UFFICIO FEDERALE DELLA PROPRIETÀ INTELLETTUALE

Brevetto d'invenzione rilasciato per la Svizzera ed il Liechtenstein Trattato sui brevetti, del 22 dicembre 1978, fra la Svizzera ed il Liechtenstein

BLIOTAL

(ii) 639 239

TASCICOLO DEL BREVETTO A5

2 Numero della domanda: 3117/80

73 Titolare/Titolari: Giza S.p.A., Bagnolo in Piano/Reggio Emilia (IT)

(22) Data di deposito:

23.04.1980

(30) Priorità:

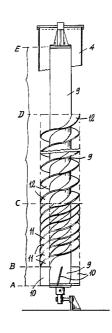
09.05.1979 IT 22489/79

(72) Inventore/Inventori:
Vladimiro Pozzi, Bagnolo in Piano/Reggio Emilia
(IT)

24 Brevetto rilasciato il:

15.11.1983

45 Fascicolo del


brevetto pubblicato il: 15.11.1983

Mandatario: Scheidegger, Zwicky & Co., Zürich

54) Fermentatore per liquami zootecnici.

(5) Il fermentatore per liquami zootecnici comprende un recipiente di fermentazione all'interno del quale è posizionato un organo mobile (9) per rimescolare ed agitare il liquame.

Nel fermentatore detto organo comprende almeno un tubo (4) sostanzialmente verticale nel quale sono ricavate delle finestre (5, 6, 7, 8) distribuite lungo la sua lunghezza; all'interno di tale tubo è alloggiata una coclea (9) girevole intorno al proprio asse per azione di un organo motore. Tale fermentatore è atto ad assicurare un accurato rimescolamento della massa in fermentazione, pur agitandola lentamente e portando tutte le particelle della massa a contatto con la flora microbica senza disturbare l'andamento della fermentazione.

RIVENDICAZIONI

- 1. Fermentatore per liquami zootecnici, comprendente un recipiente di fermentazione all'interno del quale è posizionato un organo mobile per rimescolare ed agitare il·liquame, caratterizzato dal fatto che detto organo comprende almeno un tubo (4) sostanzialmente verticale nel quale sono ricavate delle finestre (5, 6, 7, 8) distribuite lungo la sua lunghezza e che all'interno di tale tubo è alloggiata una coclea (9) girevole intorno al proprio asse per azione di un organo motore.
- 2. Fermentatore secondo la rivendicazione 1, caratterizzato dal fatto che detta coclea ha nella sua porzione inferiore (B, C) spire con passo più piccolo di quanto non lo sia il passo delle spire nella porzione superiore (D, C) della coclea stessa.
- 3. Fermentatore secondo la rivendicazione 2, caratterizzato dal fatto che la porzione inferiore della coclea presenta spire (11) con un numero di principi più grande rispetto a quello delle spire (12) della porzione superiore.
- 4. Fermentatore secondo la rivendicazione 3, caratterizzato dal fatto che dalla estremità inferiore della coclea sporgono delle palette radiali (9, 10) inclinate di pochi gradi rispetto alla verticale.
- 5. Fermentatore secondo la rivendicazione 4, caratterizzato dal fatto che dette finestre sono distribuite in gruppi tra di loro distanziati lungo l'asse di detto tubo.
- 6. Fermentatore secondo la rivendicazione 5, caratterizzato dal fatto che sono previsti quattro gruppi di dette finestre, ciascun gruppo di finestre essendo costituito da tre finestre tra di loro uguali ed equidistanti.
- 7. Fermentatore secondo la rivendicazione 6, caratterizzato dal fatto che la distanza che separa un gruppo di finestre dal gruppo da essa adiacente è circa pari a ¼ della lunghezza di detto tubo.

La presente invenzione ha per oggetto un fermentatore per liquami zootecnici, in particolare per liquami bovini e suini.

I liquami zootecnici, al fine di ricuperare da essi dei gas combustibili e dei fanghi fertilizzanti e, conseguentemente, per ridurre l'inquinamento derivante dal loro impiego come tali, vengono sottoposti a fermentazioni anaerobiche in fermentatori ove i liquami stessi vengono mantenuti per periodi di tempo prestabiliti, a temperature controllate, e sotto agitazione. L'agitazione dei liquami nei fermentatori ha la funzione di rimuovere tutta la massa dei liquami, per portare ogni particella a contatto con la flora microbica e per permettere la degasazione di tale massa, cioè per facilitare la liberazione dei gas (in massima parte costituiti da gas metano) che si sviluppano durante la fermentazione. L'agitazione della massa di liquame in fermentazione deve quindi essere completa ed accurata, ma non può essere violenta od eccessiva, poiché si disturberebbe l'andamento della fermentazione rallentandola od arrestandola del tutto.

Occorre poi tenere presente che i diquami zootecnici sono molto densi e che da essi tende a separarsi un fango fertilizzante: in definitiva, nel fermentatore si ha la formazione di strati di materiale a diverso peso specifico, il che deve essere per quanto possibile impedito, pur evitando un eccessivo rimescolamento di tutta la massa, per i motivi sopra esposti.

Si è tentato di utilizzare i comuni agitatori a paletta per rimescolare il liquame in fermentazione, ma i risultati sono stati deludenti: il liquame poteva essere mantenuto sostanzialmente uniforme ed accuratamente rimescolato, unicamente agitandolo molto energicamente, tanto da danneggiare la fermentazione.

Scopo della presente invenzione è quello di realizzare un fermentatore, adatto per la fermentazione di liquami zootecnici, il quale sia provvisto di mezzi atti a rimescolare accuratamente la massa del liquame, pur agitandola lentamente, portando tutte le particelle del liquame a contatto con la flora microbica senza disturbare l'andamento della fermentazione e permettendo una ottima degasazione della 10 massa stessa.

Altro scopo è quello di realizzare un fermentatore del tipo menzionato, il quale sia di semplice struttura e di basso costo di fabbricazione e di funzionamento. Questi ed altri scopi ancora vengono conseguiti con un fermentatore all'in15 terno del quale è alloggiato almeno un tubo sostanzialmente verticale nel quale sono ricavate delle finestre distribuite lungo la lunghezza del tubo stesso, all'interno di tale tubo essendo alloggiata una coclea collegata ad un motore di trascinamento a rotazione.

Al fine di rendere più chiara la comprensione della struttura e delle caratteristiche del fermentatore, ne verrà ora descritta una preferita realizzazione data a titolo puramente esemplificativo e non limitativo con riferimento agli uniti disegni in cui:

- 25 la fig. 1 è una sezione assiale e schematica di un fermentatore, e
 - la fig. 2 è la vista in elevazione assiale e schematica di una coclea costituente il dispositivo di rimescolamento e di agitazione del liquame racchiuso nel fermentatore.
- Si faccia anzitutto riferimento alla fig. 1 nella quale è stato schematizzato un fermentatore per liquami zootecnici, costituito da un recipiente 1, munito di una bocchetta 2 di introduzione del liquame, di una bocchetta 3 di scarico dei fanghi fertilizzanti, e di bocchette di circolazione, ecc., che 35 per semplicità non sono state numerate nel disegno.

Nel fermentatore il liquame raggiunge il livello indicato con la linea a tratto e punto L.

All'interno del fermentatore e coassialmente con esso è montato un tubo 4 nel quale sono ricavati diversi gruppi di 40 finestre (ciascun gruppo essendo formato da tre diverse finestre tra di loro uguali ed equidistanti), indicate coi numeri 5, 6, 7 ed 8.

Come si può notare dal disegno, le finestre 5 hanno lunghezza e larghezza maggiore delle altre e le finestre 8 sono situate leggermente al di sopra del livello L del liquame nel fermentatore. Dal disegno si può notare che i gruppi di finestre 5, 6, 7 ed 8 sono praticamente equidistanti gli uni dagli altri, e più precisamente si nota che la distanza che separa un gruppo di finestre da un gruppo ad esso adiacente 50 è circa pari ad ½ della lunghezza del tubo 4.

All'interno del tubo 4 è alloggiata una coclea che è stata schematizzata isolatamente nella fig. 2.

La struttura della coclea è alquanto caratteristica. Nella sua porzione inferiore, (nel tratto A-B indicato con una passerentesi graffa) da un fusto cilindrico 9 sporgono radialmente quattro palette inclinate a circa 10°-15° rispetto alla verticale; segue (tratto B-C) una zona in cui la coclea è costituita da un'elica a quattro principi 11 (cioè da quattro spirali avviluppanti il fusto 9); successivamente (tratto C-D) la coclea è formata da un'elica a due principi 12 (cioè due spirali affiancate avviluppanti il fusto 9); infine, nel tratto D-E, dal fusto 9 non sporgono eliche.

Mentre le palette 10 sono limitate alla porzione inferiore della coclea, si deve notare che la zona di separazione (zona 65 C) delle eliche 11 dalle eliche 12 è posizionata in corrispondenza delle finestre 5, mentre le eliche 12 si estendono fino al di sopra delle finestre 8. È poi opportuno rilevare che la coclea è collegata ad un motore di trascinamento (non rap-

639 239

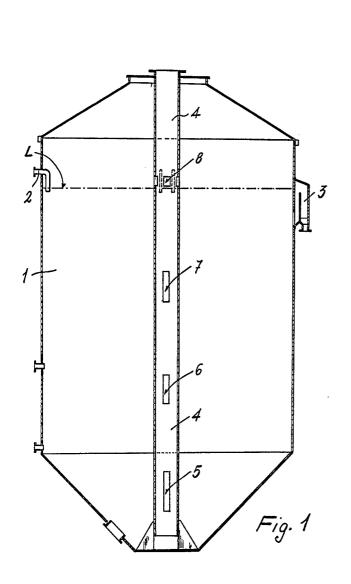
presentato) e che il diametro del tubo 4 è molto inferiore a quello del recipiente 1.

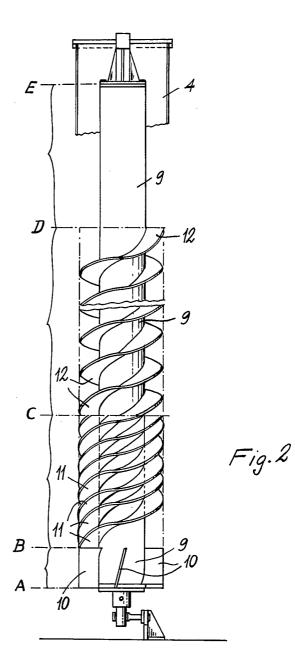
Ad esempio, si è trovato che un fermentatore di liquami zootecnici può avere le seguenti caratteristiche: recipiente 1 con diametro di 6,5 m, altezza complessiva di 12 m; tubo 4 con diametro di 0,5 m; altezza di circa 12 m; finestre 5 lunghe 1 m, larghe 0,2 m; finestre 6 e 7 lunghe 0,75 m e larghe 0,18 m; finestre 8 lunghe e larghe 0,30 m; palette 10 della coclea che si estendono in senso assiale per 20 cm; lunghezza del tratto B-C della coclea ove le spire 11 sono a quattro principi, 1,3 m; lunghezza del tratto C-D ove le spire 12 della coclea sono a due principi, 7,8 m.

Durante la fermentazione del liquame (che può durare da 10 a 20 giorni, ad una temperatura tra 30 e 40°C, preferibilmente a 35°C) la coclea viene fatta ruotare ad una velocità compresa tra 30 e 120 giri al minuto, preferibilmente a circa 70 giri al minuto.

Il liquame presente nel fermentatore è molto denso ed ha la tendenza ad avere la maggiore densità in corrispondenza del fondo del recipiente 1. Le palette 10 hanno la funzione di raschiare il materiale al fondo del tubo 4, ma più importante è la caratteristica della diversità del numero dei principi delle spire 11 e 12 nei tratti B-C e rispettivamente C-D della coclea.

Infatti, nella parte inferiore del recipiente 1, il liquame ha una grande densità e le spire 11 a quattro principi sono tali da rimescolarlo energicamente. Se la coclea fosse a quattro principi anche nel tratto C-D in corrispondenza del quale il liquame è meno denso, una tale coclea provocherebbe un rimescolamento troppo energico e veloce del liquame, compromettendo la fermentazione. È per tale ragione che nel tratto C-D la coclea ha spire 12 a due soli principi. In tale modo, mentre la coclea ruota, le spire 11 a quattro principi rimuovono energicamente e con maggiore velocità il liquame più denso, mentre le spire 12 a due principi rimuo-


vono più dolcemente la sovrastante parte del liquame. Il liquame prelevato dalle palette 10 e quindi dalle spire 11 in corrispondenza del fondo del tubo 4, viene fatto risalire velocemente e con grande portata lungo il tubo 4 stesso: siccome questa quantità di liquame è superiore a quella che può essere trasportata dalle spire 12 a due soli principi, la parte eccedente di liquame viene espulsa dal tubo attraverso le finestre 5 del tubo 4.


In definitiva, in corrispondenza della parte inferiore del 10 fermentatore, la parte più densa del liquame compie un ciclo penetrando all'estremità inferiore del tubo 4, risalendo lungo il tubo stesso e venendo in gran parte espulsa in corrispondenza della parte inferiore delle finestre 5.

Le spire 12 della coclea, a loro volta, provocano aspirazione di liquame in corrispondenza delle porzioni superiori delle finestre 5, 6 e 7 ed espulsione di liquame dal tubo 4 attraverso le porzioni inferiori delle finestre 6, 7 ed 8.

In tale modo la coclea crea, nella massa di liquame pre20 sente nel fermentatore, una turbolenza che è sufficientemente energica da portare tutte le particelle del liquame a contatto con la flora microbica, ma sufficientemente dolce da
non disturbare la fermentazione, permettendo contemporaneamente lo sviluppo dei gas combustibili (in massima parte
25 metano) formatisi durante la fermentazione. Le esperienze
che sono state fatte, hanno dimostrato che risultati ottimali
nella fermentazione di liquami zootecnici, sono possibili unicamente se tali liquami vengono rimescolati mediante una
coclea quale quella descritta.

E evidente che la coclea, anziché comprendere tratti successivi di spire con numero di principi diversi, può comprendere un numero costante di principi, ma a passo variabile e cioè col passo più corto in corrispondenza della estremità inferiore della coclea che non in corrispondenza del 35 tratto di coclea più alto.

