woO 2009/073722 A1 |00 0 OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 June 2009 (11.06.2009)

lﬂfb A0 O

(10) International Publication Number

WO 2009/073722 Al

(51) International Patent Classification:
GOGF 9/52 (2006.01) GOG6F 12/10 (2006.01)

(21) International Application Number:
PCT/US2008/085402

(22) International Filing Date:
3 December 2008 (03.12.2008)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/949,284 UsS

(71) Applicant (for all designated States except US): QUAL-
COMM INCORPORATED [US/US]; Attn: International
IP Administration, 5775 Morehouse Drive, San Diego, Cal-
ifornia 92121 (US).

3 December 2007 (03.12.2007)

(72) Inventors; and

(75) Inventors/Applicants (for US only): CODRESCU,
Lucian [US/US]; 5775 Morehouse Drive, San Diego,
California 92121 (US). PLONDKE, Erich J. [US/US];

(74)

(81)

(34)

5775 Morehouse Drive, San Diego, California 92121
(US). VENKUMAHANTI, Suresh K [US/US]; 5775
Morehouse Drive, San Diego, California 92121 (US).

Agent: TALPALATSKY, Sam; 5775 Morehouse Drive,
San Diego, California 92121 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: MULTITHREADED PROCESSOR WITH LOCK INDICATOR

/' 104
Non-Core
Memory
100 _*‘

102
_____________________________
|
| 12

1
| [ A
| Thread 0 108 Thread 1
| 120 /_ r
| Sle(_ep N_Iod(_e Sleep Mode
| Logic Circuit LB Logic Circuit
: Exception 12z Exception
| Handler Handler
| 106
| L
|
| "
| Control Logic |
| Circut
|
|
|
|
| 110
| .
| TLB
| Lock
| Indicator
|
| Multithreaded Processor Core

104 Mémoire non principale
112, 114 Fil
120, 130 Circuit logique en mode veille
122, 132 Manipulateur d'exception
106 Circuit logique de commande
110 Indicateur de verrouillage TLB
102 Ceeur de processeur multifil

(57) Abstract:  Systems and methods
including a multithreaded processor with
a lock indicator are disclosed. In an
embodiment, a system includes means for
indicating a lock status of a shared resource
in a multithreaded processor. The system
includes means for automatically locking
the shared resource before processing
exception handling instructions associated
with the shared resource. The system
further includes means for unlocking the
shared resource.



WO 2009/073722 A1 | NININI] DA 000 0T 0RO 100 00 0 00

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,FI, — asto the applicant’s entitlement to claim the priority of the
FR, GB, GR,HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, earlier application (Rule 4.17(iii))
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).  Published:
—  with international search report
Declarations under Rule 4.17: —  before the expiration of the time limit for amending the
— as to applicant’s entitlement to apply for and be granted a claims and to be republished in the event of receipt of
patent (Rule 4.17(ii)) amendments



WO 2009/073722 PCT/US2008/085402

MULTITHREADED PROCESSOR WITH LOCK INDICATOR

yA Field

[0001] The present disclosure is generally related to a multithreaded processor with a

lock indicator.
V75 Description of Related Art

[0002] Advances in technology have resulted in smaller and more powerful personal
computing devices. For example, there currently exist a variety of portable personal
computing devices, including wireless computing devices, such as portable wireless
telephones, personal digital assistants (PDAs), and paging devices that are small,
lightweight, and easily carried by users. More specifically, portable wireless
telephones, such as cellular telephones and internet protocol (IP) telephones, can
communicate voice and data packets over wireless networks. Further, many such
wireless telephones include other types of devices that are incorporated therein. For
example, a wireless telephone can also include a digital still camera, a digital video
camera, a digital recorder, and an audio file player. Also, such wireless telephones can
process executable instructions, including software applications, such as a web browser
application, that can be used to access the Internet. As such, these wireless telephones

can include significant computing capabilities.

[0003] Additional computing capabilities are enabled by multithreaded processors that
can process multiple threads concurrently at an electronic device. To reduce power
consumption and cost of manufacture, multithreaded processors typically are designed
so that some processing resources, such as caches, buses, or other resources, are shared
by multiple threads. However, certain operations may only be reliably performed at a
shared resource by a single thread. For example, unpredictable results can arise when a
memory address is written to by two different threads concurrently. Software locks can
be used to manage shared resources by providing a value in memory, such as a
semaphore, that indicates whether the shared resource is unlocked and available for use

by a particular process, or locked and unavailable for use.



WO 2009/073722 PCT/US2008/085402

[0004] Software locks are typically set and released by software instructions and may
be unreliable, such as when the software lock is accessed by poorly written or malicious
software. In addition, while a shared resource remains locked, a processor typically
repeatedly executes instructions to check a value of the lock before continuing with
program execution. Likewise, each operation using the software lock introduces a
processing delay due to accessing, comparing, and/or writing a value to the portion of

memory storing the software lock.
Il Summary

[0005] In a particular embodiment, a system is disclosed that includes a translation
lookaside buffer (TLB) shared by multiple processing threads of a multithreaded
processor. The system includes a TLB lock bit in a register of the multithreaded
processor. The system also includes a control logic circuit configured to put a particular
thread of the multiple processing threads to sleep in response to the TLB lock bit having
a locked configuration when a TLB miss event associated with the particular thread is

detected.

[0006] In another particular embodiment, a system is disclosed that includes means for
indicating a lock status of a shared resource in a multithreaded processor. The system
includes means for automatically locking the shared resource before processing
exception handling instructions associated with the shared resource. The system further

includes means for unlocking the shared resource.

[0007] In another embodiment, a method is disclosed that includes receiving a
translation lookaside buffer (TLB) miss event associated with a thread of a multi-
threaded processor. The method also includes checking a TLB lock indicator. When
the TLB lock indicator is unlocked, the method allows access by the thread to an
exception handler associated with a TLB using a control logic circuit. When the TLB
lock indicator is locked, the method puts the thread to sleep using the control logic

circuit.

[0008] In another embodiment, a method is disclosed that includes receiving a
translation lookaside buffer (TLB) miss event associated with a thread of a multi-
threaded processor. The thread has access to a shared translation lookaside buffer

(TLB). The method includes reading a TLB lock indicator and when the TLB lock



WO 2009/073722 PCT/US2008/085402

indicator is locked, putting the thread to sleep using a control logic circuit. The method

also includes waking the thread upon receipt of an instruction.

[0009] In another embodiment, a computer readable medium having processor
executable instructions is disclosed. The processor executable instructions cause a
processor to handle an exception associated with a resource that is shared by multiple
threads of a multi-threaded processor. The processor executable instructions also cause
a processor to unlock a hardware lock for the resource after the exception has been
handled.

[0010] One particular advantage provided by disclosed embodiments is faster lock and
unlock operations of a shared resource due to using a logic circuit to set a register bit to
lock the shared resource. Another particular advantage provided by disclosed
embodiments is reduced dynamic power consumption of threads awaiting access to a
shared resource by putting the threads to sleep until the shared resource becomes

available.

[0011] Other aspects, advantages, and features of the present disclosure will become
apparent after review of the entire application, including the following sections: Brief

Description of the Drawings, Detailed Description, and the Claims.
1V.  Brief Description of the Drawings

[0012] FIG. 1 is a block diagram of an embodiment of a system that includes a

multithreaded processor with a lock indicator;

[0013] FIG. 2 is an example of a block diagram of an embodiment of a processing

system that includes a hardware lock for a shared resource;

[0014] FIG. 3 is a flow chart of an embodiment of a method of using a lock indicator at

a multithreaded processor;

[0015] FIG. 4 is a general diagram depicting an embodiment of operations at a

multithreaded processor with a lock indicator; and

[0016] FIG. 5 is a block diagram of an illustrative communication device that includes a

multithreaded processor with a lock indicator for a shared resource.



WO 2009/073722 PCT/US2008/085402

[0017]

[0018]

[0019]

V. Detailed Description

Referring to FIG. 1, a particular illustrative embodiment of a system that
includes a multithreaded processor with a lock indicator is depicted and generally
designated 100. The system 100 includes a multithreaded processor core 102 coupled to
a non-core memory 104. The multithreaded processor core 102 includes a control logic
circuit 106 coupled to a translation lookaside buffer (TLB) 108 and coupled to a TLB
lock indicator 110. A first thread 112 is operatively coupled to the TLB 108 and to the
control logic circuit 106. A second thread 114 is also operatively coupled to the TLB
108 and to the control logic circuit 106. Although two representative threads 112 and
114 are depicted in the system 100, it will be understood that the multithreaded

processor core 102 may include any number or threads.

In a particular embodiment, the TLB 108 is a shared memory resource of the
multithreaded processor core that is configured to receive requests from multiple
threads, such as threads 112 and 114, to translate virtual addresses to physical addresses.
The TLB 108 is configured to return a physical address that corresponds to a virtual
address that is stored at the TLB 108. The TLB 108 is configured to signal a TLB miss
event to the control logic circuit 106 when a requested virtual address is not found at the

TLB 108.

In a particular embodiment, the control logic circuit 106 is configured to receive
one or more TLB miss event signals from the TLB 108 and to determine the status of
the TLB lock indicator 110. When the TLB lock indicator 110 is in a locked
configuration, the control logic circuit 106 may be configured to instruct the requesting
thread 112 or 114 to save a current processing state and put the thread to sleep.
Otherwise, when the TLB lock indicator 110 has an unlocked configuration, the control
logic circuit 106 may be configured to lock the TLB lock indicator 110 and to
concurrently instruct the requesting thread 112 or 114 to launch an exception handler to
process the TLB miss event. By locking the TLB lock indicator 110, other threads are
prevented from modifying the TLB 108 so that the requesting thread can safely modify
contents at the TLB 108 without the possibility of unpredictable behavior arising from

simultaneous data write operations to an entry of the TLB 108 by multiple threads.



WO 2009/073722 PCT/US2008/085402

[0020] In a particular embodiment, the TLB lock indicator 110 may include one or
more bits of a global status register of the multithreaded processor core 102. The TLB
lock indicator 110 may be responsive to control signals from the control logic circuit
106. The TLB lock indicator 110 has a locked configuration to indicate that at least one
thread 112 or 114 is performing a write operation at the TLB 108 and that access to the
TLB by other threads is restricted. For example, other threads may be restricted to read-
only access, no access, or a reduced level of access to the TLB 108 when the TLB lock
indicator 110 is in a locked configuration. In addition, the TLB lock indicator 110 has
an unlocked configuration, enabling normal access to the TLB 108 by the threads 112
and 114.

[0021] In a particular embodiment, the first thread 112 includes a sleep mode logic
circuit 120 and an exception handler 122. The sleep mode logic circuit 120 may be
configured to save a current state of the first thread 112, such as by saving a value of
program counter (PC) (not shown), in response to a sleep instruction received from the
control logic circuit 106. In addition, the sleep mode logic circuit 120 may be
configured to store one or more values in a status register (not shown), such as a user
mode status bit, an exception status bit, and data related to a last executed instruction

packet that caused the TLB miss event.

[0022] Generally, the exception handler 122 of the first thread 112 may fetch and
execute instructions to handle an exception associated with a resource that is shared by
the threads 112 and 114, and to unlock a hardware lock for the resource after the
exception has been handled. In a particular embodiment, the exception handler 122
includes logic and processor executable instructions to respond to a TLB miss event.
For example, after the first thread 112 receives an instruction from the control logic
circuit 106 to launch the exception handler 122, the exception handler 122 may set one
or more status bits of the first thread 112 and may cause the first thread 112 to enter a
supervisor mode and to load TLB miss exception handling instructions, such as
instructions from the non-core memory 104. The exception handler 122 may be
operable to fetch and execute instructions that enable recovery from the TLB miss
event. For example, the exception handler 122 may process instructions causing the
requested virtual address that triggered the TLB miss event to be located at a non-core

memory resource, such as a page table. The exception handler 122 may write or



WO 2009/073722 PCT/US2008/085402

program a translation of the virtual address into the TLB 108. The exception handler
122 may also be configured to execute a return instruction to exit an exception handling
mode. The return instruction may be operable to return the thread 112 to a non-
exception state and may request the control logic circuit 106 to unlock the TLB lock
indicator 110. Alternatively, the return instruction may unlock the TLB lock indicator
110 upon return from the exception state without sending an unlock request to the

control logic circuit 106.

[0023] Likewise, in a particular embodiment, the second thread 114 includes a sleep
mode logic circuit 130 and an exception handler 132. In an illustrative embodiment, the
second thread 114, including the sleep mode logic circuit 130 and the exception handler
132, operates substantially similarly to the first thread 112, including the sleep mode
logic circuit 120 and the exception handler 122 of the first thread 112, respectively.

[0024] During operation, multiple processing threads, such as the representative threads
112 and 114, may send virtual address translation requests to the TLB 108. When a
TLB miss event results, the control logic circuit 106 may lock the TLB 108 using the
TLB lock indicator 110 to exclude other threads from modifying data at the TLB 108
while exception handling instructions respond to the TLB miss event. For example, the
TLB lock indicator 110 may include one or more bits in a global control register that
may be set by the control logic circuit 106 to indicate that the TLB 108 is locked from
access by the other threads.

[0025] In an illustrative embodiment, the control logic circuit 106 is configured to set
the TLB lock indicator 110 via a built-in hardware process and not by executing
instructions of a software process, enabling a faster response to the TLB miss event,
improved processor performance, and reduced vulnerability to malicious or poorly-
behaved software applications. Additional performance benefits are enabled by using a
global register bit in the multithreaded processor core 102 as the TLB lock indicator
110. For example, the control logic circuit 106 may be configured to directly set, clear,
and determine a status of the TLB lock indicator 110, so that a response to a TLB miss
event may be significantly faster than storing or retrieving a lock indicator value such as

a semaphore at the non-processor core memory 104.



WO 2009/073722 PCT/US2008/085402

[0026] When the TLB 108 is locked due to a TLB miss event, the control logic circuit
106 may instruct the thread 112 or 114 that generated the TLB miss event to launch the
exception handler 122 or 132 to respond to the TLB miss event. When the control logic
circuit 106 receives a return instruction or other signal from the exception handler 122
or 132 that indicates that the TLB miss event has been handled, the control logic circuit

106 may unlock the TLB lock indicator 110.

[0027] In a particular embodiment, while the TLB 108 is locked for exception handling
by the first thread 112, the second thread 114 may also request a virtual address
translation that results in a TLB miss event. Upon being informed of the TLB miss
event associated with the second thread 114, the control logic circuit 106 may determine
that the TLB lock indicator 110 is in a locked configuration, and may instruct the
second thread 114 to go to sleep. For example, the control logic circuit 106 may
instruct the second thread 114 to save a current state, to record an address of a last
executed packet that caused the TLB miss event, and to enter a wait state during which
the second thread 114 does not process instructions. Additional threads may encounter
TLB miss events while the TLB lock indicator 110 remains locked and may also be put

to sleep by the control logic circuit 106.

[0028] When the control logic circuit 106 is informed that the TLB miss event
associated with the first thread 112 has been handled, such as via a return instruction
executed by the exception handler 122, the control logic circuit 106 unlocks the TLB
lock indicator 110 and determines whether one or more processing threads are asleep
due to the TLB 108 being locked. If so, the control logic circuit 106 awakens one or

more of the sleeping threads, such as the second thread 114, to resume processing.

[0029] For example, the second thread 114 may be awakened and may replay the
instruction packet that was executed immediately prior to the second thread 114 being
put to sleep and that resulted in the TLB miss event. The replayed instruction packet
may repeat a request for translation of a virtual address at the TLB 108. As a result of
the exception handling performed by the first thread 112, the virtual address translation
requested by the second thread may potentially be stored in the TLB 108. If not, a
second TLB miss event occurs, and in response the control logic circuit 106 resets the

TLB lock indicator 110 to the locked configuration and instructs the exception handler



WO 2009/073722 PCT/US2008/085402

132 of the second thread 114 to begin processing instructions to handle the second TLB

miss event.

[0030] Referring to FIG. 2, a particular illustrative embodiment of a processing system
that includes a hardware lock for a shared resource is depicted and generally designated
200. The processing system 200 includes a memory 202 that is coupled to an
instruction cache 210 via a bus interface 208. The processing system 200 also includes
a data cache 212 that is coupled to the memory 202 via the bus interface 208. The
instruction cache 210 is coupled to a sequencer 214 via a bus 211. In a particular
example, the sequencer 214 can also receive general interrupts 216, which may be
retrieved from an interrupt register (not shown). In a particular embodiment, the
instruction cache 210 is coupled to the sequencer 214 via a plurality of current
instruction registers, which may be coupled to the bus 211 and associated with
particular threads of the processing system 200. In a particular embodiment, the

processing system 200 is an interleaved multi-threaded processor including six threads.

[0031] In a particular embodiment, the bus 211 is a sixty-four (64)-bit bus and the
sequencer 214 is configured to retrieve instructions from the memory 202 via
instruction packets that include multiple instructions having a length of thirty-two (32)
bits each. The bus 211 is coupled to a first instruction execution unit 218, a second
instruction execution unit 220, a third instruction execution unit 222, and a fourth
instruction execution unit 224. Each instruction execution unit 218, 220, 222, 224 can
be coupled to a general register file 226 via a second bus 228. The general register file
226 can also be coupled to the sequencer 214 and to the data cache 212 via a third bus
230.

[0032] The sequencer 214 includes or is otherwise coupled to a control logic circuit 270
that has access to thread-specific supervisor control registers 232 and to global control
registers 234. The control logic circuit 270 is further coupled to a translation lookaside
buffer (TLB) 272. The TLB 272 is accessible to one or more of the execution units 218,
220, 222, and 224 to provide virtual-to-physical address translations and to signal a
TLB miss event to the control logic circuit 270 when a requested address is not stored at

the TLB 272.



WO 2009/073722 PCT/US2008/085402

[0033] In a particular embodiment, each thread-specific supervisor control register 232
includes multiple bit fields, such as a sleep field 280, an exception field 282, and a
resume address field 284. The sleep field 280 may store one or more values or bit
settings that indicate whether the associated thread is to transition between an active
state and a sleep state. The exception field 282 may store one or more values to indicate
a general exception or a particular type of exception, such as a TLB miss exception.
The resume address field 284 may store an address or pointer to locate an instruction or
execution packet to resume execution when the thread awakens. For example, when a
thread is put to sleep in response to a TLB miss event that occurs while the TLB 272 is
locked, the thread may store the address of the instruction that caused the TLB miss
event to the resume address field 284. In a particular embodiment, when a value of the
sleep field 280 transitions from a sleep indicator to an awake indicator, the associated
thread may reload the instruction or execution packet indicated by the value stored at

the resume address field 284 and begin execution.

[0034] In a particular embodiment, the global control registers 234 include one or more
fields to indicate an order to awaken sleeping threads, such as a thread wake first-in-
first-out buffer (FIFO) 290. The thread wake FIFO 290 may include one or more
indicators to identify one or more of the processing threads of the system 200 that have
been put to sleep in response to a TLB miss event occurring while a TLB lock 292 is in
a locked configuration. The thread wake FIFO 290 may be configured to store thread
indicators in an order that the threads are put to sleep, such that the control logic circuit
270 is operable to revive the sleeping threads in a matching order. The TLB lock 292
may include a single bit, the value of which indicates whether the TLB 272 is in a

locked state or an unlocked state.

[0035] In a particular embodiment, the control logic circuit 270 is configured to receive
an indication of one or more TLB miss events at the TLB 272. The control logic circuit
270 may be configured to respond to a TLB miss event by first checking a status of the
TLB lock 292. When the TLB lock 292 indicates that the TLB 272 is unlocked, the
control logic circuit 270 may transition the TLB lock value 292 to a locked status and
write a value to the exception field 282 of the corresponding thread-specific supervisor
control register 232 to indicate that a TLB miss event has occurred and to instruct the

thread to launch an exception handler.



WO 2009/073722 PCT/US2008/085402

10

[0036] The control logic circuit 270 may further be configured to receive an instruction
or signal from the exception handler when the TLB miss event has been handled, such
as when the virtual address translation which caused the TLB miss event has been
programmed to the TLB 272. In response, the control logic circuit 270 may be
configured to unlock the TLB lock 292, and to check the thread wake FIFO 290 to
determine whether one or more threads should be awakened. If so, the control logic
circuit 270 is configured to awaken one or more of the threads, in order of storage at the
thread wake FIFO 290, in an order of processing at the processing system 200, or in an
order determined via one or more algorithms, such as based on a thread priority, by

other mechanisms, or any combination thereof.

[0037] The control logic circuit 270 may be configured to respond to a TLB miss event
that occurs while the TLB lock 292 has a locked status, such as during exception
handling by another thread that includes modifying at least one entry at the TLB 272.
The control logic circuit 270 may be configured to write to the thread-specific
supervisor control registers 232 to instruct the thread associated with the recent TLB
miss event to store an address of a recent instruction or execution packet to the resume
address field 284 and to go to sleep without initiating an exception handler associated
with the recent TLB miss event. The control logic 270 may also be configured to not
increment a program counter associated with the current thread when the current thread
is put to sleep. The control logic circuit 270 may further be configured to store an

identifier of the current thread at the thread wake FIFO 290.

[0038] Referring to FIG. 3, a particular illustrative embodiment of a method of using a
lock indicator at a multithreaded processor is depicted and generally designated 300. In
the illustrative embodiment of FIG. 3, the lock indicator is a hardware lock, such as a
register bit, associated with a translation lookaside buffer (TLB) that is shared between
multiple processing threads. In an illustrative embodiment, the method 300 may be
performed by a control logic circuit of a multithreaded processor, such as the control

logic circuit 106 of FIG. 1 or the control logic circuit 270 of FIG. 2.

[0039] At 302, a TLB miss event associated with a thread of a multi-threaded processor
is received. In a particular embodiment, the TLB miss event occurs at a software
managed TLB. Continuing to 304, a TLB lock indicator is checked. The TLB lock

indicator may include one or more register bits of a global control register, such as the



WO 2009/073722 PCT/US2008/085402

11

TLB lock 292 of FIG. 2. Proceeding to 306, a determination is made whether the TLB

lock indicator is locked or unlocked.

[0040] When the TLB lock indicator is determined to be locked, processing advances to
308, where the thread is put to sleep using the control logic circuit. Proceeding to 310,
in a particular embodiment, a state of the exception handler causing the TLB lock is
determined. Moving to 312, when the exception is determined to have not been
handled, such as when the exception handler has not completed operations, processing
may return to 310. When the exception is determined to be handled, in a particular
embodiment, processing continues at 314, where the TLB lock indicator is transitioned
from a locked state to an unlocked state. Proceeding to 316, after the TLB lock
indicator transitions from the locked state to the unlocked state, execution of a packet

that caused the TLB miss event may be replayed.

[0041] Returning to 306, when the TLB lock indicator is determined to be unlocked,
processing advances to 318, where access by the thread to an exception handler
associated with the TLB is allowed using a control logic circuit. Proceeding to 320, the
TLB lock indicator is locked using the control logic circuit when access is allowed. In
an illustrative embodiment, the exception handler sets the TLB lock indicator to a

locked state.

[0042] Moving to 322, a result related to the TLB miss event may be calculated. For
example, a virtual address translation for an address not located at the TLB may be
determined by accessing a page table. Continuing to 324, in a particular embodiment,

the result from the page table is programmed into the TLB.

[0043] Advancing to 326, the TLB lock indicator is set to unlocked. Concurrently with
unlocking the TLB lock indicator, processing returns from the exception handler, at 328.
In a particular embodiment, the TLB lock indicator is automatically unlocked upon

returning from the exception handler.

[0044] Referring to FIG. 4, a particular illustrative embodiment of operations at a
multithreaded processor with a lock indicator for a shared resource is depicted and
generally designated 400. The diagram 400 illustrates operations associated with
multiple threads, such as the representative threads: thread 0, thread 1, thread 2, and

thread 3. Operations associated with a control unit and with a TLB lock indicator are



WO 2009/073722 PCT/US2008/085402

12

also illustrated. A temporal relationship between operations is identified by six
representative sequential time periods, labeled time O - time 5. In a particular
embodiment, the control unit may include a control logic circuit, such as the control

logic circuit 108 of FIG. 1 or the control logic circuit 270 of FIG. 2.

[0045] At time 0, TLB access is reserved for thread 0, and thread 0 encounters a TLB
miss event 402. In response to the TLB miss event 402, a signal 403 is sent to the
control unit. Upon receiving the signal 403, the control unit processes a check lock
operation 404. The check lock operation 404 determines whether the TLB lock
indicator is in a locked or unlocked configuration. In the illustrative embodiment of
FIG. 4, the check lock operation 404 determines that the TLB lock indicator is in an
unlocked state 406.

[0046] In response to determining that the TLB lock indicator is in the unlocked state
406, the control unit performs a set lock operation 408 to transition the TLB lock
indicator to a locked state 410. In addition, the control unit sends a signal 409 to thread

0. In response to the signal 409, thread 0 launches a TLB miss exception handler 412.

[0047] During time 1, TLB access is reserved for thread 1. While thread 0 is executing
the TLB miss exception handler 412, thread 1 performs a TLB access attempt that also
results in a TLB miss event 414. The TLB miss event 414 is communicated to the
control unit via a signal 415. The control unit performs a check lock operation 416 that
determines that the TLB lock indicator is in a locked state 418. Because the TLB lock
indicator is in the locked state 418, the control unit sends a signal 419 instructing thread
1 to sleep at 420. In response to the signal 419, thread 1 saves a current state of the
thread, such as by storing a program counter value, thread context values, other state

information, or any combination thercof, and enters a state of reduced activity.

[0048] During time 2, TLB access is reserved for thread 2. While thread 0 continues to
execute the TLB miss exception handler 412 and while thread 1 is asleep, thread 2 may
perform a TLB access operation 422. Likewise, during time 3, TLB access is reserved

for thread 3, which may perform a TLB access operation 424.

[0049] During time 4, the TLB miss exception handler 412 of thread O finishes
processing. For example, TLB miss exception handler 412 may have accessed a page

table, determined the virtual address translation that caused the TLB miss event 402,



WO 2009/073722 PCT/US2008/085402

13

programmed the translation to the TLB, and executed a return instruction. A signal 425
informs the control unit that the TLB miss exception handler 412 has completed. In
response to the TLB miss exception handler 412 completing, the control unit performs a
set lock operation 426 to transition the TLB lock indicator to an unlocked configuration
428.

[0050] The control logic circuit may perform a check lock operation to determine when
the TLB lock indicator is no longer in the locked state 418. For example, the check lock
operation may be engaged in periodically by the control unit, at designated intervals in
response to designated events determined by the control unit, or automatically in
response to signals indicating a completion of an exception handler, such as the signal
425. In response to the set lock operation 426, or in response to a check lock operation
430, or any combination thereof, the TLB lock indicator is determined to be in an

unlocked state 428.

[0051] The control unit determines the next thread to awaken, at 432. As illustrated in
FIG. 4, thread 1 was the first thread put to sleep in response to a TLB miss while the
TLB lock indicator was in the locked state 418. Therefore, at time 5, the control unit
sends a signal 433 to awaken thread 1, in response to which thread 1 performs a wake

operation and replays execution of instruction packet operation at 434.

[0052] In a particular embodiment, the wake and replay execution of packet operation
434 reloads the previous state of thread 1 that was saved prior to thread 1 being put to
sleep at 420, and replays execution of the packet that generated the TLB miss event 414,
In a particular embodiment, the requested virtual address may have been loaded into the
TLB by the TLB miss exception handler 412. Otherwise, another TLB miss event may
result from replaying execution of the instruction packet at 434, to which the control

unit may respond in a manner substantially similar as for the TLB miss 402.

[0053] FIG. 5 is a block diagram of a representative wireless communication device 500
that includes a multithreaded processor with a lock indicator for a shared resource. The
wireless communications device 500 includes a multithreaded digital signal processor
(DSP) 510 that includes a shared resource, such as a TLB 564, and a control logic
circuit 566 coupled to the TLB 564 and further coupled to a TLB lock indicator 568.



WO 2009/073722 PCT/US2008/085402

14

The control logic circuit 566 is configured to operate in accordance with the systems

and methods as described with respect to FIGs. 1-4.

[0054] FIG. 5 also shows a display controller 526 that is coupled to the digital signal
processor 510 and to a display 528. Moreover, an input device 530 is coupled to the
digital signal processor 510. Additionally, a memory 532 is coupled to the digital signal
processor 510. A coder/decoder (CODEC) 534 can also be coupled to the digital signal
processor 510. A speaker 536 and a microphone 538 can be coupled to the CODEC
534.

[0055] FIG. 5 also indicates that a wireless controller 540 can be coupled to the digital
signal processor 510 and to a wireless antenna 542. In a particular embodiment, a
power supply 544 is coupled to the on-chip system 522. Moreover, in a particular
embodiment, as illustrated in FIG. 5, the display 528, the input device 530, the speaker
536, the microphone 538, the wireless antenna 542, and the power supply 544 are
external to the on-chip system 522. However, each is coupled to a component of the on-

chip system 522.

[0056] It should be understood that the control logic circuit 566 need not be limited to
controlling requests to access the TLB 564 in conjunction with the TLB lock indicator
568. Instead, the control logic circuit 566 may be operable to control access to one or
more other shared resources, such as the display controller 526, the CODEC 534, the
wireless controller 540, any other component of the DSP 510 or coupled to the DSP

510, or any combination thereof.

[0057] In connection with the disclosed systems and methods, illustrative examples of
mechanisms for indicating a lock status of a shared resource in a multithreaded
processor are provided, such as the TLB lock indicator 110 of FIG. 1 and the TLB lock
292 of FIG. 2. The shared resource may be automatically locked before processing
exception handling instructions associated with the shared resource by operation of
control circuitry, such as the control logic circuit 106 of FIG. 1 and the control logic
circuit 270 of FIG. 2. The shared resource may also be unlocked by operation of control
circuitry, such as the control logic circuit 106 of FIG. 1 and the control logic circuit 270
of FIG. 2, or by operation of executable instructions, such as one or more instructions of

an exception handler to unlock the shared resource.



WO 2009/073722 PCT/US2008/085402

15

[0058] Those of skill would further appreciate that the various illustrative logical
blocks, configurations, modules, circuits, and algorithm steps described in connection
with the embodiments disclosed herein may be implemented as electronic hardware,
computer software, or combinations of both. To clearly illustrate this interchangeability
of hardware and software, various illustrative components, blocks, configurations,
modules, circuits, and steps have been described above generally in terms of their
functionality. Whether such functionality is implemented as hardware or software
depends upon the particular application and design constraints imposed on the overall
system. Skilled artisans may implement the described functionality in varying ways for
each particular application, but such implementation decisions should not be interpreted

as causing a departure from the scope of the present disclosure.

[0059] The steps of a method or algorithm described in connection with the
embodiments disclosed herein may be embodied directly in hardware, in a software
module executed by a processor, or in a combination of the two. A software module
may reside in RAM memory, flash memory, ROM memory, PROM memory, EPROM
memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any
other form of storage medium known in the art. An exemplary storage medium is
coupled to the processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be
integral to the processor. The processor and the storage medium may reside in an ASIC.
The ASIC may reside in a computing device or a user terminal. In the alternative, the
processor and the storage medium may reside as discrete components in a computing

device or user terminal.

[0060] The previous description of the disclosed embodiments is provided to enable any
person skilled in the art to make or use the disclosed embodiments. Various
modifications to these embodiments will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the present disclosure is not
intended to be limited to the embodiments shown herein but is to be accorded the widest
scope possible consistent with the principles and novel features as defined by the

following claims.



WO 2009/073722 PCT/US2008/085402

16

WHAT IS CLAIMED IS:

1. A method comprising:

receiving a translation lookaside buffer (TLB) miss event associated with a
thread of a multithreaded processor;

checking a TLB lock indicator;

when the TLB lock indicator is unlocked, allowing access by the thread to an
exception handler associated with a TLB; and

when the TLB lock indicator is locked, putting the thread to sleep.

2. The method of claim 1, further comprising locking the TLB lock indicator

when access is allowed.

3. The method of claim 1, further comprising transitioning the TLB lock

indicator from a locked state to an unlocked state.

4. The method of claim 3, further comprising, after the TLB lock indicator
transitions from the locked state to the unlocked state, replaying execution of a packet

that caused the TLB miss event.

5. The method of claim 1, wherein the TLB comprises a software managed

TLB.

6. The method of claim 1, further comprising:
calculating a result related to the TLB miss event;
programming the result into the TLB;

setting the TLB lock indicator to unlocked; and

returning from the exception handler.

7. The method of claim 6, further comprising automatically unlocking the TLB

lock indicator upon returning from the exception handler.

8. The method of claim 1, wherein the exception handler sets the TLB lock

indicator to locked.



WO 2009/073722 PCT/US2008/085402
17

9. A method comprising:

receiving a translation lookaside buffer (TLB) miss event associated with a
thread of a multithreaded processor, the thread having access to a shared
translation lookaside buffer (TLB);

reading a TLB lock indicator and when the TLB lock indicator is locked, putting
the thread to sleep; and

waking the thread upon receipt of an instruction.

10. The method of claim 10, wherein the TLB is reserved for a first thread
during a first time period and wherein the TLB is reserved for a second thread during a
second time period and wherein a third thread is put to sleep during the first time period

and the second time period.

11. The method of claim 10, wherein the third thread is awakened during a third

time period.

12. The method of claim 10, further comprising, after awakening the third
thread, replaying execution of an instruction packet that was executed by the third

thread prior to the third thread being put to sleep.

13. A system comprising:

a translation lookaside buffer (TLB) shared by multiple processing threads of a
multithreaded processor;

a TLB lock bit in a register of the multithreaded processor; and

a control logic circuit configured to put a particular thread of the multiple
processing threads to sleep in response to the TLB lock bit having a
locked configuration when a TLB miss event associated with the

particular thread is detected.

14. The system of claim 13, wherein the TLB miss event is associated with an
execution packet of the particular thread, and wherein the control logic circuit is further
configured to store the execution packet and to not increment a program counter

associated with the particular thread when the particular thread is put to sleep.



WO 2009/073722 PCT/US2008/085402

18

15. The system of claim 13, wherein the particular thread is put to sleep without

launching an exception handler in response to the TLB miss event.

16. The system of claim 13, wherein the control logic circuit is further
configured to set the TLB lock bit to the locked configuration and to concurrently
initiate an exception handler associated with the TLB miss event in response to the TLB

lock bit having an unlocked configuration.

17. The system of claim 16, wherein the TLB lock bit is configured to be locked

by the control logic circuit and unlocked by an instruction of the exception handler.

18. The system of claim 13, wherein the control logic circuit is configured to
store data indicating an order to awaken the particular thread when another thread of the

multiple processing threads is also put to sleep in response to another TLB miss event.

19. The system of claim 18, wherein the data indicating the order to awaken the

particular thread is stored in a first in first out (FIFO) buffer.

20. A computer readable medium having processor executable instructions to
cause a processor to:
handle an exception associated with a resource that is shared by multiple threads
of a multithreaded processor; and

unlock a hardware lock for the resource after the exception has been handled.

21. The computer readable medium of claim 20, wherein the shared resource is

a core memory resource of the multithreaded processor.

22. The computer readable medium of claim 21, wherein the core memory
resource is a translation lookaside buffer (TLB) and wherein the exception is caused by

a TLB miss.

23. The computer readable medium of claim 20, wherein the hardware lock
includes at least one bit of a global register and wherein the hardware lock is configured

to be locked by a control logic circuit of the processor before the exception is handled.



WO 2009/073722 PCT/US2008/085402

19

24. A system comprising:

means for indicating a lock status of a shared resource in a multithreaded
processor;

means for automatically locking the shared resource before processing exception
handling instructions associated with the shared resource; and

means for unlocking the shared resource.

25. The system of claim 24, further comprising:
means for saving a state of a thread in response to an exception event that occurs
while the shared resource is locked; and

means for putting the thread to sleep after the state has been saved.



WO 2009/073722 PCT/US2008/085402

1/5
/‘ 104
Non-Core
Memory
100 “‘
A 102
rr—e—e—eee———————_,—_,e—_—_—__—-——__——_———_—__—-n—_—_—-—-_—__-n_—__-n_-__—___—==— '|
/‘ 112 /-114
Thread 0 v /‘ 108 Thread 1
120 -
Slegp MOd? / Sleep Mode / 130
Logic Circuit > TLB «——| | Logic Circuit
Exception / 122 Exception / 192
Handler Handler

/‘ 106

Control Logic
- Circut

/‘110

TLB
Lock
Indicator

Multithreaded Processor Core I

FIG. 1



WO 2009/073722

PCT/US2008/085402

2/5
200 202
Memory ¢
[ 216 208 ¢ 212 \
> Bus I/F <€¢—»| Data Cache |[€4—9
General
Interrupts 1 232 , //_ 260 //- =
210 ;E;eei?/i-ssoprecmc Sleep Exception
Instruction —> R
Control Redist esume Address
Cache ontrol Register(s) N
290 - 284
. 234 N\ Cglot;all Thread Wake FIFO
ontro
vy Registers TLB Lock
Control |- \L
Clzr;:glt -t - 272
230
Sequencer X-Unit |~ 218 o~
214 —/ A P P
x-unt P 220
- < ’
General 5
o L — 299 Register(s) us
- ——P
L 224
X-Unit
P ——P
228 'A

226




WO 2009/073722 PCT/US2008/085402

3/5

300 “‘

302

Receive a TLB miss event associated with a thread of a multithreaded processor

i 304
Check a TLB lock indicator

306
Locked | ocked or N\ Unlocked

l Unlocked? l
~— 308 ~— 318

Put the thread to sleep using the Allow access by the thread to an
control logic circuit exception handler associated with the
¢ TLB using a control logic circuit
310
. /_ + 320
Determine state of the exception . ,
> causing the TLB lock Lock the TLB lock |r.1d|c.ator using the
control logic circuit

* L~ 322
. 312 Calculate a result related to the TLB
Exception miss event
handled?
* 324

_— 314 Program the result into the TLB

Transition the TLB lock indicator from a
locked state to an unlocked state

+ 316 326 328
Replay execution of a packet that Se.t thg LB Return frqm the
) lock indicator to exception
caused the TLB miss event
unlocked handler

FIG. 3



WO 2009/073722 PCT/US2008/085402
4/5
400 “‘

Thread0 | Thread1 ! Thread2 | Threagz | Contol | TLBLock
| | | | Unit | Indicator
| | | | |

0T |, /4% | [ Check Lock

- Miss || I I I 404 + Unlocked
o | 402 09 I 406
E I I I [ setiock [
= I } } /_ } 408 + Locked
| | | | — 410
415 =
el ol '
- : Miss : : : Check Lock |-{ Locked
414 419 416 + 418
£ I——le WA —
|| Sleep | | | |
|42 | | | |
| Il T2TLB |I | |
o | | TLB Miss |l I| Access |l I I
2 | | Exception || Il 422 |l I I
= Handler || | | | |
412 | | | | |
| | | | |
| | | T3 TLB | |
e | | | A‘fziss | |
kS I | | = | |
= | | | | |
| 405 | | | |
| /- | | I[™ Set Lock |
- I I I al 426 >
o I I | | — | | Unlocked
= Check Lock
= | | | w1
| | | /—433 | Determine ﬁ—
|| Wake and [ : H NextThread |
o I| Replay |l I || toAwaken | |
2 I] Execution |l | I 432 I
= I| of Packet [l | | |
1| a3 |l | | |
| | | | |
| | | | |
| | | | |

FIG. 4




WO 2009/073722 PCT/US2008/085402

5/5

530
528 TN \ 549

Display Input Device
922
— 532
526 ™\ Display | | DSP Memory [
Controller
T
510 T4 1
Control Logic [} 566
Circuit
I
534 \ TLBLock |}~ 968
Indicator
536j
Speaker
CODEC
|| Wireless
, Controller
Microphone \
538—/ N 50
A4 =~
) Power
Supply

FIG. 5



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2008/085402

A. CLASSIFICATION OF SUBJECT MATTER

INV. - G

06F9/52

G06F12/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation 10 the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO~Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2006/294341 Al (PLONDKE ERICH [US] ET 1-25
AL) 28 December 2006 (2006-12-28)
the whole document
A US 2001/052053 A1 (NEMIROVSKY MARIO [US] 1-25
ET AL) 13 December 2001 (2001-12-13)
paragraphs [0064], [0251] - paragraph
[0255]
paragraph [0265] - paragraph [0268]
paragraph [0369] - paragraph [0374]
A US 2004/267996 Al (HAMMARLUND PER [US] ET 1-25
AL) 30 December 2004 (2004-12-30)
paragraphs [0005], [0019], T[o0026]1 -
paragraph [0038]
paragraph [0060] - paragraph [0068]
)

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documenis :

*A" document defining the general state of the art which is not
cansidered to be of patticular relevance

*E*® earlier document but published on or after the international
filing date

*L* document which may throw doubts on priority claim(s) or
which Is cited to establish the publication date of another
citation or other special reason (as specified)

other means

*P" document published prior to the international filing date but
later than the priority date claimed

*O* document referring to an oral disclosure, use, exhibition or

*T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*X* document of patticular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to Involve an inventive step when the
document is combined with one or more other such docu-
m%r‘]ts, such combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

20 March 2009

Date of mailing of the international search report

30/03/2009

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Carciofi, Andrea

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2008/085402

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2007/136725 Al (ACCAPADI JOS M [US] ET
AL) 14 June 2007 (2007-06-14)

abstract

paragraph [0024] - paragraph [0029]

US 2005/235134 Al (0’SULLIVAN DANIEL S
[AU]) 20 October 2005 (2005-10-20)
paragraph [0180] - paragraph [0186];
figure 2

US 2002/062434 Al (CHAUVEL GERARD [FR] ET
AL) 23 May 2002 (2002-05-23)

paragraph [0048] - paragraph [0049];
figure 6

1-25

1-25

1,9,13,
20,24

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2008/085402
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2006294341 Al 28-12-2006 CN 101243398 A 13-08-2008
W0 2007002415 Al 04-01-2007
US 2001052053 Al 13-12-2001 AU 2773601 A 20-08-2001
EP 1259888 Al 27-11-2002
JP 3801919 B2 26-07-2006
JP 2003523112 T 29-07-2003
WO 0159585 Al 16-08-2001
Us 2006159104 A1l 20-07-2006
US 2006153197 Al 13-07-2006
US 2001043610 Al 22-11-2001
US 2002083173 Al 27-06-2002
Us 2002021707 Al 21-02-2002
US 2002039368 Al 04-04~-2002
Us 2002018486 Al 14-02-2002
US 2002054603 Al 09-05-2002
US 2004267996 Al 30-12-2004 CN 1577282 A 09-02-2005
DE 112004001133 T56 11-05-2006
GB 2417805 A 08-03-2006
HK 1081301 Al 06-02-2008
JP 2007520769 T 26-07-2007
KR 20060029151 A 04-04-2006
TW 266987 B 21-11-2006
US 2007162774 Al 12-07-2007
WO 2005003971 A2 13-01-2005
US 2007136726 Al 14-06-2007 CN 1983193 A 20-06-2007
US 2008163217 Al 03-07-2008
US 2005235134 Al 20-10-2005  NONE
US 2002062434 Al 23-05-2002 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report
	Page 29 - wo-search-report

