | 10.0  |
| Sodium citrate                        | 0.8   |
| Water (20°FH)                         | 80.0  |
|                                       | 100.B |

10

15

Soil removal results were as follows:

20

| Soak/contact time (minutes) | Soil removal (%) |               |
|-----------------------------|------------------|---------------|
|                             | Triolein         | Palmitic acid |
| 5                           | 42.0             | 31.6          |
| 10                          | 41.9             | 33.0          |
| 15                          | 39.7             | 35.1          |
| 20                          | 40.8             | 35.9          |
| 30                          | 38.3             | 38.9          |

25

35

40

These results, when compared with Examples 1-3, show some benefit over an unbuilt system, but demonstrate citrate to be a very much less effective builder in these systems than are sodium tripolyphosphate or polymeric builders.

## 30 Claims

- 1. A fabric washing detergent composition comprising an organic surfactant system and a non-aqueous solvent which together with water form a stable oil-in-water microemulsion, said composition comprising:
  - (i) from 2 to 40 wt% of an organic surfactant system comprising:
    - (a) 50-100 wt% of ethoxylated alcohol nonionic surfactant having an average alkyl chain length of less than  $C_{12}$  and a content of  $C_{10}$  material (based on the alcohol) of at least 45 wt%;
    - (b) optionally up to 50 wt% of co-surfactant other than ethoxylated alcohol nonionic surfactant,
  - (ii) from 0.5 to 55 wt% of non-aqueous solvent,
  - (iii) from 0.1 to 5 wt% of a water-soluble detergency builder,

45

- (iv) water and optional minor ingredients to 100 wt% and characterized in that said water-soluble detergency builder is selected from sodium tripolyphosphate and polymeric detergency builders.
- 2. A detergent composition as claimed in claim 1, wherein the nonionic surfactant (i)(a) contains at least 70 wt% (based on the alcohol) of C<sub>10</sub> material.
  - **3.** A detergent composition as claimed in claim 1 or claim 2, wherein the nonionic surfactant (i)(a) contains at least 60 wt% (based on the alcohol) of material having a chain length of C<sub>10</sub> or less.
- **4.** A detergent composition as claimed in any preceding claim, wherein the nonionic surfactant (i)(a) contains at least 75 wt% (based on the alcohol) of material having a chain length of C<sub>10</sub> or less.
  - 5. A detergent composition as claimed in any preceding claim, wherein the nonionic surfactant (i)(a) has an HLB

value within the range of from 8 to 12.5.

- **6.** A detergent composition as claimed in claim 5, wherein the nonionic surfactant (i)(a) has an HLB value within the range of from 9 to 10.
- 7. A detergent composition as claimed in any preceding claim, which comprises from 5 to 40 wt% of the surfactant system (i).
- 8. A detergent composition as claimed in any preceding claim, wherein the non-aqueous solvent (ii) comprises a  $C_{12-16}$  alkane.
  - 9. A detergent composition as claimed in claim 8, wherein the solvent (ii) comprises hexadecane.
- **10.** A detergent composition as claimed in claim 9, wherein the hexadecane (ii) is present in an amount of from 0.5 to 20 wt%.
  - 11. A detergent composition as claimed in claim 10, wherein the hexadecane (ii) is present in an amount of from 5 to 15 wt%.
- 12. A detergent composition as claimed in any one of claims 9 to 11, wherein the weight ratio of hexadecane (ii) to nonionic surfactant (i)(a) is within the range of from 0.5:1 to 2:1.
  - **13.** A detergent composition as claimed in any preceding claim, which comprises from 0.2 to 3 wt% of the detergency builder (iii).
  - **14.** A detergent composition as claimed in any preceding claim, wherein the organic surfactant system (i) contains less than 40 wt% of anionic surfactant.

## 30 Patentansprüche

5

25

35

40

45

55

- 1. Textilwaschmittel, umfassend ein organisches Tensidsystem und ein nichtwässeriges Lösungsmittel, die zusammen mit Wasser eine stabile Öl-in-Wasser-Mikroemulsion bilden, wobei das Mittel umfaßt:
- (i) 2 bis 40 Gewichtsprozent eines organischen Tensidsystems, umfassend:
  - (a) 50-100 Gewichtsprozent eines nichtionischen Alkoholethoxylattensids mit einer mittleren Alkylkettenlänge von weniger als  $C_{12}$  und einem Anteil an  $C_{10}$ -Material (basierend auf dem Alkohol) von mindestens 45 Gewichtsprozent;
  - (b) gegebenenfalls bis zu 50 Gewichtsprozent Cotensid, das kein nichtionisches Alkoholethoxylattensid ist,
  - (ii) 0,5 bis 55 Gewichtsprozent nichtwässeriges Lösungsmittel,
  - (iii) 0,1 bis 5 Gewichtsprozent eines wasserlöslichen Waschmittelbuilders,
  - (iv) Wasser und gegebenenfalls geringe Bestandteile auf 100 Gewichtsprozent,

und dadurch gekennzeichnet, daß der wasserlösliche Waschmittelbuilder ausgewählt ist aus Natriumtripolyphosphat und polymeren Waschmittelbuildern.

- <sup>50</sup> **2.** Waschmittel nach Anspruch 1, worin das nichtionische Tensid (i)(a) jeweils mindestens 70 Gewichtsprozent (basierend auf dem Alkohol) an C<sub>10</sub>-Material enthält.
  - **3.** Waschmittel nach Anspruch 1 oder Anspruch 2, worin das nichtionische Tensid (i) (a) mindestens 60 Gewichtsprozent (basierend auf dem Alkohol) an Material mit einer Kettenlänge von C<sub>10</sub> oder weniger enthält.
  - **4.** Waschmittel nach einem vorangehenden Anspruch, worin das nichtionische Tensid (i)(a) mindestens 75 Gewichtsprozent (basierend auf dem Alkohol) an Material mit einer Kettenlänge von C<sub>10</sub> oder weniger enthält.

- 5. Waschmittel nach einem vorangehenden Anspruch, worin das nichtionische Tensid (i)(a) einen HLB-Wert im Bereich von 8 bis 12,5 aufweist.
- **6.** Waschmittel nach Anspruch 5, worin das nichtionische Tensid (i)(a) einen HLB-Wert im Bereich von 9 bis 10 aufweist.
  - 7. Waschmittel nach einem vorangehenden Anspruch, das 5 bis 40 Gewichtsprozent des Tensidsystems (i) umfaßt.
- 8. Waschmittel nach einem vorangehenden Anspruch, worin das nichtwässerige Lösungsmittel (ii) ein C<sub>12</sub>-C<sub>16</sub>-Alkan umfaßt.
  - 9. Waschmittel nach Anspruch 8, worin das Lösungsmittel (ii) Hexadecan umfaßt.
  - 10. Waschmittel nach Anspruch 9, worin das Hexadecan (ii) in einer Menge von 0,5 bis 20 Gewichtsprozent vorliegt.
  - 11. Waschmittel nach Anspruch 10, worin das Hexadecan (ii) in einer Menge von 5 bis 15 Gewichtsprozent vorliegt.
  - **12.** Waschmittel nach einem der Ansprüche 9 bis 11, worin das Gewichtsverhältnis von Hexadecan (ii) zu dem nichtionischen Tensid (i)(a) im Bereich von 0,5:1 bis 2:1 liegt.
  - 13. Waschmittel nach einem vorangehenden Anspruch, das 0,2 bis 3 Gewichtsprozent Waschmittelbuilder (iii) umfaßt.
  - **14.** Waschmittel nach einem vorangehenden Anspruch, worin das organische Tensidsystem (i) weniger als 40 Gewichtsprozent anionisches Tensid enthält.

#### Revendications

15

20

25

35

40

- composition détergente de lavage des textiles comprenant un système tensioactif organique et un solvant non aqueux qui ensemble avec l'eau forment une microémulsion stable huile-dans-eau, ladite composition comprenant :
  - (i) de 2 à 40% en poids d'un système tensioactif organique comprenant:
    - (a) 50 à 100% en poids de tensioactif non ionique alcool éthoxylé ayant une longueur moyenne de chaîne alkyle inférieure à  $C_{12}$  et une teneur en matière en  $C_{10}$  (à base de l'alcool) d'au moins 45% en poids ;
    - (b) facultativement jusqu'à 50% en poids d'un cotensioactif autre qu'un tensioactif non ionique alcool éthoxylé,
  - (ii) de 0,5 à 55% en poids d'un solvant non aqueux,
  - (iii) de 0,1 à 5% en poids d'un adjuvant de détergence hydrosoluble et caractérisée en ce que ledit adjuvant de détergence hydrosoluble est choisi parmi les adjuvants de détergence tripolyphosphates et polymères,
  - (iv) de l'eau et des ingrédients secondaires facultatifs jusqu'à 100% en poids.
- 2. Composition détergente selon la revendication 1, dans laquelle le tensioactif non ionique (i)(a) contient au moins 70% en poids (à base de l'alcool) de matière en C<sub>10</sub>.
  - 3. Composition détergente selon la revendication 1 ou 2, dans laquelle le tensioactif non ionique (i)(a) contient au moins 60% en poids (à base de l'alcool) de matière ayant une longueur de chaîne en C<sub>10</sub> ou moins.
  - **4.** Composition détergente selon l'une quelconque des revendications précédentes, dans laquelle le tensioactif non ionique (i)(a) contient au moins 75% en poids (à base de l'alcool) de matière ayant une longueur de chaîne en C<sub>10</sub> ou moins.
- 55 **5.** Composition détergente selon l'une quelconque des revendications précédentes, dans laquelle le tensioactif non ionique (i)(a) a un l.A dans la gamme de 8 à 12,5.
  - 6. Composition détergente selon la revendication 5, dans laquelle le tensioactif non ionique (i)(a) a un I.A dans la

gamme de 9 à 10.

5

10

15

25

30

35

40

45

50

55

- 7. Composition selon l'une quelconque des revendications précédentes, qui comprend de 5 à 40% en poids du système tensioactif (i).
- **8.** Composition détergente selon l'une quelconque des revendications précédentes, dans laquelle le solvant non aqueux (ii) comprend un alcane en C<sub>12-16</sub>.
- 9. Composition détergente selon la revendication 8, dans laquelle le solvant (ii) comprend l'hexadécane.
- **10.** Composition détergente selon la revendication 9, dans laquelle l'hexadécane (ii) est présent en une quantité de 0,5 à 20% en poids.
- **11.** Composition détergente selon la revendication 10, dans laquelle l'hexadécane (ii) est présent en une quantité de 5 à 15% en poids.
  - **12.** Composition détergente selon l'une quelconque des revendications 9 à 11, dans laquelle le rapport pondéral de l'hexadécane (ii) au tensioactif non ionique (i)(a) est dans la gamme de 0,5:1 à 2:1.
- 20 **13.** Composition détergente selon la revendication précédente, qui comprend de 0,2 à 3% en poids d'adjuvant de détergence (iii).
  - **14.** Composition détergente selon l'une quelconque des revendications précédentes, dans laquelle le système tensioactif organique (i) contient moins de 40% en poids de tensioactif anionique.