Office de la Proprieté Canadian CA 2323100 C 2009/09/08

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 323 1 00
Un organisme An agency of

d'Industrie Canada Industry Canada (12) BREVET CANADIEN

CANADIAN PATENT
13) C

(86) Date de depot PCT/PCT Filing Date: 1999/03/11 (51) ClL.Int./Int.Cl. GO6F 9/445 (2006.01),
(87) Date publication PCT/PCT Publication Date: 1999/09/16 GO6F 11/74(2006.01), GO6F 9/44 (2006.01),

G77C 29/00(2006.01)
(45) Date de délivrance/lssue Date: 2009/09/08 _
(72) Inventeurs/Inventors:

(85) Entree phase nationale/National Entry: 2000/09/06 GARD. BENGT ERIK INGEMAR, SE:;
86) N° demande PCT/PCT Application No.: EP 1999/001587 KLING, LARS-ORJAN, SE;
L o JOHNSSON, STEN EDVARD, SE
(87) N publication PCT/PCT Publication No.: 1999/0466/5 -
T N (73) Proprietaire/Owner:
(30) Priorité/Priority: 1998/03/12 (DE198 10 814.1) TELEFONAKTIEBOLAGET LM ERICSSON SE

(74) Agent. NICOLAESCU, SAWYER

(54) Titre : TECHNIQUE DE COPIE D'’ETAT POUR MISE A JOUR DE LOGICIEL
54) Title: STATE COPYING METHOD FOR SOF TWARE UPDATE

TAKE OVER UNIT

(57) Abréegée/Abstract:

To provide an approach to software update with scaleable disturbance there Is proposed a state copying method for a computation
system with at least two logic partitions wherein a state of new software Iin a standby partition (6, 16) Is updated to the state of old
software In an executing partition (16, 6) while continuing execution of the old software. Data Is transferred from the executing
partition to the standby partition in a scaleable way and as soon as the same state Is achieved for the standby partition (6, 16) and
the executing partition (16, 6) the execution Is switched to the new software. This allows to scale the degree of disturbance due to
the software update to what Is deemed suitable.

SENSSENN 57 7 7

I*I - - o, B e
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca oric B w omE
OPIC - CIPO 191




CA

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

02323100 2000-09-06

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
GOG6F 9/44

PCT/EP99/01587

(21) International Application Number:

(22) International Filing Date: 11 March 1999 (11.03.99)
(30) Priority Data:
198 10 814.1 12 March 1998 (12.03.98) DE

(71) Applicant (for all designated States except US): TELEFON-
AKTIEBOLAGET LM ERICSSON (publ) [SE/SE]; S-126
25 Stockholm (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GARD, Bengt, Erik,
Ingemar [SE/SE}; Aftonviigen 129, S-146 31 Tullinge (SE).
KLING, jan [SE/SE]; Kummelvigen 17, S-152
57 Sodertilie (SE). JOHNSSON, Sten, Edvard [SE/SE];
Lysviksgatan 3, S—-123 42 Farsta (SE).

(74) Agents: VON FISCHERN, Bemhard et al.; Hoffmann . Eitle,
Arabellastrasse 4, D-81925 Munich (DE).

(11) International Publication Number:

(43) International Publication Date:

WO 99/466735

16 September 1999 (16.09.99)

(81) Designated States: AE, AL, A |
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
L

N
N
U
-
=
2
3
j
c
>
2
7
R
<
Z
3

ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ], CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TGQG).

Published

Without international search report and to be republished
upon receipt of that report.

(54) Title: STATE COPYING METHOD FOR SOFTWARE UPDATE

soEA |
40

TAKE OVER UNIT

(57) Abstract

/2

14
(18
18

(oo ] [E]

To provide an approach to software update with scaleable disturbance there is proposed a state copying method for a computation
system with at least two logic partitions wherein a state of new software in a standby partition (6, 16) is updated to the state of old software
in an executing partition (16, 6) while continuing execution of the old software. Data is transferred from the executing partition to the
standby partition in a scaleable way and as soon as the same state is achieved for the standby partition (6, 16) and the executing partition
(16, 6) the execution is switched to the new software. This allows to scale the degree of disturbance due to the software update to what is

deemed suitable.

A S SAA SBA

P gy S VTV V v\~ N



| CA 02323100 2000-09-06
__ —

10-02-2000 99911773

FIELD OF INVENTION

The present invention relates to the field of software
update, and in particular to the field of function change 1in
computer based systems with freguent updating due to newly
inserted functionality and/or correction ol faults according
to the preamble of claims 1, 12, 15, and 29.

BACKGROUND OF INVENTION

The evolution of data processing eguipment and software
technology leads to an increasing demand for methodologies toO

update installed software.

In WO94/01819 there is described a system Ior replacement of
software in an operating computer systeft™Without disturbing
the ongoing activities of the computer system. During an
initial phase, the system directs all traffic to the old
software version or change unit. During a loading phase the
system receives a new soitware version and data change
information. The data change information receives semil-
permanent data from the change unit and transfers that data
and associated updates continuously throughout all phases of
the replacement. During a test phase the system first directs
rest traffic through the new version and then sample traffic
if the test trafs® is successful. If the test phase 1s

successful, the completion phase directs all new traffic to

AMENDED SHEET



| CA 02323100 2000-09-06
r—

10-02-2000

99911773

la

¢

the new version and only old traffic that has been utilizing

data change information.

Another usual methodology toO achieve this goal is to stop the
execution of the installed software, load the new software
and then start the new software. Using this approach, no
internal data is transferred between the old and the new
software. Also, with this method all the established services
1re lost and the service is completely stopped during the
load and start of the new software. Currently, this method 1is
typically used for, e.g., work stations or personal

computers.

( .. to be continued on page 2)

AMENDED SHEET

R a— N SR




CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

Another approach to the probiem of software update has
previously been described in EP-A-0 201 281. However, this
solution does not allow any disturbance free data update
function since any necessSary data and message conversion 1S

performed through the newly installed software itself during

startup.

Further, in US-A-5 155 837 it is proposed to switch the input
of data for new services to the new software in a first step.

Further, when the service in progress in the old software 1s

from the old version to the new version. However, this
solution may only handle software that handles services with
a very short duration since the software according to the old

version must first be finished before the new software

version is fully operative.

Therefore, in all known approaches there is some kind of
disturbance to the operation of a system in case a software

update is performed. This disturbance can range from a total

system shutdown during hours Or possibly days to a short

disruption, possibly only with respect to some limited parts
of the total system.functionality,during_a few-seqonds.
Conceivably, there may be no disturbance at all, although

this is usually not the case in real existing systems like,

e.qg., relecommunication exchanges.

SUMMARY OF INVENTION

In view of the above, an object of the invention 1s O
provide an approach to software update that may be performed

with minimum disturbance and scaleable down to virtually no

disturbance at all.



CA 02323100 2000-09-06

- = — ——— Y= —

—_—
10-02-2000 99911773

According to the present invention as defined in claim 1,
this object is achieved through a software processing device
of the type with update functionality, comprising memory
means subdivided into an execufing memory partition means
storing a first group of software modules and related data,
and a standby memory partition means storing a second group
of software modules and related data; update control means
adapted to update a state of new software in the standby
memory partition means to the state of old software in the
executing memory partition means during continuation of
execution of the old software; and transfer means for
scalable transfer of data from the execution memory partition

means to the standby memory partition means.

Therefore, the system to be upgraded 1is divided into two
logical partitions. These partitions must not be implemented
using a processor pair. Here, according to the invention, one
partition referred to as the executive partition contains the
old software that performs ordinary execution. Furthér, the
new software is loaded into the other partition referred to
as standby partition without disturbing the execution of the
executing software. The software 1in the standby partition 1s
updated to the same state as the software in the executilng
partition so that the new software in the standby partition
can take over the ordinary program execution without any
disturbance. Here, this is performed by copying data from the
executing partition. Since the old software and the new
software are not identical, data may have to be converted
into a representation suitable for the new sorftware.
According to the present invention, this is performed
parallel with and without disturbing the ordinary software

execution continuing in the executing partition.

( .. to be contin®™® on page 4)

AMENDED SHEET



B T B R A T T S T S L T p——

CA 02323100 2000-09-06

WO 99/46675
PCT/EP99/01587

Also, in case it is impractical to transfer all data of the
old software according to the present invention, it 1is
possible to partly transfer data from the old software. This

allows to scale the degree of disturbance caused through the

software update in the system.

According to a preferred embodiment of the present invention
the update control means further comprises a switching means
and a state comparison means to switch to the execution of
new software as far as the same state is detected for the

standby partition and the executing partition by the state

comparison means.

Thus, according to the present invention, the switch over
from the old software to the new software requires that the
complete state as represented in all data of the old software
is copied and, 1f necessary, simultaneously converted, to the
new software. Thus according to the present invention it 1s
possible to continue execution of the new software with no
disturbance at all. Further, in case there exist data between

programs in the old software that is not processed at the

- #ime of switch over it may be copied and, if necessary,

converted before the start of the new software.

According to a preferred embodiment of the present invention
to each memory partition there 1s assigned at least one take
over means to carry out default actions in case data related
to old software is only partly transferred such that special

take over means is activated immediately after switch over..

Here, the special takeover means are activated immediately

following the switch over and perform default actions which



CA 02323100 2000-09-06

e e ——————— et P S e e e

“ 10-02-2000 99911773

do not require a complete input of data. While in this case
there may be some disturbance to the extent how much data
from the old software is missing according to the present
invention it may be scaled according to what 1is deemed

suitable through the incorporation of default actions.

According to yet another preferred embodiment of the present
invention the update control means 1instructs continuation of
the old software in the executing partition in case an error
situation occurs before switch over or performs a switch back
so that the partition with the old software becomes again the
executive partition in case an error during execution of the

new software occurs after switch over.

Here, 1in case aﬂ error situation occurs before switch over
the upgrade of the software 1is terminated and the ordinary
software execution continues with the old software 1in the
executing partition. To the contrary, 1in case of an error
during the execution of the new software after switch over a
switch back is performed so that the partition containing the
old software becomes the executive partition again. Here, the

switch back procedure may include data copy, if necessary
convert, in the same way as the switch over procedure.

Therefore, the switch back procedure, too, may be performed
with limited or no disturbance. Alternatively, it may be
performed without any data copy and conversion through

running a recovery procedure which typically will lead to

some disturbance.

Further, accbrding to the present invention as defined in
claim 15 the object outlined above is also achieved with a
state copying method for a computation system with at least
two logic partitions, comprising the steps updating a state

of new software in a
'

( .. to be continued on page 6)

AMENDED SHEET




CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

standby partition means to the state of old software in an

executing partition means while continuing execution of the

old software,
the same state is achieved for the standby partition

switching to the execution of new software as

far as
and the executing partition.

Therefore, using the method according to the present
invention, it is possible to achieve a highly efficient and

disturbance free update of software even also if there 1is old

software that handles services with long duration present.

According to a preferred embodiment of the inventive method

the updating step further comprises an initialization substep

executed parallel to and without disturbance of the old

software running in the executing partition.

Therefore, the updating of the new software is eventually

followed by initialization routines. Although this may be

partly done earlier, €.g., immediately after loading of the

new software, part of this initialization may be dependent on

data from the old software and therefore may not be performed
in advance. The initialization of the new software 1s
executed in parallel with minimum disturbance of the ordinary
software execution beilng continued in the executing
partition. As the state of the executing partition 1s
continuously changed the disturbance free-update process
according to the present invention must be performed also

continuously in parallel with the initialization.

According to yet another preferred embodiment of the

inventive method the updating step 1s executed repeatedly as

background process until switch over to the new software TO

keep track of the changing state in the executing partition.



CA 02323100 2000-09-06

" 10-02-2000 99911773

If the complete state as represented and all data of the old
software is copied, 1f necessary converted, to the new
software, 1t 1s possible to continue execution in the new
software with no disturbance at all. In case there are data
exchanges between programs in the old software, which have
not been processed at the time of the switch over, they also

have to be copied and, 1f necessary, converted.

According to yet another preferred embodiment of the
inventive method data related to old software is only partly
transferred and a special take over step is executed
immediately after switch over to perform default actions not
requiring complete 1input of data. In this case, there may be
some disturbance. The extent of this disturbance is dependent
on how much of the data from the old software is missing.
Advantageously, it can 1n principle by scaled according to

what 1s deemed suitable.

Further, according to the present invention as defined in
claim 29 there is provided a state copying method for a
distributed computation environment comprising one main
processor and at least one remote processor, composing the
steps updating new software into a first/standby memory
partition of the remote processor, updégg;aaa state of the
new software to achieve a match with the state of the main
processor while continuing execution of software in the main
processor, and switching the execution of software in the
remote processor to the new software as soon as a match with

the state of the main processor is achieved.

This modified method according to the present invention

allows to achieve an update of software modules involving

( .. to be continu®®on page 8)

AMENDED SHEET



CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

other parts than software modules stored in a specific

software processing device.

Tt also enables the update not only of software but also of
hardware. In particular, one could consider switching over
the execution of software to another software processing

device during the hardware update of a software processing

device.

still further, one could consider a combined update of
software and hardware at different software processing

devices by first changing the hardware parts and then

changing the software parts using the method according to the
present invention. Here, not all the components have to be
changed at the same time and consequently there is no need

for a global restart of the distributed system.

BRIEF DESCRIPTION OF FIGURES

In the following preferred embodiments of the present

invention will be described with respect to the appended

drawing in which

Fig. 1 shows a schematic diagram of the software

processing device according to the present

invention;

Fig. 2 shows a schematic diagram of the update control

unit shown in Fig. 1;

Fig. 3 shows a diagram for the state copying method

according to the present invention;



CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

Fig. 4 shows a flowchart acéording to the state copying

method shown in Fig. 3;

Fig. 5 shows a state diagram to represent the status of

one partition in the software processing device;

Fig. 6a shows a parallel synchronous modus for execution of

software in both partitions according to step 1

shown in Fig. 3;

Fig. 6b <hows the status in both partitions according to

step 2 shown in Fig. 3;

Fig. ©cC shows the status in both partitilons according to

step 3 shown in Fig. 3;

Fig. 6d shows the status in both partitions according to

step 4 shown in Fig. 3;

Fig. 6e shows the status in both partitions according TO

step 5 shown in Fig. 3;

Fig. 7 shows the inventive approach to the update of
software in a distributed environment with a remote

processor having a preloading capability;

Fig. 8 shows the update of software 1in a distribute
computing environment with a remote processor

without impact on the compatibility of the

interface thereto after the software update;

Fig. 9 shows the update of software in a distributed

computing environment with a remote processol with



CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/015887

10

an impact on the cbmpatibility of the interface

t+hereto after the software update;

Fig. 10 shows the inventive approach to the update of

hardware for a main processor 1n a distributed

computing environment;

Fig. 11 shows the inventive approach to the update of

hardware and software in a remote processor of an
distributing computing environment without impact

on the compatability of the interface thereto after

the update; and

Fig. 12 shows the inventive approach to the update of
hardware and software in a remote processor of an
distributing computing environment with impact on

the compatability of the interface thereto after
the update.

DESCRIPTION OF PREFERRED EMBODIMENTS

Fig. 1 shows a schematic diagram for an embodiment of the
software processing device according to the present
invention. Here, the software processing device according toO
the present inventlion has two partitions A and B,
respectively. For the partition A there is provided a first
processor unit 4, a first memory partition 6 and a first
take-over unit 8. The first memory partition 1is divided 1into

2 first data storage section 10 and a first software storage

section 12.

Further, the same structure 1s chosen for the B-side

comprising a second processor unit 14, a second memory



mriYaa

CA 02323100 2000-09-06

‘WO 99/46
675 PCT/EP99/01587

11

partition 16, and a second takeover unit 18, respectively. As
for the A-side, the second memory partition 16 is divided

into a second data storage section 20 and a second software
storage section 22.

As shown in Fig. 1, to coordinate the update of software

coupling the first memory partition 6 to the second memory
partition 16.

As shown in Fig. 1, the first and second takeover units 8 and
18 are assigned to the first and second memory partition 6
and 16, respectively, to carry out default actions in case
data related to old software is only partly transferred. In
particular, such default actions are related to a new
software not requiring a complete input of data and may

consist of, e.g., initialization of data variables to a
specific value.

As outlined above, this allows that the transfer unit 26
transfers data on a scaleable level since data not
transferred may be initialized through the take over units 8
and 18, respectively. Also, the transfer unit 26 either
copies data unchanged or after conversion into a new
representation for the new software under control of the
update control unit 24. Here, the conversion of data may be
carried out parallel with and without disturbing the section
of old software in the executing partition. Also, the update
control unit 24 and the transfer unit 26 are adapted to

repeat the data transfer in case the executing software




CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

12

writes data already transferred previously during the further

execution of the old software in the execution partition.

Also, the update control unit 26 1is adapted to instruct a
continuation of the old software in the executing partition
in case an error situation occurs before switch over. Another
option would be switch back such that the partition with the
old software becomes again the executed partition in case an

error during execution of the new software occCurs after

switch over.

As shown in Fig. 2, the update control unit achieves an
update which may be executed 1in a bi-directional way where
either the memory partition 6 and 16 serves as executing
partition during the update and the other partition 16, ©
serves as standby partition into which the new software 1s
loaded. During this update process data is transferred from

the executing partition to the standby partition via the

transfer unit 26 in a scaleable way.

To achieve scalability the update control unit 24 shown 1n
Fig. 1 is structured as shown 1in Fig. 2. The update control
unit 24 comprises a state comparison unit 28, a transfer
control unit 30, a switch over unit 32, a memory
administration unit 34, and a software loading unit 36,
respectively. The state comparison unit 28 allows to compale€
the state of data and software i1n the two memory partitions 6
and 16. Further, the transfer control unit 30 1is provided toO
achieve a scaleable, flexible, transfer of data or software,
respectively, between both memory partitions 6 and 16. The
switch over unit 32 switches the execution of software
between the side A and the side B or vice versa as Soon as

the state comparison unit 28 detects the same state for the



CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

13

execution partition and the standby partition. The memory
administration unit 34 is provided to allocate, deallocate or
compact memory in either of the memory partitions 6 and 16
and also to maintain reference information therein. Finally,
the software loading unit 36 serves to load new software into

the software storage section 12, 22 of each partition 6, 16.

While above the basic structure of the software processing
device according to the present invention has been described
with respect to Fig. 1 and 2, in the following the
functionality of these components as well as their
interrelation will be described with respect to Figs. 3 to 7.
While according to the following description the update of
software for the B-side is described this is not to be
construed as limiting the invention which may be executed

also in the reverse direction to the A-side.

Fig. 3 shows the basic steps underlying the execution of the
state copying method according to the present invention. AS
shown in Fig. 3 in a step 1 both partitions are executing a
parallel synchronous modus and execute, e.g., the same

software.

Further, step 2 shown in Fig. 3 relates to the loading of new
software in the standby partition while the execution of old
software in the executing partition is continued. Further,
step 3 performs the copying of data from the executing
partition to the standby partition. As shown on the lower
part being related to this step 3, copy data may also be
converted in the standby partition into a representation
suited for the new software. Here, the copying and conversion
of data is executed parallel with and without disturbing the

execution of old software in the executing partition. Also,



CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

14

according to the present invention, the copying and

conversion of data may be executed through dedicated software

or hardware.

As shown in Fig. 3, in step 4 there is carried out an
initialization also executed in parallel to and without
disturbance of the old software running the 1in executing
partition. Here, the initialization step is either carried
out immediately after loading the new software into the
standby partition in step 2 or as soon as possible in case 1t

is dependent on data copied from the old software in step 3.

As already outlined above, data being related to old software
may only partly be transferred and special initialization
steps are executed before or immediately after switch over tO

perform default initialization actions not requiring complete

input of data from the old software.

As shown in Fig. 3, as soon an appropriate state is achieved
in the standby partition step 5 switching to the execution of
new software is executed. Here, it should be noted that the
switch over may be executed with respect to single software
modules immediately after the same state 1is achieved for
related software modules in both memory partitions. In case
there exists data related to old software that 1is not
transferred at the time of switch over due to only a partial
transfer of data this data may still be transferred, if

necessary, before the start of the new software.

Further, as shown in Fig. 3 with respect to step 3 and step 4
the copying process between the two memory partitions 1s
continued also during the initialization step for the standby

partition. The reason for this is that the old software



CA 02323100 2000-09-06

'WO 99/46675 PCT/EP99/01587

15

continuously executing during the update process may write to
data already being transferred previously. Thus, the update
process is executed repeatedly as background process until
the switch over to the new software to keep track of the
changing state of the executing partition. This repeated
updating process may be executed parallel to the

initialization step for the standby partition.

Fig. 4 shows a flowchart according to the update process
explained with Fig. 3. In particular, it may be seen that
after a step 1 and 2 for loading new software and
initializing storage being related thereto a background
process is continuously repeated until the switch over takes
place. Here, it should be noted that the background process
may also be implemented through splitting it up into a
plurality of background processes. In case the same state 1s
detected for old and new software an instant switch over
takes place followed by an interrogation to determine whether
data to be transferred remains and thus a loop back to the

execution of old software 1s necessary.

In the following, a more specific example for the state
copying method according to the present invention will be
described with respect to Fig. 5 and 6. Fig. 5 shows the
representation of the state of a memory partition using a
state graph and Fig. 6a to 6e show the modification of such a

state graph during the state copying method.

As shown in Fig. 5, a state in a memory partition 1s
represented using a state graph comprising nodes and edges, .
respectively. Here, typically nodes may represent different
states of data and edges represent a transfer between

different data states through the execution of software



CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

16

modules being assigned to the edges. One example would be
that the utmost node relates to input data which 1is
transferred to data suitable for further processing by an
input data processing software module. Also, nodes having TwO
edges running therebetween represent the interaction of two
software modules where output data of one software module
represents input data to the other software module and vice

versa.

As shown in Fig. 6, this representation is well suited to
represent the different steps shown in Fig. 3. In particular,
Fig. 6a represents the simultaneous parallel synchronous
modus of execution of the same software in the executing and
standby partition before the update process starts. Then, as
shown in Fig. 6b, during the loading of new software in step
2 the interaction of different software modules represented
as edges is interrupted and the loading of new software
begins. As shown in Fig. 6b, data may be subdivided 1into
different categories as already outlined above. Here, the
black nodes represent data in the new software which should
be identically copied from the old software. To the contrary,
nodes represented in white are related to data of the new
software which do not depend on the data of the old software

at all. One typical would be data that is newly introduced

due to a modification of data structures. Another category of

nodes represented in hatching relates to data requiring
conversion to be adapted to the new software. A further
differentiation, represented in grey, may be that data 1s

only partially copied or converted from the old software

using in addition the takeover mechanism to reduce the amount

of data to be transferred to the new partition. Overall, as

shown in Fig. 6c only for the last three categories data 1is




CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

17

copied and converted between the executing and the standby

partition.

The outcome of step 4 shown in Fig. 3 1s represented through
Fig. 6d. After initialization of the new software
interrelationships of the different data components are agaliln
introduced. As already outlined above with respect to Figs. 3
and 4 the state copying method according to the invention 1s
iterated in case data is rewritten by the old software during
the update process. Thus, Fig. 6d shows the situation before
the switch over where the copying/conversion is continued
also after the initialization in step 4. After switch over
takes place in step 5 these arcs representing the
copying/conversion of data are no longer present, as shown 1in
Fig. 6e. After switch over has taken place the status

corresponds again to the parallel synchronous modus described

above.

Therefore, in the state copying method the status copied from
the old software to the new software and eventually the total
state is defined in the new as well as in the old version. In
principle, the execution can continue in any of the soitware
versions since the state is complete for both versions.
significant for the state copyilng method is that there 1is
never a concurrent execution of software going on in the
executing partition and the'standby partition except for the

update function itself.

According to the inventive state copying method it is also
possible to terminate the update process before the switch
over in case an error situation occurs and to continue with
the execution of the old software. Also, it is possible toO

further execute a switch back in case an error OCCUrS during

B AR A B e e e B e e A A

A AR SRS AR AS A8 Al




CA 02323100 2000-09-06

\44
O 99/46675 PCT/EP99/01587

18

an execution of the new software after switch over so that
the old software becomes executed again. This switch back may
include data transfer with data copy and convert of the type

outlined above.

While in the above, the state copying method of the present
invention has been described with respect to a software
processing device in the following the application of the
state copying method to a distributed computing environment

will be described with respect to Fig. 7 to 12.

As shown in Fig. 7, the distributed computing environment
comprises a main processor 38 and a remote processor 40.
Typically, the main processor 38 has the structure shown 1in
Fig. 1 only partially shown 1in Fig. 7. Further, there 1s
provided a remote processor 40 that at least must have the
option to preload software into a memory partition 46 of the
remote processor 40. Alternatively, also the remote processor
40 may have the structure of the inventive software
processing device, as shown in Fig. 9. The maln processor 38
and the remote processor 40 are linked through a connection
line 42. Fach remote processor is provided with at least one
update means 44 coordinating the update in the remote

processor 40 and the interaction with the main processor 38.

Fig. 7 now shows the first case to use the inventive state
copying method within a distributed computing environment.
Here, only software of the remote processor 40 is updated
such that the new software is initially preloaded to a memory
partition 46 of the remote processor 40. To make the state
copying method work two requisites are that the remote ‘
processor 40 allows preloading soO that service is possible

during loading of the new software and that after loading



WO 99/46675

CA 02323100 2000-09-06

PCT/EP99/01587

19

data may be updated from the main processor 38. If this 1s
the case, software may be updated in the remote processor 40
without a global restart of the distributed computing
environment. To this end, once the new software is installed
in the remote processor 40, the state of the memory partition
46 in the remote processor 40 is updated to the state of the
memory partition in the main processor 38 while continuing
execution of the software in the main processor 38. Finally,
the execution of software in the remote processor 40 switch
to the new software as soon as a match with the state of the

main processor 38 1s achieved.

Further, for the state copying method fast updating of the
remote processor 40 may be necessary depending on what type€
and how much software is updated. Here, 1n case only non-
critical and/or a limited amount of software 1s updated high
updating speed requirements do not prevail. Thus, 1t may be
possible to get updating times consistent with the
interruption time for the updating process even when updating

a plurality of remote processors.

Fig. 8 shows a further case where software is updated not
only in the remote processor 40 but also in the main
processor 38 and where the update process has no impact on
the interface compatability. Here, the software update 1s
performed in two steps by first updating the software in the
remote processor 40 as outlined above and then updating the
software in the main processor 38 using the state copying
method described above. In case not all remote processSols in
the distributed computation environment are updated at the
same time there is no need for a global restart in the

system.




CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

20

Fig. 9 relates to the same case as shown in Fig. 8 with the
difference that after the update of software in the main
processor 38 and the remote processor 40 the interface

therebetween is incompatible.

In this case, the remote processor 40, too, should have the
same structure as outlined above with respect to Fig. 1 soO
that a simult;.aneous update of software in the remote
processor 40 and the main processor 38 with a modification of
the interface therebetween is achieved through simultaneously
executing the inventive state copying method in the main

processor 38 and the remote processor 40, respectively.

Here, in case uncritical parts of the distributed computing
environment are involved, the state copying method should be
used by blocking out the part in the system to be changed,
then updating the software simultaneously, and finally
deblocking the changed parts in the distributed computation
environment again. In case data must be transferred from the
old software to new software, the copying/conversion should
be done before the start and deblocking of the new software.
To the contrary, in case critical parts are involved during
the update of software, the remote processor 40 should be
preloaded with the new software in order to avoid a too long

down time of the distributed computation environment during

the update process.

Further options are that the new software in the remote
processor 40 is updated with data from the main processor 38.
Also, functions to support the transfer of data from old to

‘new software could be introduced for the remote processor 40.




CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

21

While in the above the update of software in different system
configurations has been considered using the inventive state
copying method, in the following a combined upgrade ot
hardware and software will be explained with respect to Fig.
10 to 12.

Fig. 10 relates to the update of hardware in the main
processor 38. Typically, hardware components are exchanged by
blocking out the hardware components to be exchanged, then

replacing them and finally deblocking them again.

Fig. 11 shows the next case where software is updated both 1n
the remote processor 40 and the main processor 38 without any
impact on the compatability of the interface. Further, in the
case shown in Fig. 11 also hardware being assigned to the
remote processor 40 should be exchanged. Heretofore, other
components assigned to the remote processor 40 are first
exchanged using the approach described to Fig. 10. Then, the
exchange of software both in the remote processor 40 and the
main processor 38 is realized using the approach described

with respect to Fig. 8.

Fig. 12 shows a further case for the application of the state
copying method where hardware components assigned to the
remote processor 40 are exchanged simultaneously with the
update of software in the remote processor 40 and the main
processor 38 leading to an incompatability for the software
after the update. Here, in case the hardware and software
change with respect to the remote processor 40 does not lead
to an incompatability within the remote processor 40 and with
respect to the new hardware and software components, the

hardware at the remote processor 40 is first changed and then




CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

22

the software update 1s execﬁted as outlined above with

respect to Fig. 9.

To the contrary, the situation is more complicated if the
exchange of hardware components in the remote processor 40
does also lead to an incompatability with respect to the
updated software in the remote processor. Here, 1n case the
change of hardware and software is uncritical with respect to
the performance in the distributed computation environment

the same approach as described with respect to Fig. 11 could

be used.

However, in case this hardware change is critical the
respective hardware components should be provided 1n
duplicate at the remote processor 40 and also the software
should either be preloaded into the remote processor 40
according to Fig. 7 and 8 or the remote processor 40 should
be partitioned in two sides. Another prerequisite for this
case is that the processing speed of the remote processSor 40
is fast enough. If these conditions are fulfilled, it 1s
possible to perform the combined update without excesslve

system downtime.




CA 02323100 2000-09-06

W
'O 99/46675 PCT/EP99/01587

23

I,ist of Reference Numerals

software Processing Device

2

4 A-Side Processor Unit

6 A-Side Memory Partition
8 A-Side Takeover Unit

10 A-Side Data Storage Section and A-Side Memory Partition
12 A~-Side Software Storage Section and A Side Memory

Partition
14 B-Side Processor Unit
16 B-Side Memory Partition
18 B-Side Take Over Unilt

20 B-Side Data Storage Section and B-Side Memory Partition
22 R-Side Software Storage Section and B-Side Memory

Partition
24 Update Control Unit
26 Transfer Unit
28 State Comparison Unit
30 Transfer Control Unit
32 Switch Over Unit
34 Memory Administration Unit
36 Software Loading Unit
38 Main Processor
40 Remote Processor
42 Connection Line
44 Update Means in Remote Processor

46 Memory Partition of Remote Processor

e _______________



10

15

- 20

25

- 30

39

CA 02323100 2008-04-04

24

Claims

1. A Software processing device of the type with update functionality, comprising:

a) a memory means (6, 16) subdivided into

a‘l} an executing memory partition means (6) storing a first group of software
modules and related data, and

32) a standby memory partition means (16) storing a second group of
soﬂware modules and related data,

characterized by

b) an update control means (24) adapted to update a state of new software in the
standby memory partition means (16) to the state of old software in the executing
- memory partition means (6) dunng continuation of executron of the old soﬂware and

j c) a.transfer means (26) for scaleable partial transfer of data from the executing
memory partmon means (6) to the standby memory partition means (16).

2. Software processing device according to clalm 1, charactenzed in that the update control
means (24) comprises: ' N

~ d) a memory administration means (34) to allocate and deallocate memery sections
for the new and old software and data and to maintain reference information
therefore and

e) a transfer control unit (30) to control the transfer means (26) according to
instructions for the scaleable transfer of data.

3. Software processing device according to claim 1 or 2, characterized in that the update
control means (24) further comprises a switching means (32) and a state comparison
means (28) to instantly switch to the execution of new software as soon as the same state
is detected for the standby memory pariition means (16} and the executing memory

- partition means (6) by the state comparison means {28).

- 4, Soﬂware.processing device according to one of the claims'1 to 3, characterized in that to

each memory partition means (6, 16) there is assigned at least one take over means (8, 18)

to carry out default actions in case data related to old software is only partly transferred
~ such that the take over means (8, 18) is activated immediately after switch over.

5. Software processing device according tc one of the claims 1 to 4, characterized fn that
the transfer means (26) either copies data unchanged or after conversion into a new
representation for the new software.

6. Software processing device according to claim 5, characterized is that the transfer

means (26) carries out the conversion of data parallel with and without disturbing the
execution of old software in the executing memory partition means (6).



..10

15

20

25

.30

35

CA 02323100 2008-04-04

25

1. Software processmg device accordlng to claim 5 or 6, characterized is that the transfer
- means (26) comprises a dedicated conversion means.

8. Software processing device accordlng to one of the claims 1 to 7, characterized in that

the update control means (24) repeatedly executes the update process until the switching
means (32) switches to the execution of the new software o keep track of the changlng

state in the executing memory partition means (6).

9. Software processing device according to one of the claims 1to 8, characterized in that in

case there exists data related to the old software that is not transferred at the time of switch

~over the transfer means (26) transfers if necessary, this data before the start of the new '
software. | |

10. Software processing device according to one of the claims 1 to 9, characterized in t'hat
the update control means (24) instructs continuation of the old software in the executing

“memory partition means in case an error sﬂuahon occurs before switch over.

11. Software processing device 'BCCOl'dlng to one of the claims 1 to 10, characterized in that
the switch over means (32) is adapted to perform a switch back such that the partition with

‘the old software becomes again the executive memory partition means (6) in case an error
- during execution of the new software occurs after switch over.

12. Distributed computing system of the type with update funotionality, characterized by:

a) at least one main processor means (38) selected from a plurality of processors in
the distributed computing environment to handle the distribution of processing tasks
in the distributed computing env:ronment and the interactions of the processors
comprised therein,

.b)’ at least one remote p(ooessor‘means (40) with an update means (44) to update
new software into a memory partition (46) of the remote processor means (40) such

- that, a state of the new software matches a state of the main processor means (38)
and the execution of software in the remote .processor means (40) is switched to the

new software as soon as the maich is achieved.

13. Distributed computing environment according to claim 12, characterized in that in case
the interface between the remote processor means (40} and the main processor means

(48) remains compatible after updatmg the new software into the remote processor means
(40) the main processor means (38) is implemented according to one of the claims 1 to 11

{0 achieve a combined upgrade of software in the remote processor means (38) and the

main processor means {40).

14. Distributed computing environment according to claim 12, characterized in that in case
the interface between the remote processor means (40) and the main processor means

- (38) is incompatible after software update the main processor means (38) and the remote

processor means (40) are implemented according to one of the claims 1 to 11 and
concurrently execute the software update necessary to adapt to the modified interface.



10

15

20

25

30

35

CA 02323100 2008-04-04

20

- 15. State copying method for a computation system with at least two logic partitions,

comprising the steps:

a) updating a state of new software in a sténdby partition means (16) to the state of
old software in an executing partiton means while continuing execution of the old
software, | '

b) switching td the execution of new software as far. as the same stale is achieved
- for the standby partition means (16) and the executing partition means (6)

characterized in that the Updating step a) subdivides into:
¢) loading the new software into the standby partition means (16), and

d) scaleable transfer of data from the executing partition means (6} to the
standby partition means {16).

%

16. State copying method according to claim 15, characterized in that the transfer of data
from the executive partition means (6) to the standby partition means (16) subdivides into:

e) copying of data transferred unchanged, and
f) conversion of data to be converted into a new representation for the new software.

17. State copying method according to claim 16, characterized in that the conversion of
data is done parallel with and without disturbing the execution of old software in the -
executing partition means (6). |

18. State copying method according to claim 16 or 17, characterized in that the conversion"
of data is executed through a dedicated conversion step. |

19. State copying method according to one of the claims 15 to 18, characterized in that the

updating step a) alsc comprises an initialization substep executed in parallel and without
disturbance of the old software running in the executing partition means (6). |

20. Staie copying method according to claim 19, characterized in -that the initialization

‘substep is either carried out immediately after loading the new software into the standby

partition means (16) or as soon as possible in case it is dependent on data from old
software. '

21. State copying method according to one of the claims 15 to-20, characterized in that the
updating step a) is executed repeatedly as background process until the switching to the
new software to keep track of the changing state in the executing partition means (6).

22, State copying method according to claim 19 or 20, characterized in that the updating
step a) is repeatedly executed parallel to the initialization siep.

23. State copying methed according to one of the claims 15 to 22, characterized in that in
case there exists data related to the old software that is not transferred at the time of switch
over this data is transferred, if necessary, before the start of the new software. '

24. State copying rriethod according to one of the claims 15 to 23, characterized in that in
substep d) data related to old software is only partly transferred and that a special take over



10

15

20

25

30

39

40

CA 02323100 2008-04-04

27

step is executed mmeduately after switch over to perform default actions not requiring
complete input of data. |

25. State copying method according to one of the claims 15 to 24, characterized in that in

" case an error situation. occurs before switch over the update is terminaied and the

execution of the old software in the execution partition means (6) is continued.

'26. State copying method accerding to one of the claims 15 to 25, characterized in that a

swifch back step is performed such that the executing partition means (6) with the old
software becomes again the executive partition means (6) in case an error during execution
of the new software occurs after switch over. -

27. State copying method according to claim 26, characterized in that the switch back

“Includes a data transfer with data copy and convert, if necessary, performad with limited or
no disturbance.

- 28. State copying method accordmg to claim 26 or 27, characterized in that the switch back

step includes a recovery step executed before the restart of the old software.

29. State copylng method characterized in that it is adapted for a distributed computation
system comprising one main processor means (38) and at least one remote processor
means (40) and comprises the steps:

a) updatlng new software and related data into a first memory partition means (46) |
of the remote processor means (40) in a scaleable way,

b) updating a state of the new software to achieve a match with the state of the main
processor means (38) while contlnumg execution of soﬂware in the main processor

means (38}, and

c) switching the execution of software in the remote processor means (40) to the
new software as socon as a match with the state of the main processor means (38) is -
achieved.

30. State copying method according to claim 29, characterized is that in case the interface
between the remote processor means (40) and the main processor means (38) remains
compatible after updating the new software into the remote processor means (40) a
combined upgrade of software in the remote processor means(40) and the main processor
means (38) is achieved through additional execution of the state copying method according

- to one of the claims 15 to 29 in the main processor means (38).

31. State copying method according to claim 29, charactenzed is that a simultansous
update of software in the remote processor means (40) and the main processor means (38)
with modified interface is achieved through simultaneous execution of the state copying
method according to one of the claims 15 to 29 in the main processor means (38) and the

-remote processor means (40), respectively.

32. State copying method according to one of the claims 29 to 31, characterized is that
further hardware components connected to the remote processor means (40) are

exchanged by blocking out the hardware components to be exchanged then replacing

them and finally deblocklng them.



02323100 2000-09-06

CA

PCT/EP99/01587

WO 99/46675

110

1INA HIA0 V1

8l

EIREEE
g) ‘2z | 02

1INN H0SS320kd

g 30iS
1428

Nl\

9¢

ve

1INN H34SNVHL

1INM

1041N0J ALVAdi

LINN HIA0 AV

8

9 AN

1INN HOSS3004d
Vv 30IS

)
>
=
&
:
=
m
3
>



CA 02323100 2000-09-06

WO 99/46675 PCT/EP99/01587

2110
FIG.2

24

28

STATE COMPARISON
UNIT
TRANSFER CONTROL
UNIT

SWITCH OVER UNIT
MEMORY
ADMINISTRATION UNIT
SOFTWARE LOADING
UNIT

30

32

36

SUBSTITUTE SHEET (RULE 26) MW& -




02323100 2000-09-06

CA

PCT/EP99/01587

WO 99/46675

3/10

Xd0

X3

dS

3dilS

dS

GdilS

Ad0J

ANOJ
1IN

Xd0

 dd1S

ANOJ

Ad0J

Xd0

X3

€ di1S

MS MaN

45

Xd0

X3

¢ di1S

84S

d 34d
Xd0

| d11S




CA 02323100 2000-09-06

WO 99/46675 . PCT/EP99/01587

4/10

FIG.4 <>

STEP 1,2

PREPARATION AND LOADING

STEP1TO4

EXECUTE OLD SOFTWARE

STEP3TO4

UPDATE NEW SOFTWARE AND DATA

OF THE NEW SOFTWARE FROM DATA
OF CORRESPONDING OLD SOFTWARE

STEP S

SAME STATE FOR
DATA OF OLD AND NEW
SOFTWARE ACHIEVED

NO

INSTANTLY SWITCH DATA TO NEW
SOFTWARE AS FAR AS THE SAME

STATE IS ACHIEVED

YES REMAINING DATA TO BE

TRANS‘I;EHHED




CA 02323100 2000-09-06

‘WO99/46675 PCT/EP99/01587

5/10

FIG.5

SUBSTITUTE SHEET (RULE 26) !




CA 02323100 2000-09-06

"WO'99/46675 PCT/EP99/01587

6/10

FI1G.6(n)

FIG.6(b)

-~
.S.‘:c

v

o™

B 'é& .. -
A N LA PR
J(:. E:’ L vh.‘;.. . -._... 4" > . i { > -Ktﬁ' .%-
. . - ~ . - .

ST TOIOTTITYITY CYTRRT /7DYIT & 74N

syttt et A et it S S 0 S S S S e e e e e TRy o s o A o sl —

. g L o

VY
-k
o .



CA 02323100 2000-09-06

WO 99/46675 . PCT/EP99/01587




CA 02323100 2000-09-06

"~ WO 99/46675 PCT/EP99/01587

8/10

’.
0 0 O—C




CA 02323100 2000-09-06

- ‘W0 99/46675 PCT/EP99/01587




CA 02323100 2000-09-06
" WG 99/46675 | PCT/EP99/01587

10/10

FIG.10

SIDEB







	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - abstract drawing

