发明名称
一种长链烷基咪唑磷酸酯离子液体及其制备方法和应用

摘要
本发明公开了一种长链烷基咪唑磷酸酯离子液体，该离子液体为1-十四烷基-3-(2-乙基己基)-咪唑磷酸二异辛酯。本发明还公开了该离子液体的制备方法和应用。本发明所述离子液体具有一定的催化活性，同时可溶于反应生成的产物三羟甲基丙烷油酸酯，即酯化反应后省略了催化剂的分离，可大大降低工业生产成本。更重要的是，溶于三羟甲基丙烷三油酸酯中的离子液体具有优异的减摩抗磨效果，可显著提高基础油的摩擦学性能。
1. 一种长链烷基咔唑磷酸酯离子液体，其特征在于该离子液体为 1-十四烷基-3-(2-乙基己基)-咔唑磷酸二异辛酯，其结构如下所示：

![结构式]

2. 如权利要求 1 所述离子液体的制备方法，其特征在于包括以下步骤：

1) N-十四烷基咔唑的合成：将咔唑与氢氧化钠在 90°C-120°C 搅拌反应 20-28h 生成咔唑钠；以四氢呋喃为溶剂，咔唑钠与溴代十四烷在 65°C 回流反应 15-24h，过滤出去生成的溴化钠，旋蒸滤液得到粗产物，将粗产物溶解在二氯甲烷中，依次加入活性炭和无水硫酸镁除杂，过滤，旋蒸，真空干燥得到 N-十四烷基咔唑；

2) 离子液体的制备：在氮气气氛下，将上述得到的 N- 十四烷基咔唑加入到磷酸三异辛酯中，于 130°C-180°C 反应 10-16h，得到淡黄色离子液体 1-十四烷基-3-(2-乙基己基)-咔唑磷酸二异辛酯。

3. 如权利要求 2 所述的制备方法，其特征在于所述咔唑与氢氧化钠的摩尔比为 1:1-1:1.2。

4. 如权利要求 2 所述的制备方法，其特征在于所述咔唑钠与溴代十四烷的摩尔比为 1:1-1:1.2。

5. 如权利要求 2 所述的制备方法，其特征在于所述 N- 十四烷基咔唑与磷酸三异辛酯的摩尔比为 1:1-1.2。

6. 如权利要求 1 所述离子液体的应用，其特征在于所述离子液体作为三羟甲基丙烷与油酸酯化反应的催化剂，同时作为反应后产物三羟甲基丙烷油酸酯的凝聚抗磨添加剂。

7. 如权利要求 6 所述的应用，其特征在于所述离子液体用作三羟甲基丙烷与油酸酯化反应的催化剂，其添加量为反应底物总质量的 3wt% ~ 7wt%，原料 TMP 与 OA 的摩尔比为 1:1-1:4。

8. 如权利要求 6 所述的应用，其特征在于所述离子液体用作三羟甲基丙烷油酸酯的凝聚抗磨添加剂，其添加量为基础油总质量的 3wt% ~ 7wt%。

9. 如权利要求 8 所述的应用，其特征在于所述离子液体用作三羟甲基丙烷油酸酯的凝聚抗磨添加剂，其添加量为基础油总质量的 5wt%。
一种长链烷基咪唑磷酸酯离子液体及其制备方法和应用

技术领域
[0001] 本发明涉及一种长链烷基咪唑磷酸酯离子液体及其制备方法和应用。

背景技术
[0002] 随着机械工业的发展和可开采利用原油的减少，很多机械对润滑剂的需求越来越高，但在一些持续高温、低温条件下，传统矿物油为基础的润滑剂已不能满足发展的需求。氨类合成润滑剂具有优良的粘温性、良好的热氧化稳定性、润滑性和可生物降解性，可以更好地满足当前工业发展对于新型润滑材料的要求。其中，新戊基多元醇酯（简称多元醇酯）主要包括新戊二醇酯、三羟甲基丙烷酯和季戊四醇酯，因其特殊的分子结构特点而具有优异的低温性能、黏温性能、热氧化安定性、润滑性、低挥发性等优点而被广泛应用于航空器、汽车发动机、制冷和压缩机、二冲程发动机机油、内燃机柴油、液压油、链锯油、冷冻油、金属加工油、输送油以及纺织皮革助剂的中间体和纺织油剂等领域。

[0003] 多元醇酯主要通过脂肪酸与新戊醇酯化反应而得。酸常作为酯化反应的催化剂。工业上常用的催化剂有有机酸及其盐类如硫酸、磷酸；有机酸如烷基苯磺酸、磷酸酯；Lewis 酸如四烷基钛酸、锆酸酯、辛酸锡；金属氧化物如氧化锌、氧化锡。但是存在着产品质量差、设备腐蚀严重、废酸污染严重等缺点，应用此工艺时产物后处理比较复杂。近年来，离子液体以其优良的性能作为反应溶剂和催化剂得到了广泛研究，在酯化反应方面的应用也取得了显著效果。

[0004] 根据文献报道，自 2002 年 Cole A. C. 等设计合成并提出了具有 -SO₃H 基团的 Bronsted 型离子液体，之后的许多 Bronsted 型离子液体被用作酯化反应的催化剂。Zhou F. Y. 等合成并用（[MimC₆H₄SO₃H] [HSO₄]）和（[MimC₆H₄SO₃H] [H₂SO₄]）做溶剂和催化剂合成芳杂烷酸酯。Liu X. M. 等合成了五种不同阴离子的双齿磷酸基咪唑离子液体，催化丙三醇和乙酸的酯化反应，并考察了阴离子对离子液体催化性能的影响。Li R. J. 等考察了阴离子为杂多酸根的磷酸基离子液体用于催化合成三羟甲基丙烷油酸酯的性能，结果表明，所选的杂多酸阴离子体具有较高的催化活性。但是，综上所述的离子液体催化剂在酯化反应结束后需要分离，而且伴随的副反应较多，同时会有催化剂的残留，对产物性能有影响。

发明内容
[0005] 本发明的目的在于提供一种长链烷基咪唑磷酸酯离子液体及其制备方法和应用。
[0006] 本发明所述的长链烷基咪唑磷酸酯离子液体为 1-十四烷基-3-(2-乙基己基)-咪唑磷酸二异辛酯（记作 [TDEHIM] [DEHP]），其结构如下所示：
其制备方法为：

1）N-十四烷基咪唑的合成：将咪唑与氢氧化钠在90°C~120°C搅拌反应20~28h生成咪唑钠（NaIm）；以四氢呋喃为溶剂，咪唑钠与溴代十四烷在60°C回流反应15~24h，过滤出去生成的溴化钠，旋蒸滤液得到粗产物，将粗产物溶解在二氯甲烷中，依次加入活性炭和无水硫酸镁除杂，过滤，旋蒸，真空干燥得到N-十四烷基咪唑；

2）离子液体的制备：在氮气气氛下，将上述得到的N-十四烷基咪唑加入到磷酸三异辛酯中，于130°C~180°C反应10~16h，得到淡黄色离子液体1-十四烷基-3-(2-乙基己基)-咪唑磷酸二异辛酯。

[0007] 所述咪唑与氢氧化钠的摩尔比为1:1~1:1.2。
[0008] 所述咪唑钠与溴代十四烷的摩尔比为1:1~1:1.2。
[0009] 所述N-十四烷基咪唑与磷酸三异辛酯的摩尔比为1:1~1.2。
[0010] 所述1-十四烷基-3-(2-乙基己基)-咪唑磷酸二异辛酯离子液体作为三羟甲基丙烷（TMP）与油酸（OA）酯化反应的催化剂的应用，同时可作为反应后产物即三羟甲基丙烷油酸酯的减摩抗磨添加剂。
[0011] 所述1-十四烷基-3-(2-乙基己基)-咪唑磷酸二异辛酯离子液体用作三羟甲基丙烷与油酸酯化反应的催化剂，其添加量为反应底物总质量的3wt%~7wt%，原料TMP与OA的摩尔比为1:1~1:4，在140~180°C反应温度下可获得较好的催化性能。
[0012] 所述1-十四烷基-3-(2-乙基己基)-咪唑磷酸二异辛酯离子液体用作三羟甲基丙烷油酸酯（TMP TO）的减摩抗磨添加剂，其添加量为基础油总质量的3wt%~7wt%，最佳量为5wt%，在150°C下具有显著的减摩、抗磨性能。
[0013] 本发明所述离子液体具有一定催化活性；同时，所合成的[TDEHIM][DEHP]可溶于三羟甲基丙烷油酸酯，酯化反应后省略了催化剂的分离，可大大降低工业生产的成本。更值得注意的是，溶于三羟甲基丙烷三油酸酯中的离子液体具有优异的减摩抗磨效果，可显著提高基础油的摩擦学性能。

附图说明
[0014] 图1为用[TDEHIM][DEHP]作催化剂合成三羟甲基丙烷油酸酯时，不同反应参数对酯化活性的影响。
[0015] 图2为本发明所述1-十四烷基-3-(2-乙基己基)-咪唑磷酸二异辛酯离子液体的热分解温度曲线。
[0016] 图3为浓度分别为0wt%、3wt%、5wt%和7wt%的[TDEHIM][DEHP]加入三羟甲基丙
烷三油酸酯在SRV-IV微振动摩擦磨损试验机上于150℃，频率25Hz，载荷100N，振幅1mm的工况下长磨30min摩擦系数随时间变化的关系曲线。

[0017] 图4为浓度分别为0wt%, 3wt%, 5wt%和7wt%的[TDEHIM][DEHP]加入三羟甲基丙烷烷三油酸酯中在SRV-IV微振动摩擦磨损试验机上于150℃，频率25Hz，载荷100N，振幅1mm的工况下长磨30min磨斑的磨损体积。

[0018] 图5为浓度为0wt%，5wt%的[TDEHIM][DEHP]加入三羟甲基丙烷烷三油酸酯中在SRV-IV微振动摩擦磨损试验机上于150℃，频率25Hz，载荷1mm，载荷100-500N的工况下摩擦系数随载荷变化的关系曲线。

[0019] 图6为浓度为0wt%，5wt%的[TDEHIM][DEHP]加入三羟甲基丙烷烷三油酸酯中，在SRV-IV微振动摩擦磨损试验机上于150℃，频率25Hz，载荷1mm，载荷100-500N的工况下磨斑的磨损体积。

[0020] 图7为[TDEHIM][DEHP]添加浓度分别为0wt%，5wt%的三羟甲基丙烷烷三油酸酯中，在SRV-IV微振动摩擦磨损试验机上于150℃，频率25Hz，载荷100N，振幅1mm的工况下长磨30min磨斑的扫描电镜图(SEM)，其中a，b是基础油 TMPTO 长磨后磨斑的 SEM 图(80x和400x)，c，d是添加5wt%[TDEHIM][DEHP]的 TMPTO 长磨后磨斑的 SEM 图(80x和400x)。

具体实施方式

[0021] 实施例1

在不断搅拌时，等摩尔的咪唑与氢氧化钠在110℃反应24h生成咪唑钠(Na1m);以四氢呋喃为溶剂，咪唑钠与等摩尔的溴代十四烷在65℃回流反应24h，过滤出去生成的溴化钠，旋蒸滤液得到粗产物N-十四烷基咪唑。将粗产物溶解在二氯甲烷中，依次加入活性炭和无水硫酸镁除杂。过滤，大部分二氯甲烷通过旋蒸除去，剩余少量在60℃真空干燥除去，最终得到想要的产物N-十四烷基咪唑。在氮气气氛下，将上述得到的N-十四烷基咪唑加入到等摩尔的磷酸三异辛酯中，150℃氮气保护下反应12h，得到淡黄色离子液体[TDEHIM][DEHP]，分子量为698.6，产率83%。

[0022] 实施例2

在不断搅拌时，等摩尔的咪唑与氢氧化钠在110℃反应24h生成咪唑钠(Na1m);以四氢呋喃为溶剂，咪唑钠与等摩尔的溴代十四烷在65℃回流反应14h，过滤出去生成的溴化钠，旋蒸滤液得到粗产物N-十四烷基咪唑。将粗产物溶解在二氯甲烷中，依次加入活性炭和无水硫酸镁除杂。过滤，大部分二氯甲烷通过旋蒸除去，剩余少量在60℃真空干燥除去，最终得到想要的产物N-十四烷基咪唑。在氮气气氛下，将上述得到的N-十四烷基咪唑加入到等摩尔的磷酸三异辛酯中，150℃氮气保护下反应12h，得到淡黄色离子液体N-十四烷基咪唑磷酸酯[TDEHIM][DEHP]，分子量为698.6，产率74%。

[0023] 实施例3

在不断搅拌时，等摩尔的咪唑与氢氧化钠在110℃反应24h生成咪唑钠(Na1m);以四氢呋喃为溶剂，咪唑钠与等摩尔的溴代十四烷在65℃回流反应18h，过滤出去生成的溴化钠，旋蒸滤液得到粗产物N-十四烷基咪唑。将粗产物溶解在二氯甲烷中，依次加入活性炭和无水硫酸镁除杂。过滤，大部分二氯甲烷通过旋蒸除去，剩余少量在60℃真空干燥除去，最终得到想要的产物N-十四烷基咪唑。在氮气气氛下，将上述得到的N-十四烷基咪唑加入到等
摩尔的磷酸二氢辛脂中，150℃氮气保护下反应12h，得到淡黄色离子液体[TDEHM][DEHP]，
分子量为698.6，产率为79%。
[0024] 实施例4

热稳定性评价

热稳定性是通过STA 449 C Jupiter simultaneous TG-DSC测定。将实施例1制备的
1-十四烷基-3-(2-乙基己基)-咪唑磷酸二异辛脂离子液体（记作[TDEHM][DEHP]）3mg
放入样品池中，测试温度从20-600℃，温度增加速率是10℃/min。在空气环境里测定，结果
如图2所示。[TDEHM][DEHP]在低于252℃时未表现出任何质量损失，表明该离子液体具
有非常好的热稳定性。

[0025] 产物的熔点性能评价

将实施例1制备的1-十四烷基-3-(2-乙基己基)-咪唑磷酸二异辛脂离子液体（记
作[TDEHM][DEHP]）催化剂应用于三氂甲基丙烷与油酸的酯化反应，结果如图1所示。

[0026] 产物的摩擦学性能评价

将实施例1制备的浓度为3 wt%,5 wt%,7 wt%的1-十四烷基-3-(2-乙基己基)-咪
唑磷酸二异辛脂离子液体（记作[TDEHM][DEHP]）添加到三氂甲基丙烷三油酸酯中，混合均
匀，综合评价其摩擦学性能

1. 采用德国Optimol油脂公司生产的SRV-IV微震动摩擦磨损试验机试验

浓度分别为0 wt%,3 wt%,5 wt%和7 wt%的[TDEHM][DEHP]加入三氂甲基丙烷三油酸酯
中，在150℃，频率25Hz，振幅1mm，载荷100N的工况下长磨30min后的摩擦系数f，试验所
用钢球为Φ=10mm的GCr15轴承钢，下试样为Φ=24×7.9mm的GCr15钢块，结果见附图3。
由图可以看出，在150℃高温下，这种化合物作为添加剂能很好的润滑钢-钢摩擦副，摩擦
系数大幅度降低，减摩效果极为明显。

[0027] 2. 采用MicroXAM 3D非接触的表面轮廓测试仪测试温度分别为0 wt%,

3 wt%,5 wt%,7 wt%的[TDEHM][DEHP]加入三氂甲基丙烷三油酸酯中，在150℃，频率
25Hz，振幅1mm，载荷100N的工况下长磨30min后的磨损体积。测试结果如附图4所示，加入
该添加剂后，磨损的磨损体积明显降低，表明该离子液体添加剂具有很好的抗磨效果。

[0028] 3. 采用德国Optimol油脂公司生产的SRV-IV微震动摩擦磨损试验机测试浓度
分别为0 wt%和5 wt%的[TDEHM][DEHP]加入三氂甲基丙烷三油酸酯中，在SRV-IV微震动
摩擦磨损试验机上于150℃，频率25Hz，振幅1mm，载荷100-500N的工况下长磨30min摩擦
系数随载荷变化的关系曲线。结果如附图5所示。由图可以看出，在150℃高温下，该离子
液体添加剂具有良好的极压性能，可显著提高基础油的摩擦学性能。

[0029] 4. 采用MicroXAM 3D非接触的表面轮廓测试仪测试温度分别为0 wt%和5 wt%
的[TDEHM][DEHP]加入三氂甲基丙烷三油酸酯中，于150℃，频率25Hz，振幅1mm，载荷
100-500N的工况下长磨30min后的磨损体积。测试结果如附图6所示，加入该添加剂后，磨
损的磨损体积明显降低，表明该离子液体添加剂具有优异的抗磨效果。

[0030] 5. 采用JSM-5600LV型号扫描电子显微镜观察浓度分别为0 wt%和5 wt%的
[TDEHM][DEHP]加入三氂甲基丙烷三油酸酯中，在SRV-IV微震动摩擦磨损试验机上于
150℃，频率25Hz，振幅1mm，载荷100-500N的工况下长磨30min后的磨斑形态，结果如图7
所示。基础油所对应的磨斑大，磨痕深，而且上面有较多犁沟(图7a,b);与此形成鲜明对比,
加入 5wt%[TDEHIM][DEHP] 后，磨斑明显变小很多，磨损痕浅（图 7c, d），表明该离子液体添加剂具有优异的抗磨效果。这与图 3 显示的磨损体积结果一致。
<table>
<thead>
<tr>
<th>项目</th>
<th>催化剂用量</th>
<th>原料摩尔比</th>
<th>温度</th>
<th>时间</th>
<th>转化率</th>
<th>酯的选择性 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>无</td>
<td>3:1</td>
<td>150</td>
<td>4</td>
<td>59.2</td>
<td>20.8</td>
</tr>
<tr>
<td>2</td>
<td>无</td>
<td>3:1</td>
<td>180</td>
<td>4</td>
<td>71.5</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3:1</td>
<td>150</td>
<td>4</td>
<td>83.2</td>
<td>5.8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3:1</td>
<td>180</td>
<td>4</td>
<td>87.7</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>无</td>
<td>4:1</td>
<td>150</td>
<td>4</td>
<td>56.4</td>
<td>14.1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4:1</td>
<td>150</td>
<td>4</td>
<td>63.4</td>
<td>41.5</td>
</tr>
</tbody>
</table>

a: 转化率用酸值滴定法，b: 酯的选择性根据 H-NMR 确定。

图 1

图 2
图 7