A 000 0O OO

0 01/39042 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 May 2001 (31.05.2001) PCT

O Y R A

(10) International Publication Number

WO 01/39042 A2

(51) International Patent Classification’: GO6F 17/30
(21) International Application Number: PCT/US00/16978
(22) International Filing Date: 20 June 2000 (20.06.2000) (74
(25) Filing Language: English

. . (81)
(26) Publication Language: English

(30) Priority Data:
09/449,065 24 November 1999 (24.11.1999) US

(71) Applicant: ELEGENT TECHNOLOGIES, INC.
[US/US]; 440 Mission Court, Suite 250, Fremont, CA
94539 (US). 84)

(72) Inventors: CHANG, Rong-Wen; 440 Mission Court,
Suite 250, Fremont, CA 94539 (US). LEE, John, K.; 440

Mission Court, Suite 250, Fremont, CA 94539 (US). LIN,
Ron, K.; 440 Mission Court, Suite 250, Fremont, CA
94539 (US).

Agent: WOLFF, Jason, W.; Lyon & Lyon LLP, 633 West
Fifth Street, Suite 4700, Los Angeles, CA 90071-2066
USs).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,
LS,LT,LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL, PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

(54) Title: SELF-CONTAINED NETWORK BROWSER WITH DIAGNOSTIC ABILITIES

244 48
\ 2

3

(57) Abstract: A network browser
with diagnostic abilities stored in

ROM |
(BROWSER [

240~ | EMAIL HTML

SSL FONT {IMAGING
~—'r_,—d

236—+—1 L.

GRAPHICS WINDOWING

I B

2281

INTERNET PROTOCOL

REAL TIME KERNEL
2207 |

DEVICE DRIVERS

\ By |

212 a persistent memory, wherein the
4 persistent memory is not a hard
disk, is provided. The network
| —208 browser is used to repair failures of
peripheral devices in a networked
computer, such as a hard drive,
so as to avoid forcing a user to
manually diagnose or solve the

| 232 failure. = Moreover, the network

browser removes strict dependence
on a traditional operating system,
and thus the hard disk, to make such
repairs. According an embodiment,

T 224 the network browser comprises

a plurality of software modules.
The modules include: a device
driver module (216), which is
configured to initialize and test
one or more peripheral devices;

1 216 a real time kernel module (220),

which is configured to detect and
dispatch data to and from peripheral
devices, though said device driver
module (216), including processing
diagnostic data corresponding

to operation of said peripheral

devices, and to perform memory management tasks; an internet protocol module (224), which is configured to handle network
communications with remote devices; a graphics windowing module (232), which is configured to process visual display data and
control; and a hypertext markup language module (248) configured to interpret hypertext markup language documents for display

with said graphics windowing module (232).

wO 01739042 A2 NI O A A

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, For two-letter codes and other abbreviations, refer to the "Guid-
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.
Published:
— Without international search report and to be republished
upon receipt of that report.

10

15

20

25

30

WO 01/39042 PCT/US00/16978

S P ECI F I C A T I ON

TITLE OF INVENTION

SELF-CONTAINED NETWORK BROWSER WITH DIAGNOSTIC ABILITIES

BACKGROUND

1. Field of the Invention.
This invention relates generally to network browser
software and more particularly to a self-contained network

browser with diagnostic abilities.

2. Background Information.

A web browser (or “browser software”) is software that
is executed by a personal computer in order to send and
receive data from a network. Usually, the network is a wide
area network, such as the Internet, or it can be a local
area network, such as an intranet. Once the browser
software has connected to the network, the browser software
can request information, such as hypertext markup language
("HTML”) files from another computer or “server” on the
network.

An aspect of most browser software, such as the
Netscape Navigator (TM) available from Netscape Corporation
in Mountain View, California, is that it is an application
program. FIG. 1 shows a known software stack 100 for a
personal computer. The software that forms the software
stack is persistently stored in a read-only memory (“ROM”)
and a hard drive of the personal computer. In fact, the
basic input output system (hereinafter “BIOS”) 104, which
consists of limited purpose executable firmware code

permanently attached to a processor, is stored in the ROM.

10

15

20

25

30

WO 01/39042 PCT/US00/16978

The BIOS 104 controls low-level input and output operations
when so directed by the operating system.

The operating system 108 is one or more software
products (e.g., device drivers) that jointly manage the
system resources (e.g., memory management and peripheral
devices) of a personal computer, as well as any other
programs (e.g., applications) that use the system resources.
It is noted that the device drivers can be part of the
operating system 108, or they can be added over the top of
the operating system 108. For example, some device drivers
can be downloaded intoc memory as needed.

One or more applications 116 are stacked on top of the
operating system 108. The applications 116 communicate with
the operating system 108 through an application programming
interface (hereinafter “API”) 112, which contains functions
and procedures that are called by the applications 116. The
API 112 functions and procedures that are called by the
applications 116 are in turn passed to the operating system
108. The operating system 108 then passes any required
input/output processes on to the BIOS 104, or processes them
directly using a device driver.

The operating system 108, the API 112, and the
applications 116, unlike the BIOS 104, are all stored in the
hard drive of the personal computer. This is largely due to
the size of these software components, but also due to their
extensible nature.

The primary reason that most browser software is
written as an application is that it will be more
“portable”, meaning it can be more easily modified to run on
different operating systems (e.g., UNIX, Windows 98 (TM),
etc.) as well as on different types of computers running the
same operating system. This expands a software vendor'’s

market for their product.

10

WO 01/39042 PCT/US00/16978

In light of recent legal woes, Microsoft Corporation
has made much of the fact that their browser (Internet
Explorer) is part of their operating system, rather than an
application added to the operating system. It is not known
whether Microsoft’s browser is part of the operating system,
or an application added to the operating system. Regardless
of whether Microsoft’s (or any known) browser is part of the
operating system, or that it is an application program, the
fact remains that the browser, just like the operating
system, is still stored in the hard disk. When the hard
disk fails, the browser and the personal computer are

usually useless.

10

15

20

25

30

WO 01/39042 PCT/US00/16978

SUMMARY OF THE INVENTION

A network browser with diagnostic abilities stored in a
persistent memory, wherein the persistent memory is not a
hard disk, is provided. The network browser is used to
repair failures of peripheral devices in a networked
computer, such as a hard drive, so as to avoid forcing a
user to manually diagnose or solve the failure. Moreover,
the network browser removes strict dependence on a
traditional operating system, and thus the hard disk, to
make such repairs. According an embodiment, the network
browser comprises a plurality of software modules. The
modules include: a device driver module (216), which is
configured to initialize and test one or more peripheral
devices; a real time kernel module (220), which is
configured to detect and dispatch data to and from
peripheral devices, though said device driver module (216),
including processing diagnostic data corresponding to
operation of said peripheral devices, and to perform memory
management tasks; an internet protocol module (224), which
is configured to handle network communications with remote
devices; a graphics windowing module (232), which is
configured to process visual display data and control; and a
hypertext markup language module (248) configured to
interpret hypertext markup language documents for display
with said graphics windowing module (232). Hardware
configurations and software methods for the self-contained
browser are disclosed herein.

According to an embodiment of the invention, processing
diagnostic data includes initializing peripheral equipment,
detecting a failure, contacting a remote server, loading
diagnostic interface files, and diagnosing the failure
interactively with the remote server using the interface

files.

10

15

WO 01/39042 PCT/US00/16978

BRIEF DESCRIPTION OF THE DRAWINGS

The figures of the accompanying drawings are shown by
way of example and not by way of limitation, in which like
reference numerals refer to like components and in which:

FIG. 1 depicts a known software stack.

FIG. 2 is a block diagram of a self-contained ROM-based
browser software stack according to the present invention.

FIG. 3 is a high-level block diagram of the present
invention.

FIG. 4 is a detailed block diagram of the present
invention.

FIG. 5A is a flowchart depicting the invocation of the
present invention.

FIGS. 5B and 5C are flowchart depicting useful
applications of the present invention.

FIG. 6 is a block diagram of a personal computer.

10

15

20

25

30

WO 01/39042 PCT/US00/16978

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 2 depicts a block diagram of a self-contained,
persistently stored browser software stack 208. The browser
software stack 208 is persistently stored, but not on a
traditional electromagnetic hard drive. As used herein, an
“electromagnetic hard drive” is a magnetic storage medium,
usually called a platter, that is mechanically rotated.
Read and write operations are performed by a read-write head
that is part of the hard drive.

Preferably, the browser 208 is stored in PC BIOS in a
read-only memory (“ROM”), 212 or a ROM equivalent, such as:
electrically programmable read-only memory (“EPROM”),

electrically erasable programmable read-only memory

(“EEPROM”), electrically alterable programmable read-only
memory (“EAPROM”), and flash erasable programmable read-only
memory (“FLASH” or “FEPROM”). As used herein, PC BIOS

stands for “personal computer basic input output system.”
The PC BIOS is a firmware code region of memory that is
permanently resident in the personal computer. It is
primarily responsible for performing low level input output
operations, usually on behalf of an operating system.
However, according to an embodiment of the present
invention, the PC BIOS includes the self-contained browser
software stack 208.

The browser 208 is independent of a known operating
system and a hard drive. Thus, employing the browser 208
makes a personal computer less susceptible to failures and
allows the personal computer to operate in spite of certain
types of failures -- whether they are failures that occur at
startup, or during run-time operation of the personal
computer. Moreover, the browser 208 can be used to diagnose
problems associated with hardware components coupled to the

personal computer.

10

15

20

25

30

WO 01/39042 PCT/US00/16978

The browser 208 depicted in FIG. 2 architecturally
defines an embodiment of the invention. According to a
presently preferred embodiment, the browser 208 is stored in
a ROM 212. Before describing the functional blocks
comprising the browser 208 in detail, it is useful to
describe the modular elements (e.g., program code and
hardware combination) of the browser as they relate to the

overall invention. For this we turn to FIG. 3.

OPERATIONAL OVERVIEW

FIG. 3 is a high-level block diagram of the browser 300
as it operates with electronic hardware, such as a personal
computer (one embodiment of a personal computer is described
below with reference to FIG. 6). According to an embodiment
of the present invention, a personal computer (hereinafter
“computer 300”) having the browser software performs at
least four basic operations. One operation includes an
input/output function. To this end, the computer 300
includes an input module 304. The input module 304
comprises hardware that provides one or more communication
means with an external device, such as a keyboard, a mouse,
a stylus, or a touch screen. A serial port, an I/O
controller, a USB port, an IEEE 1394 port, and a CEBus are
examples of communications means. Software, which is
included in the browser, handles interrupts, buffering, and
command and control dispatching for inputs received over the
communication means. It is noted that output can also be
achieved by the communication means of the input module 304,
although it is not the primary function of the module 304.

Another operation of the computer 300 is that of lower
level network communications. For this, a network
communications module 308 is provided that handles

communication functions and operations at the physical, data

10

15

20

25

30

WO 01/39042 PCT/US00/16978

link, network and transport layers of, for example, the
seven layer 0OSI (“Open Systems Interconnection”) Reference
Model, which is generally known in the art of networking.

Hardware devices that can implement the network
communications module 308 include an Ethernet card, a
traditional landline modem, a cable modem, and a wireless
modem. Multiple Internet RFCs, which are standards for the
Internet, define the specifications of the software that
allows these hardware devices to operate. According to
embodiments of the invention, the Internet RFC’s include 791
(Internet Protocol or “IP”), 792 (Internet Control Message
Protocol or “ICMP”), 793 (Transmission Control Protocol or
“TCP”), 826 (Address Resolution Protocol or “ARP”), and 1661
(Point~-to-Point Protocol or “PPP”), all of which are
available on the Internet at the URL
http://www.pmg.lcs.mit.edu/rfc.html.

A third operation of the computer 300 is processing
data and control to and from the network communications
module 308. At the network application module 312, various
protocols are employed that interpret messages from the
network communications module 308 and either provide a
client (or “user interface”) specifically for them (for
example, terminal monitor software or an electronic mail
client), or access another client at a different module (for
example in the page rendering module 316, which is described
below). If the network application module 312 provides a
client for a user, then in addition to handling data to and
from the network communications module 308, it can receive
data from the input module 304 -- either directly or through
another module, such as the page rendering module 316.

Exemplary applications (or “protocols”) for the network
application module 312 are DNS (Domain Name System), HTTP

(Hypertext Transfer Protocol), SSL (Secure Sockets Layer),

10

15

20

25

30

WO 01/39042 PCT/US00/16978

HTTPS (HTTP Secure), SMTP (Simple Mail Transfer Protocol),
POP3 (Post Office Protocol Version 3), TELNET, and FTP (File
Transfer Protocol). These network applications are further
described in Internet RFCs: 1034 (DNS), 2068 (HTTP), 821
(SMTP), 1081 (POP3), 854 (TELNET), and 959 (FTP). It is
presently preferred that only SMTP, POP3, DNS, HTTP, SSL and
HTTPS are simultaneously implemented in the network
application module 312. Generally, the less protocols that
are included with the browser, the smaller the resulting
footprint (i.e., the amount of memory required to store the
self-contained network browser is reduced).

At the top of the diagram is the page rendering module
316. The page rendering module 316 handles interpretive
aspects of transforming hypertext markup language (“HTML”)
documents, as well as other document formats. For example,
the page rendering module 316 renders graphics files,
performs page layout functions, and handles window
positioning, sizing, and scrolling in response to data from
the input module 304 (for example, data from a mouse). The
page rendering module 316 communicates directly with a

display module (not shown).

DETAILED MODULE DESCRIPTION

FIG. 4 1s a detailed functional block diagram of the
software in the self-contained network browser. FIG. 4 is
organized in accordance with a typical data flow from a
network (for example, over a peripheral :device) to its
ultimate presentation on a computer display or terminal.
Although the functionality of the various detailed modules
(FIG. 4) can be moved between the general purpose modules
(FIG. 3), they are hereinafter described with reference to a
particular general purpose module. For example, the input

module 304 (FIG. 3) includes software modules 408 through

10

15

20

25

30

WO 01/39042 PCT/US00/16978

412. In an embodiment, the network communications module
308 includes software modules 416 through 432, the network
application module 312 includes software modules 436 through
464, and the page rendering module 316 includes software
modules 468 through 482.

Data input is received at a peripheral device 404
(i.e., an internal or external device that is added to the
computer 300, such as an Ethernet adapter, a keyboard, a
mouse, or a wire-line/wireless modem). When the data is
received by the input module 304, it is routed from one or
more of the computer’s input/output (“I/0”) ports to its
respective module for processing. Generally speaking, each
peripheral device is attached to a particular I/O port and
data communicated from the peripheral device causes an
interrupt in the real-time kernel, which is further
described below with reference to FIG. 2. The interrupt
identifies an exception vector or memory address of an
algorithm that handles the input of data from the peripheral
device. For example, a signal from a modem can trigger a
first serial port interrupt, which in turn causes the modem
point-to-point protocol (“PPP”) module 416 to be activated.

Before describing the individual components of the
detailed block diagram of FIG. 4, it is noted that the debug
console module 412 is not required. The debug console
module 412 is used as a debug port for software and hardware
testing purposes. Moreover, elements shown with solid lines
are part of the browser software, whereas elements shown
with dashed lines are part of the overall personal computer
while the browser software is executing.

Additionally, the physical page cache 490 and the
display 494 are not part of the browser software stack. The
page cache 490, preferably formed from a volatile memory,

acts as a buffer for data processed by one or more network

10

10

15

20

25

30

WO 01/39042 PCT/US00/16978

applications before the data is passed on to the page
rendering module 472. For example, the page cache 490 can
pre-cache HTIML files (both not-yet-interpreted and
interpreted files) before they are passed on to the display
494. The display 494 can be a peripheral device that the
page rendering module 472 communicates with or it can be a
volatile memory buffer for the actual display device that
presents data to a user. The display 494 receives data from
the page rendering module 472.

Furthermore, the ROM files 468 are not required
(although they are preferred). The ROM files 468 can
persistently store one or more user diagnostic interfaces or
templates used by a particular remote vendor (e.g., a
computer manufacturer or an internet service provider) to
diagnose a problem with the personal computer. For example,
an HTML form or an executable diagnostic program that is
used when the browser connects with a remote vendor can be
stored in ROM files 468. Although they are called “ROM
files”, the files can be stored in an electrically alterable
ROM, such as a FLASH memory. This is useful when cookies or
other files may be stored in the ROM files 468, since
cookies are not necessarily purely static files, but rather,
they may change from time to time.

Cursor control module 408 is used to process incoming
data from a mouse or stylus. The data is generally two
dimensional movement data corresponding to movement of the
mouse. The data also includes control signals, such as a
mouse selector click. The cursor control module 408
preferably receives the data via a serial port, but it can
also receive data from a wireless port, such as an infrared
port.

Keyboard module 410 is the keyboard driver. It is used

to enter or type text into forms and/or to enter commands

11

10

15

20

25

30

WO 01/39042 PCT/US00/16978

directed to the page rendering module 472, as well as other
modules interfacing the page rendering module 472 -- such as
modules 452 through 464. An important aspect of the
keyboard module 472 is its ability to launch the browser.
Typically, a user enters a special key or sequence of keys
(e.g., CTRL-ALT-B or CTRL-ALT-HOME) that manually launch the
self-contained browser, thereby bypassing the normal
operating mode for the personal computer. Typically, the
special key sequence is active only when the personal
computer is booting up. The keyboard module 410 is also
used to control page scrolling and field selection, for
example through use of direction and/or tab keys on a
keyboard.

The debug console 412 is used for debugging purposes
and is included primarily for software tuning. For example,
since the device drivers can be different as between
chipsets and hardware devices on different computers, the
debug console 412 is useful in monitoring the browser
performance as it operates with one or more new hardware
devices. The debug console 412 is not a necessary component
of the browser software.

The modem PPP module 416 1is used to process incoming
packet data from a public switched telephony network
("PSTN”) . The functionality of the module 416 preferably
complies with Internet RFC 1616, as it is configured to
assist a modem in connecting to an internet service provider
(YISP”) or internet access provider (“IAP”), and then making
virtual connections with one or more remote servers. The
modem PPP module 416 also includes the device drivers for
the modem.

The Ethernet ARP module 420 is also used to process
incoming packet data from a network. Here, however, the

network can be a high-speed local area network (“LAN”), or a

12

10

15

20

25

30

WO 01/39042 PCT/US00/16978

high-speed wide area network (“WAN”). The module 420
includes one or more device drivers for the Ethernet card (a
peripheral device). The Ethernet ARP module 420 complies
with Internet RFC 826, as the module is configured to
translate between IP and Ethernet addresses.

The IP/ICMP module 424 receives packets from modules
416 or 420, depending on the network connection. The IP
portion of the IP/ICMP module 424 handles fragmentation,
packet routing and re-assembly of IP packets. ICMP is an
extension to IP that handles generation of error messages
and other information associated with IP. The functionality
of the IP/ICMP module 424 is consistent with Internet RFCs
791 and 792.

TCP/UDP module 428 assembles IP packets into messages
for the network applications. The TCP/UDP module 428
operates in accordance with Internet RFC 793 (TCP) and
Internet RFC 768 (User Datagram Protocol or “UDP”). As the
TCP/UDP module 428 is compliant with both TCP and UDP, it
can support both connection-oriented communications (TCP)
and connectionless communications (UDP) .

The socket application programming interface (“API”)
module 432 provides an interface between the network
communications module 308 and the network application module
312 of FIG. 3. As a network application is executed on the
computer 300, the network application calls functions and
sends and receives data/messages to and from the network
communications module 308. To this end,; the socket API 432
is used as a dispatcher to create and destroy IP virtual
connections, or “sockets”, with remote servers. Because
both TCP and UDP are supported by the browser software, the
sockets can be connection-oriented or connectionless.

As 1s mentioned above, modules 436 through 464 can be

classified as network application modules. The network

13

10

15

20

25

30

WO 01/39042 PCT/US00/16978

application modules are communicatively coupled to both the
socket API 432 and the page rendering module 472.

DNS module 460 is used to map (or “resolve”) English-
type URLs (e.g., “http://www.elegent.com”, where “http://”
identifies the network application protocol and
“www.elegent.com” identifies the URL) to IP addresses (e.g.,
“206.171.12.20") . (As was mentioned above, Ethernet ARP
module 420 maps IP addresses to Ethernet addresses.) DNS is
described in Internet RFC 1034. DNS module 460 passes
domain name requests (“queries”) to a resolver or name
server for processing in accordance with RFC 1034.

HTTP module 456 is used for the transfer of HTML
(“hypertext markup language”) files to or from a remote
server. Most of the HTML files are ultimately presented to
a user via the page rendering module 472. HTTP module 456
is compliant with Internet RFC 2068.

SMPT module 436, POP3 module 440 and e-mail module 464
are all involved with processing electronic mail messages.
SMTP module 436 includes software that handles sending
electronic mail messages in accordance with Internet RFC
821, which has been incorporated herein by reference in its
entirety. The SMTP module 436 is communicatively coupled to
both the socket API 432 and the electronic mail client (or
“e-mail module”) 464 (which is a user interface for the SMTP
and POP3 network applications). POP3 module 440 includes
software that handles retrieving electronic mail messages
from a remote server. Like the SMTP module 436, the POP3
module 440 is communicatively coupled to both the socket API
432 and the electronic mail client 464. E-mail module 464
is preferably an HTML-based software interface that is
interpreted by the page rendering module 472.

Whereas SMTP and POP3 are two presently preferred

protocols used in the present invention, other electronic

14

10

15

20

25

30

WO 01/39042 PCT/US00/16978

mail protocols can also be employed. For example, a
protocol wherein the electronic mail messages are
manipulated on a remote mail server rather than on the
computer 300. For instance, modules 436 and 440 could be
replaced by Internet Message Access Protocol (“IMAP”)
compliant software. A recent version of IMAP is described
in Internet RFC 2060.

FTP module 444 complies with Internet RFC 959. The FTP
module 444 handles file transfers between the computer on
which the browser resides and a remote server. The FTP
module 444 is not necessary or required for a successful
implementation of the browser of the present invention.

SSL module 448 and HTTPS module 452 manage
complementary security protocols employed by the browser.
These modules are activated when secure exchanges are
desired between the self-contained network browser and the
remote serxver. When these modules are activated, dedicated
ports (e.g., port 443) between the browser and the remote
vendor/server are used to pass IP packets. The browser and
the server establish session identifiers and share one or
more encryption keys. The session identifiers and
encryption keys are used to verify the authenticity of the
exchanged information, as well as to protect the information
exchanged from sncopers (unauthorized persons who try to
eavesdrop on a communication). Both the SSL module 448 and
the HTTPS module 452 are not required for successful
implementation of the present invention.

Now that the network application modules have been
described, the page rendering module 472 is described. The
page rendering module 472 engages in two-way communications
with the network application modules 312. Exchanges between
the page rendering module 472 and the network application

modules 312 are generally buffered by the page cache 490.

15

10

15

20

25

30

WO 01/39042 PCT/US00/16978

The page rendering module 472 also communicates screen
information to the display 494, which usually includes a
graphics accelerator adapter for a bitmap display. The page
rendering module 472 also receives data from one or more
input devices (such as a mouse or keyboard).

The page rendering module 472 includes five basic
elements. One element is as a graphics rendering element
474. The graphics rendering element 474 interprets GIF,
JPEG, and MPEG type files for presentation on a bitmap
display. The graphics rendering element 474 also handles
image scaling. Another page rendering module 472 element is
a font engine 476. The font engine 476 supports the various
fonts used by HTML files. The multi-lingual element 478
supports the interpretation of characters in HTML files into
one of a number of different languages, although only one
language needs to be supported by the browser. The page
layout element 480 interprets the formatting tags in HTML
files, for example the <bolds>, <center>, and <color> tags,
as well as the <table> and <frame> tags.

The windowing system 482 of the page rendering module
472 provides a window environment for each page or subframe
of the HTML files presented to a user. The windowing system
482 handles window sizing for the display 494, as well as
the generation of horizontal and vertical scroll bars that a
peripheral device can control (via cursor control module
408). Movement of the cursor or stylus detected at the
cursor control module 408 is communicated directly to the
page rendering module 472, and in particular the windowing

system 482, for processing.
BROWSER SOFTWARE ARCHITECTURE

Returning to FIG. 2, it depicts a functional block

diagram of the self-contained browser software stack 208 as

16

10

15

20

25

30

WO 01/39042 PCT/US00/16978

depicted and described in detail with reference to FIG. 4.
The diagram is useful in understanding the overall
architecture of the self-contained network browser, which is
preferably contained in a read-only memory 212.

The real-time kernel 220 (which is not shown as a
single module in FIG. 4) performs at least two basic tasks.
The basic tasks of the real-time kernel 220 include (1)
detecting and dispatching data to and from peripheral
devices to their appropriate modules and (2) memory
management. As for data processing and dispatching, the
real-time kernel 220 actively polls peripheral devices 404
in an attempt to detect a change of state in the devices
(for example, if peripheral devices share a common bus), or
the kernel 220 passively receives direct interrupt requests
from the peripheral devices 404. The real-time kernel 220
differs from a traditional operating system in that it
handles low level tasks that the traditional operating
system may perform, but does not handle higher level tasks.
Rather, the higher level tasks are reserved for unique
modules in the browser 208.

The memory management aspects of the real-time kernel
220 include management of the page cache 490, as well as
other volatile execution memory while processes are running.
For example, the real-time kernel 220 performs functions
such as memory allocation and garbage collection for global
and/or local memory areas utilized by each of the modules
depicted in FIG. 4.

According to one embodiment of the invention, the real-
time kernel 220 manages the page cache 490 (FIG. 4) as three
logical memory regions.

A request queue region 491 stores requests detected by
the cursor control 408 and passed to the page cache 490 by

the page rendering module 472. The request queue region 491

17

10

15

20

25

30

WO 01/39042 PCT/US00/16978

also stores requests generated by the page rendering module
472 .

A pre-processed data region 492 stores data that has
not been interpreted by the page rendering module 472. The
pre-processed region 492 1is particularly useful when one or
more network applications pre-fetch batches of HTML files,
or request multiple HTML files, prior to actually receiving
an explicit request from a user.

A post-processed data region 493 holds data that has
been interpreted by the page rendering module 472 but has
not yet been sent to the display 494. Data stored in the
post-processed data region 493 passes from a network
application to the page rendering module 472, and then from
the page rendering module 472 to the page cache 490. From
the page cache 490 it can again pass through the page
rendering module 472 on to the display 494.

The real-time kernel 220 handles input and output
between the hardware resources (for example internal and
external devices/components) and the software processing
modules of the computer 300. Accordingly, the real-time
kernel 220 communicates with one or more device drivers 216
associated with individual hardware components to ensure
proper communication processing as well as proper hardware
component initialization.

According to one embodiment, the real-time kernel 220
is communicatively coupled with an initialization module
(not shown). The initialization module detects each
peripheral device connected to the computer 300, formats the
peripheral device with any initialization parameters needed,
and, 1if the initialization is not successful, then the
initialization module triggers a diagnostic processing mode
for the browser. Thus, the browser 208 can be invoked by

either the initialization module enabling the diagnostic

18

10

15

20

25

30

WO 01/39042 PCT/US00/16978

processing mode, or by a direct call from a traditional
operating system or an end-user. In an embodiment, the
initialization module is shared with both the browser 208
and a traditional operating system.

The browser 208 includes device driver software 216
that communicates with and/or controls the peripheral
devices of the computer. The device driver software 216 can
include initialization and testing software that ensures a
particular peripheral device is operational (some of the
testing software can be separate from the browser 208). The
real-time kernel 220 operates over the device driver
software 216, and manages the computer system resources and
uses the device drivers 216 to communicate with the
peripheral devices. Internet protocol software 224 is
stacked over the real-time kernel 220, and is used to handle
a variety of network communications, such as those described
above with reference to FIG. 4.

On top of the internet protocol software 224 is a
graphics windowing software 228. The graphics windowing
software 228 handles behind-the-scene processing of data
that is presented to a user on a display device. For
example, window positioning, cursor and keyboard
input/control, and graphics processing is handled, in part,
by the graphics windowing software 228.

The software components of FIG. 2 that operate above
the graphics windowing software 228 are more closely related
to end-user applications. For example, -SSL software 236
handles security information processing. The font software
supports various fonts that are displayed to the end-user,
and the imaging software 232 interprets graphics files that
are also displayed to the end-user.

The e-mail software 244 is an end-user client that

allows the end-user to send and receive electronic messages.

19

10

15

20

25

30

WO 01/39042 PCT/US00/16978

HTML software 248 is an end-user application that interprets
HTML files, for example by parsing the files and passing the
parsed sections on to the appropriate module for further

processing.

BROWSER INVOCATION AND DIAGNOSTIC ABILITIES

FIG. 5A is a flowchart depicting steps for invoking the
browser on a personal computer according to an embodiment of
the invention. 1In step 504, the computer system hardware
components, internal and external, are initialized. 1In step
508, a test is performed to determine whether a browser
command or trigger has been set. According to one
embodiment, the browser command is invoked in response to a
key or sequence of keys typed on a keyboard while the
personal computer 1is booting up. In another embodiment, a
physical or CMOS setup switch is set that triggers the self-
contained network browser.

If no browser trigger was detected in step 508, then
the personal computer continues to step 512 where the
computer enters a normal operating mode. For example, the
traditional operating system boots and general purpose
applications are be executed. Similar to step 508, in step
516 a test is performed to determine whether the browser
trigger is activated. It is noted that this process can be
handled by an exception vector or interrupt routine, or it
can be handled by a particular device driver or the
traditional operating system. If a browser trigger was
detected in step 516, then in step 520 the operating system
shuts down and the process continues to step 524.

In step 524, which follows steps 508 or 520, the self-
contained browser is invoked. FIGS. 5B and 5C depict

particularly useful applications for the self-contained

20

10

15

20

25

30

WO 01/39042 PCT/US00/16978

browser once it has been invoked. The steps shown in FIGS.
5B and 5C replace connector “A” (element 528).

In FIG. 5B, a flowchart is shown depicting use of the
browser to diagnose and repair a failed hardware component.
In step 532, the browser connects to a network or “remote”
gerver corresponding to a particular vendor. The vendor can
be the company that sold the personal computer, or it can be
another service provider that handles technical
service/repair of the personal computer. In step 536,
diagnostic files, for example files stored in ROM files 468,
as well as files downloaded from the remote server, are
loaded. These diagnostic files allow an end-user to report
a problem type, to perform system configuration detection,
or to diagnose selected hardware components. The diagnostic
files can include interpreted software code, executable
software code, or HTML interfaces such as forms. The vendor
is thus able to remotely diagnose the problem the personal
computer is experiencing.

Before diagnosing the problem, the vendor can send a
command that tells the browser launch a particular
diagnostic program, or the vendor can send a particular
compiled or interpreted diagnostic program to the browser.
If a diagnostic program is sent to the browser, then it is
sent using a FTP, an HTTP, an HTTPS, or a SMTP protocol. 1If
a public network is used, for example the Internet (versus
an intranet), a certificate is used to authenticate the
diagnostic program. For example, RSA Data Security, Inc. or
X.509 compliant certificates are employed to verify the
authenticity of the diagnostic program.

In step 540, the diagnostic program, whether it was
stored locally or was sent from a remote vendor, is
executed. For example, the diagnostic program can confirm

that the hard disk did fail, or it can examine the contents

21

10

15

20

25

WO 01/39042 PCT/US00/16978

of an error log corresponding to the operating system and
other hardware components. Part of executing the diagnostic
program can also include uploading the results to the vendor
so that the vendor can take corrective action.

A test is performed in step 544 to determine whether
the problem can be repaired. If the problem can be
repaired, then it is repaired in step 548, which may also
include downloading an additional program from the vendor --
for example, as was described above with reference to step
540. However, if the problem cannot be repaired, then in
step 552 a notification is sent to either the user or the
vendor (or both) indicating that a repair cannot be made.

If the vendor is notified in step 552, then the vendor can
follow up with the end-user of the personal computer.

In FIG. 5C, the browser is used to explore or “surf”
the Internet as is shown in step 556. For example, a user
of the personal computer can use the self-contained network
browser to connect to remote servers and send data and
retrieve HTML files.

Since aspects of the traditional operating system and
the browser overlap, that is each is separately (but not
necessarily concurrently) used in one form or another to
manage the computer system resources, each can be executed
independently of the other. Thus, failures of the
traditional operating system or of a peripheral device, in
particular the hard disk, will not necessarily affect the

browser.

22

10

15

20

25

30

WO 01/39042 PCT/US00/16978

HARDWARE OVERVIEW

FIG. 6 is a block diagram that illustrates an embodiment
of a computer system 600 upon which the invention can be
implemented.

Computer system 600 includes a bus 602, or other
communication mechanism for communicating information, and a
processor 604 coupled with bus 602 for processing
information. Computer system 600 also includes a main memory
606, such as a random access memory (“RAM”), or other dynamic
(or “volatile”) storage device, coupled to bus 602. The main
memory 606 stores information and instructions executed by
processor 604 during execution. Main memory 606 also stores
temporary variables or other intermediate information during
execution of instructions by processor 606.

Computer system 600 further includes a read only memory
("ROM”) 608 or other static (or “persistent”) storage device
(e.g., FLASH, PROM, EEPROM, etc.) coupled to bus 602. The
ROM 608 stores static information and instructions for
processor 604, in particular the browser as described herein.
It is worth noting that one or more banks of memory can
comprise ROM 608. A storage device 610 (or “hard disk”, or
“hard drive”), such as a magnetic disk or optical disk, is
coupled to bus 602. The storage device 610 stores
information such as data structures and instructions, for
example the operating system or application programs that use
the operating system.

Computer system 600 is preferably coupled via bus 602 to
a display 612, such as a cathode ray tube (“CRT”) or an
active or passive-matrix display. The display 612 presents
images to an end-user. An input device 614, including
alphanumeric and other keys, is coupled to bus 602. The
input device 614 communicates information and command

selections to processor 604. Another type of user input

23

10

15

20

25

30

WO 01/39042 PCT/US00/16978

device is cursor control 616, such as a mouse, a trackball,
or cursor direction keys, for communicating direction
information and command selections to processor 604 and for
controlling cursor movement on display 612. This input
device 614 typically has two degrees of freedom in two axes,
a first axis (e.g., x) and a second axis (e.g., y), that
allows the device to specify positions in a plane.

The invention is a persistently stored, self-contained
browser, where the browser is not stored in the hard disk,
such as storage device 610. One application for the
invention is for diagnosis and repair of the computer system
600. Another 1s as a diskless internet device. According
to an aspect of the invention, the processor 604 in the
computer system 600 executes one or more sequences of
instructions contained in main memory 606. Such
instructions are read into main memory 606 from another
computer-readable medium, such as storage device 610 or ROM
608. Execution of the sequences of instructions contained
in main memory 606 causes processor 604 to execute the
browser and other processes described herein. In
alternative embodiments, hard-wired circuitry may be used in
place of or in combination with software instructions to
implement the invention. Thus, embodiments of the invention
are not limited to any specific combination of hardware
circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates 4n providing
instructions to processor 604 for execution. Such a medium
may take many forms, including but not limited to, non-
volatile media, volatile media, and transmission media. Non-
volatile media includes, for example, optical or magnetic
disks, such as storage device 610. Volatile media includes

dynamic memory, such as main memory 606. Transmission media

24

10

15

20

25

30

WO 01/39042 PCT/US00/16978

includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 602. Transmission
media can also take the form of acoustic or light waves, such
as those generated during radio-wave and infrared data
communications.

Common forms of computer-readable media include, a
floppy disk, a flexible disk, a hard disk, a magnetic tape,
or any other magnetic media, a CD-ROM, any other optical
media, punchcards, a paper-tape, any other physical media
with patterns of holes, a RAM, a ROM, a FLASH, or any other
memory chip or cartridge, a carrier wave as described
hereinafter, or any other media from which a computer can
read.

Various forms of computer-readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 604 for execution. For example,
the instructions may initially be carried on a magnetic disk
of a remote computer. The remote computer can load the
instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem
local to computer system 600 can receive the data on the
telephone line and use an infrared transmitter to convert
the data to an infrared signal. An infrared detector
coupled to bus 602 can receive the data carried in the
infrared signal and place the data on bus 602. Bus 602
carries the data to main memory 606, from which processor
604 retrieves and executes the instructions. The
instructions received by main memory 606 may optionally be
stored on storage device 610 before or after execution by
processor 604.

Computer system 600 also includes a communication
interface 618 coupled to bus 602. Communication interface

618 provides a two-way data communication coupling to a

25

10

15

20

25

30

WO 01/39042 PCT/US00/16978

network link 620 that is connected to a local network 622.
For example, communication interface 618 may be an integrated
services digital network (“ISDN”) card or a modem to provide
a data communication connection to a corresponding type of
telephone line. As another example, communication interface
618 may be a local area network (“LAN”) card to provide a
data communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
communication interface 618 sends and receives electrical,
electromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 620 preferable provides data communication
through one or more networks to other data devices. For
example, network link 620 may provide a connection through
local network 622 to a host computer 624 or to data
equipment operated by an Internet Service Provider (“ISP”)
626. ISP 626 in turn provides data communication services
through the “Internet” 628 -- for example computer
diagnostic services. Local network 622 and Internet 628
both use electrical, electromagnetic or optical signals that
carry digital data streams. The signals through the various
networks and the signals on network link 620 and through
communication interface 618, which carry the digital data to
and from computer system 600, are exemplary forms of carrier
waves transporting the information.

Computer system 600 can send messages and receive data,
including program code, through the network(s), network link
620 and communication interface 618. In the Internet
example, a server 630 might transmit requested code for an
application program through Internet 628, ISP 626, local
network 622 and communication interface 618 -- for example
using the FTP protocol. 1In accordance with the invention,

one such downloaded application is executable software code

26

10

15

20

25

30

WO 01/39042 PCT/US00/16978

or computer configuration parameters that either further
diagnose the computer’s problem, or fix the problem outright.

The received code may be executed by processor 604 as
it is received, and/or stored in main memory 606, storage
device 610, or other non-volatile storage for later
execution. In this manner, computer system 600 may obtain
application code in the form of a carrier wave.

Referring to FIGS. 3 and 6, it is notable that the
input module 304 interacts with input device 614 and cursor
control 616. Network communications module 308 and network
application module 312 interact with communication interface
618. And page rendering module 316 interacts with display
612.

In one embodiment, all of the self-contained network
browser software code is stored in one or more banks of ROM
608. When executed, however, the browser software code is
copied to main memory 606. In one embodiment, the page
cache 490 is also be a portion of main memory 606.

Advantages of the present invention include a small
footprint, self-contained browser architecture that is
independent of, yet complimenting, a traditional operation
system. A computer incorporating the browser can function
without a hard disk. Thus, a user can still operate the
computer when the hard disk fails, or the user can operate
just the browser software so she has fast and ready access
to the Internet without having to wait for the operating
system to boot, or other application software to load.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof.
It will be evident, however, that various modifications and
changes may be made thereto while still remaining consistent
with the description above. For example, more or less

regions can be specified for the page cache, more or less

27

WO 01/39042 PCT/US00/16978

functionality can be included in both the network
communication and application modules, as well as in the
page rendering module. Further still, other embodiments may
include a virtual machine for interpreting or executing Java
code, or other portable program code. The specification and
drawings are, accordingly, to be regarded in an illustrative

rather than a restrictive sense.

28

10

15

20

25

30

WO 01/39042 PCT/US00/16978

CLAIMS
What is claimed is:
1. A self-contained network browser (208) with hardware
diagnostic abilities, said network browser (208) comprising
a computer readable memory (212) configured to persistently
store executable software modules, said software modules
including:

a device driver module (216) configured to initialize
and test one or more peripheral devices;

a real time kernel module (220) configured to detect
and dispatch data to and from peripheral devices, though
said device driver module (216), including processing
diagnostic data corresponding to operation of said
peripheral devices, and to perform memory management tasks;

an internet protocol module (224) configured to handle
network communications with remote devices;

a graphics windowing module (232) configured to process
visual display data and control; and

a hypertext markup language module (248) configured to
interpret hypertext markup language documents for display

with said graphics windowing module (232).

2. The self-contained network browser (208) of claim 1,
wherein when said diagnostic data corresponding to operation
of said peripheral devices indicates a failure has occurred,
then said executable software modules are configured to call
functions to:

connect to a remote server using said internet protocol
module (224);

load one or more diagnostic interface files, including
diagnostic interface files stored persistently in said

memory (212);

29

10

15

20

25

30

WO 01/39042 PCT/US00/16978

diagnose said failure interactively with said remote
server and said loaded one or more interface files; and

repair said failure.

3. The self-contained network browser (208) of claim 2,
wherein said executable software modules are further
configured to call functions to repair said failure by
downloading executable repair code from said remote server
using a network protocol with security measures that verify

the authenticity of said executable repair code.

4., The self-contained network browser (208) of claim 2,
wherein said executable software modules are further
configured to call functions that receive a command from
said remote server, said command configured to call one or
more functions stored in said memory (212) that assist in

repairing said failure.

5. The self-contained network browser (208) of claim 1,
wherein said memory management in said real time kernel
module (220) includes management of a network browser page
cache (490) as a request queue region (491), for storing
data and commands that have not been serviced, a pre-
processed data region (492), for storing data that must be
interpreted for output to a display device, including pre-
fetched batches of hypertext markup language files, and a
post-processed region (493), for storing data that has been
interpreted for output to said display device, but has not

yet been sent to said display device.

6. A computer for accessing a network, the computer
including a processor (604), a hard drive (610), a
persistent memory (608), a random access memory (606), and a

30

10

15

20

25

30

WO 01/39042 PCT/US00/16978

communication interface (618), all communicatively coupled
to said processor (604) through a bus (602), wherein said
persistent memory (608) comprises executable software
modules stored in a memory region (212), the executable
software modules including:

a device driver module (216) configured to initialize
and test said hard drive (610) for a failure;

a real time kernel module (220) configured to detect
and dispatch data to and from peripheral devices, though
said device driver module (216), including processing
diagnostic data corresponding to operation of said hard
drive (610), and to perform memory management tasks
pertaining to said main memory (606) ;

an internet protocol module (224) configured to handle
network communications with remote devices;

a graphics windowing module (232) configured to process
visual display data and control; and

a hypertext markup language module (248) configured to
interpret hypertext markup language documents for display

with said graphics windowing module (232).

7. The computer of claim 6, wherein said diagnostic data
corresponding to operation of said hard drive (610)
indicates a failure has occurred and said executable
software modules are further configured to cause said
processor (604) to:

connect to a remote server (630) using said internet
protocol module (224);

load one or more diagnostic interface files, including
diagnostic interface files stored persistently in said

memory region (212);

31

10

15

20

25

30

WO 01/39042 PCT/US00/16978

diagnose said failure interactively with said remote
server (630) using said loaded one or more interface files;
and

repair said failure.

8. The computer of claim 7, wherein said executable
software modules are further configured to cause said
processor (604) to repair said failure by downloading
executable repair code from said remote server (630) using a
network protoccl with security measures that verify the

authenticity of said executable repair code.

9. The computer of claim 7, wherein said executable
software modules are further configured to cause said
processor (604) to receive a command from said remote server
(630), said command configured to cause said processor (604)
to execute one or more functions stored in said memory

region (212) that assist in repairing said failure.

10. The computer of claim 6, wherein said memory management
in said real time kernel module (220) includes management of
a network browser page cache (490) as a request queue region
(491), for storing data and commands that have not been
serviced, a pre-processed data region (492), for storing
data that must be interpreted for output to a display device
(612), including pre-fetched batches of hypertext markup
language files, and a post-processed region (493), for
storing data that has been interpreted for output to said
display device (612), but has not yet been sent to said
display device (612).

11. A method for diagnosing and repairing a networked

computer with a self-contained network browser (208) stored

32

10

15

20

25

30

WO 01/39042 PCT/US00/16978

in a PC BIOS (212), the method comprising a sequences of
steps performed by said networked computer, the steps
comprising:
initializing (504) internal and peripheral devices
communicatively computed to said networked computer; the
invention characterized by:
testing (508) to determine whether a browser trigger
has been set, said browser trigger indicating a failure has
occurred; and
when said browser trigger has been set then:
invoking (524) said self-contained network browser
(208) without loading a full-service operating system;
and
connecting (532) to a remote server with said
self-contained network browser (208) ;
loading (536) one or more diagnostic interface
files;
diagnosing (540) said failure interactively with
said remote server;
determining (544) whether said failure is
repairable with said remote server;
repairing (548) said failure when said failure is
repairable; and
sending (552) a notification that said failure is

not repairable when said failure is not repairable.

12. The method of claim 11, wherein said step of repairing
(548) said failure includes downloading executable repair
code from said remote server using a network protocol with
security measures that verify the authenticity of said

executable repair code.

33

WO 01/39042 PCT/US00/16978

1/ 5
100
N y APPLICATION 116
5
A API ~—112
z 108
FIG. 1 ! OPERATING SYSTEM | ™
PRIOR ART) =
() 5 BIOS 104
244\ 248
' 212
) ROM | —
(BROWSER [208
: -
204 | | emaw HTML
SSL | FONT |IMAGING
. T 232
236——] ~
|| GRAPHICS WINDOWING
2281 |
INTERNET PROTOCOL | | T 224
REAL TIME KERNEL
2207 | M~
T 216
DEVICE DRIVERS
316
300~ (
PAGE RENDERING)
NETWORK APPLICATION
312
NETWORK
INPUT MODULE COMMUNICATIONS —__
3041+ 308

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16978

WO 01/39042
2/ 5
T m e e
| PERIPHERAL DEVICES |
I]
7| keveoarp | INFRARED 4 SERALWO ETHERNETIO A&

404 X Y
y y y
KEYBOARD CURSOR DEBUG MODEM ETHERNET
CONTROL CONTROL, CONSOLE . PPP ARP
7 ‘1) 2 y
(d J 416 > (420
410 408 412 v
424~ IPICMP
A
y
428~ TCPIUDP
A
y
432 T SOCKET API
440
436 \
A A A A A
w y / y } 444 \ 4
<
v |/ 448 | ssL
SMTP POP3 U PROTOCOL
A A FTP A
460 ry 456 452
y y) 4 y A4 /[
\ J
E-MAIL DNS HTTP HTTPS
464
A A A A
Y A\ 4 y y A 4
3 s
490~ ____ T T T T T T __TT : /
P49t | PAGE CACHE | 492 | | 493 | «— ROMFILES
| —_—— — —— —_— -
472 R ST '
v :
GRAPHICS FONT MULTI- PAGE WINDOWING
RENDERING , ENGINE LINGUAL LAYOUT SYSTEM
/ |] {
476 478 "480
474 mmm—————— e Yo 1 482
|
494~ DISPLAY |
|

SUBSTITUTE SHEET (RULE 26)

WO 01/39042 PCT/US00/16978

3/ 5

)

’ e 504

INITIALIZE

508

BROWSER
TRIGGER?

912 NO
oy
NORMAL
OPERATION
516

BROWSER
TRIGGER?

520

!

SHUT DOWN
0Ss

»

v [524
CALL BROWSER

528

FIG.5A C)

SUBSTITUTE SHEET (RULE 26)

WO 01/39042

4/ 5

532
\

CONTACT VENDOR

v

536 —

LOAD DIAGNOSTICS

y

DIAGNOSE
PROBLEM

544

YES

548

1y

REPAIRABLE?

REPAIR

NO

A 4

PCT/US00/16978

552

NOTIFY

FIG. 5B

556

\Z

\

SURF INTERNET

FIG. 5C

B

SUBSTITUTE SHEET (RULE 26)

WO 01/39042

PCT/US00/16978

5/ 5
628
INTERNET LOCAL
SERVER NETWORK HOST
630 ISP ng 24
NETWORK LINK
. .
PROCESSOR [\ /N communicaTion
N——/] \—/| INTERFACE
604 618
man [/——N
MEMORY |\ | BUS
606
ROM /l—"\ /L__—J\ STORAGE
608 \——/| 602 \——| DEVICE
610
A
N 600
v
INPUT CURSOR
DISPLAY gl CURSOR
612 614 616

FIG. 6

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

