

(12) UK Patent Application (19) GB (11) 2 372 476 (13) A

(43) Date of A Publication 28.08.2002

(21) Application No 0104846.1

(22) Date of Filing 27.02.2001

(71) Applicant(s)

**Intelligent Engineering (Bahamas) Limited
(Incorporated in the Bahamas)
PO Box N8188, Bahamas International Trust Building,
Bank Lane, Nassau, Bahamas**

(72) Inventor(s)

Stephen Kennedy

(74) Agent and/or Address for Service

**J A Kemp & Co.
14 South Square, Gray's Inn, LONDON, WC1R 5JJ,
United Kingdom**

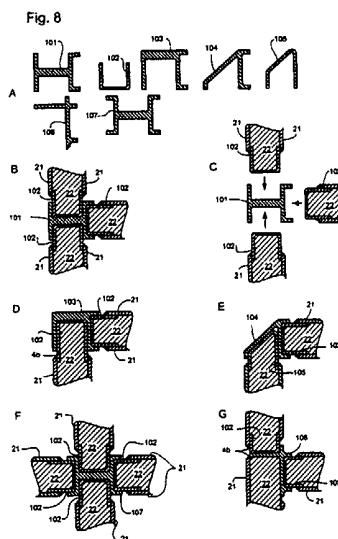
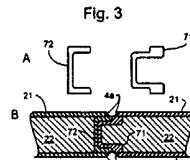
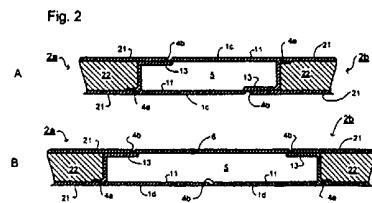
(51) INT CL⁷

B32B 15/06 , B63B 3/20

(52) UK CL (Edition T)

B5N N1506 N195 N196 N198 N199 N20Y N207 N209
N21Y N223 N225 N247 N389 N393 N394 N491 N492
N519 N522 N525 N528 N558 N56Y N560 N563 N592
N595 N597 N63Y N630 N681 N682 N685 N718 N722
N728 N729 N76X N77X
U1S S1745 S1834 S1854

(56) Documents Cited




GB 2355957 A GB 2244237 A
GB 1451111 A US 6050208 A
US 5778813 A

(58) **Field of Search**
UK CL (Edition S) **B5N**
INT CL⁷ **B32B , B63B**
ONLINE:WPI,EPODOC,JAPIO

(54) Abstract Title

Structural sandwich plate members

(57) Various rolled or extruded profiles are used to connect together structural sandwich plate members comprising first and second outer metal plates and an elastomer core bonded to the outer metal plate members with sufficient strength to transfer shear forces therebetween. They may be edge or perimeter profiles, such as 1c in figure 2, for connecting large sections or modules, male and female socket profiles, such as 71, 72 in figure 3, fitted around the perimeter of structural sandwich plate members to connect plate members directly to form larger plate members, plate profiles, such as 81 in figure 5A-not shown, which are integrated into structural sandwich plate members and are used to connect to all-metal webs of transverse and longitudinal girders or bulkheads, integral through thickness plate profiles, such as 85 in figure 6 -not shown, for transferring force directly through the structural plate member, spacer profiles, such as 91 in figure 7A - not shown, sandwich panel profiles such as 101 to 107 in figure 8, to connect and properly space at the specified core thickness metal plates to form structural sandwich plate members, complex profiles, such as 171 in figure 9G -not shown, for connecting multiple structural sandwich and metal plate members and transition profiles, such as 210 in figure 10A - not shown, for connecting existing metal plates to structural sandwich plates or as a transition section for a structural overlay. The structural sandwich plate members may be assembled into ships, ship components, bridges and other civil engineering or offshore structures.

GB 2372476 A

Fig. 1

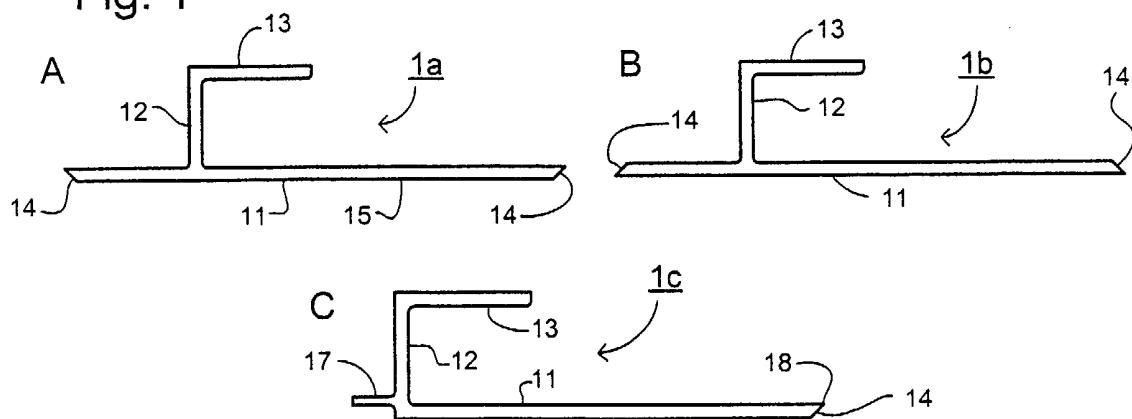


Fig. 2

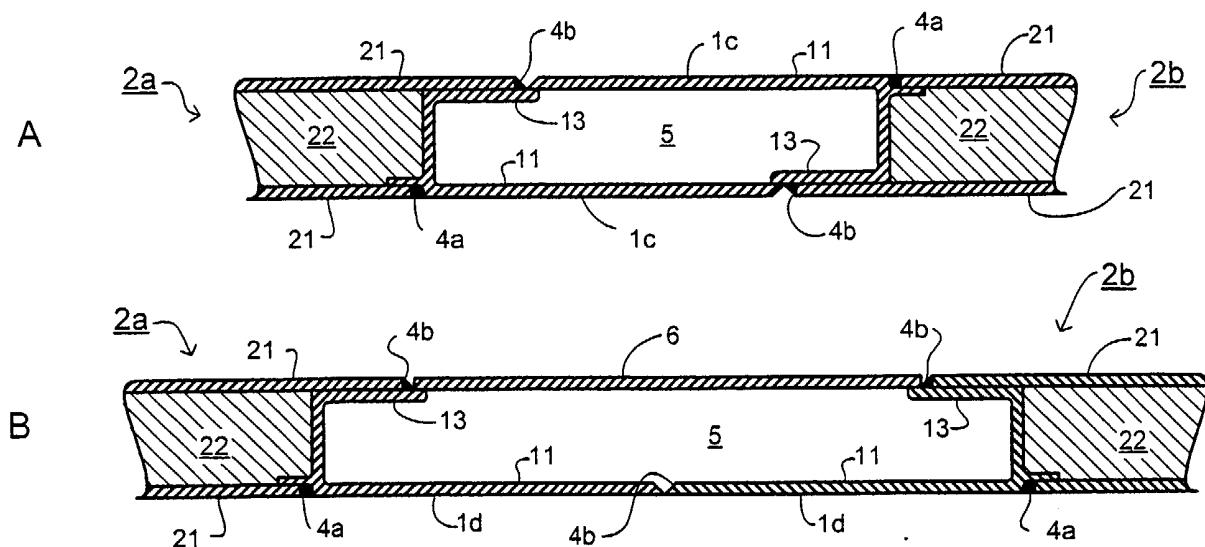


Fig. 3

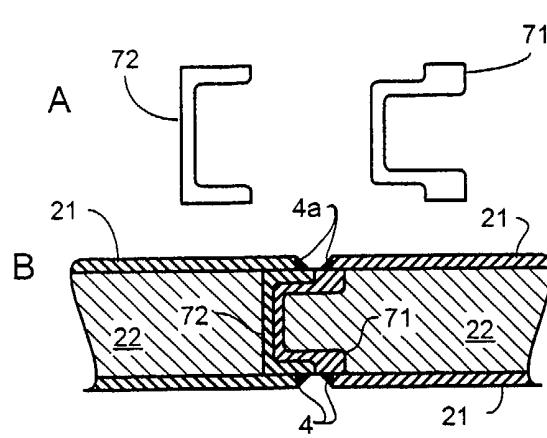


Fig. 4

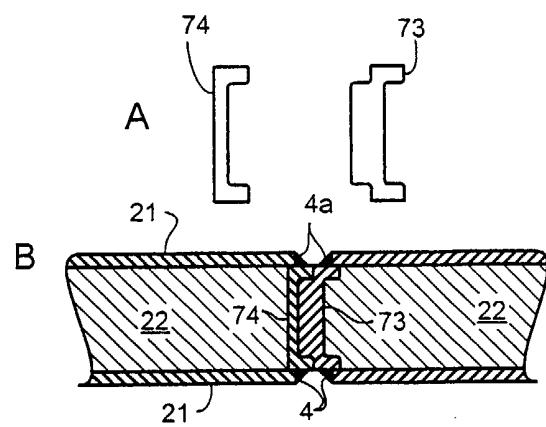


Fig. 5

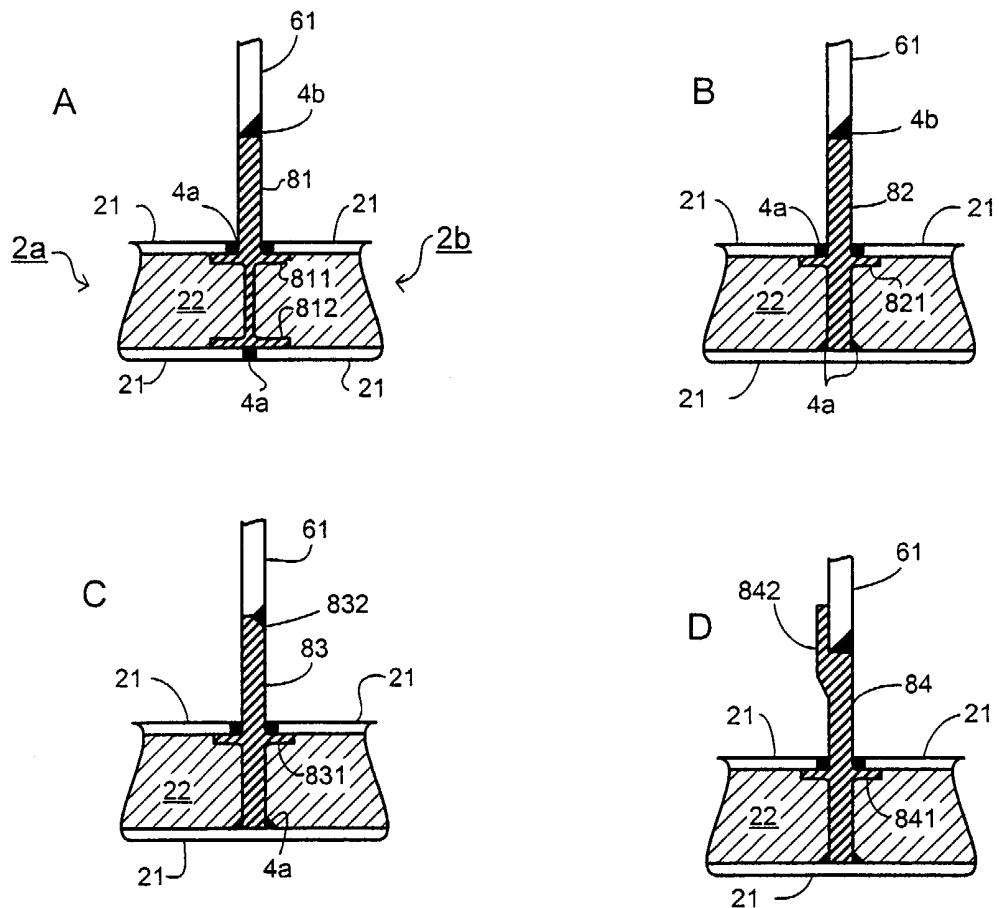


Fig. 6

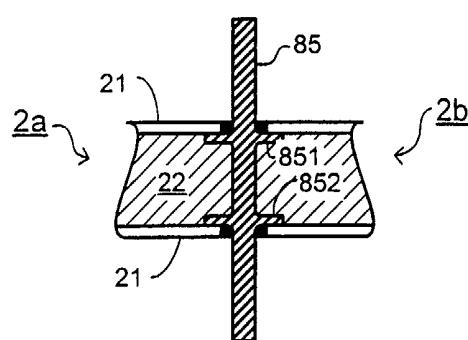


Fig. 7

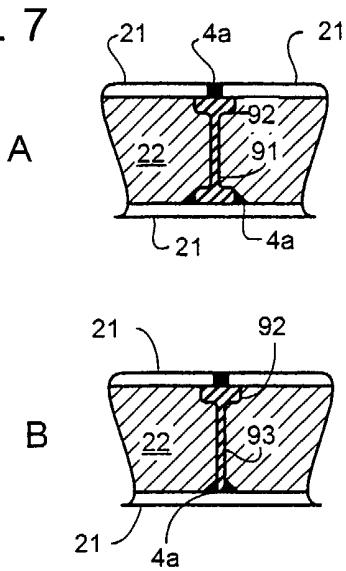


Fig. 8

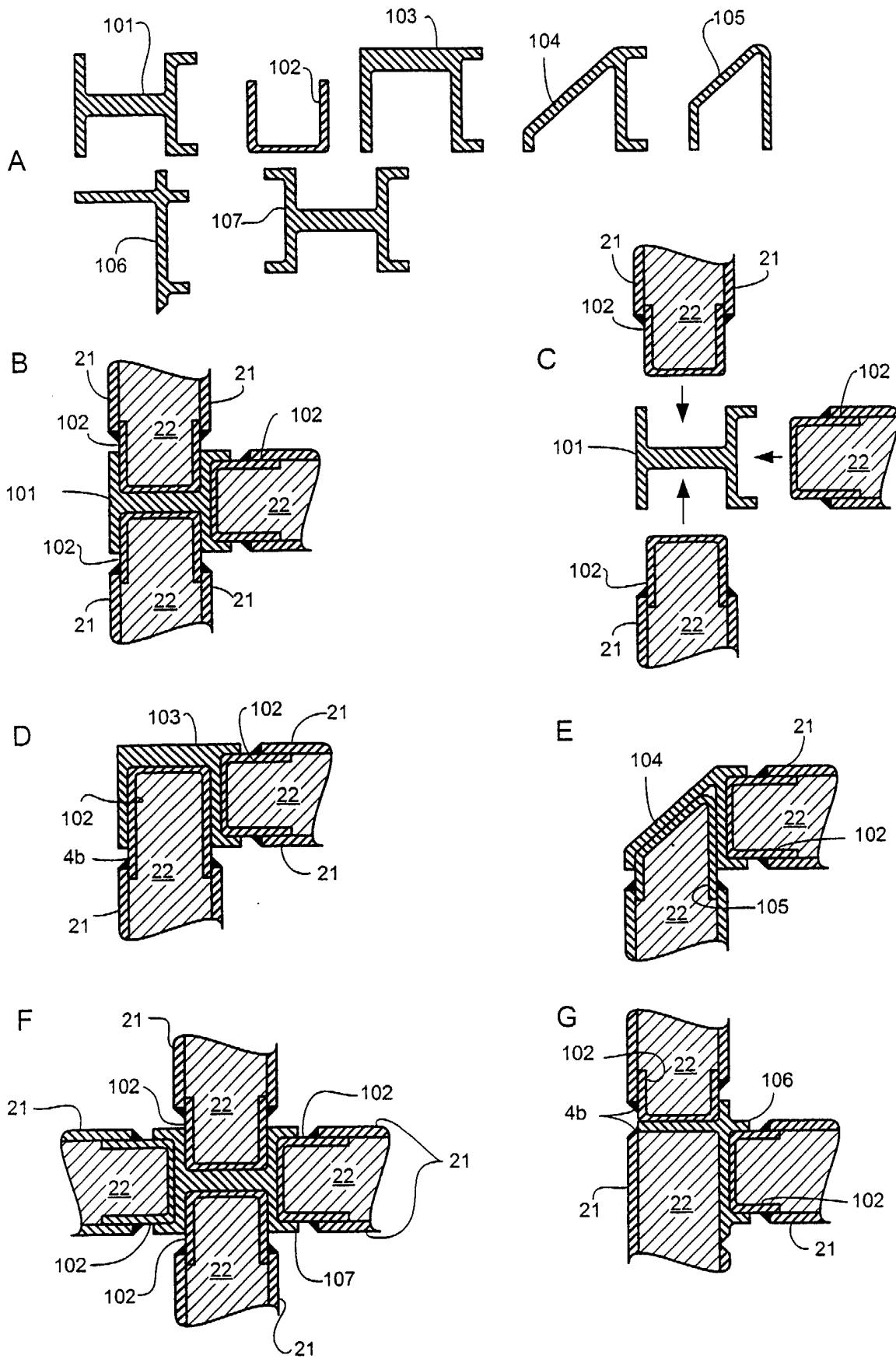


Fig. 9

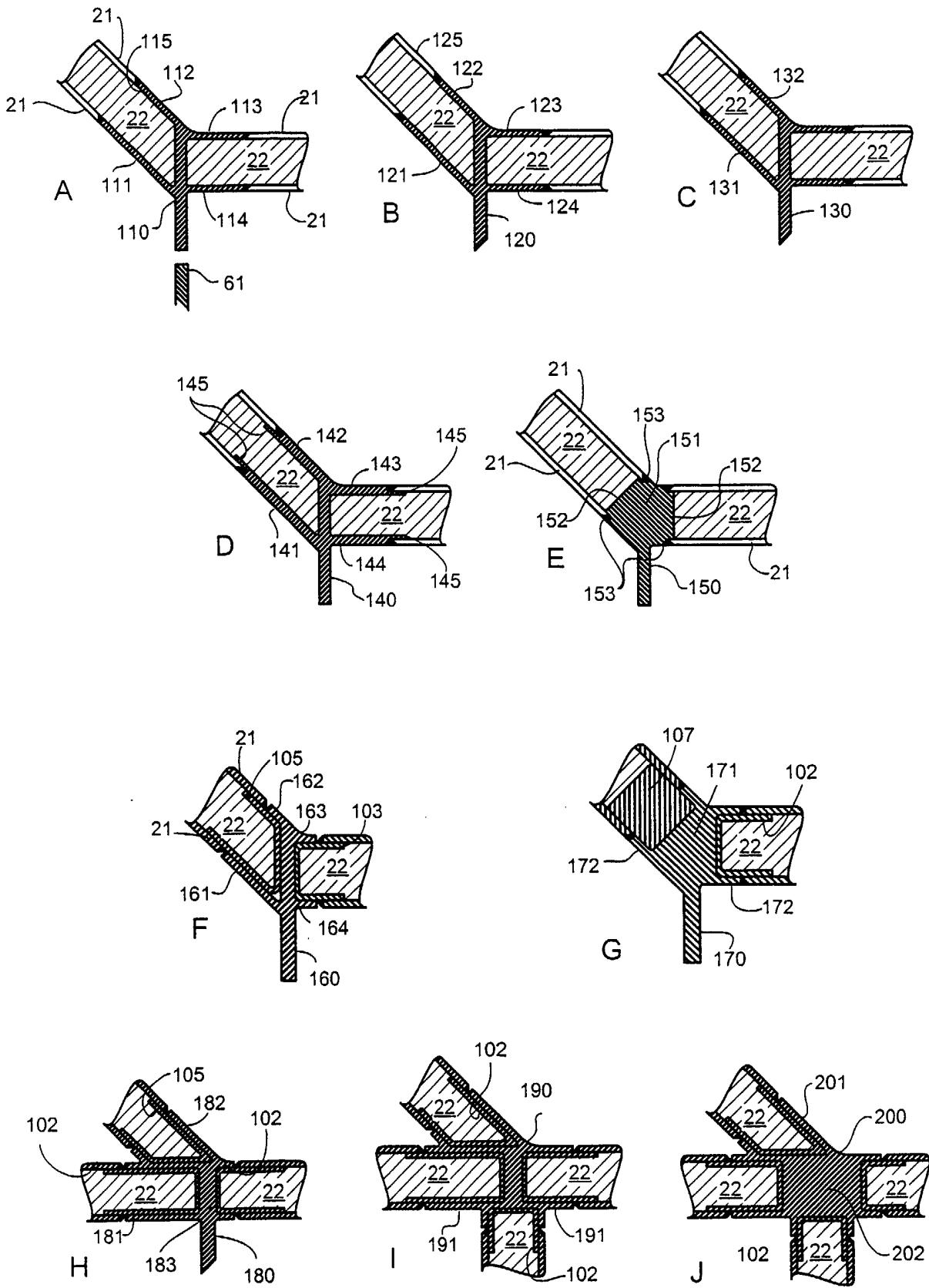


Fig. 10

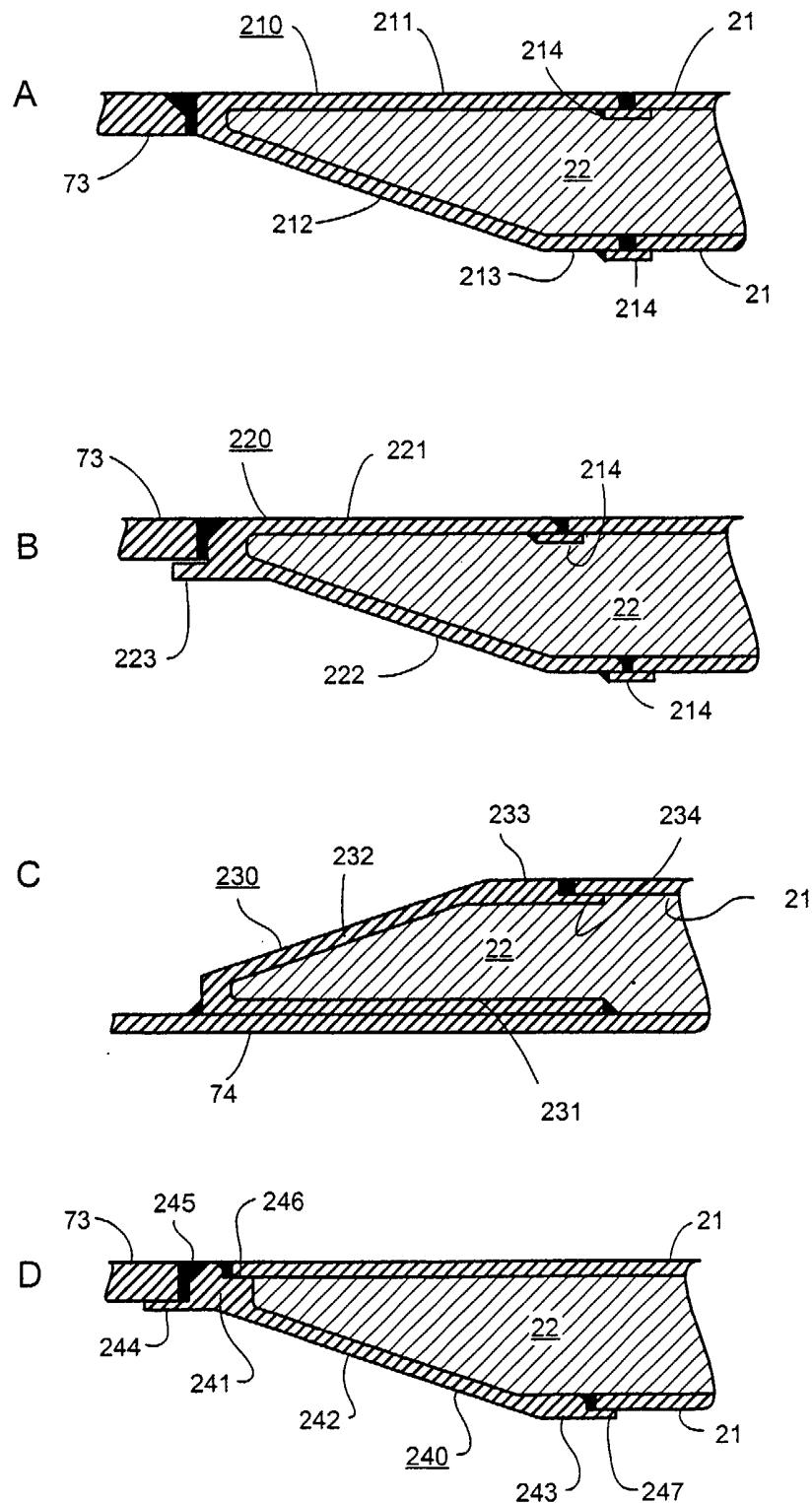


Fig. 11

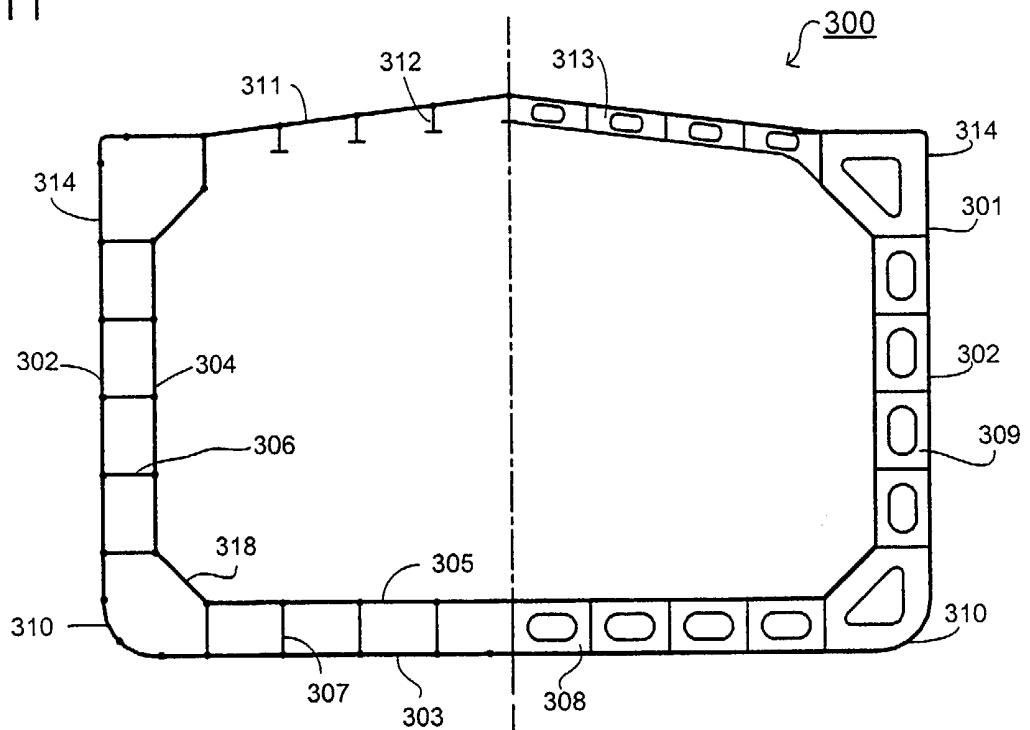


Fig. 12

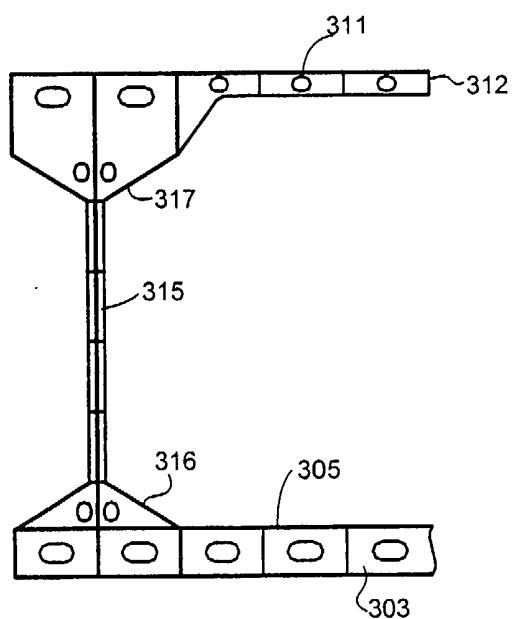


Fig. 13

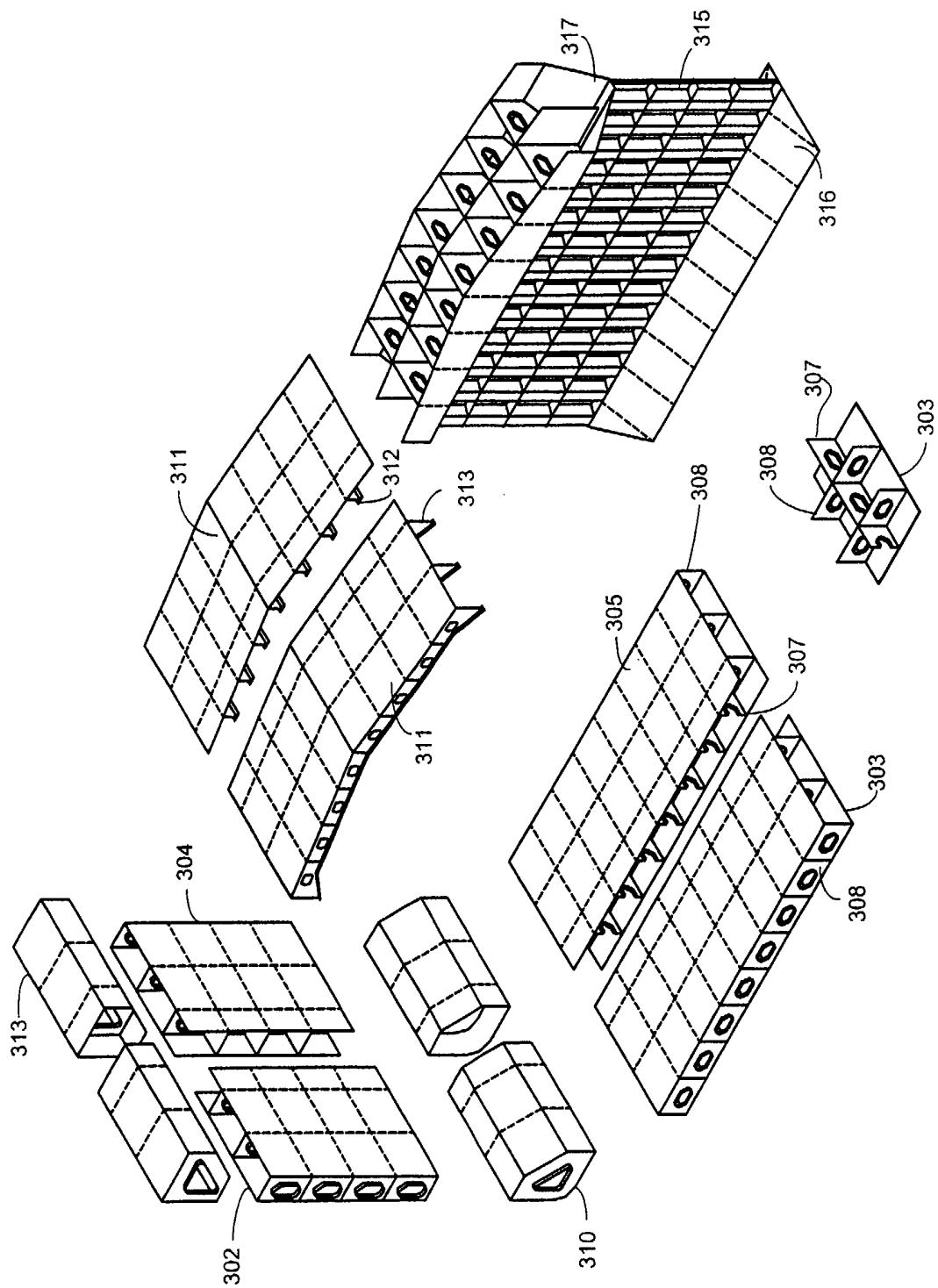


Fig. 14

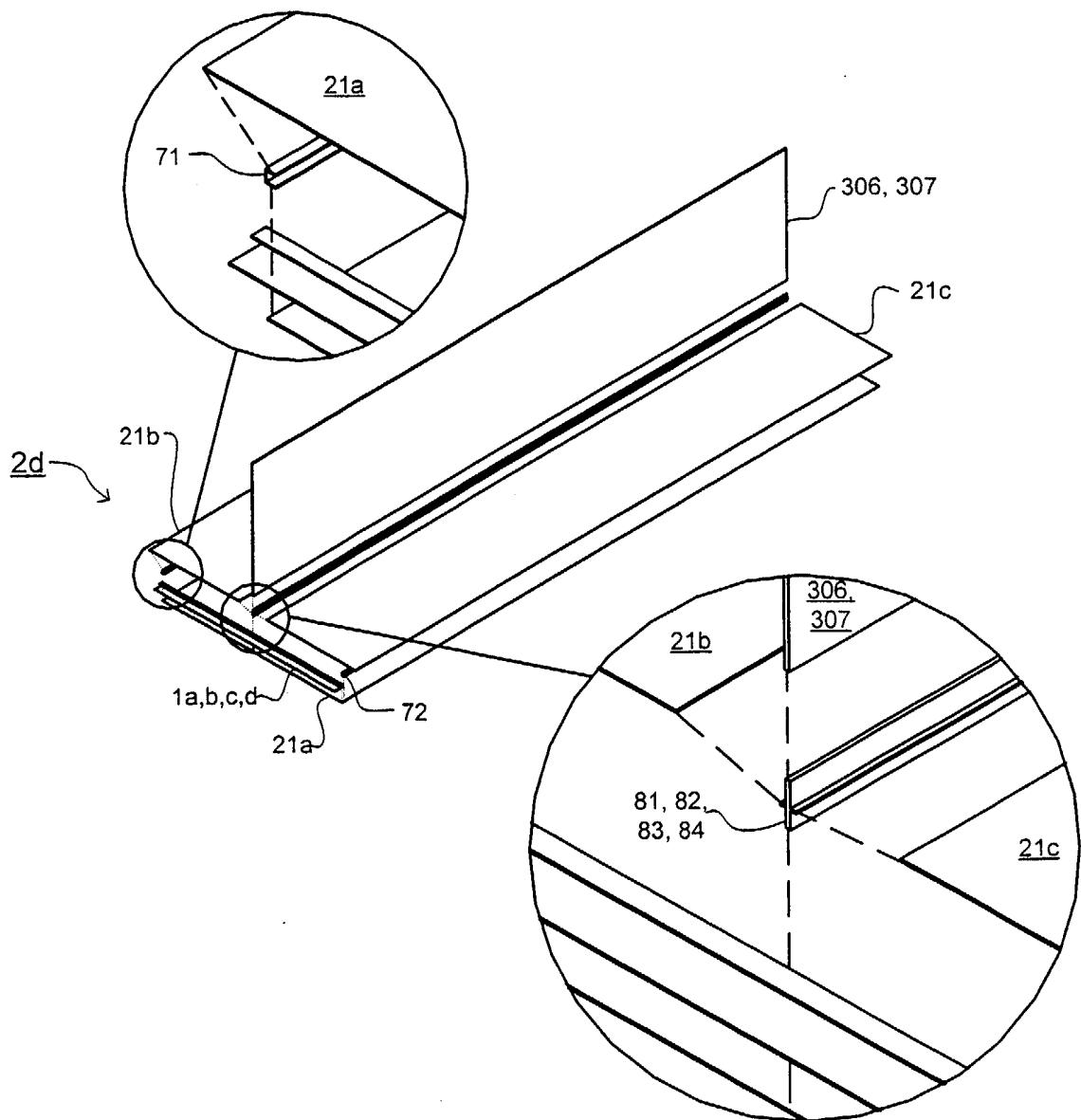
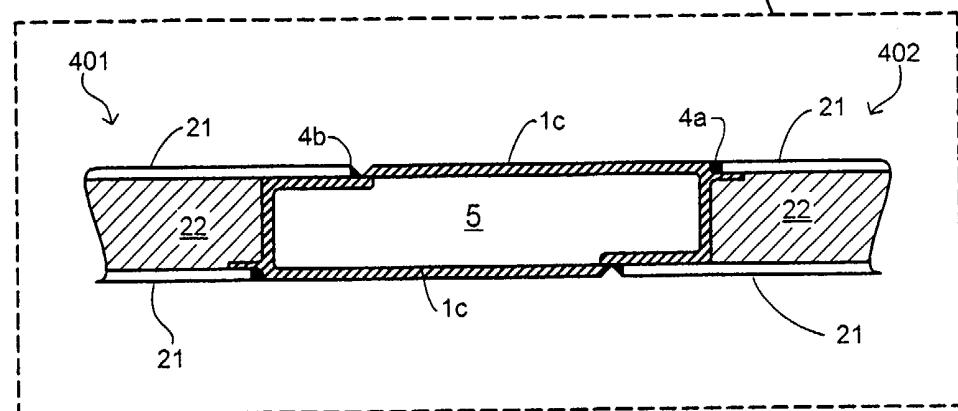
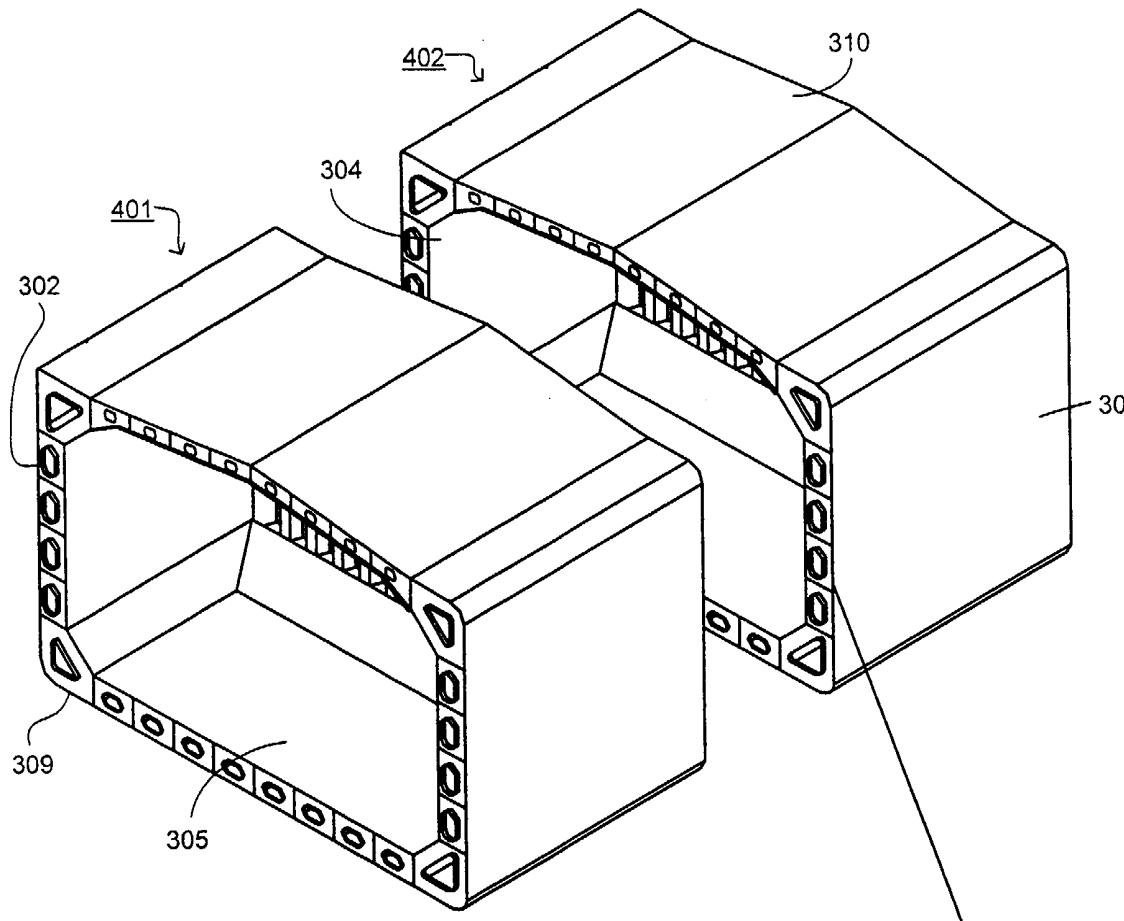




Fig. 15

IMPROVED STRUCTURAL SANDWICH PLATE MEMBERS

The present invention relates to structural sandwich plate members which comprise two outer metal plates and a core of plastic or elastomer material bonded 5 to the outer metal plates with sufficient strength to substantially contribute to the structural strength of the member.

Structural sandwich plate members are described in US 5,778,813 and US 6,050,208, which documents are hereby incorporated by reference, and comprise outer metal, e.g. steel, plates bonded together with an intermediate elastomer core, 10 e.g. of unfoamed polyurethane. These sandwich plate systems may be used in many forms of construction to replace stiffened steel plates and greatly simplify the resultant structures, improving strength and structural performance (stiffness, damping characteristics) while saving weight. Further developments of these structural sandwich plate members are described in International Patent 15 Application GB00/04198, also incorporated hereby by reference. As described therein, foam forms may be incorporated in the core layer to reduce weight and transverse metal sheer plates may be added to improve stiffness.

The structural members described in the documents referred to above generally are simple planar members which may be flat or curved (single or double 20 curvature) and which are welded together on site to form the desired structure, e.g. a ship, offshore structure or bridge or other civil engineering structure. In general, ships, offshore structures or civil engineering works constructed with structural sandwich plate members will be fabricated by first welding together the steelwork of the largest practicable section, a hull module for example, containing one or 25 more internal airtight cavities. The elastomer is then injected into those cavities and cured making the section composite. Where panels, sections or modules are connected to form larger or complete structures, weld margins (free of elastomer) must be incorporated to mitigate or prevent damage to the elastomer from heat caused by the welding process. When steel plates of adjacent modules containing 30 structural sandwich plate members are welded together the weld margins form

joining cavities. Once all welding is complete, elastomer is injected into the joining cavities to make the structure continuous composite construction. This method of construction places the cured elastomer away from sections or plates being welded. Whilst this method provides satisfactory results, some 5 simplification of this construction method is desirable.

It is an aim of the present invention to provide structural sandwich plate members that can more easily be assembled into ships, ship components, bridges and other civil engineering or offshore structures.

According to the present invention there is provided a structural sandwich 10 plate member comprising: first and second outer metal plates; an elastomer core bonded to said outer metal plates with sufficient strength to transfer shear forces therebetween; and an edge member formed by a rolled or extruded profile fitted between and connected to said first and second outer metal plates and extending along at least a part of the periphery of said outer metal plates.

15 The materials, dimensions and general properties of the outer metal plates of the structural sandwich plate member of the invention may be chosen as desired for the particular use to which the structural sandwich plate member is to be put and in general may be as described in US-5,778,813 and US-6,050,208. Steel is commonly used in thicknesses of 2 to 20mm and aluminium may be used where 20 light weight is desirable. Similarly, the elastomer may be any suitable, e.g. plastics, material such as polyurethane, as described in US-5,778,813 and US-6,050,208.

25 The rolled or extruded profiles can be made in various forms to be integrated into the structural sandwich plate member to allow members to be prefabricated and made continuous into larger structures by welding members together or members to metal plates (without compromising the structural integrity), simplifying *in situ* construction.

Profiles according to the present invention are made with rounds, fillets, dimensions and other features to provide good fatigue-resistant connection details, connections with excellent dimensional control for ease of fit up (mating of joining 30 members) and built in weld preparations (full or partial penetration weld

preparations, backing bars and/or alignment plates) to reduce fabrication costs and to facilitate in situ welding.

Joining welds, based on the profile geometry, are located sufficiently away from the core material so that the welds can be made to prefabricated members 5 without damaging the core or being detrimental to the member's structural characteristics. Joining welds are also located away from local high stress regions which may suffer fatigue problems.

Stiff edge profiles provide dimensional control for joining large sections or modules that advantageously eliminates the time-consuming and expensive heat 10 fairing processes associated with stiffened plate construction. Increased bending stiffness along joins between structural sandwich plate members mitigates local weld distortions which simplifies weld details and procedures, and reduces fabrication costs.

Profiles with built-in shear keys, alignment plates and friction connect 15 joints simplify fit-up, thereby reducing fabrication time, labour and cost.

Profile geometries according to the present invention have been developed to provide good details for typical connections between plate members in ships, maritime, civil and offshore structures. Profiles are identified herein by a letter or letters which classify the type of joint, followed by a pair of numbers indicating a 20 critical dimension and the approximate mass of the profile in kilograms per metre of length. For example, E 40 x 17 is a typical edge profile for a structural sandwich plate member with a 40mm thick core and has a mass of 17kg/m. The following table lists some exemplary profile types, gives a brief description and describes their application or use.

25

Profile Type	Description/Use
E	Edge or perimeter profile for connecting large sections or modules that require alignment of $\pm 5\text{mm}$ along matching edges on sections measuring up to 50m by 70m in cross-section or weighing up to 500T.

	SM, SF	Male and female socket profiles fitted around the perimeter of structural sandwich plate members to connect plate members directly to form larger plate members or indirectly through SP or CP profiles.
5	P	Plate profile which is integrated into structural sandwich plate members and is used to connect to all-metal webs of transverse and longitudinal girders or bulkheads.
	T T	Integral through-thickness plate profile for transferring force directly through the structural sandwich plate member.
10	S	Spacer profile to connect and properly space at the specified core thickness metal plates to form structural sandwich plate members. Spacer profiles provide a landing plate combination backing bar for welding plate seams.
	SP	Sandwich panel profiles which are typically used to connect structural sandwich panel members together to form larger sections or modules, for example decks to side-shell or hull structure to bulkheads.
15	CP	Complex profiles for connecting multiple structural sandwich and metal plate members. Geometries are specific to the given application. Typical examples include: inner bottom/hopper/girder; hopper/side shell/web frame; and stool/inner hull/transverse floor connections.
20	T	Transition profiles for connecting existing metal plates to structural sandwich plate members or as a transition section for a structural overlay.

Structural sandwich plate members according to the invention may contain one or more cavities and one or more profile types as required for the application and the method by which they are to be connected (welded) to form the complete ship or structure.

The structural profiles, shapes or sections of the invention are generally roll-formed from steel or extruded from aluminium and will almost always be of the same metal as that used to form the outer plates of the structural sandwich

plate members of which they form part. The profiles are generally elongate and extend for substantially all of the perimeter, length and/or width of the structural sandwich plate members and/or metal plates which they join.

It should be noted that the various profiles according to the invention may 5 be used with structural sandwich plate members as described in the documents referenced above as well as those according to the present invention.

The present invention will be described below with reference to exemplary embodiments and the accompanying drawings, in which:

Figures 1A to C are cross-sections of edge profiles used in structural 10 sandwich plate members according to the present invention;

Figures 2A and B are cross-sectional views illustrating two ways in which the edge profiles of Figure 1C can be used to connect modules comprised of structural sandwich plate members or structural sandwich plate members according to the present invention;

15 Figures 3A and B are cross-sectional views illustrating deep male and female socket profiles according to the present invention and their manner of use;

Figures 4A and B are cross-sectional views illustrating shallow male and female socket profiles according to the present invention and their manner of use;

20 Figures 5A to D are cross-sectional views illustrating various plate profiles for connecting structural sandwich plate members to a perpendicular metal plate;

Figure 6 is a cross-sectional view illustrating a through-thickness plate profile for direct force transmission;

25 Figures 7A and B are cross-sectional views illustrating two alternative spacer profiles for constructing structural sandwich plate members according to the present invention;

Figures 8A to G illustrate various structural sandwich panel profiles for joining together multiple prefabricated structural sandwich plate members, e.g. members used to form the deck and side shell connections, bulkhead to hull connections of a bulk carrier, container vessel, tanker, etc., and their manner of

30 use;

Figures 9A to J are cross-sectional views of various complex profiles according to the present invention and their manner of use for connecting multiple structural sandwich plate members and metal plates or multiple structural sandwich plate members at acute and obtuse angles;

5 Figures 10A to D are cross-sectional views of transition profiles for transition connections between a structural sandwich plate member and a conventional stiffened metal plate;

10 Figure 11 is a mid-tank cross-section of a product oil tanker constructed using structural sandwich plate members according to the present invention and identifies the type and location of different profiles;

Figure 12 is a mid-tank longitudinal section of the product oil tanker of Figure 11;

Figure 13 is an exploded view showing the structural components of a mid-tank section of the product oil tanker of Figure 11;

15 Figure 14 is a partly-explored perspective view with enlarged portions showing a structural sandwich plate member with integrated structural profiles according to the present invention and its connection to a longitudinal upstanding metal web; and

20 Figure 15 is a partly-sectioned perspective view of two mid-tank sections of the product oil tanker of Figure 11 which illustrates edge profiles and their manner of use for connecting two tank section modules.

In the various drawings, like references denote like parts.

25 Figures 1A to C illustrate edge profiles 1a to c which generally form the outward edge of a structural sandwich plate member such that, when a number of such plate members are formed into a large section or module, the outward edge of that module is largely comprised of edge profiles that can be mated and joined by welding to the outward edge of an adjacent module. In general, the edge profiles 30 include built-in backing bars and full or partial penetration groove weld

preparations to eliminate the need of providing or making these in situ. These sections may be roll formed or fabricated from standard shapes and plates in steel. Alternatively they may be extruded in aluminium for applications where light weight is desired, e.g. the upper decks of cruise ships or for hull forms in fast ships.

5 Of course, other metals may be used if desired and structural profiles of different metals may be used together to form structural sandwich plate members according to the invention.

The edge profile 1a shown in Figure 1A, which is a lateral cross-section, comprises a generally planar portion (long flange) 11 which will form part of one 10 outer plate of a structural sandwich plate member and has sufficient length that the tip can be displaced (e.g. by up to $\pm 5\text{mm}$) to be aligned with the adjacent module. Placed inwardly from one edge of the section is an upstanding web 12 which will 15 extend across the thickness of the structural sandwich plate member. At the distal end of the upstanding web 12, a short flange 13 parallel to the long flange 11 and extending towards its centre is provided. Short flange 13 provides a landing surface for the metal plate used to complete the structural sandwich plate member. Full penetration groove weld preparations 14 are provided at the edges of the long flange 11 to enable an adjacent plate or edge profile to be welded to the edge profile from the exterior.

20 Figure 1B illustrates an alternative edge profile 1b similar to that of Figure 1A and again comprising a plate portion (long flange) 11, upstanding web 12 and short flange 13. In this case, the weld preparations 14 of the long flange 11 enable 25 an adjacent plate or like section to be welded to the edge profile 1b from the interior. Figure 1C illustrates a further alternative edge profile 1c which again consists of (long flange) plate portion 11, upstanding web 12 and short flange 13 performing the same functions as in the sections 1a, 1b of Figures 1A and B. In 30 edge profile 1c of Figure 1C, the upstanding web 12 is located adjacent one side edge of the long flange 11. The edge weld preparation 14 on the other side may be arranged to enable welding from the exterior, as shown, or to enable welding from the interior, as desired for the intended fabrication sequence. At the base of the

upstanding web 12, a small projection 17 is provided, with its lower surface aligned with the inner surface of the long flange 11, to act as a backing bar to receive an adjacent plate.

It should be noted that in the above and following descriptions, the terms
5 "interior" and "exterior" are used to identify preferred weld direction with respect
to their intended location in a structure. In Figures 1A to C, the exterior surface
of the profile is the lower surface and the interior, the upper surface.

Figures 2A and B illustrate two alternative ways in which profiles as shown
in Figure 1C can be used to connect large sections or modules comprised of
10 structural sandwich plate members.

In the arrangement of Figure 2A, two sections or modules 2a, 2b are
constructed of structural sandwich plate members comprising outer metal plates 21
bonded together by an elastomer core 22 which substantially contributes to the
structural strength of the member. The edges of the sections 2a, 2b are closed by
15 an edge profile 1c, one section 2a has the long flange 11 of the edge profile 1c
downwards (as illustrated) and the other section 2b has the planar portion 11
upwards (as illustrated). The two sections 2a, 2b are fitted together with the free
end of the long flange 11 of each edge profile 1c supported by the short flange 13
of the other edge profile 1c. Full penetration groove butt welds 4b are made to
20 connect the adjacent modules together. The newly-formed cavity 5 is then injected
with elastomer to make the construction continuous. If necessary, the degree of
overlap between the short flange 13 of one section and the long flange 11 of the
other can be varied to accommodate normal variations in fit-up that are associated
with making modules.

25 In the arrangement of Figure 2B, two like edge profiles 1d similar to that
shown in Figure 1C are again used. In this case, the edge profiles 1d are positioned
with their long flanges 11 on the same side. The weld preparation as shown in
Figure 2B allows the finishing butt weld 4b to be made from the interior.

Subsequently plate 6, which preferably has the same thickness as the outer plates
30 21 of modules 2a, 2b, is welded 4b to close cavity 5, with the short flanges 13

acting as landing surfaces and backing bars. Cavity 5 is then injected with elastomer to make the connecting plate segment composite. This method of connection between modules allows for greater variations in alignment than the method of Fig 2A.

5 In Figures 2A and 2B, as well as various of the other figures described below, butt welds made prior to casting of elastomer for the structural sandwich plate members are indicated at 4a. Finishing welds, that join structural profiles and plate members, are indicated at 4b but not all are shown completed.

10 Figures 3A and B illustrate the deep male and female socket profiles and their use to align and join adjacent structural sandwich plate members.

As shown in Figure 3A a male socket profile 71 and female socket profile 72 have complimentary U-shapes that mate, providing alignment and shear capacity between joining prefabricated structural sandwich plate members. The total depth of the webs of the male and female socket profiles 71, 72 are equal to 15 the core thickness of the sandwich plate member in the edge of which they are fitted. As shown, the two structural sandwich plate members have the same thickness but the socket profiles may be varied to connect together structural sandwich plate members of different thicknesses or different metal plate thicknesses. The socket profiles may extend for some or preferably all of the 20 entire lengths of the edges of the structural sandwich plate members and are welded to metal plates 21 by fillet welds 4a as illustrated in Figure 3B to form metal boxes with enclosed air-tight cavities. Other profiles may also be integrated into the cavities or used along the edges. These cavities are injected with elastomer 22 and after curing form structural sandwich plate members. Larger sections can 25 be made by mating the male and female socket profiles 71, 72 along the edges of adjacent plate members, as shown in Figure 3B and making them continuous by welding butt welds (not shown). The deep socket profiles need not be fully butted, as shown in Figure 3B, but may have a gap between profiles to accommodate misalignment within the plane of the plate members.

30 Figures 4A and B illustrate shallow male and female socket profiles 73, 74

which form one or more edges of a structural sandwich plate member and are used in the same manner as the deep socket profiles 71, 72.

Figures 5A to D illustrate various plate profiles that are integrated into structural sandwich plate members and that are used to connect structural 5 sandwich plate members that are in general perpendicular to a metal web.

Figure 5A illustrates the basic form of a plate profile 81. The lower part of the profile 81 is shaped like an I-beam with upper and lower flanges 811, 812. A web extends above the upper flanges. The flanges 811, 812 act as landing surfaces and backing bars to allow the outer metal plates 21 of structural sandwich plate 10 members 2a, 2b to be welded to the plate profile 81 with butt or full penetration groove welds 4a. The web extending above the upper flanges 811 is used to connect to the perpendicular metal web.

Subsequent to welding of all edge and integrated profiles to plates 21, elastomer 22 is injected into the cavities to form the structural sandwich plate 15 members 2a, 2b. Conventional metal plates or webs 61 are welded to the plate profile 81 with either full penetration groove welds or butt welds 4b that are located sufficiently away from the core as not to damage it by the welding process.

Variations of the plate profile form with different dimensions, built-in weld preparations, backing bar and alignment plate arrangements are illustrated in 20 Figures 5B, 5C and 5D. Plate profiles 82 and 83, shown in Figure 5B and 5C respectively, are simplified and have one set of landing surfaces/backing bars for the interior one of plates 21. The profile is fillet welded to the exterior one of plates 21 and welded to the web 61 with either a one-sided full penetration groove weld or with two-sided partial penetration groove welds. The plate profile 84 25 shown in Figure 5D is similar to profile 82 but has an additional backing bar alignment plate 842 to facilitate the welding of the web 61.

Figure 6 illustrates a through-thickness profile 85 which can be used to transfer force directly through structural sandwich plate members. The through-thickness profile 85 comprises a plate of constant thickness from which project 30 two spaced apart pairs of flanges 851, 852. These flanges 851, 852 act as landing

surfaces and backing bars for plates 21 forming the outer plates of structural sandwich plate elements 2a, 2b which are welded to it. Webs or other conventional metal plates can be welded to the through-thickness profile 85 of the precast structural sandwich panel during construction.

5 Spacer profiles 91 and 93, shown in Figures 7A and 7B, can be used to act as a landing surface and backing bar 92 for making plate seams and to space apart plates 21 which form the outer plates of structural sandwich plate members. Spacer profiles 91 and 93 are I-shaped and T-shaped respectively. Each is first welded with fillet welds to the exterior plate and then to the interior plates when
10 the plate seam is welded.

Various sandwich plate profiles 101 to 107 for joining mutually perpendicular structural sandwich plate members are shown in cross-section in Figures 8A, whilst their manner of use is shown in Figures 8B to 8D. These sandwich plate profiles may also be referred to as nodal profiles.

15 In Figure 8B three prefabricated sandwich plate members are connected together with two aligned and the third extending perpendicularly from them and is representative of a typical deck to side shell connection detail. The nodal profile 101 used to effect this connection is a roll-formed or extruded section of metal having sockets facing the directions of the structural sandwich plate members
20 which are to be connected. The overall form is H-shaped with the third socket formed by flanges provided on one of the uprights of the H. A male socket profile 102 forming the edge of the prefabricated structural sandwich plate members is inserted into the nodal profile 101 and welded to form a continuous structure as shown in Figure 8C. Finishing welds (not shown) make the joint continuous.
25 Localised welding can be carried out without affecting the structural integrity of the joint.

Figures 8D and 8E illustrate the method of use of two nodal profiles 103 and 104 that are used to connect two prefabricated structural sandwich plate members and are again representative of a typical deck side shell construction
30 detail. Nodal profiles 103 and 104 provide a right angle connection with a square

outer corner and a chamfered outer corner, respectively. In both cases, the profiles are generally U-shaped with small perpendicular plate protrusions on the outside face of one leg which form the second socket.

Figure 8F illustrates the method of use for sandwich plate profile 108 that 5 would be used to connect four prefabricated structural sandwich plate members and is representative of a typical inner hull stool bulkhead connection.

Figure 8G illustrates the method of use for the sandwich plate profile 101 which is integrated into one structural sandwich plate member and subsequently made continuous with two other precast structural sandwich plate members by 10 welding 9. Again, finishing welds are omitted for clarity. In this case, the nodal profile 106 is basically a structural angle with inner small plate protrusions which are perpendicular to the outside face of the legs of the angle. The small plates provide alignment, socket and weld details for accepting two precast structural sandwich plate members.

15 Although not illustrated by any of the profiles in Figure 8, it is possible to vary the geometry of the profile to change the alignment of the prefabricated structural sandwich plate member from being orthogonal to any other angle. Also, it is preferable with all of the arrangements of Figures 8A to G that finishing 20 welds result in smooth outer surfaces to the joints, filling in the gaps between outer plates 21 and the flanges to the nodal profiles.

Arrangements to connect angled structural sandwich plate members to each other and to conventional plates in which at least one plate member is framed into the joint at an oblique angle are shown in Figures 9A to J. The connections of Figures 9A to G are representative of typical connection between a hopper, inner 25 hull bottom and a longitudinal girder, or between the side shell, hopper-side shell and a stringer. Those of Figures 9H, I and J can be used for hopper to inner hull bottom to stool connections. Figures 9A to E illustrate complex profiles that are integrated into the steel fabrication process prior to the injection of elastomer and their manner of use whilst Figures 9F and 9G illustrate complex profiles that join 30 precast structural sandwich plate members.

The working line or centroid of all plate members framing into the connection are aligned to act through the same point so that no eccentric forces act on the profile.

Figure 9A illustrates a basic form of a complex profile 110 which is used to 5 connect an inclined structural sandwich plate member, a horizontal structural sandwich plate member and a vertical metal plate. The complex profile 110 essentially comprises a vertical plate portion which is to be aligned with and butt welded to a vertical metal plate. Four flanges 111-114, extending from the vertical plate portion a distance sufficient to place joining welds to outer plates 61 in a 10 lower stress range region (for better fatigue resistance) are spaced apart and oriented to align with the outer plates 21 of the inclined and horizontal structural sandwich plate members. The outer plates 21 of the structural sandwich plate members are butt welded to the respective tips of flanges 111-114. The extension of the vertical metal plate through the core depth of the structural sandwich plate 15 members transmits the through-thickness forces associated with the vertical force component in the inclined structural sandwich plate member.

Figures 9B, 9C and 9D are variations of the basic form of the complex profile which include different weld preparations. The flange tips of flanges 121-124 and 131-134 of complex profiles 120 and 130 in Figures 9B and 9C have been 20 bevelled for full penetration groove welds to made form the outside or all from above, respectively. Complex profile 120 in Figure 9D has integrated backing bars 145 which provide the landing surface and alignment necessary to make butt welds between the outer plates 21 and the complex profile 140 from the preferred 25 directions. Complex profile 150 in Figure 9E is a variant of complex profile 140 with solid core 151 having side faces 152, 153 facing the structural sandwich plate members and rolled notches 154 that provide the same function as backing bars.

Figures 9F and 9G illustrate two additional variations of the basic form of the complex profile in Figure 9A that would be used to join prefabricated structural sandwich plate members to conventional metal plates. Figure 9G 30 illustrates the use of a solid metal block or bar 107 as an alternative male socket

member to the U-shaped profile and the same solid core variation 171 as illustrated in Figure 9E. Although not illustrated, complex profiles may be provided that are integrated into one or more structural sandwich plate members and provided with one or more sockets for connection to one or more prefabricated structural
5 sandwich plate members.

Figures 9H, I and J illustrate a variety of complex profiles 180, 190, 200 for typical hopper to inner hull bottom to stool connections and their manner of use for joining prefabricated structural sandwich plate members and conventional metal plates. In each case, appropriately oriented and spaced flanges 181, 182, 191,
10 192, 201, 202 are provided to form sockets to receive male socket members 102, 105 provided in the ends of the structural sandwich plate members and webs 183, 193, 203 transmit through-thickness forces.

Figures 10A to C illustrate transition profiles 210, 220, 230 which are used to connect a structural sandwich plate member to an aligned conventional metal
15 plate or web.

As shown in Figure 10A, transition profile 210 essentially comprises two plate portions 211, 212 which are joined together at one edge, where they are to be welded to the conventional metal plate 73. The upper plate portion 211 is parallel and aligned with the conventional metal plate 73 where as the lower plate portion
20 212 is inclined so that at the distal edges of the plate portions 213, 214 they are spaced apart by a distance equal to the thickness of the structural sandwich plate member to which the outer plates 21 are welded. The distal end portion 213 of plate portion 212 is made parallel to the other plate portion 211 and the outer plate of the structural sandwich plate member to which it is to be connected. The distal
25 end portions of the plate portions 210, 211 are also provided with backing bars 214 to assist in welding the outer plates 21 of the structural sandwich plate member to transition profile 210.

Transition profile 220 shown in Figure 10B is a very similar to transition profile 210 of Figure 10 A but the upper link member 221 is shortened so that the
30 points of connection between plate portions 221, 222 and the respective outer

plates 21 of the structural sandwich plate member are not aligned vertically and in which an additional backing bar detail has been included to facilitate the welding of the transition profile to the metal plate 73.

Transition profile 230 shown in Figure 10C is for use where the existing plate 74 extends to form one of the outer plate members of the structural sandwich plate member, as in the case of structural overlays. The lower plate portion 231 is placed against and welded at its edges to plate 74. The upper plate portion 232 is joined at one edge to one edge of lower plate portion 231 and rises up so as to be spaced from lower plate portion 231 for connection to plate 21 which forms the other outer plate of the structural sandwich plate member.

A fourth transitional profile 240 is shown in Figure 10D and is simpler to roll-form. Transitional profile 240 comprises a head portion 241, a main angled plate 242 and a tail portion 243. The head portion has a backing bar 244 and weld preparation 245 for connection to an existing metal plate 73 as well as a shoulder 246 to receive one outer metal plate 21 of the structural sandwich plate element. The tail portion 243 has a backing bar 247 for receiving the other outer metal plate 21 whilst the main angled plate 242 makes the transition from the existing metal plate 73 to the full thickness of the structural sandwich plate member.

It will be appreciated that in describing the various profiles of the invention, directional terms such as "upper", "above" and "horizontal", etc., have been used with reference to the orientation of the various parts shown in the drawings. Of course, the various parts can also be used in other orientations, as desired. It will also be appreciated that the various profiles will be rolled or extruded with the shapes, dimensions and weld preparations that are satisfactory for both structural and economic considerations.

A mid-tank section of a 40,000 DWT product oil tanker 300 is shown in Figures 11 to 15 as an example of the use of structural sandwich plate members and structured profiles according to the present invention. Figure 11 is a mid-tank cross section of the tanker 300 with the left hand part showing longitudinal framing and the right hand part showing a typical transverse frame. Figure 12 is a

longitudinal section for a portion of tank section along a longitudinal frame.

Figure 13 is an isometric exploded view of a typical tank section. Figure 14 is a partially exploded view with enlarged portions showing the use of profiles according to the invention to connect a structural sandwich plate member, e.g.

5 forming part of the inner or outer hull, to a perpendicular plate, e.g a longitudinal or transverse framing plate. Figure 15 is a perspective view of two hull sections with an enlarged portion showing the use of edge profiles according to the invention to join the modules.

For this particular example the deck plate 311, outer hull 302, 303, 310, 314
10 and inner hull 304, 305, 316, 317 would be constructed with structural sandwich plate members. The corrugated bulkhead 315, longitudinal framing 306, 307, 312 and transverse framing 308, 309, 313 would be constructed with metal plates.

Profiles according to the present invention, described above and illustrated in Figures 1 to 10 would be used to join these members. All members are made
15 continuous by welding and according to the present invention a significant number of structural sandwich plate elements may be prefabricated.

In particular, the plate profiles 81, 82, 83, 84 shown in Figures 5A to D can be used to connect a longitudinal or transverse framing plate 306, 307, 308, 309, 312, 313 to a structural sandwich plate member 2d forming part of the inner or
20 outer hulls 302, 303, 304, 305, 310, 314, 316, 317. An example of connection of a longitudinal framing plate is shown in greater detail in Figure 14. As can there be seen, the structural sandwich plate member 2d is made up from three elongate steel plates 21a, 21b, 21c of which the largest 21a forms the outermost layer of the outer hull or the innermost layer of the inner hull. Edge profiles 1a, 1b, 1c or 1d are
25 welded along the short edges of the plate 21a, these edges will form the edge of a hull section in which the structural sandwich plate member 2d is to be incorporated and facilitate connection of hull sections as described above. Along the long edges of the plate 21a, socket profiles 71, 72 are welded to facilitate connection of the structural sandwich plate member 2d to adjacent members in the
30 hull section. The plate profile 81, 82, 83 or 84 is welded along the centre line of

plate 21a. Plates 21b and 21c can then be welded in place with the edge profiles 1a, 1b, 1c, or 1d, socket profiles 71, 72 and backing bars on the plate profile 81, 82, 83 or 84 supporting the plates 21b, 21c. With the plates 21b, 21c in place, two air-tight cavities are formed and these are then injected with elastomer to complete the

5 structural sandwich plate member. The framing plate 306, 307 can then be welded to the plate profile 81 which projects far enough from the structural sandwich plate member 2d to prevent the heat of welding damaging the elastomer. It will be appreciated that the construction of the structural sandwich plate member 2d and

10 optionally also the connection of the longitudinal framing plate 306, 307 can be carried out in a factory rather than a shipyard, enabling improved dimensional accuracy and higher quality construction through well cured elastomer and good welds.

Other examples of the use of profiles according to the invention in the vessel of Figures 11 to 15 are:

15 • complex profiles 110, 120, 130, 140, 150, 160, 170 to connect inner hull bottom 305 to hopper 318 to a longitudinal framing plate 307 or inner side shell 304 to hopper 318 to a longitudinal framing plate 306;

• sandwich plate profiles 101 to 107 to connect deck 311 to side shell 304; and

• complex profiles 180, 190, 200 to connect hopper 318 to inner hull bottom

20 305 to stool 316.

As mentioned above, edge profiles according to the invention can be employed to facilitate connection of hull sections or modules of other structures, allowing the modules or sections to be constructed off-site for convenience and improved dimensional accuracy. This is illustrated in Figure 15 which shows the

25 connection of two hull modules 401, 402 of the vessel 300. The modules 401, 402 are constructed so that the edges of the structural sandwich plate members which form the edges of the sections are provided with edge profiles 1c. When the two modules 401, 402 are brought together, the free edges of the long flanges 11 of the edge profiles 1c can be displaced as necessary to line up against the end of the short

30 flange of the edge profile 1c on the other section. Simply welding the long flanges

to the short flanges, assisted by the built-in weld preparations, joins the two sections and forms cavity 5 which is subsequently injected with elastomer to form a composite structure.

Whilst we have described above exemplary embodiments of the invention,
5 it will be appreciated that this description is not intended to be limitative and that variations and modifications may be made to the described embodiments without departing from the scope of the invention defined in the appended claims.

CLAIMS

1. A structural sandwich plate member comprising: first and second outer metal plates; an elastomer core bonded to said outer metal plates with sufficient strength to transfer shear forces therebetween; and an edge member formed by a rolled or extruded profile fitted between and connected to said first and second outer metal plates and extending along at least a part of the periphery of said outer metal plates.
- 10 2. A structural sandwich plate member according to claim 1 wherein said edge member comprises a first flange substantially coplanar with said first outer metal plate, a web upstanding from said first flange and a second flange extending parallel to said first flange from the end of said web and at least partially lying against said second outer plate.
- 15 3. A structural sandwich plate member according to claim 2 wherein said web is upstanding from one edge of said first flange.
4. A structural sandwich plate member according to claim 3 wherein said edge member further comprises a third flange substantially parallel to said first flange and projecting from said web in the opposite direction to said first flange, said third flange being positioned to act as a backing bar for welding said first outer plate to said edge member.
- 25 5. A structural sandwich plate member according to any one of claims 2 to 4 wherein at least one edge of said first flange is provided with preparations for butt welding to another flange or plate.
- 30 6. A structural sandwich plate member according to any one of claims 2 to 5 wherein said second flange extends beyond the edge of said second outer plate to

act as a support for welding another plate or flange to said structural sandwich plate member.

7. A structural sandwich plate member according to claim 1 wherein said edge member is U-shaped in cross-section having a base portion and two arms with the arms of the U being substantially parallel to and at least partially lying against said first and second outer plates.
8. A structural sandwich plate member according to claim 7 wherein the base portion of said edge member projects outwardly from the edges of said first and second outer plates so as to be engageable in a socket.
9. A structural sandwich plate member according to claim 7 wherein the base portion of said edge member is spaced inwardly from the edges of said first and second outer plates so as to form a socket.
10. A structural sandwich plate member according to claim 1 wherein said edge member comprises an inclined flange forming an acute angle to said first outer metal plate and connected at first and second edges to said first and second outer metal plates respectively.
11. A structural sandwich plate member according to claim 10 wherein said edge member further comprises a head portion connected to said first edge of said inclined flange, said head portion having weld preparations for butt welding to another plate or flange that is aligned with said first outer metal plate.
12. A structural sandwich plate member according to claim 11 wherein said inclined flange is connected to said first flange via said head portion.
- 30 13. A structural sandwich plate member according to claim 12 wherein said

edge member further comprises a further flange substantially parallel to said first outer plate and connected at a first edge to said head portion.

14. A structural sandwich plate member according to claim 13 wherein said 5 further flange is butt welded at a second edge thereof to said first outer plate so that said inclined flange is connected to said first outer plate via said head portion and said further flange.

15. A structural sandwich plate member according to claim 13 wherein said 10 further flange overlies said first outer plate.

16. A structural sandwich plate member according to claim 15 wherein said first outer plate is an existing metal plate of a structure to which the structural sandwich plate member is retro-fitted.

15

17. A structural sandwich plate member according to any one of claims 10 to 16 wherein said inclined flange has a tail portion at its second edge that is substantially parallel to said second outer plate.

20 18. A structural sandwich plate member according to any one of the preceding claims comprising a plurality of like or different edge members extending along respective parts of the periphery of said outer metal plates.

19. A structural sandwich plate member according to any one of the preceding 25 claims wherein the said edge member or members extend along substantially the entire periphery of said outer metal plates.

20. A structural sandwich plate member comprising first and second outer metal plates; an elastomer core bonded to said outer metal plates with sufficient 30 strength to transfer shear forces therebetween; and a connection member formed

by a rolled or extruded profile and joined between said first and second outer metal plates.

21. A structural sandwich plate member according to claim 20 wherein said 5 connection member comprises a web abutting said first outer plate and projecting through said second outer plate.

22. A structural sandwich plate member according to claim 20 wherein said 10 connection member comprises a web projecting through both said first and second metal plates.

23. A structural sandwich plate member according to claim 21 or 22 wherein said connection member further comprises at least one flange projecting from said web to act as a backing bar for welding one of said outer plates to said web.

15 24. A structural sandwich plate member according to claim 21, 22 or 23 wherein the or an edge of said web projecting through one of said outer metal plates has preparations for butt welding to a coplanar metal plate.

20 25. A structural sandwich plate member according to claim 20 wherein said connecting member comprises an I-beam or a T-beam extending perpendicular to and between said first and second metal plates.

25 26. A structural part comprising at least first and second structural sandwich plate members, each comprising first and second outer metal plates and an elastomer core bonded to said outer metal plates with sufficient strength to transfer shear forces therebetween, joined together by a link member formed by a rolled or extruded elongate profile.

30 27. A structural part according to claim 26 wherein said link member

comprises a plate portion having projecting therefrom first to fourth flanges, said first to fourth flanges being coplanar with respective ones of said first and second outer plates of said first and second structural sandwich plate members.

- 5 28. A structural part according to claim 26 wherein said link member comprises a solid portion having first and second faces, said first and second faces having bevelled edges to which the outer plates of said first and second structural sandwich plate members are connected.
- 10 29. A structural part according to claim 28 wherein said link member further comprises a plate portion extending from said solid portion, not from either of said first or second faces.
- 15 30. A structural part according to claim 27 or 29 wherein one edge of said plate portion is provided with weld preparations for butt welding to another plate or flange.
- 20 31. A structural part according to claim 26 wherein at least one of said first and second structural sandwich plate members comprises an edge member formed by a rolled or extruded profile and projecting beyond the edges of said outer metal plates; and said link member comprises at least one socket to receive said edge member
- 25 32. A structural part according to any one of claims 26 to 31 wherein said first and second structural sandwich plate members are not parallel.
33. A vessel, off-shore or civil engineering structure, section or module including at least one structural sandwich plate member according to any one of claims 1 to 25 or a structural part according to any one of claims 26 to 32.

34. An edge member for use with a structural sandwich plate member comprising: first and second outer metal plates and an elastomer core bonded to said outer metal plates with sufficient strength to transfer shear forces therebetween; said edge member being formed by a rolled or extruded profile and 5 adapted to be fitted between said first and second outer metal plates and extend along at least a part of the periphery of said outer metal plates.

35. An edge member according to claim 34 provided with weld preparations for assisting in welding said outer metal plates to said edge member.

10

36. A connection member for use with a structural sandwich plate member comprising first and second outer metal plates and an elastomer core bonded to said outer metal plates with sufficient strength to transfer shear forces therebetween; said connection member formed by a rolled or extruded profile and 15 adapted to be joined between said first and second outer metal plates.

37. A link member for joining at least first and second structural sandwich plate members, each comprising first and second outer metal plates and an elastomer core bonded to said outer metal plates with sufficient strength to 20 transfer shear forces therebetween, said a link member formed by a rolled or extruded profile.

38. A structural sandwich plate member constructed substantially as hereinbefore described with reference to the accompanying drawings.

25

Application No: GB 0104846.1
Claims searched: 1 to 38

Examiner: R.J.MIRAMS
Date of search: 21 September 2001

Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.S): B5N

Int.Cl (Ed.7): B32B. B63B.

Other: ONLINE: WPI, EPODOC, JAPIO.

Documents considered to be relevant:

Category	Identity of document and relevant passage	Relevant to claims
X,E	GB2355957A (INTELLIGENT ENGINEERING) e.g. figure 1 and page 2 line 32 to page 3 line 4 and page 5 lines 18 to 21	at least 1, 18, 20, 25, 26, 33, 34, 36 and 37
X	US6050208A (KENNEDY) e.g. spacers 4B in figure 2 and spacer 45 in figure 9	at least 1, 18, 20, 26, 33, 34, 36 and 37
X	US5778813A (KENNEDY) e.g. spacer 44 in figure 8	at least 1, 18, 20, 26, 33, 34, 36 and 37
X	GB2244237A (HUNTER DOUGLAS) e.g. figure 1 and page 3 lines 5 to 10	at least 34, 36 and 37
X	GB1451111A (C. HEMMINGS) e.g. elements A and B in figure 1	at least 34, 36 and 37

X	Document indicating lack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
Y	Document indicating lack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
&	Member of the same patent family	E	Patent document published on or after, but with priority date earlier than, the filing date of this application.