20127151334 AT I 000 00T 00 0 000

<

W

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2012/151334 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

74

31

International Filing Date:
2 May 2012 (02.05.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/099,463 3 May 2011 (03.05.2011) US

Applicant (for all designated States except US): QUAL-
COMM INCORPORATED [US/US]; ATTN: INTER-
NATIONAL IP ADMINISTRATION, 5775 Morehouse
Drive, San Diego, California 92121 (US).

Inventors; and

Inventors/Applicants (for US only): LARIN, Sergei
[RU/US]; 5775 Morehouse Drive, San Diego, California
92121 (US). CODRESCU, Lucian [US/US]; 5775 More-
house Drive, San Diego, California 92121 (US). DAS
GUPTA, Anshuman [IN/US]; 5775 Morehouse Drive,
San Diego, California 92121 (US).

Agent: TALPALATSKY, Sam; 5775 Morehouse Drive,
San Diego, California 92121 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

8 November 2012 (08.11.2012) WIPOI|PCT
International Patent Classification:
GO6F 9/30 (2006.01)
International Application Number:
PCT/US2012/036199

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

[Continued on next page]

(54) Title: METHODS AND APPARATUS FOR STORAGE AND TRANSLATION OF ENTROPY ENCODED SOFTWARE
EMBEDDED WITHIN A MEMORY HIERARCHY

IZ}O 400

408 CI Decoder 41¢ \ /
Miss 422 Index X (54) Index Y (134)
402X Index Y Index o 416 414
57 B X Memory Single MM i Y Memory
2 :
w5 Tt]} [oxFER0EFSD |
%] 172 , 304
67 32 0x9F008 :.vzoé \
_____ ™]
68 | 32 ols el tDass |
67 | 32 l s l
— A r Combiner |
Tbit bt /
J 226 419 420
a e
;)
[D“C”"P‘essed [oxsrspotat [... | m
F
302 l B4
Feth_I Execution Pipeline I
FIG. 4

(57) Abstract: A custom entropy bounded encoding in an X-index and Y-index format is generated for a segment of program code,
along with a custom decoding dictionary made up of an X pattern memory and a Y pattern memory. In run time decoding, a mix
mask is used with an X pattern selected from the X pattern memory according to the X-index and with a Y pattern selected from the
Y pattern memory according to the Y-index to determine an executable instruction. The mix mask identifying the order of bits to
combine from the X pattern and the Y pattern. Appropriate hardware implementation and placement of the decoding mechanism and
address translation is described during execution of an encoded code segment. Methods, including a genetic process, are also de-
scribed to determine the X-index, the Y-index, the X patterns, the Y patterns, and one or more mix masks.

wO 2012/151334 A1 WK 00N 0 T AR A

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2012/151334 PCT/US2012/036199

METHODS AND APPARATUS FOR STORAGE AND TRANSLATION OF ENTROPY
ENCODED SOFTWARE EMBEDDED WITHIN A MEMORY HIERARCHY

Field of the Invention

{0001} The present invention relates generally to processors having compressed
instruction sets for improving code density in embedded software, and more specifically to
techniques for generating compressed instructions, storing the compressed instructions, and

translating the compressed instructions.

Background of the Invention

{0002} Many portable products, such as cell phones, laptop computers, personal digital
assistants (PDAs) or the like, require the usé of a processor executing a program supporting
communication and multimedia applications. The processing system for such products includes
one or more processors, each with storage for instructions, input operands, and results of
execution. For example, the instructions, input operands, and results of execution for a processor
may be stored in a hierarchical memory subsystem consisting of a general purpése register file,
multi-level instruction caches, data caches, and a system memory.

{0003} In order to provide high code density a native instruction set architecture (ISA)
may be used having two instruction formats, such as a 16-bit instruction format that is a subset of
a 32-bit instruction format. In many cases, a fetched 16-bit instruction is transformed by a
processor into a 32-bit instruction prior to or in a decoding process which allows the execution
hardware to be designed to only supi)ort the 32-bit instruction format. The use of 16-bit

instructions that are a subset of 32-bit instructions is a restriction that limits the amount of

WO 2012/151334 PCT/US2012/036199

information that can be encoded into a 16-bit format. For example, a 16-bit instruétion format
may limit the number of addressable source operand registers and destination registers that may
be specified. A 16-bit instruction format, for example, may use 3-bit or 4-bit register file address
fields, while a 32-bit instruction may use 5-bit fields. Processor pipeline complexity may also
increase if the two formats are intermixed in a program due in paﬁ to instruction addressing
restrictions, such as, branching to 16-bit and 32-bit instructions. Also, requirements for code
compression vary from program to program making a fixed 16-bit instruction fofmat chosen for
one program less. advantageous for use by a different program. In this regard, legacy code for
existing processors may not be able to effectively utilize the two instruction formats to .
significantly improve code density and meet, in many cases, real time reqﬁirefnents. These and
other restrictions limit the effectiveness of reduced size instructions having fields thét are subsets

of fields used in the standard size instructions.

SUMMARY OF THE DISCLOSURE

- {0004} Among its several aspects, the present invention addresses a need to decouple a
program using a native instruction set from a comp'ressed program using a compressed
instruction set. The techniques addressed herein allow highly efficient utilization of storage and
a transmission conduit for embedded software without affecting the software’s execution time
and efficiency.

{0005} To such ends, an embodiment of the invention applies a method for
decompressing compressed variable length inétructions. Compact fixed length instructions are
fetéhed from a system memory configured to store compresse;l variable length instructions,

wherein each compact fixed length instruction comprises an X-index and a Y-index. For each

WO 2012/151334 PCT/US2012/036199

compact fixed length instruction an X-bit pattern is fetched from an X memory using the X-
index and a Y-bit pattern is fetched from a Y memory using the Y-index'. The X-bit pattern is
combined with the Y-bit pattern based on a mix mask associated with each compact fixed length
instruction into a decompressed variable length instruction, wherein a format length of the
| decompressed variable length instruction is determined by the associated mix mask.
. {0006} Another embodiment of the invention addresses an apparatus for translating
compressed instructions stored in a virtual memory system. A paged instruction cache is
configured to store pages of compressed instructions intermixed with pages Qf uncompressed
instructions. An instruction translati.on look aside buffer (TLB) is configured to store an address
translation entry that identify a page in the paged cache as storing compressed instructions.
{0007} Another embodiment of the invention addresses a system for translating
compressed instructions to an executable format. A leyel 2 cache is configured to store an X-
index and a Y-index for each compressed instruction. A translation unit is configured to receive
compressed instructions from the level 2 cache, for each received compressed instruction to |
select an X-bit pattern and a Y-bit pattern from a translation memory using the X-index and the
Y-index, and to use a program specified mix mask for combining the selected X-bit pattern and
Y-bit pattern into a native instruction format. A level 1 cache is configured to store tﬁe native
instruction format for each compressed instruction.
{0008) Another embodiment of the invention addresses a method of determining a mix
mask for efficiently translating compressed instructions. Pairs of mix masks represented as
genes from a seed population of mix masks ére bred to produce pairs of offspring mix masks.
The offspring mix masks are mutated to produce mutated o'ffspring mix masks that update the

seed population. A mix mask is determined from the updated seed population that provides a

WO 2012/151334 PCT/US2012/036199

high level of compression, wherein patterns of bits are combined according to the determined
mix mask to translate compressed instructions of a program to executable form.

{0009} A more complete understanding of the present invention, as well as further
features and advantages of the invention, will be apparent from the following Detailed

Description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

{0010} FIG. 1 is a block diagram of an exemplary wireless communication system in
which’an embodiment of the invention may be advantageously employed;

{0011} FIG. 2 is a system for code comprgssion designed for run time decompression in
accordance with the present invention;

{0012} FIG. 3 illustrates exemplary elements of an instruction partition process tﬁat splits
an instruction based on a mix mask into an X pattern and a Y pattern with byte overiap pad bits
in accordance with the present invention;

{0013} FIG. 4 is a decompressor system having programs stored in compressed form in
main memory and a level 2 cache that are decompressed to be stored in a level 1 cache in
.accordance with the present invention;

{0014} FIG. 5A illustrates exemplary elements of a second instruction partition process
that splits a second instruction based on a second mix mask into a second X pattern and a second
Y pattern with byte overlap pad bits in accordance with the present invention; |

{0015} FIG. 5B illustrates an ekemplary storage arrangement for the Ax, Ay patterns of
FIG. 3 and the Bx, By patterns of FIG. 5A in an X memory and a Y memory having three

different masks Amm # Bmm # Cmm in accordance with the present inventidn;

WO 2012/151334 PCT/US2012/036199

{0016} FIG. 5C is a decompressor system having programs stored in compressed form in
maiq memory and a level 2 cache that are decompressed using multiplé mix masks and index
compression to be stored in a level 1 cache in uncompressed form in accordance with the present
invention;

{0017} FIG. 6 illustrates a VLIW packet compression format in accordance with the
present invention;

{0018} FIG. 7 illustrates a paged instruction translation look aside buffer ITLB) and
memory organization having compressed pages and uncompressed pages in accordance with the
present invention;

{0019} FIG. 8A illustra.tes a paged decompressor system for decompressing compressed
instruction pages and accessing uncompressed instruction pages in accqrdance with the present
invention;

-{0020} FIG. 8B illustrates an exemplary decompression state diagram that illustrates the
state of L2 cache compressed page instructions and L1 Icache decompressed instructions for

- execution on processor pipeline;

{0021} FIGs. 9A-9C illustrates a genetic mix mask determination process based on a
variation of a genetic algorithm in accordance with the present invention;

{0022} FIG. 9D illustrates implementatibn of crossover algorithm in accordance with the
present invention;

{0023} FIG. 9E illustrates an implementation of mutation algorithm in accordance with
the present invention;

{0024} FIG. 10 illustratt;,s an es(emplary current cost process in accordance with the

present invention;

WO 2012/151334 PCT/US2012/036199

{0025} FIG. 11 illustrates a weighted Hamming heuristic in accordance with the present
invention;
{0026} FIG. 12 illustrates an exhaustive search X/Y table compaction process with pad-

sort in accordance with the present invention;

{0027} FIG. 13 illustrates a symbol insertion into compressed storage process in
accordance with the present invention; and

{0028} FIG. 14 illustrates the triangular X/Y table compaction with pad-sort process in

accordance with the present invention.

DETAILED DESCRIPTION

{0029} The present invention will now be described more fully with reference to the
accompanying drawings, in which several embodiments of the invention are shown. This
invention may, however, be embodied in various forms and should not be construed as limited to
the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure
will be thorough and complete, and will fully convey the scope of the invention to those skilled
in the art..

{'0030} Computer program code or “program code” for being operated upon or for
carrying out operations according to the teachings of the invention may be initially written in a
high level programming language such as C, C++, JAVA®, Smalltalk, JavaScript®, Visual
Basic®, TSQL, Perl, or in various other programming languages. A source program or source
code written in one of these languages is compiled to a target processor architecture by
converting the high level program code into a native assembler program using instructions

encoded in a native instruction format. Programs for the target processor architecture may also

WO 2012/151334 PCT/US2012/036199

be written directly in a native assembler language. The native assembler program uses
instruction mnemonic representations of machine level binary instructions. Program code or
computer readable medium produced by a compiler or a human programmer as used herein
refers to machine language code‘such as object code whose format is understandable by a
processor.

{0031} FIG. 1 illustrates an exemplary wireless communication system 100 in which an
embodiment of the invention may be advantageously erﬁployed. For purposes of illustration,
FIG. 1 shows three remote units 120, 130, and 150 and two base stations 140. It will be
recognized that common wireless communication systems may have many more remote units
and base stations. Rerhote units 120, 130, 150, and base stations 140 which include hardware
components, software components, or both as represented by components 125A, 125C, 125B,
and 125D, respectively, have been adapted to embody the invention as discussed further below.
FIG. 1 shows forward link signals 180 from the base stations 140 to the remote units 120, 130,
and 150 and reverse link signals 190 from the remote units 120, 130, and 150 to the base stations
140.

{0032} In FIG. 1, remote unit 120 is shown as a mobile telephone, remote unit 130 is
shown as a portable computer, and remote unit 150 is shown as a fixed location remote unit in a
wireless local loop system. By way of example, the remote units may alternatively be cell
_phones, pagers, walkie talkies, handheld personal communication system (PCS) units, portable
data units such as personal digital assistants, or fixed location data units such as meter reading
equipment. Although FIG. 1 illustrates. remote units according to the teachings of the disclosure,
the disclosure is not limited to these exemplary illustrated units. Embodiments of the invention

may be suitably employed in any processor system.

WO 2012/151334 PCT/US2012/036199

{0033} FIG. 2 is a compression system 200 for code compression designed for run time
decompression in accordance with the present invention. The compression system 200 includes
source code as described above and binary library files in uncompressed form in source code and
library files 204 which comprise the current program application being compiled. The
compression system 200 also includes a compiler and linker 206, optional profile feedback
information 208, w‘hich is used to generate linked executable code 210 based on native
instruction set architecture (ISA) formats and supporting data sections 212. The native ISA is
represented by a fixed, uncompressed fonnét and can represent a variety of approaches,
including, for example, fixed 64 or 32 or 16-bit encodings and a mixture of such encodings. The
native ISA is developed for general utility and not specifically tailored for a current application
at hand. By maintaining fixed word boundaries, such as 32-bit instruction word boundaries, an
addressing model that supports -on]y fixed word addresses for branches, calls, returns, and the
like may be used even though 16-bit and 32-bit instructions may be mixed together in the code.
{0034} Instructions selected from such an ISA may be compressed and tailored to the
current application while maintaining addressability of the code and guaranteeing fast, fixed
latency decompression time. Such compression may be automated to produce the compressed
code in linear time. The original ISA by its very generalized nature has low informational
entropy, which is increased in accordance with the present invention by producing a custom
entropy bounded encoding for the given source code ;md library files 204. The linked executable
code 210 is provided as input to a translation tool 216 which generates compressed code 218 and
decoding tables 220. The compressed code 218 and the supporting data sections 212 are stored
in a static storage device 214, such as a hard disk, optical disk, flash memory of an embedded

device or other such storage medium from which selected code may be down loaded to a

WO 2012/151334 PCT/US2012/036199

processor complex 203 for execution. The processor complex 203 includes a main memory 222,
a level 2 cache (L2 cache), and a processor core 226. The processor core 226 includes a decoder
228 having translation memory (TM) 230 in accordance with the present invention, a level 1
instruction cache (L1 Icache) 232, and an execution pipeline 234. Compressed code is stored in
the static storage device 214, main memory 222, and the L2 cache 224. Decompressed code is
stored in the L1 cache and executed by the execution pipeline 234. Various embodiments of the
translation tool 216 for generating the éompressed code 218 and for decoding compressed
instructions in decoder 228 are described in more detail below.

{0035} The processor complex 203 may be suitably employed in hardware components
125A-125D of FIG. 1 for executing program code that is stored ip uncompressed formin the L1
Icache 232 and stored in compressed form in the L2. cache 224 and main memory 222.
Periphéral devices which may connect to the processor complex are not shown for clarity of
discussion. The processor core 226 may be a general purpose processor, a digital signal
processor (DSP), an application specific processor (ASP) or the like. The various components of
the processing complex 203 may be implemented using application specific integrated circuit
(ASIC) technology, field programmable gate array (FPGA) technology, or other programmable
logic, discrete gate or transistor logic, or any other available technology suitable for an intended
application. Though a single pfocessor core 226 is shown, the processing of compreséed
instructions of the present invention is applicable to superscalar designs and other architectures
implementing parallel pipelines, such as multi-threaded, multi-core, and very long instruction
word (VLIW) designs.

{0036) FIG. 3 illustrates exemplary elements 300 of an instruction partition procesé that

splits an original ISA fixed size instruction A 302 based on a binary mix mask (MM) 304 into an

WO 2012/151334 PCT/US2012/036199

Ax pattern 306 and an Ay pattern 308 with overlap pad bits 310 and 312 in accordance with the
present invention. Pad bité are produced due to requirements imposed by modern memory
systems to represent instructions and data at least in byte granularity segments. The use of
formats havingv byte granularity segments is utilized to provide a novel compacted representation
allowing storage overlap on bit granularity while satisfying byte granularity requirements of the
storage system.

{0037} To compress an original ISA code segment, the code segment is partitioned into .
groups of instructions, with each group contributing a single shared X pattern and a set of unique
Y patterns. The Ax pattern 306 represents a bit pattern that is common to a group of instructions
to which instruction A belongs. The Ay pattern 308 represents one of a set of unique bit patterns
in the same group of instructions. Note, that a code 'segment can be pﬁtitioned into any number
_of groups between one and N, where N is the number of original instructions in the code
segment. The process‘to determine an optimal or near optimal number of groups and an optimal
or near optimal mix mask is a non trivial process described further below. The X patterns for the
code segment are stored m an X dictionary comprised of an X memory and the Ay patterns for
the code éegment are stored in a Y dictionary comprised of a Y memory. An X index is an
address of a location in the X memory and a Y index is an address of a location in the Y
memory. A combination of these two indexes, patterns from the X and the Y dictionaries and
tﬁe binary mix mask deterministically represents the original instruction. Byte addressable X/Y
dictioﬁary patterns are stored in X/Y memory in comp‘acted form yet are accessible without
variable length decompression. Variable length decompression is based on a brocess‘ of reverse

mapping variable length compressed symbols into a native fixed sized alphabet. Fixed size

index compression is used for this representation and discussed later. A compress opération 314

10

WO 2012/151334 PCT/US2012/036199 .

uses at least one mix mask for the code segment to select from an instruction 302 an Ax pattern
306 and an Ay pattern 308. In the following examples, a hexadecimal number or Hex number is
represented with a ‘Ox’ p'reﬁx. For example, the instruction 302 [0x9F6D0121] is combined with
the mix mask 304 [0xFF80FF80] to produce the Ax pattern 306 [0x9F00(8,9,A,B)] and the Ay
pattern 308 [0xDA8(4,5,6,7)]). A decoder 228 decompress operation 316 uses the at least one
mix mask for the code segment, an X index fetched X memory pattern and a Y index fetched Y
memory pattern to decompress the compressed instruction. For example, the mix mask 304
[0xFF80FF80] is combined with the Ax pattern 306, [0x9F00(8,9,A,B)] fetched from the X
memory, and the Ay pattern 308, [0xDA8(4,5,6,7)] fetched from the Y memory, to produce the
original instruction 302 [0x9F6D0121].

{0038} As described above, the X patterns and Y patterns afe stored in a byte addressable
X memory and a byte addressable Y memory. Index compression of X patterns, Y patterns, or
both, makes use of a process that eliminates duplicates, reduces double utilization of physical

~ storage and overlaps pad bits, such as the overlap pad bits 310 and 3.12 and a byte addressable
location. A first X pattern may be overlapped with a second X pattern by sharing ending bits of
the first X pattern with beginning bits of the second X pattern. In this comparison, the byte
having overlapped pad bits allows a further range of options, such as indicted in FIG. 3. For
example, the Ax pattern 306 is comprised of three bytes including a first byte Ox9F, a second
byte 0x00, and a third byte comprised of a first nibble having a value that is one of a set {8, 9, A,
B}, due to the overlap pad bits 310, and a second nibble which may be any number from and
including 0x00 to OxFF. A second X pattern to be overlapped with the first Ax pattern 306
would have one of the set {8, 9, A, B} in a first nibble of beginning bits and any number from

and including 0x00 to OxFF in a second nibble of beginning bits. Another possible overlap

11

WO 2012/151334 PCT/US2012/036199

pattern for a third X pattern to be overlapped with the first Ax pattern 306 has 0x00 in a first byte
of beginning bits, one of the set {8, 9, A, B} in a next nibble of beginning bits aﬂd any number
from and including 0x00 to OxFF in the next consecutive nibble of beginning bits. For Y
pattéms, the Ay pattern 308 is comprised of two bytes including a first byte OxDA and a second
byte comprised of a first nibble 0x8 and a second nibble which may be one of the set {4,5,6,7}
due to the overlap pad bits 312. With such capabilities, it is possible to store four uncompressed
instructions in a 128-bit line and for a 32-bit to 16-bit compression with padding and overlap be
able to store more than eight compressed instructions in the same space. For example, if four of
the compressed instructions could be stored with a byte overlap, ten 16-bit compressed
instructions could be stored in the 128-bit line. Thus, the addressing space is compressed and the
index addressing would also be compressed as compared to the approach without padding. A
second Y pattern to be overlapped with the first Ay pattern 308 would have an ‘0x8’ in a first
nibble of beginning bits and a second nibble that is one of the set {4, 5,6, 7}. With a single mix
mask, all X patterns are of the same number of bits and all Y patterns are of the same number of
bits. With a large number of X and Y patterns, it is possible to have a variety of mappings, with
only few mappings faking the least storage, which are considered near optimal or acceptable
mappings. The selection of an optimal or near optimal mapping is an NP complete problem, and
could not be practically solved for any significant numbers of X and Y patterns. Nevertheless
the current invention uses a heuristic that produces an acceptable mapping in a linear time.
{0039} FIG. 4 is a decompressor system 400 having programs stored in compressed form
in the main memory 222 and the L2 cache 224 that are decompressed to be stored in the L1
Icache 232 in accordance with the present invention. The L2 cache 224 includes XY index

memory 402 that stores an X index and a Y index pair in addressable locations, such as XY entry

12

WO 2012/151334 PCT/US2012/036199

404 having a 7-bit X index value of 0x54 and a 9-bit Y index vélue of 0x734. A multiplexer 405
is used to select an XY entry on aﬁ L2 cache hit 406 or an XY value 407 from main memory 222
on a miss in L2 cache. The decompression operation is accomplished in the decoder 228 having
index X register 408, index Y register 410, X memory 412, Y memory 414, single MM fegister
416, and a combiner 418. The Li Icache 232 includes a plurality of cache lines, such as cache
line 420 holding uncompressed instructions.

{0040} At program loading or in an embedded sys;efn boot process, main memory 222 is
loaded With compressed code, X memory 412 and Y memory 414 are loaded with an associated
X and Y dictionary context and the single binary mix mask is set in MM register 416. Note, that
the X and Y memory context as well as mix mask can be reloaded during execution if needed.
This reload can constitute further granularity of the original code segment in yet smaller sections
each with the its custom encoding. For instance, some complex embedded systems, such as
smart phones, can invoke multiple independent children applications from a main application,
which do not share code space and are self contained. Each such application can have its own
cusfom en;:oding comprised of an X/Y dictionary and a MM, which is loaded at child process
startup.

{0041} A good example of such scenario would be a smart phone operating system (OS)
starting an e-mail handling application which for duration of its execution takés over a majority
of system resources, and executes code only belonging to the e-mail handling application for a
considerable stretch of time. A custom encoding for the e-mail application is loaded at startup,
and replaced with a different OS custom encoding only once the e-mail application has finished
operation. Furthermore, a possible scenario is when a single dictionary is ‘used for the OS and é-

mail handling application, but different sections are utilized via adjusting index X (408) and/or

13

WO 2012/151334 PCT/US2012/036199

index Y (410) register contents to offset into the appropriate section of the X/Y dictionary.
Loading of the index X (408) and/or index Y (410) register contents may be achieved via a
system level request by an OS interrupt, for example, or via a special instruction encoded along
with the application code, which is understood by a processor as a request for reloading of the
index X (408) and/or index Y (410) register contents. In this case, the number of decoding
tables 220 is equai to the number of program segments with different encoding possible f.or
simﬁltaneous residence in L2. Using the above smart phone example, if the OS is dedicated to
its own decoder 228 having a translation memory (TM) 230 that always holds OS specific
encodings, the system can incorporate another, appiication spéciﬁc TM 230 which holds a
different encoding, customized for the utilized system applications. Determining which -
translation memory 230 is appropriate may be made via TLB entries on per code page basis. In
contrast, if only one TM 230 is designed in the system, the following procedure may be
appropriate depending on the capacity of the installed TM 230. If multiple independent
encodings, which exceed the capacity of the OS TM 230, are still desired, as in the above
example, once the OS starts the e-mail handling application, a new X/Y dictionary is placed into
X/Y Memory (412,414). The MM register 416 may be updated and a L2/TLB flush request is
issued. The L2/TLB flush request invalidates the compressed code corresponding to the OS in
L2/TLB. For the remainder of the description, a decompressor system 400 is described using a
decoder 228 having a singie TM 230 and a single encoding to be used for the whole sysfem
including any application code. ’

{0042} Nex;, the execution pipeline 234 begins fetching instructions from the L1 Icache
232. Initially, each access to the L1 Icache generates a miss indication 422.causing an access to

the L2 cache 224. Initially, the access to the L2 cache 224 also generates a miss causing an

14

WO 2012/151334 PCT/US2012/036199

access to main memory 222 which responds with a compressed instruction that is loaded in the
1:2 cache 224 and forwarded to the decoder 228 through multiplexer 405. The decoder 228
decompresses the XY index compressed instruction to an uncompressed format for storage in the
L1 Icache 232 and for execution in the execution pipeline 234 as described with regard to the
decompress operation 316 of FIG. 3. After a short period of operation, the L1 Icache 232 and L2
cache 224 will have reached steady state.

{0043} From a processor perspective, the execution pipeline 234 attempts a fetch
operation with a fetch address and control signals 421 of an instruction to be searched for in the
L1 Icache 232. Initially, the L1 Icache 232 determines the instruction is not present and issues a
miss indication 422 to the L2 cache 224. The L2 cache fetch operation, for example, is for XY
entry 404 which is a. hit in the L2 cache 224 causing the XY entry 404 to be i)assed through
multiplexer 405 to the decoder 228. The XY entry 404 is split with the X index value 0x54
received in the index X register 408 and the Y index value 0x734 received in the index Y registef
410. The X pattern 306 fetched from the X memory 412 at address 0x54 is applied to the
combiner 418. The Y pattern 308 fetched from the Y memory 414 at address 0x734 is also
applied to the combiner 418. The single mix mask (MM) 304 [0xFF80FF80] stored in MM
register 416 is further applied to the combiner 418. The combiner 418 combines the appropriate
bits from the X pattém 306 with the appropriate bits from tﬁe Y pattern 308 according to the MM
304 to produce the original instruction 302 that is stored in cache line 420 and passed to the
execution pipeline 234,

{0044} Another additional feature of such a system is program content stored in an
implied encryption format. Even. though no specific encryption type of data scrambling is

performed on the instruction stream, program code is stored in the static storage device 214,

15

WO 2012/151334 PCT/US2012/036199

main memory 222, and the L2 cache 224 in an application specific and compressed form. Since
part of the encoded state of the program code resides inside the processor core 226 in the TM
230, which is not easily accessible in a final product, the static storage 214 and upper memory .
hierarchy 222 and 224 content is insufficient for restoring the original program, making it
difficult to analyze or copy. - |

{0045} The processor core 226 deals with multiple address spaces. The execution
pipeline 234 is operating in virtual address space, which is different from physical address space
used throughout a memory hierarchy. The job of translation of one address space into another is
generally performed by a translation look aside buffer (TLB) and is of reduced complexity if the
physical address spéce contains instructions of the same size. Therefore, in accordance with the
present invention, an execution code segment is represented in fixed sizé pairsof X and Y
indexes that in sum oécupy a ﬁxed byte aligned space. This approach, as described in more
detail below, allows mixing compresse;d and uncompressed instructions based on a physical
addressing space paging 'process, where a code page represent a.n atomic unit of code handled by
a single entry of a TLB. |

{0046} FIG. 5A illustrates utilization of pad bits in placement of X and Y indexes into X
and Y memory. Exemplary elements SO0 of another instruction B partition process that splits the
instruction B 502 based on a second mix mask 504 into a second X pattern and a second Y
pattern with byte overlap pad bits in accordance with the present invention. To compress a |
second code segment, the second code segmeht is partitioned into groups of instructions, with
each group contributing a Bx pattern and a set of unique By patterns. The Bx pattern 506
represents a bit pattern that is common to a group of instructions from the second code segment.

The By pattern 508 represents one of a set of unique bit patterns in the same group of

16

WO 2012/151334 PCT/US2012/036199

instructions. The Bx patterhs for the code segment are stored in an X dictionary comprised of an
X memory and the By patterns for the code segment are stored ina Y dictionary comprised of a
Y memory. An X index is an address‘ of a location in the X memory and a Y index is an address
of alocationinthe Y rﬁemory. In a compression process, the instruction 502 [0xBAFFOFEB] is
combined with the mix mask 504 [OxFFCOFF80] to produce the_‘Bx pattern 506 [0xBAC3(E,F)]
and the By pattern 508 [OxFFS(8,9,A,B,C‘,D,E,F)], for example. In a decompression process, the
mix mask 504 [0xFFCOFF80] is combined with the Bx pattern 506, [0xBAC3(E,F)] fetched.from
the X memory, and the By pattern 508, [0xFF5(8,9,A,B,C,D,E,F)] fetched from the Y memory,
to produce the original instruction 502 [0OxBAFFOFEB], for example.

{0047} FIG. 5B illustrates an exemplary storage arrangement 520 for the Ax, Ay patterns
of FIG. 3, the Bx, By patterns of FIG. 5A and yet another instruction C represented here by Cx
and Cy in an X memory 522andayY memory 528. The three instrﬁctioﬁs A, B and C have
different masks Amm # Bmm # Cmm in accordance with the present invention. Fof example,
the X memoryA 522 and the Y memofy 528 are byte addressable and utilize 64-bits long access
lines. The Ax pattern 306 [0x9F00(8,9,A,B)] is encoded in binary as Ax 523 [1001 1111 0000
0000 10], the By. pattern 506 [0OxBAC3(E,F)] is encoded in binary as Bx 524 [1011 1010 1100
0011 111] and an exemplary Cx 525 is encoded in binary as Cx 525 [1110 0000 0000 0000 1].
In the exemplary storage arrangement 520 the mix masks Amm 304 [0xFF80FF80], Bmm 504
[0xFFCOFF80], and an exemplary Cmm [FF80FF00] are not equal. Thus, the X patterns
associated with each mix mask are a different number of bits and the Y patterns also associated
with each mix mask are a different number of bits."

{0048} Index compression of X patterns, Y patterns, or bbth, makes use of overlap pad

bits, such as the overlap pad bits 310, 312, 510, and 512 and a byte addressable location. A first

17

WO 2012/151334 PCT/US2012/036199

X pattern may be overlapped with a second X pattern by comparing ending bits of the first X
pattern with beginning bits of the second X pattern. In this comparison, the byte having
overlapped pad bits allows a further range of options, such as indicted in FIG. 5B. For example,
the Ax pattern 523 is comprise;d of three by;es including a first byte 0x9F, a second byte 0x00,
and a third byte comprised of a first nibble having a value that is one of a set {8, 9, A, B}, due to
the overlap pad bits 310, and a second nibble which may be any number from and including
0x00 to OxFF. The Bx pattern 524 is overlapped with the first Ax pattern 523 and has a value of
0xB, which is one of ‘the set {8, 9, A, B}, in a first nibble of the Bx pattern 524. The second
nibble of the Bx pattern 524 has the value OxA which is a number from 0x00 to OxFF. The
beginning bits of the Cx'pattem 525 is overlapped With the ending bits of the Bx 524 pattern.
For Y patterns, no overlap is shown in the Y memory 528. The bits between patterns, such as
bits 534 and 535 may take on any binary value since they are not used in the compression or
decompression process. If, due to code changes or additions, a new Dy pattern is generated
ilaving a first byte of 0x58, then the new Dy pattern may be overlapped with the By pattern 532
as shown in FIG. 5B. Also, other patterns having a first byte of 0x5 and a second byte as one of
the set {8,9,A,B,C,D,E,F} may be overlapped with the ending bits of the By pattern 532.

{0049} FIG. 5C illustrates a decompressor system 540 having programs stored in
cémpressed form in main memory 542 and a level 2 cache 544 that are decompressed in a
decoder 546 using multiple mix masks and index compression to be stored in a level 1
instruction cache (L1 Icache) 548 in uncompressed form in accordance with the present
invention. The L2 cache 544 includes XYM index memory 552 that stores an X index, a ' Y
index, and a mix mask index in addressable locations, such as XYM entry 554 having a 9-bit X

index value of 0x102, an 8-bit Y index value of 0xA9, and a 2-bit M index value of 0x2. A

18

WO 2012/151334 PCT/US2012/036199

.multiplexer 555 is used to select an XYM entry on an L2 cache hit 556 or an XYM value 557
from main memory 542. The decompression operation is accomplished in the decoder 546
having index X register 558, index Y register 560, a MM index reéister 561, an X memory 562,
Y memory 564, multiple MM memory 566, a double line X register 568, a double line Y register
570, and a combiner 572. The L1 Icache 548 includes a plurality of cache lines, such as cache
line 580. After a period of initial operations, the L2 cache 544 and main memory 542 are loaded
with compressed code, and the L1 Icache 548 is loaded with decompressed code.

{0050} When the execution pipeline 550 attempts a fetch 581 of an instruction from the
L1 Icache 548 and determines that the instruction is not present, a miss indication 582 is issued
and the fetch is redirected to the L2 cache 544. For example, the fetch is for XYM entry 554
which is a hit in the L2 cache 544 causing the XY entry 554 to be passed through multiplexer
555 to the decoder 546. The XYM entry 554 is split with the X index value 0x102 received in
the index X register 558, the Y index value 0xA9 received in the index Y register 560. And the
M index value 0x2 received in the index MM register 561. A line containing the X patterﬁ 506
[0xBAC3E] is fetched from the X memory 562 at address 0x0x100 and loaded into fhe double

_‘ line X register 568. A line confaining the Y pattern 508 [0xFF58] is fetched from the Y memory
564 at address 0xA8 and loaded into the double line Y register 570. The mix mask 504
[OxFFCOFF80] is fetched from thé multiple MM memory 566 at address 0x2 and loaded into the
MM register 571. The X pattern 506 [Oxi3AC3E] is selected frc;m the double line X register 568
based on the X index value of 0x102 and applied to the combiner 572. The Y pattern 508
[0xFF58] is selected from the double line Y régister 570 based on the Y index value 0xA9 and
applied to the combiner 572. The single mix mask (MM) 504 [0xFFCOFF80] stored in MM

register 571 is further applied to the combiner 572. The combiner 572 combines the appropriate

19

WO 2012/151334 PCT/US2012/036199

bits from the X pattern 506 with the appropriate bits from the Y pattern 508 according to the MM
504 to produce the original instruction 502 that is stored in cache line 580 and passed to the
execution pipeline 550. The other compressed instructions stored along with the XYM entry 554
in the double line X register and double line Y register, especially if using the same mix mask
504, may be decompressed in parallel with the decompression of the XYM entry 554 or in serial
fashion depending on an instruction sequence. The format length of a decompressed variable
length instruction ‘is determined by the mix mask associated with the compressed instruction.
{0051} A characteristic of the placement of individual patterns within the X and Y
memories shown in FIG. 5B and FIG. 5C is that the placement is unrestricted, and governed by a
leftmost byte alignment. An acceptable, optimal, or near optimal placement with a high
utilization of pad bits can potentially minimize or eliminate byte alignment fraémentation. Any
restriction on symbol placement, such as a left adjusted alignment requirement, potentially
produces fragmentation. For example, in byte'a]igned storage of randomly sized objects, a worst
case scenario is 7-bits per stored symbol being wasted and carry no useful purpose other than the
s;;eciﬁc symbol placement guarantee. With the help of index coﬁpression in general, and usage
of pad bits in particular, these 7-bits could be used for storing useful data. The upper bound of
storage savings from wAasted bit utilization is 7-bit times the number of symbols in the storage.
Total savings from index compression in general is higher, and naturally bounded only by
information entropy of the contents. There also could be symbols of differer;t size occupying the
same physical bits, and correctly extracted only in presencé of appropriate MM which implicitly
determines the length of the symbol. If a single MM is used, the X/Y dictionary symbol entries
have the same size. If multiple mix masks are utilized, there could be as many variations in

symbol sizes as there are MMs. For example, a variable length instruction format may include

20

WO 2012/151334 PCT/US2012/036199

32-bit formatted instructions and 64-bit formatted instructions. Nevertheless, the task of optimal
placement of symbols is an NP complete problem and could not be expected to be perfectly
sol\vzed on practice in reasonable linear time. To overcome this limitation, heuristic algorithms -
are used to produce near optimal placement in linear time, as described in more detail below with
regard to FIGs. 12-14.

{0052} Compressed instructions and uncompressed instructions may be mixed in the
same executable code segment with no‘need for a mode switch in operation. In a paged virtual
memory system, a page of memory may contain either compressed instructions or uncoinpressed
instructions. FIG. 6 illustrates a‘paged virtual cache organization 600 hdving compressed pages
and uncompressed pages in accordance with the present invention. A virtual address is generally
enéoded in two parts. An upper field of address bits usually represent a virtual page number that
is encoded based on a selected page size, such as 4K byte pages. A lower field of address bits is
a page offset that identifies an address within the addressed page. In a virtual to physical address
translation, the virtual pagefnumber is translated to a physical page number. The pagev offset is
the same for both the virtual address and the physical address and is not translated.

{0053} A virtual to physical address translation system may include one or more
translation look aside buffers (TLBs), such as instructibn and data TLBs, to improve
performance of a translation process. An instruction TLB (ITLB) i; a small cache that stores
recent virtual to physical address translations along with attributes of the stored pages, such as
entry validation and access permissions. The ITLB generally includes a content addressable
memory (CAM) circuit coupled with a random access memory (RAM) circuit and is relatively
small, such as ha.ving 32 or 64 entries. Each ITLB entry includes a tag in the CAM circuit

having the recently used virtual page numbers associated with translated physical page number

21

WO 2012/151334 PCT/US2012/036199

in the RAM circuit. For example, the paged virtual cache organizatibn 600 uses an ITLB 602
and a physical memory 604 having uncompressed pages 606 intermixed with compressed pages
608. Each entry of the ITLB 602 has a virtual address tag 610, entry flags 612, such as a valid
(V) flag, a read (R) flag, a write (W) flag, a physical page (P-page) address 614, and a
compressed (C) field 616. The C field 616 may be a single bit appropriate for identifying a page
as compressed or uncompressed for a system having a single mix mask for all compressed pages,
for example. Alternatively, the C field 616 may be two or more bits, which for a two bit field
may indicate “00” not compressed, “01” conipressed with a first mix mask, “10” compressed
with a second mix mask, and “11” cohpressed with a third mix mask. The decision to compress
or not to compress an instruction or a block of code is done statically at the compilation and code
compression time and might depend on a variety of factors. For instance, if actual
implementation of the system is sensitive in any wéy to the latency of decoding, then
performance critical portions of an application might bé kept in original uncompressed form,
while less frequently executed code may be compréssed. Determination of frequently versus
infrequently executed code portions is done by the compiler and linker 206 with either obtional
profile directed feedback information 208 or with compile time heuristics based on the control
structure of the code. However, placement of decoder 228 between L2 cache 224 and L1 Cache
232 effectively removes the decoder from performance critical paths of the sysfcm. Additional
benefits from such placement of the decoder include not requiring changes to the execﬁtion
pipeline 234 and potential power savings due to increased L2 capacity and thereby minimizing
accesses to the main memory. These compression decisions are based on a close interaction of

the translation tool 216 with the compiler and linker 206, and can take advantage of profile

22

WO 2012/151334 PCT/US2012/036199

feedback information 208, which might identify legacy code to not to be compressed and new
function code to be compressed, for example.

{0054} FIG. 7 illustrates a system 700 that mixes compressed and uncompressed code on
a per physical memory page basis in a system similar to the paged virtual cache organization 600
of FIG 6. The composition ofa compressed page 701 and an uncompressed page 702 is shown
for an example main memory physical address space having 4Kilo-byte (4KB) pages with 4 byte
(4B) entries. Each page of compressed instructions and each page of uncompressed instructions
are of the same capacity having the same fixed number of bytes. However, the number of
instructions stored in the compressed page 701 is double the number of instructions stored in the
uncompressed page 702, using, for example, a compressed instruction format that is half the
number of bits used in the uncompressed instruction format. For example, the compressed page
701 stores compressed instruction d,e,f,g etc. as a pair of X/Y indexes in 16 bits or 2 Bytes.
Thus, the compressed page 701 which is a 4K page contains 2048 instructions, while the
uncompressed page 702 contains only 1024 instructions. Since the page boundaries are not
affected by whether a page holds compressed instructions or holds uncompressed instructions,
the address translation for physical location of a page is unchanged, but compressed page holds
more individual instructions.

{0055} _FIG. 8A illustrates a paged decompressor system 800 for deéompressing
compresseq instruction pages and accessing uncompressed instruction pages in accordance with
the present invention. The paged dec.ompressor system 800 is comprised of a processor pipeline
802, an ITLB 804, a physical address buffer 806, an L1 Icache 808, an L2 cache circuit 810, and
a compressed instruction decoder circuit 812. A translation process begins by applying a virtual

page number 805 selected from a virtual address 803 to the CAM circuit which does a parallel

23

WO 2012/151334 PCT/US2012/036199

comparison of the applied virtual page number generally with all of the stored recently used
virtual page numbers stored with the entry tags in the CAM tags 819. If there is a match, the
CAM circuit accesses a corresponding entry 820 in the RAM circuit which is output as a
translated physical page address 815 stored in the physical address buffer 806. A translated
physical address 809 comprises the translated physical page address 815 concatenated with the
page bffset 817 from tbe virtual address 803.

{0056} For example, in an embedded system with a virtual address space 0f4 gigabytes
(4GB) and 4K byte pages, a virtual address 803 is comprised of a virtual page number 805
having b.its [31:12] and a page offset 807 having bité [11:0]. In thé same embedded system, the
memory hierarchy of caches and main memory may encompass a physical memory space of
512K bytes and 4K byte péges. On a hit in the ITLB 804 the virtual address 803 is translated to
a physical address 809. The physical address 809 is comprised of a physical page number 815
having bits [28:12] and a page offset 817 having bits [11:0]. In such a system, the virtual to
physical translation system would translate a virtual page number 805 encoded in bits [31 :12] to
a physical page number 815 encoded in bits [28:12]. Also, on the hit the compressed bit field
821 is also oﬁtput to be stored in the physical addresé buffer 806 as C bit field 822. The
placement of the compressed bit field 821 and the C bit field 822 is exemplary.

{0057} The physical address 809 is used to search the L1 Icache 808 for a matching
entry. If a matching entry is found, it is a decompressed instruction that is associated with the
matching entry and is selected to pass through the L1/L2 multiplexor 824 to the processor
pipeline 802. On a miss in the L1 Icache 808, the physical address is directed to the L2 cache
810 to search for a matching entry. On a hit in the L2 cache 810, with the C bit field 822

indicating compressed instructions from a compressed page, a line of compressed instructions

24

WO 2012/151334 PCT/US2012/036199

having the associated matching entry is fetched and stored in a L2 read buffer 826. On a hit in
the L2 cache 810, with the C bit field 822 indication uncompressed instructions from an
uncompressed page, a line of uncompressed instructions having the associated matching entry is
fetched and stored in a L2 read buffer 826. Uncompressed instructions bypass the compressed
instruction decoder 812 and are made available at the L2 read multiplexer 828 for storage in the
L1 Icache 808 and to be selected to pass through the L1/L2 multiplexor 824 to the processor
pipeline 802.

{0058} On the hit in the L2 cache 810, the fetched compressed instructions in the L2 read
buffer 826 are decompressed in the compressed instruction decoder 812 based on the C bit field
822 indicating compressed instructions to the control éircuit 830. The decompression process is
described in more detail below with regard to FIG. 8B. 'fhe decompressed instructions are
stored in decompression buffer 832 which may be selected by the L2 read multiplexor 828 for
storage in the Ll Icache 808 and selected to pass through the L1/L.2 multiplexor 824 to the
processor pipeline 802. ‘

{0059} As was illustrated earlier in FIG. 5C, compression of a native application may
specify usage of multi.ple mix masks. If desired granularity is down to a single instruction, as it
is sﬁggested in the FIG 5C, each X/Y index pair must have a way to select appropriate mask. If a
mix mask is selectable on an instruction by instruction basis, identification of the mix mask
requires additional storage bits, such as the 2-bit mix mask index shown for example in XYN
entry 554. Another approach allows a mix mask to be selected per code p.age, which removes

the need for a mix mask marker from an X/Y index pair 554 and places the mix mask marker in a

- TLB page descriptor as part of the C field, for example.

25

WO 2012/151334 PCT/US2012/036199

{0060} FIG. 8B illustrates an exemplary decompression state diagram 850 that illustrates
the state of L2 cache compressed‘ page instructions and L1 Icache decompressed instructions for
execution on processor pipeliné. FIG. 8B shows an L2 cache 852, a L2 read buffer 854, a
compressed instruction decoder (CID) 856, a decompression buffer 858, an L1 Icache 860, a
physical address buffer 862, and a processor pipeline 864. The L2 cache 852 has an
uncompressed line 866 and a compressed line 868 as an initial state. The uncompressed
instructions are 32-bit native instructions and each of the compressed instructions are 16-bits
made up of an X-index and a Y-index pair, as described aﬁdve, forl example, with respect to FIG.
4. The compressed line 868 holding twice as many instructions as the uncompressed line 866. -A
fetch for an instruction M is made by the processor pipeline 864 which is translated from a
virtual address to a physical address by a ITLB, such as the ITLB 804 of FIG. 8A, and stored in
the physical address buffer 862. Initially, the L1 Icache 860 does not contain the in.struction M
and a miss is generated which causes a fetch to upper levels of the memory hierarchy. The
decompression buffer 858 is checked ﬁrstAwhich in this exemplary scenario, the instruction M is
not found. The L2 cache 852 is checked next and the compressed line 868 is found to cpntain
the instruction M, in a compressed form “m” 870. The compressed line 868 is fetched and stored
in the. L2 read buffer 854. The CID 856 receiving the C bit field 872 and the fetch address
allowing the coméressed instructions from the L2 read buffer 854 to be fetched sequentially
beginning from the compressed instruction “m” 870. Note, a first instruction in a fetch sequence
may be accessed, decompressed first and quickly forwarded to the processor execution pipeline
‘to minimize timing requirements. Since the compressed instructions as described herein have
fixed length and known storage address l‘ocations prior to decompression, a ﬁ;st cbmpressed

instruction in a fetched sequence may be identified in a line of compressed instructions. Since

26

WO 2012/151334 PCT/US2012/036199

the L1 Icache has a line length of eight uncompressed instructions, the compressed instructions
are accessed from the L2 read buffer 854 in a L1 Icache line length, starting from “m, n, o, p,
then i, j, k, and I”’. The second half of the L2 read buffer 854 is accessed next starting from “q, r,
s, t,u, v, w, and x”. Thus, the compressed instructions are accessed from an arbitrary starting
point in the L2 read buffer 854.

{0061} Since the instruction M is fetched first, it is decompressed first in the CID 856 and
then may be forwarded to the processor pipeline 864. As the other instructions “n, o, p, then i, j,,
k, and 1"’ are decompressed they are combined with the decompressed instruction M apd loaded
in the decompression buffer 858. Once a full line of instructions have been decompressed they
are loaded into the L1 Icache 860. Alternatively, individual decompressed instructions or pairs
of decompressed instructions, for example, may be individually updated in the L1 Icache 860
and forwarded as needed to the.processor pipeline 864. It is noted that if the decompressed
instruction line stored in the decompression buffer 858 is duplicated in the L1 Icache 860, the
decompression buffer, holding the decompressed instruction line, may be used as a victim cache»
temporarily storing the last instruction block evicted from L1.

{0062} The determination of the X-index, Y-index, X pattern, Y pattern, and one or more
mix masks depends on the native instruction architecture and the use of instructions in a
particular code segment. When analyzing a code segment, such as code segments in a smart
phone, a single mix mask may provide comparable compression to that obtained through use of
multiple mix masks. The use of a single mix mask could be seen as using a single instruction
group and effectively separating the native instructions used in a code segment into two parts, the
X patterns and the Y patterns. The original distinction of fixed (X) and mutable (Y) parts in a

group becomes less meaningful and can be viewed interchangeably. Also, use of a single mix

27

WO 2012/151334 PCT/US2012/036199

mask simplifies the design of a combiner circuit, such as the combiner 418 of FIG. 4. For
example, in an experimental code scgment having 16,542 native 32-bit instructions, there were
only 6,464 unique instructions and overall entropy of 0.76. Using a single mix mask, these 6,464
instructions were split into 1,351 X patterns and 1,345 Y patterns. Using the techniques of the
present inventior;, each of the 16,542 native 32-bit instructions is replaced by a 23-bit X/Y-index
pair, providing a 28.1% compression in the storage cap‘acity of the L2 cache and main memory in
a system such as shown ip FIG. 2. Resulting entropy of the encoded data increased from 0.76 to
0.89. However, the 0.89 entropy measurement out of a theoretically pbssible 1.0 informational
entropy measure, illustrates that a different mix mask may provide considerably better results.
The determination of an optimal or near optimal single mix mask to provide the best possible
compression over a plurality of code segments is a complex problem.

{0063} FIGs. 9A-9C illustrates an automated mix mask determination process 900 based .
on a variation of a genetic algorithm in accordance with the present invention. A translation tool,
such as the translation tool 216 of FIG. 2A implements the process 900. At block 902, the
process 900 is started. At block 904, the code segment P to be compacted is obtained. For
example, the code segment P may include boot code, operating system code, and multiple
function programs as utilized in a particular product. At block 906, the unique instructions in the
code segment P are collected in a P hash table (P_unique). At block 908, the P_unique
instructions are sorted in a semantic order, such as an ascending bit pattern order, based on the
instruction formats. For example, each instructiqn in the P hash table is interpreted as an integer
number using 32-bits and is sorted in ascending order in a list. This guarantees the smallest
Hamming distance between neighboring instructions and enables instruction grouping in later

steps. At block 910, a bit switch frequency is collected in sorted order of unique instructions.

28

WO 2012/151334 PCT/US2012/036199

For example, if a bit in position p changes from “1” to “0” or “0” to “1”, a bit_toggle[p] value is
incremented by one. A bit;toggle array size is equal to the width of the largest instruction in the
original ISA expressed in bits, such as 32 for 32-bit instructions. At block 912, a set of seed mix
masks, the seed MM population, is selected using several known good MMs, several randomly
generated MMs, and several MMs generated from the collected bit toggle éounts. The known
good masks are pre-populated from previously obtained MMs from similar applications and are
specific to any given architecture. The collected bit toggle count serves as a good heuristic in
estimating likelihood of a bit changing its value in the given position in the actual code.
Empirically, selecting a mix mask as a function of threshold for a given position produces good
seed mask. At block 912, the seed MM population is an array of individual MMs of size
between 10 and 30 individuals and may be selected as an even number of individual MMs. The
larger population can produce better results, but a linear increase in the number of MMs chosen
requires a corresponding increase in computation time. A particular seed MM population could
be selected to fit a specific computational platform. A seed population value of 20 MMs has
been shown to be a good tradeoff in an experimental setup. At block 914, a fitness val-ue for
each selected MM in the seed MM population is set, for example, to a low but non-zero value.
The fitness value is, fof example, a double precision floating point number representing the level
of benefit a MM provides. The process 900 proceeds to cc;nnector A 916 FIG. 9A whichis a
link to connector A 916 in FIG. 9B.

{0064} In FIG. 9B the repetitive part of the process 900 is contained. A seed population
of 20 MMs is provided as input to the process 900. At the decision block 920, a determination is

made whether another iteration will take place. A threshold value is compared to a numerical

29

WO 2012/151334 PCT/US2012/036199

exit condition and if the exit condition is not reached, as would be the case when the threshold is
less than or equal to the exit condition, another iteration is commenced.

{0065} At block 918, an individual having the best fitness value is determined to be the
best individual, and its fitness value (cost function) is recorded. Also, the value of total_fitness
determined as a sum of cost functions of the individuals in the population is recorded, obtained
from process 1000 FIG. 10, as described in more detail below. | The total_fitness value is later
used as a parameter to a mﬁtation algorithm causing a higher rate of mutation if overall
compression effectiveness is low based on an assumption that a faster rate of change is desirable.
At d/ecision block 924, a determination is made about progress of completing the process 900. If
the last iteration best fitness value was unchanged from the previous iteration, the process 900
proceeds to block 926. At block 926, the threshold value is increased. If the last iteration best
fitness value is different from the previous iteration’s best fitness value, the process 900 proceeds
.to block 928. At block 928, the population is sorted by the fitness values. At decision block
930, a determination is made whether the process 900 beginning with the decision block 920 is
on a first iteration. If it is determined to be the first iteration, the process 900 proceeds to block
932. Otherwise the process 900 with a ;:urrent population of MMs proceeds to blocks 934-952
for creating a new population.

{0066} At decision block 934, a determination is ﬁade whether an elitism indicator is set.
“The elitism indicator indicates whether a plurality of best in class MM are to be preserved. If
the elitism indicator is set, the process 900 proceeds to block 936. At block 936, two best
performer MMs from the previous iteration are directly copied into the new population. At block
938, two offspring MMs are produced from the two best performers as described in more detail

below with regard to FIG. 9C. At block 940, the two offspring MMs are randomly mutated to

30

WO 2012/151334 _ PCT/US2012/036199

create two mutated offspring MMs as described in more detail below with regard to FIG. 9D. At
block 942, the first four members of the current population are replaced by the two best |
performer MMs and the two mutated offspring MMs. The process 900 then proceeds to block
946.

{0067} Returning to decision block 934, if the elitism indicator was not set indicating
elitism is not elected, the process 900 proceeds to block 946. At blocks 946 and 948, a similar
procedure of interbreeding as_described at block 938 and mutation as described at block 940 is
repeated for unprocessed pairs of remaining individual MMs from the previous iteration
populz;tion. At block 946, a partner selection algorithm is used to select random individuals,
with chance of selection proportional to the fitness of the individual. The better performing
individuals are more likely, but not guaranteed, to produce offsprings. At the end of block 948,
‘new iteration population is determined. At block 950, any duplicates in the new iteration
population are mutated to insure that there are no duplicates in the new iteration population. At
block 952, fitness values for individual MMs in the new iteration population are reset. At this
point, the new iteration population is ready for a cost calculation. In order to save computation
time, a list of previously computed costs for previously processed MM (individuals) is
maintained, and an already determined cost is simply pre-populated, not computed in block 932.
The process 900 then proceeds to connector B 922 on FIG. 9C.

{0068} Returning to the breeding operation at block 938 and in reference to FIG. 9B, the
“two best performer MMs are chosen as parent A 960 and parent B 962, FIG 9D, where the mix
mask (MM) is represented by a 32-bit number and for the purpose of this step the MM is denoted
a gene. For the breeding process 959 of FIG. 9D implemented at block 946, two individual MMs

are selected from the input MM population and may also be represented as parent A 960 and

31

WO 2012/151334 PCT/US2012/036199

~ parent B 962. At blocks 938 and 946, the two parents are breed as shown in FIG. 9D Qia an
exchanging genes process 964 at a random point in the gene at a random frequency producing
two offsprings A 966 and B 968. A random selection may be guided by a pseudo-random
number generator and may be termed a semi-random seléction. One parent, parent A 960,
provides a beginning portion 970 of one offspring, offspring A 966, new gene and the other
parent, parent B 962, provides a tail portion 971 of that offspring gene. The other offspring B
968 is a complement of the first one. The parent B 962 which produces the tail portion 971 for
the offspring A 966 produces a beginning portion for offspring B 968. The parent A 960 which
produces the beginning portion 970 for the offspring A 966 produces a t-ail portion for offspring
B 968. The cross point 972 is selected randomly in the rangé of 0-32. An underlying reason for
the quick algorithm convergence could be seen as due to a preservation of successful adaptation
traits from one of the parents into one of the offsprings, which is later confirmed by the fitness
rate caléulation. The breeding process 959 illustrated in FIG. 9D is itself a pseudo-random event
and subject to a thr;:shold valﬁe identified as a CROSSOVER_RATE threshold. For example,
out of 100 attempts to exchange genes between two parents, only CROSSOVER_RATE times
the number of exchange attempts will even take place.

{0069} Returning to blocks 940 and 948 of FIG. 9B, the newly generated offsi)ring MM
population is mutated by semi-randomly flipping individual bits, changing a “0” to a “1” or a “1”
to a “0”, in each offspring gene. This mutation process 974 is illustrated in FIG. 9E where an
individual MM A 975 i.s mutated by bit flips associated with bits, 976, 977, and 978. The
mutated individual MM A 979 is shows with the results of the bit flips. In the mutation process
974, a pseudo-random mutation acts to introduce previously unavailable traits into the MM

population. For example new previously untried MMs are created, but at a controllable rate, so

32

WO 2012/151334 PCT/US2012/036199

that undesired mutations may be pruned out quickly. At block 942, four members of the MM
population are set to the preserved two best performers from block 936 and the two new mutated
offspring from block 940. At block 946, the remaining MM population is breed in pairs, as .
described with regard to process 955 of FIG. 9C, to obtain pairs of new offsprings. At block
948, the mutation process 974 of FIC. 9D is follow¢d to produce two new offspring. At block
950, any duplicate MMs are mutated. At block 952, the ﬁtnes§ value for each MM individuals is
resei. At block 932, previously calculated costs for repeating MMs are reused. The process 900
then proceeds to connector B 922 which is a link to connector B 922 in FIG. 9C.

{0070} In FIG. 9C at block 955, a current individual MM’s cost function is calculated, as
a dynamic compression function of the selected MM and the sorted P_unique list. The cost
function is-.comprised of two main components: the size of external storage and size of
translation dictionary. These two components combined reflect an obtained degree of
compression or an achieved level of entropy. The exact relationship of external storage size to
internal X/Y memory decompression table size is determined by a parameter indicating a relative
importance of the two components. For example, the cost function equals a product of sum x
and y index size times X/Y dictionary size i;l Kbytes: So cost is equal to the
X/Y_dictionary_size * (x_index_size + y_index_size). This formula reflects a balanced
approach to evaluating the relative importance of internal dictionary size versus external storage
size. A preference may be introduced in the cost function by introduction of relative importance
weight constants. For example, cost is equal to (weight_constant * X/Y_dictionary_size) *
(x_index_size + y_index_size). In a current implementation, the weight_constant is set to 1.00,

though may vary from 0.01 to 1.00.

33

WO 2012/151334 PCT/US2012/036199

{0071} At dgcision block 956, a ‘determination is made whether the run time for process
900 has exceeded an allotted time. If the run time has exceeded the allotted time, the process
900 proceeds to block 958 and stops. If the run time has not exceeded the allotted time, the
process 900 proceeds to decision block 957. At decision block 957, a determination is made
whether a lowest current cost MM has been found. For example, finding only a single MM that
generates a current cost less than the threshold rﬁay be insufficient reasons to temiﬂate the
process 900. On the other hand, it is possible to detect that a theoretical lowest entropy bound
representation has already been reached and any further search is unnecessary. In another
example, a number of MMs may be found, each generating approximately the same current cost
that is less than the threshold which may be sufficient reason to terminate the process 900 at
block 958 with selecting the MM with the lowest current cost or selecting one of a plurality of
MMs each with the same acceptable lowest current cost. Otherwise the process 900 proceeds to
connector A 916 of FIG. 9B.

{0072} FIG. 10 illustrates an exemplary dynamic compression and current cgét
calculation 980 as a process 1000 in accordance with the preseht invention. At block 1002,
current cost values are input, such as an MM available from block 952 of FIG. 9B that is selected
after determining it has not been previoﬁsly evaluated in decision block 932 and the sorted
P_unique instructions are input. At Block 1004, the sorted P_unique instructions are grouped
according to a current grouping heuristic for the selected MM based on having a single MM or
multiple MMs for the code segment. For example, grouping for single MM is a process of
separating the unique instructions into X and Y portions, such as the exemplary elements 500 of
FIG. 5A, and constructing Vinitial uncompressed X and Y tables. In one example, the whole

native instruction program could be viewed as a single group. On the other hand, grouping for

34

WO 2012/151334 PCT/US2012/036199

multiple MMs involves partitioning the unique instructions into several groups with a unique
MM for each grbup. In this case, an X pattern represents a fixed pattern for a group, where the
whole group shares the single fixed X pattern, apd the multiple Y patterns per group represent
the mutable part of the group. While several heuristics are possible for near optimal partition
into groups, selection of one specific heuristic could be driven by another heuristic which may be
based on the size of the input list of unique instructions and its initial entropy. The following
heuristics have proven through experimentation to be practical, including Hamming, weighted
-Hamming, number of ones, and wei ghted number of ones.

{0073} FIG. 11 illustrates a Hamming heuristic 1100 that is used to create a new group
when a specified threshold in hamming distance is gxceeded between neighboring entries in the
sorted unique instruction list. The weighted Hamming heuristic 1100 assigﬁs certain bit fields
positions more weight than others in computing a change score that is compared to a threshold,
as shown in FIG 11. In the process 1100 at block 1102, the full list of sorted input raw
instruction patterns is obtained (sorted P_unique). It then processes two neighboring entries at a
time by analyzing hamming distance between them. At block 1104, a variable hamming distance
value (hamm_dist) is calculated as an XOR of the two neighboring entries. For example, if list

. of raw instructions contains only three entries 0, 1 and 2, hamm_dist is calculated twice — first as
XOR between 0" and 1° entry, then as XOR between 1% and 2™ entries. At block 1106 the
hamm_dist is parsed one bit at a time, and a sum_weight value is incremented for each non-zero
bit. Block 1106 could be seen as cqunting non zero bits in each hamm_dist. The increment
amount may be changed by bi-t position. An exact increment amount is read from a weight_array
which in turn calculated from the Bit_Toggle array computed in block 910.of FIG. 9A or

precalculated statically. At decision block 1108, a determination is made whether the

35

WO 2012/151334 PCT/US2012/036199

sum_weight value exceeds a weight_threshold. A positive outcome indicates a new instruction
group is to be formed. At block 1110, the new group is formed and the ‘process 1100 proceeds to
decision block 1112. A negative output of decision block 1108 causes the process 1100 to
proceed to the decision block 1112. At decision block 1 112, a determination is made whether
the end of the sorted P_unique list has been reached. If the end 6f the list has not been reached,
the process 1100 proceeds to block 1114 which increments a loép vaﬁable “4” and proceeds to
block 1104. If the end of the list has been reached, the process 1100 proceeds to block 1116 and
stops.

{0074} Other heuristics may be used, such as the number of ones heuristic and the
weighted number of ones heuristics both of which are based on measuring mutability of a bit
field in an instruction. For example, a lower number of ones in a MM indicates a larger X
pattern aﬁd fewer Y patterns per group. A higher number of ones in a MM indicates a smaller X
pattern and more Y patterns per group. There exists a non linear dependency with.a single point
for selection of the number of ones that produces the highest compression. In a current
apprbach, a single MM partitioning strategy is selected at block 1004. Continuing at block 1006,
X memory and Y memory tables, such as the X patterns stored in the X memory 412 of FIG. 4
and the Y patterns stored in the Y memory 414, respectively, are determined as described above
with regard to FIG. 4. At decision block 1008, a filtering heuristic is used to filter out
substandard MMs, which represent unfit individuals, which are possible in the process 900. This
filtering is done to conserve computation time and does not affect the effectiveness of £he
.process 1000. A mask is determined to be clearly unfit if the unpacked X/Y table gener'ated from

it exceeds in byte size the input raw instruction list size. At decision block 1008, a determination

is made whether the X memory size + Y memory size is greater than the number of P_unique

36

WO 2012/151334 PCT/US2012/036199

instructions times the native instruction width, wh_ich in this exemplary case is 32-bits. At
decision block 1008, if the determination is positive, the process 1000 proceeds to block 1010 to
reject the mix mask. At block 1010, the fitness value for the MMS rejected at 1008 is set to zero
and the process 1000 proceeds to connéctor B 922 on FIG. 9C. If the determination is negative,
the process 1000 prpceeds to block 1012.

{0075} At block 1012, the X memory and Y memory tables are compacted. Block 1012
directly affects the size of the X and Y tables which in turn determines .the size of indexes needed
to address these tables and ultimately determines the size of the external compressed code
segment. The X and Y tables are compacted using indexing compression as described with
regard to‘FIG. 5B and FIGs. 12-14. At block 1014, a current cost isvgelnerated as equal to a
constant C1 times a sum of the X memory size plus Y memory size which is then multiplied by
the sum of the X index size plus the Y index size. This process 1000 provides an advantageous
heuristic for computing an entroi)y value which is represented by the current cost that is close to
the actual entropy of the cbmpressed code which is now separated into external collection of X/Y
indéxes and the X/Y compacted tables. Optionaily at block 1014, a theoretical minimpm entropy
measure may be determined and whether further search is needed or not. At block 1016, the
generated current cost is output to decision block 956 in FIG. 9C.

{0076} As noted above, near optimal selection of entries in the X/Y table combined with
index compression can significantly reduce the size of X/Y tables. Two exemplary placement
algorithms may be used based on trade off between degree of compression and execution time.

A first heuristic is a near-exhaustive search X/Y table compaction algorithm with pad sorting
presented at FIG. 12 in accordance with the present invention. Processing begins at block 1202

by obtaining the list of symbols to be compressed. This is the list of the present set of X/Y table

37

WO 2012/151334 PCT/US2012/036199

symbols to be compacted. There are “table_size” symbols in the table. At block 1204, this list’is
sorted in an order which maximizes likelihood of pad overiapping. Also, at l;lock 1204, an

22199
1

iteration index 1" is reset to O.

{0077} The pad-sort operation at block 1204 is a specialized way to sort symbols in the
X/Y tables to increase likelihood of pad overlapping prior to actual compaction process
initiation. The pad sort operation is implemented by a quick sort algorithm, with a corhparison
function demanding a swap of two symbols if there is a match between one or more left most
significant bytes of one symbol and one or more right most significant bytes of the other. Here
length of symbol is measured in full bytes, and is left adjusted. Right;most significant byte can
- have just several significant bits, but for the purpose of sorting it is inconsequential.

{0078} At decision block 1206, a determination is made whether the iteration index “i” is
less than the “table_size”. If the iteration index “i” is greater than or equal to the “table_size”,
the process 1200 proceeds to block 1232 and stops. Otherwise, the process 1200 proceeds to
decision block 1208, since the i" symbol of the X/Y table has not been processed yet. At
decision block 1208, a determination is made whether a parameter -seen[i] is equal toa “1”
indicating the i symbol has already been processed. If seen[i]=1, the process 1200 proceeds to
block 1210 in which the iteration index “i” is incremented by 1. If the symbol has not already

been processed, seen[i]#1, the process 1200 proceeds to block 1212. At block 1212, the i

symbol is inserted into the compressed table. Details of insertion process are described below
with regard to FIG. 13. Also at block 1212, the fact of insertion is noted by setting the parameter
seen(i] to 1, setting a best_score variable to 0, and initializing a new iteration index “k” to a

value of 1+1.

38

WO 2012/151334 PCT/US2012/036199

{0079} - At decision block 1214, a determination is made whether the new iteration index
“k” is less than the number of symbols to be compressed. If the new iteration index “k” is less
than the “table_size”, the process 1200 proceeds to block decision block 1216, since the k-th

symbol has not been processed yet. At decision block 1216, a determination is made whether a
parameter seen[k] is equal to a “1” indicating the K" symbol has already been processed. If

seen[k]=1, the process 1200 proceeds to block 1218 in which the new iteratibn index “k” is

incremented by 1. If the symbol has not already been processed, seen[k]#1, the process 1200
proceeds to block 1220. At block 1220, a match score is calculated for the k™" stbol.

{0080} At block 1220, a score_match calculation mimics a symbol insertion process, but
does not insert any symbolé. Rather, the score_match ca_llculation returns a score proportional to
an amount of savings expected from placing the current symbol into the compressed table in the
table’s current form. This calculation process locates among remaining unprocessed symbols in
the X/Y uncompressed list, the potentially best matching candidates. Score_match feturns a
matching indication or a very high score, such as infinity for example, if the symbol could be
completely matched within existing contents, or provides a number of overlapping bytes if the
symbol is matched at the end of compressed memory. If no overlap is found, a zero score is
returned.

{0081} The computed score reflects a degree of savings to be expected from inserting the
k-th symbol into the compressed table in its current state. At decision block 1224, a
determination is made whether the score is equivalent to infinity. As noted above, a matching
indication, such as a score of infinity, means that k-th symbol completely matches to the current
state of compressed table, inserting it would not increase the size of the compressed table, and

the process 1200 directly proceeds to insertion step in block 1228. Note, that the process of

39

WO 2012/151334 PCT/US2012/036199

insertion in this case is a fecording of current symbol offset from the beginning of compressed
X/Y table which later becomes its representation in external memory. Also note, that in general,
when multiple Mix Masks are used, multiple symbols that share a common prefix could have the
same offset, but different length. Otflerwise, at block 1226, comparison is made between the
computed score and best score seen so far. If the newly computed score exceeds the best score
so far, the process 1200 proceeds to bloék 1230. Atblock 1230, the present best_score is set
equal to the newly computed score an(i a best-index is set to “k”. At block 1218, the new
iteration index “k” is increménted by one, and the process 1200 proceeds to block 1214. Once
“k” reaches the end of the list (table_size), as determined at block 1214, .the process 1200
prbceeds to block 1222. At block 1222, a determination is made whe;her the best_score wés

is incremented at

(1344
1

determined. If a best score has not been determined, the iteration index
block 1210, and the process 1200 continues from block 1206. At block 1222, a non-zero
best_score indicates that a best fitting symbol was found, and the process 1200 proceeds to block
1228. At bldck 1228, the best fitting symbol is inserted into the compressed table and the fact of
inserﬁon is noted in by setting the parameter seen[best_index] array equal to “1”. Once the
iteration index “i” reaches table_size as determined at block 1206, the process is terminated at
block 1232. At this point, the evaluated symbols have been inserted into the compressed table.
{0082} FIG. 13 illustrates a symbol insertion process 1300 in accordance with the present
invention. At block 1302, the current state of compressed memory and the new symbol to be
inserted are obtained. At decision block 1304, a determination is made whether the new symbol
is zero. If the new symbol is zéro, the symbol ié mapped to a specialized position in the

compressed memory at block 1320 and only one byte is stored regardless of symbol size. At

decision block 1304, if the new symbol is determined to be non-zero, the process 1300 proceeds

40

WO 2012/151334 PCT/US2012/036199

to blo'ck 1306. At block 1306, a current pad_mask is computed. The pad_mask is a binary
variable used to mask out insignificant portion of the last significant byte in symbol. For
instance, if the symbol being insg:rted has size of 15bits, the last bit of the last byte is
insignificant and needed to be ignored during comparison for placement. The pad_mask in this
case is Oxfe (pad_mask always applied to the last significant byte only). At decision block 1308,

[19444
1

a determination is made whether the iteration index “i” is less than the present compressed table
size minus the new symbol size plus 1. If the determination is positive, the process 1300

proceeds to block 1A310. At block 1310, the new symbol is rebeatedly attempted to be placed in
compressed memory checking each symbol location for matching only significant bits to the
current contents with byte step. Such an operation is achieved by repeatedly comparing the first
significant byte of the new symbol with each byte already in the memory, and if match found for |
the first significant byte, other remaining bits in the new symbol are matched. The match only
takes into account significant bits in the symbol, via application of the pad_mask as described
above. If such a location is found at decision block 1312, the f)rocess 1300 proceeds to block
1318. Atblock 1318, the symbol is placed at the determined location, and the iteration index “i”
becomes the symbol’s offset from the beginning of the cofnpressed table. This index will be

- eventually stored in external memory and utilized to 1ocat¢ original X/Y pattern in X/Y
compressed table. If block 1316 is reached, it means the current symbol could not have beeﬁ
completely matched to the existing content of the compressed memory, and it needs to be placed
at thé end of list. In that case a maximum overlap check is performed on each byte of the

symbol. If no overlap was found, the new symbol is simply placed at the end of the compressed

table.

41

WO 2012/151334 PCT/US2012/036199

{0083} FIG. 14 illustrates the triangular X/Y table compaction with pad-sort process 1400
in accordance with the present invention. The process 1400 is an alternative to the exhaustive
search X/Y table compaction process 1200. The heuristic process 1400 is O(n) faster than the
process 1200, but may not produce as good of a compression. However, the compression results
of the process 1400 may be acceptable for a number of practical applications. Moreover, a
combination of the two processes might be viable in actual implementation — the faster ‘process
shown in FIG. 14 is used for determining best mask candidates, and the slower one shown in Fig.
12 is used for geherating final encoding. The process 1400 begins with steps 1402, 1404, 1406,
1408, and 1412 that are the same as steps 1202, 1204, 1206, 1208, and 1212 of FIG. 12. At
block 1412, a sirﬁilar insertion of i-tﬁ element is performed as is done ai block 1212, but
beginning with block 14_14 there is no best_score that is used as is done with blocks 1214 and
1222 of FIG. 12. Instead of using a best score evaluation, at the remaining blocks of FIG. 14, the
symbols between i+1 and table_size are traversed once and every element found with a non-zero
score as deterrﬁined at decision block 1424, is inserted into the compressed table at block 1426.
{0084} The methods described in connection with the embodiments disclosed herein may
be embodied in a combination of hardware and in a software module storing non-transitory
signals executed by a processor. The software module may reside in random access memory
(RAM), flash memory, read only memory (ROM), electrically programmable read only memory
(EPROM), hard disk, a removable disk, tape, compact disk read only memory (CD-ROM), or
any other form of storage medium known in thé art or to be advised in the future. A storage
medium may be coupled to the processor such that the processor can read infc;rmation from, and

in some cases write information to, the storage medium. The storage medium coupling to the

42

WO 2012/151334 PCT/US2012/036199

processor may be a direct coupling integral to a circuit implementation or may utilize one or
more interfaces, supporting direct accesses or data streaming using downloading techniques.
{0085} While the inventic;n is disclosed in the cbntext of illustrative embodiments for
use in processors it will be recognized that a wide variety of implementations may be employed
by persons of ordinary skill in the art consistent with the above discussion and the élaims which

follow below.

43

WO 2012/151334 PCT/US2012/036199

What is claimed is:

1. A method for decompressing compressed variable length instructions, the method
comprising:

fetching compact fixed length ins;ructions from a system memory configured to store
compressed variable length instructions, wherein each compact fixed length instruction
comprises an X-index and a Y-index;

fetching for each compact fixed length instruction an X-bit pattern from an X memory
using the X-index and a Y-bit pattern from a Y memory using the Y-index; and

combining the X-bit pattern with the Y-bit pattern based c;n a mix mask associated with
each compact fixed length instruction into a decompressed variable length instruction, wherein a
format length of the decompressed variable length instruction is determined by the associated

mix mask.

2. The method of claim 1, wherein the format length of the decompressed variable

length instruction includes a 32-bit format length and a 64-bit format length.

3. The method of claim 1, wherein the system memory includes a main memory and

a level 2 instruction cache. -

4. The method of claim 1, further comprises:
fetching each compact instruction from a level 2 instruction cache in response to a miss

in a level 1 instruction cache.

5. The method of claim 4, further comprises:

storing each decompressed variable length instruction in a level 1 instruction cache.

44

WO 2012/151334 PCT/US2012/036199

6. The method of claim 1, wherein each compact fixed length instruction further

comprises a mix mask index.

7. The method of claim 6, wherein the mix mask associated with each compact fixed

length instruction is selected from a mix mask memory using the mix mask index.

8. An apparatus for translating compressed instructions stored in a virtual memory
system, the apparatus comprising:

a paged instruction cache configured to store pages of compressed instructions
intermixed with pages of uncompressed instructions; and

an instruction.translation look aside buffer (TLB) configured to store an address

translation entry that identifies a page in the paged cache as storing compressed instructions.

9. The apparatus of claim 8, wherein a bit field in the address translation entry

indicates the page in the paged cache as storing compressed instructions.

10. The apparatus of claim 9, wherein the bit field further indicates a mix mask

appropriate to use in translating the compressed instructions at an identified page.

11. The apparatus of claim 8, further comprising:
a translation decoder configured to decompress compressed instructions, the translation
decoder placed between the paged instruction cache and a lower level instruction cache

configured to store uncompressed instructions and decompressed instructions.

45

WO 2012/151334 PCT/US2012/036199

12, The apparatus of claim 11, wherein the translation decoder comprises:
a compressed instruction decoder configured to decompress compressed instructions; and
a decompression buffer configured to store the decompressed instructions in preparation

for storage in the lower level instruction cache.

13. The apparatus of claim 11, further comprising:
a bypass circuit configured to pass decompressed instructions from the translation

decoder directly to a processor pipeline.

14. A system for translating compressed instructions to an executable format, the
‘system comprising:

a level 2 cache configured to store an X-index and a Y-index for each compressed
instruction of programA code;

a translation unit configured to rc?ceive compressed instructions from the level 2 cache,
for each received compressed instruction to select an X-bit pattern and a Y-bit pattern from a
translation memory using the X-index and the Y-index, and to use a program specified mix mask
for combining the selected X-bit pattern and Y-bit pattern into a native instruction format; and

a level 1 cache configured to store the native instruction format for each compressed

instruction.

15. The system of claim 14, wherein the level 2 cache is partitioned into a first set of
pages that store instructions in a native instruction format and a second set of pages that store the

compressed instructions.

46

WO 2012/151334 PCT/US2012/036199

16. The system of claim 14, further comprising:
an instruction look aside buffer comprising entries that identify a page in the Level 2

cache contains compressed instructions.

17. The system of claim 14, wherein the program code is stored in the L2 cache in an

implied encryption format.

18. A meth.od of determining a mix mask for efficiently translating compressed
instructions, the method comprising:

breeding pairs of mix masks represented as genes from a seed population of mix masks to
produce pairs of offspring mix masks; |

mutating the offspring mix masks to producé mutated offspring mix masks that update
the seed population; and

determining a r'nix mask from the updated seed population that provides a high level of
compression, wherein patterns of bits are combined according to the determined mix mask to

translate compressed instructions of a program to executable form.

19. The method of claim 18, wherein breeding further comprises:

randomly selecting a crossover point in a pair of mix masks identified as parent A and
parent B; and

exchanging a ﬁghtmost set of bits starting from the crossover point from parent B with

parent A to produce a pair of offspring mix masks.

47

WO 2012/151334 PCT/US2012/036199

20. The method of claim 18, further comprising:

randomly selecting breeding based on a random frequency of selection.

21. The method of claim 18, wherein mutating further comprises:
randomly flipping an individual bit in one of the pair of offspring mix masks to determine
a mutated offspring mix mask; and

replacing a mix mask in the seed population with the mutated offspring mix mask.

22. The method of claim 18, wherein the program includes boot code, operating

system code, and multiple application programs.

23. The method of claim 18, further comprises:
determining a fitness level for each mix mask in a seed population using a current cost of
translation hardware associated with each mix mask, wherein a fitness level of a mix mask

represents a level of benefit for providing a high level of compression.

24. The method of claim 23, wherein the current cost of translation hardware is based

on an X-index and Y-index memory, an X pattern memory, and a Y pattern memory.

25. The method of claim 23, further comprises:
selecting an initial seed population of mix masks to include randomly selected mix masks
and previously used mix masks which had a high fitness level for a previous program having

instructions that are similar to the instructions used in the program.

48

WO 2012/151334 PCT/US2012/036199
1/11

100
AN
190 == 190
140 150 '§E§7 . 140

FIG. 1

PCT/US2012/036199
2/11

WO 2012/151334

P L L L L T L T T T

R isistsstietieieeisetutts ¢ 'DId
“ """""
surpadig uonnosxy m ST mmTmmmoooomomoooooooooooooooooooooooooooe- .
~ 7y | m Ju3)u0d passardwod sa1eatpu] - N\
pec 1 h
LA
WL 7 m salqeL
zcz”’ 19p03:d 1D m m dutposaq
osz” ’ " m 0zt [00L
) ! © uone[sue1], UOTjEULIOJU]
gz m “ Yorqpasg 9[yo1d
TITSORTNTY //,) !
%//V/%%m%/// | soe”]
97z b !
A///////// A “ } *
MRS (
vee’ ! vsIoaneu | YU
NI N) " dqemndvxe AHO:QEOU
DRI
J '
e 1/
A
J

///gowsem /
14! W/N///////////MM

SoLIBIqI]
‘apo)) 221N0Yg

SUOI}09S

T e T D RGP P D D G R D G P S T WS WD S P R R R v P S R D EE G G T TR W YR W W W WP W W e WS

PCT/US2012/036199

WO 2012/151334

3/11

¢ DI4
syq ped def1aA0 .,
x1321d X Aq payynuapl uolelou XoH

fasaiesﬂl fcwméw&é WHSYIIVAX0 (d°V°6°8)0046X0 <— 58&%&

)\ J \ J L
Y Y Y Y Y
0¢ _ v0€ 80¢ 90¢ (4}
oSy 8T «.::::-m)
..... I 1 1 wsned-Ay -80€
Soo 010 : S: 011)
\J.“.."..o.-w 000 w.&c:::.w:-m:m i ﬁ.:amm h
_ | SV ; : :] woned-xy 90¢
O lgavies 0 0. d i 6 ;
L : hie
: : ssaxdwo)
oooo ooS :: :: oooo ooS :: :: Agvxmaé—E r\vom
.0 8 d d 0 8 d d ._
91¢ m Soo oSo Soo oooo S: o:o :: SE v uononsuy |
ssa1dwo29(]) - 70¢
v 0 [4 I 0 a 9 d 6 ;
00¢

PCT/US2012/036199

WO 2012/151334

4/11

ooy

¥ "DId
surjadig uonnaaxy TR,
A
pez | L T0€
T T Troname] oo
' ' assardwona ‘
===== Z . P 2°d - 1Th
0z t 61v-" 9Tz 4
4)
na6 NqL
IPUIqQUIOD) — "
1 | 1 ze | 19
T ~-80€
o owsvaxo e | L S (4 K
\ ————el -
90e! | 800d6%0 |4 owv ce | L9
_ 2 <
POE~ H P42 DL
m-—--C======= <] L~
| 081084%0 DI Y S N
0 Klowo A 0 WWOBWS Aowep X ¢t | O
viy] 91y (434 \ XapuJ A Xapu] X -z0p
ayoe) 11
N | N y
(ve1) A xopu]) X xpur = | 5 F Forsm
o1v- 80~
19p023 1D £0b - ayoe) 71
osz” fouay vz’

urejy

PCT/US2012/036199

WO 2012/151334

5/11

¢ DA
61¢ 81¢ L1S 91¢ SIS v1¢
_\llﬂ ||||| === ———— i i i
| [dwf]x [dwf]x [douz]x [douz]x [ppe]x [ppelx “
L _)
v%\l
SAON 2Anisuas uonisod paiols
M SNAZY = €419 JO 199oed MITA Passaidwod v
60¢ 80¢ LOS 90¢
i, it I fm———————— e n_
" JNNS dON dON aav |
- e e e e e e e e e e o /
NOm\l

00§

SHQSTT = p4SNAZE JO 3930ed MITA 15 V

PCT/US2012/036199

WO 2012/151334

6/11

9 'Ol
§79 79 £79 79
————-= == it et === N
[s1015] X [e1035]X [dout g7 doug] X [dout™ g7 doug]x _
voo\l . SJdON 2ansuas uonisod
PAPOIUD YIIM SNQTE = T4SNAY] JO 130 MITA Passaiduwiod y
619 819 L19 919 S19 719
. nleili i, B , I , TIJ_
“ [dout] X [dout]x [a1035] X [21038]X [douz] X [douzlx | |
- - - - - __ - _____-__—__— - __-—————(/—F/——(——— /
£09 SdON aamsuas uorsod
Pa103s Ui SNqZY = €,SNA9T JO 198 MITA PIssaidwiod v
609 809 LO9 909
i, nlsldiii , i === == nn
“ dON 2101g dON dON _
- —-—-«—-—_——- Y- Q- - - - - - _-_ - (T J
mookl
\\ SUQYTT = p4SNQTE JO 19x9ed M]TA PU0dss v
009

PCT/US2012/036199

WO 2012/151334

7/11

00L

N

L01L

-60L

-80L

dON 1S/a1 anv N1V N ST IV IV
[onuo) dON v N1V DO N TV 1V
dON dON v N1V NZ TV IV
-Jonuo) 1S/a’1 dON INTV D STN IV

dON 1S/a1 dON 1N7TV. N STN IV
[onuo) dON dON 1NV D NT IV
dON dON dON INTV NE 1V
[onuo) LS/a’1 v dON D ST IV N

dON L1S/a v dON N ST ZV N
jonuo) dON inv dON DN IV N
dON dON inv dON NT TV N
[onuo) LS/a’1 dON dON D ST Nt
CdON __I__dON _ _[__ dON_ _ _| _ _ dON_ _ _|___ NV __Fh
JoIS [onuo) | 10[S LS/A'1)0IS TN'IV. OIS INTV | dON Inofer]
non\\ ooN\\ monx\ vou\\ Noh\\

PCT/US2012/036199

WO 2012/151334

8/11

8 DId

608 808 L0S8 908
Foooo Fom o Pt po-ooo—’ SN
| (1d J)wumay dON dON (0'oboduo-ig ||
_ - - - - - Y Y- Y - Y - - e —_ v

008

WO 2012/151334 PCT/US2012/036199
9/11

900

\\

Program 902
Instruction stream

904

Examine program instruction stream for a
sequence of two or more instructions
according to a parameter

~906

Have
two or more instructions
been found to meet the
parameter?

f908

Replace the two or more instructions by a
selected type of layout instruction

l f910

Compress the selected type of layout instruction to
an X compressed field and a Y compressed field

FIG. 9A

WO 2012/151334 PCT/US2012/036199
10/11

950

. Compressed 952
Instruction stream

954

Decompress a received X compressed field anda’Y
compressed field to a selected type of layout instruction

[956

Replace the selected type of layout instruction by two or more
instructions according to a decoding of the layout instruction

/958 .

Execute the two or more instructions

FIG. 9B

PCT/US2012/036199

WO 2012/151334

11/11

0001

8TT

001~

€001~

01 "DI4
w ® o & o
(™
mmo_/ vaJ mmo_// Nmo_/
[onuop LS/ aTv 108\ 4
IIIIIIIIIIIIIIIIIIIIIIIIIIIII —
mooTo_ wney dON | JdON renby aredwo) |
L Imamvo_l\l - IvMo_l\r - I%/#l B ﬂmlmoﬂ - ,ﬂmumo.ﬂ - oazooxm_\
per- omo_ﬁﬁ/o/oo,
wnax doug duo
8101~ 9p023(]
gz % auradid 4D
226%
(A
, _ 7/
8001~ ’ _|I|'\ Iaul DEOU J
101~ v101- A }
21310000 |
NN 21eudoaddy KIowoN A AIow X L Ym
L 1101 0101 .19p023(J HU\
. BAMMM/%V
9001 ~, L001-Rcd
NN
2001~ [wmar doug duwojx . [wingar douz dun]y - 1777 ‘Asowapy

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/036199

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

page 1, line 12 - line 35
2-4

figures 5-8

figures 32,35

A WO 2009/061814 A2 (UNIV FLORIDA [US];
MISHRA PRABHAT [US]; SEONG SEOK-WON [US];
BASU KANA) 14 May 2009 (2009-05-14)

page 7, line 37 - page 8, line 34; figures
page 9, line 22 - page 10, line 27;

page 27, line 36 - page 29, line 16;

X US 6 199 126 B1 (AUERBACH DANIEL JONATHAN 8,9
[US] ET AL) 6 March 2001 (2001-03-06)
A column 6, 1line 56 - column 7, Tine 19 1-7,

10-25
1-25

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

4 September 2012

Date of mailing of the international search report

19/09/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Thibaudeau, Jean

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/036199

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

SEOK-WON SEONG ET AL: "Bitmask-Based Code
Compression for Embedded Systems",

TIEEE TRANSACTIONS ON COMPUTER AIDED DESIGN
OF INTEGRATED CIRCUITS AND SYSTEMS, IEEE
SERVICE CENTER, PISCATAWAY, NJ, US,

vol. 27, no. 4, 1 April 2008 (2008-04-01),
pages 673-685, XP011206308,

ISSN: 0278-0070

the whole document

1-25

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/036199
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6199126 Bl 06-03-2001 NONE
WO 2009061814 A2 14-05-2009 US 2010223237 Al 02-09-2010
WO 2009061814 A2 14-05-2009

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - wo-search-report
	Page 63 - wo-search-report
	Page 64 - wo-search-report

