发明名称
基于嵌入式操作系统的机车数字网络互联设备及其控制方法

摘要
基于嵌入式操作系统的机车数字网络互联设备及其控制方法，包括外壳、CPU板、接口板、LCD显示系统。还可以根据实际应用的需要增加触摸屏、IC卡座。整个IDD装置只有一块CPU板，将IDD装置所有控制部分（包括显示和通信）的处理放在一块CPU上完成，即使有一块CPU完成IDD的显示和TCN网络通信功能，所述IDD装置的电路板包括一块CPU板和一块接口板两个部分，并通过两个矩形插座连接。同时所述IDD装置采用嵌入式Linux操作系统，实现嵌入式GUI（图形用户接口）和TCN（列车控制网络）实时协议包功能。
权利要求书

1. 基于嵌入式操作系统的机车数字网络互联设备，包括外壳、CPU 板、接口板、LCD 显示系统，其特征在于：整个 IDD 装置装置只有一块 CPU 板，即使用一块 CPU 完成 IDD 的显示和 TCN 网络通信功能；所述的 IDD 装置的电路板包括一块 CPU 板和一块接口板两个部分，并通过两个矩形插座连接；所述 IDD 装置采用嵌入式 Linux 操作系统，实现嵌入式 GUI（图形用户接口）和 TCN（列车控制网络）实时协议包功能。

2. 如权利要求 1 所述的机车数字网络互联设备，其特征在于：所述的 IDD 装置还有触摸屏、IC 卡座。

3. 如权利要求 1 所述的机车数字网络互联设备，其特征在于：所述的 CPU 板上主要包括 Flash 存储器、SDRAM 存储器、一个 USB Host 接口、一个触摸屏接口、一个以太网接口、一个声音系统，CPU 板的电源由接口板提供，通过矩形插座连接到 CPU 板；CPU 板系统复位由复位控制器控制，包括三个复位源：上电复位、手动复位、看门狗复位；CPU 板的 FLASH 包括 BOOT ROM 和用户数据区；USB Host 接口支持 USB 低速和全速模式；声音系统由处理器提供控制信号，模拟音频信号由矩形插座连接到接口板上。

4. 如权利要求 1 或 3 所述的机车数字网络互联设备，其特征在于：所述的 CPU 板使用一片 CPLD 完成板极控制功能，包括地址译码、内部电路逻辑的产出和锁存、板内资源的分配等；所述的 USB 电源地与系统地之间以及 USB 数据线线上有磁珠；USB 接口通过矩形插座连接到前盖上的标准插座上，信号最大有效值为 1V（RMS），负载阻抗应大于 10KΩ。

5. 如权利要求 1 所述的机车数字网络互联设备，其特征在于：所述的接口板主要包括通讯接口 MVB（多功能车辆总线）、电源系统、外设控制电路等部
分。LCD液晶屏的背光电源及控制电路也安装在接口板上。其中，MVB子系统为采用MVB3类设备，物理层采用ESD+接口；MVB子系统实现MVB协议的物理层和数据链路层；MVB的初始化、配置以及TCN RTP协议网络均由CPU板软件实现；CPLD完成与处理器的接口逻辑以及MVB时序控制；在Linux操作系统内核中，实现MVB消息数据相关的驱动；直接将TM映射到CPU的地址空间实现MVB过程数据通讯；在接口板上装有两个LCD背光逆变器，用于LCD液晶屏的背光供电。

6. 如权利要求1所述的机车数字网络互联设备，其特征在于：所述的LCD显示系统采用嵌入式Linux操作系统，LCD显示系统包括LCD液晶屏和一些控制按钮，LCD液晶屏安装于前盖上，由CPU板驱动显示；显示器的主要功能是人机接口，所有显示器软件系统的图形用户接口采用TinyX接口，使用基于FLTK的图形化编程工具编写应用程序。

7. 如权利要求1所述机车数字网络互联设备的控制方法，属于一种用于显示列车上各种设备及与列车运行有关的各种信息，并为操作者提供与各种设备交互信息与数据的接口的控制方法，其特征在于：采用简统化的处理方式，用一块CPU板进行实施控制处理，将IDD装置包括显示和通信的所有控制部分处理放在一块CPU上完成，即使用一块CPU完成IDD的显示和TCN网络通信功能，同时采用嵌入式Linux操作系统，实现嵌入式GUI（图形用户接口）和TCN（列车控制网络）实时协议包功能。

8. 如权利要求7所述机车数字网络互联设备的控制方法，其特征在于：整个IDD系统控制程序流程如下：首先，程序对中文文字体进行初始化，可以根据需要设置为16点阵或24点阵字体；然后对MVB进行配置，包括设备地址、过程数据端口初始化、消息数据端口初始化、消息队列配置；对TCN
协议栈的配置包括路由配置、功能号配置等；程序还需要设置散热风扇的启动和停止温度；用户程序使用了控件的概念，界面上所有的元素都是控件，对程序员来讲，可以像搭积木一样地组建图形用户界面，并可以很好的实现上层界面和底层数据的分离；用户程序包括若干个窗口，每个窗口都放置有相关内容，程序首先对各个窗口的界面的内容和格式进行初始化；用户程序采用事件驱动结构，程序的流程不是只有一个入口和若干个出口的串行执行线路；相反，程序会一直处于一个循环状态，在这个循环中，程序不断从外部或内部获取某些事件，然后根据这些事件作出某种反应，并完成一定的功能，这个循环直到程序接收到某个退出消息循环为止；IDD 的用户程序主要使用了三类事件：键盘事件、定时器事件、TCN 协议栈事件。

9. 如权利要求 7 或 8 所述机车数字网络互联设备的控制方法，其特征在于：
所述的键盘事件是：当用户有键按下时，消息循环机制检测到键盘事件后，发送消息给用户程序窗口，该窗口检查该事件属于哪个子控件，若检测到合适的控件，程序将调用该控件的回调函数，对该事件进行处理；比如在本程序中，当用户按下 F1 键时，程序跳转到主界面，当用户按下 F2 键，则程序跳转到网络界面；所述的定时器事件是：定时器事件主要用来更新数据，具体的时间可以依照需要而定；在本程序设置每隔 0.5s 更新界面上的数据；所述的 TCN 协议栈事件是：当有 TCN 协议栈事件（主要是接收到消息数据）发生，程序将调用相关函数进行事件处理，以获取 MVB 消息数据，并且根据消息数据的内容进行相应处理，如报警、回送消息、显示消息等。
基于嵌入式操作系统的机车数字网络互联设备及其控制方法

技术领域

本发明涉及机车数字网络互联设备及其控制方法，特别是用于显示列车上各种设备及与列车运行有关的各种信息，并为操作者提供与各种设备交互信息与数据的接口的 IDD 装置及其控制方法。

背景技术

IDD（信息显示装置）是安装于司机室操作台、列车员操作间等部位的电子装置，用于显示列车上各种设备及与列车运行有关的各种信息，并为操作者提供与各种设备交互信息与数据的接口，显示和通信是 IDD 实现的两个最主要功能。以往铁路机车用 IDD 的显示和通信部分是分为两个相互独立的 CPU 来处理的，即一块 CPU 完成显示控制，另一块 CPU 负责通信。相应地，两块 CPU 分别运行两套相互独立的系统。这样，IDD 系统的结构复杂，并且提高了设备的硬件制造和软件开发成本。2004 年 12 月 8 日公告的 CN2661527Y 号中国专利揭示了一种新型列车监控装置屏幕显示器。该列车监控装置屏幕显示器由底板、IC 卡语音板、电源板、高压板、CPU 卡、显示卡、显示屏、通信子板、扬声器、蜂鸣器、薄膜开关面板组成，并具有与主机的多种通讯接口和输入输出端口，因此能够充分、及时地反应机车运行的各种数据和文字信息，可以及时显示汉字和图形曲线。2005 年 9 月 21 日公告的 CN2727849Y 号中国专利揭示了一种监控装置数码显示器。该数码显示器包括微处理器、程序存储器、静态 RAM、语音提示电路、通讯接口电路、IC 卡、键盘显示电路和显示电路。以上所提及的对比文件同样都存在着前面所述的问题，因此很有必要对此加以改进。
发明内容

本发明的目的在于针对现有 IDD 装置的不足，提出一种结构更为合理，尤其是 CPU 利用率高，实时性好，设备体积较小的新型机车数字网络互联设备及其控制方法。

根据本发明的目的所提出的技术实施方案是：一种用于显示列车上各种设备及与列车运行有关的各种信息，并为操作者提供与各种设备交互信息与数据的接口的 IDD 装置，至少包括外壳、CPU 板、接口板、LCD 显示系统。还可以根据实际应用的需要增加触摸屏、IC 卡座。整个 IDD 装置只有一块 CPU 板，将 IDD 装置所有控制部分（包括显示和通信）的处理放在一块 CPU 上完成，即使用一块 CPU 完成 IDD 的显示和 TCN 网络通信功能，所述 IDD 装置的电路板包括一块 CPU 板和一块接口板两个部分，并通过两个矩形插座连接。同时所述 IDD 装置采用嵌入式 Linux 操作系统，实现嵌入式 GUI（图形用户接口）和 TCN（列车控制网络）实时协议包功能。其中：

所述的 CPU 板是整个系统的核心部件，整个系统的主要控制功能都是通过一块 CPU 板完成的。CPU 板上主要包括 Flash 存储器、SDRAM 存储器、USB Host 接口、触摸屏接口、以太网接口、声音系统，使用一片 CPLD 完成板极控制功能，包括地址译码、内部电路逻辑的产出和锁存、板内资源的分配等。CPU 板的电源由接口板提供，通过矩形插座连接到 CPU 板；CPU 板系统复位由复位控制器控制，包括三个复位源：上电复位、手动复位、看门狗复位；CPU 板的 FLASH 包括 BOOT ROM 和用户数据区；USB Host 接口支持 USB 低速和全速模式。USB 电源地与系统地之间以及 USB 数据线上加有磁珠，以满足 EMC 要求。USB 接口通过矩形插座连接到前盖上的标准插座上。声音系统由处理器提供控制信号，模拟音频信号由矩形插座连接到接口板上，信号最大有效
值为 1V（RMS），负载阻抗应大于 10KΩ。当需要使用声音系统时，在接口板上根据需要集成成功放电路。

所述的接口板主要包括 MVB 通讯接口 (多功能车辆总线)、电源系统、外设控制电路等部分。LCD 液晶屏的背光电源及控制电路也安装在接口板上。其中，MVB 子系统为采用 MVB 3 类设备，物理层采用 ESD+接口。MVB 子系统实现 MVB 协议的物理层和数据链路层。MVB 的初始化、配置以及 TCN RTP 协议网络均由 CPU 板软件实现。CPLD 完成与处理器的接口逻辑以及 MVB 时序控制。在 Linux 操作系统内核中，实现 MVB 消息数据相关的驱动；直接将 TM 映射到 CPU 的地址空间实现 MVB 过程数据通讯。在接口板上装有两个 LCD 背光逆变器，用于 LCD 液晶屏的背光供电。

所述的 LCD 显示系统采用嵌入式 Linux 操作系统。采用 Tiny X GUI（图形用户接口）做为应用软件开发平台。LCD 显示系统包括 LCD 液晶屏和一些控制按钮，LCD 液晶屏安装于前盖上，由 CPU 板驱动显示。

本发明的一种用于显示列车上各种设备及与列车运行有关的各种信息，并为操作者提供与各种设备交互信息与数据的接口的 IDD 装置的控制方法是：采用简统化的处理方式，用一块 CPU 板进行实施控制处理，将 IDD 装置所有控制部分（包括显示和通信）的处理放在一块 CPU 上完成，即使用一块 CPU 完成 IDD 的显示和 TCN 网络通信功能，同时采用嵌入式 Linux 操作系统，实现嵌入式 GUI（图形用户接口）和 TCN（列车控制网络）实时协议包功能。

整个 IDD 系统控制程序流程如下：

首先，程序对中文字体进行初始化，可以根据需要设置为 16 点阵或 24 点阵字体。然后对 MVB 进行配置，包括设备地址、过程数据端口初始化、消息数据端口初始化、消息队列配置；对 TCN 协议栈的配置包括路由配置、功
能号配置等；程序还需要设置散热风扇的启动和停止温度。用户程序使用了控件的概念，界面上所有的元素都是控件，对程序员来讲，可以像搭积木一样地组建图形用户界面，并可以很好的实现上层界面和底层数据的分离。用户程序包括若干个窗口，每个窗口都放置有相关内容，程序首先对各个窗口的界面的内容和格式进行初始化。用户程序采用事件驱动结构，程序的流程不是只有一个入口和若干个出口的串行执行线路；相反，程序会一直处于一个循环状态，在这个循环中，程序不断从外部或内部获取某些事件，比如用户的按键、通讯端口数据的接收等，然后根据这些事件作出某种反应，并完成一定的功能，这个循环直到程序接收到某个退出消息循环为止。IDD的用户程序主要使用了三类事件：键盘事件、定时器事件、TCN协议栈事件。

键盘事件：当用户有键按下时，消息循环机制检测到键盘事件后，发送消息给用户程序窗口，该窗口检查该事件属于哪个子控件，若检测到合适的控件，程序将调用该控件的回调函数，对该事件进行处理。比如在本程序中，当用户按下 F1 键时，程序跳转到主界面，当用户按下 F2 键，则程序跳转到网络界面。

定时器事件：定时器事件主要用来更新数据，具体的时间可以依照需要而定。在本程序设置每隔 0.5s 更新界面上的数据。

TCN协议栈事件：当有 TCN 协议栈事件（主要是接收到消息数据）发生，程序将调用相关函数进行事件处理，以获取 MVB 消息数据，并且根据消息数据的内容进行相应处理，如报警、回送消息、显示消息等。

本发明的优点在于：由于本发明采用一块 CPU 板进行实施控制处理，整个 IDD 装置所有控制部分（包括显示和通信）的处理全放在一块 CPU 上完成，而且采用嵌入式 Linux 操作系统，因此本发明的 IDD 装置响应快，实时性高,
设备体积较小，能够充分满足相关标准规定的各种机车、列车的工作环境，十分适用于铁路领域。

附图说明

图 1 是对比文件 1 的原理框图；
图 2 是对比文件 2 的原理框图；
图 3 是本发明的系统总体结构框图；
图 4 是本发明的 CPU 板板内信号拓扑图；
图 5 是本发明的 CPU 板电源原理框图；
图 6 是本发明的底板 MV 宿系统原理框图；
图 7 是本发明的软件体系结构图；
图 8 是本发明的程序流程图。

图中：1、MVBC 地址总线；2、处理器数据总线；3、处理器地址总线；4、处理器控制总线。

具体实施方式

附图给出了一个本发明的具体实施方式，下面将结合附图和实施例对本发明作进一步的描述。

本发明的主要构思是有效整合资源，采用简统化的办法使整个 IDD 装置的结构进一步缩小，器件的利用率进一步提高。

从附图可以看出本发明是一种用于显示列车上各种设备及与列车运行有关的各种信息，并为操作者提供与各种设备交互信息与数据的接口的 IDD 装置。至少包括外壳、CPU 板、接口板、LCD 显示系统。还可以根据实际应用的需要增加触摸屏、IC 卡座、整个装置只有一块 CPU 板，将 IDD 装置所有控制部分（包括显示和通信）的处理放在一块 CPU 上完成，即使用一块 CPU 完成
IDD 的显示和 TCN 网络通信功能，所述 IDD 装置的电路板包括一块 CPU 板和一块接口板两个部分，并通过两个矩形插座连接。同时所述 IDD 装置采用嵌入式 Linux 操作系统，实现嵌入式 GUI（图形用户接口）和 TCN（列车控制网络）实时协议包功能。其中：

所述的 CPU 板是整个系统的核心部件，整个系统的主要控制功能都是通过一块 CPU 板完成的。因此 CPU 板是选用 Intel 公司的 Xscale 处理器 PXA255，工作频率为 400MHz。图 3 为本发明一个实施例的 CPU 板板内信号拓扑图。从附图可以看出，CPU 板上主要包括 32M Flash 存储器、64M SDRAM 存储器、一个 USB Host 接口、一个触摸屏接口、一个以太网接口、一个 AC97 声音系统，使用一片 XC9536XL CPLD 完成板极控制功能。CPU 板采用 DC5V 电源，由接口板提供，通过矩阵插座连接到 CPU 板，DC5V 的设计负载为 1.5A。TPS75733 芯片将 5V 电源转换为 3.3V，为 CPU 板的大部分电路提供电源，其容量为 3A。MIC5219BM5 芯片将 3.3V 电压转换为 1.37V，为 CPU 提供内核电压。MIC2026-1BM 电源开关芯片由软件控制，为 LCD 液晶屏提供工作电源。系统复位由 MAX823E 控制，包括三个复位源：上电复位、手动复位、看门狗复位。手动复位信号由 40 芯插座连接到接口板上；看门狗复位由 GPIO6 控制，刷新时间为 0.9-2.5 秒，如果不使用看门复位，则不应安装 R51（即将复位控制器的 WDI 引脚悬空）。FLASH 包括 BOOT ROM 和用户数据区，由两片 16 位的 FLASH 芯片（28F128J3C150）组成，使用 CS0 地址空间，可以配置为 32M (28F128) 或 64M(28F256)。如果使用 28F128，则 A25 接到芯片的 NC。SDRAM 可以使用速度为 10ns 以上，总线宽度为 16 位的 128Mb 或 256Mb 芯片。USB Host 接口控制芯片为 CY7C67300，支持 USB 低速和全速模式。USB 接口的电源由 DC5V 电源通过一片 MIC2026-1BM 芯片提供。USB 电源地与系统地之间以及 USB 数
据线上加有磁珠，以满足 EMC 要求。USB 接口通过 4 芯矩形插座连接到前端的 USB Type A 标准插座上。USB Host 接口占用 CS3 地址空间，使用 CS4297A 芯片作为 Audio Codec，由处理器提供控制信号。模拟音频信号由 40 芯矩形插座连接到接口板上，信号最大有效值为 1V (RMS)，负载阻抗应大于 10KΩ。当需要使用声音系统时，需在接口板上根据需要集成功放电路。声音系统占用 GPIO28-GPIO31。使用 ADS7843 做为触摸屏控制器，可以驱动 4 线电阻式触摸屏。触摸屏控制器占用 GPIO1、GPIO4、GPIO5。使用 CS8900A 做为以太网控制器，ST7011 为隔离变压器。以太网占用 CS1 地址空间。使用一片 XC9536XL CPLD 芯片完成板级控制，包括地址译码、内部电路逻辑的产生和存储、板内资源的分配等。LCD 接口支持 16bit TFT LCD、STN LCD 等，采用 TTL 数字 VGA 信号输出，电源电压为 3.3V。

所述的接口板主要包括通讯接口 MVB、电源系统、外设控制电路等部分。LCD 液晶屏的背光电源及控制电路也安装在接口板上。MVB 子系统为采用 MVBC01 ASIC 芯片的 MVB 3 类设备。MCM-2 (32K Traffic Memory)，物理层采用 ESD+接口，其结构如图 4 所示。MVB 子系统实现 MVB 协议的物理层和数据链路层，MVBC01 的初始化、配置以及 TCN RTP 协议网络均由 CPU 板软件实现。CPLD 完成与处理器的接口逻辑以及 MVBC01 时序控制。MVB 子系统占用 CS5 地址空间，使用 GPIO9 作为 MVBC01 芯片的中断输入。在 Linux 操作系统内核中，实现 MVB 消息数据相关的驱动；直接将 TM 映射到 CPU 的 CS5 地址空间实现 MVB 过程数据通讯。电源系统输入为直流 110V。电源模块 VI-J00 完成 110V 到 5V 的转换，容量为 50W；LDS12-S512 模块将 5V 转换为 12V，给散热风扇供电，容量为 15W。在 110 输入线上装有电源线滤波器 DNF214B3-03，VI-J00 模块设计有浪涌保护电路。接口板上装有两个 LCD 背光逆变器。
CXA-L10A，用于 LCD 液晶屏的背光供电。LM3940IMP-3.3 芯片将 5V 电源转换为 3.3V，给板内 3.3V 芯片供电。外设控制电路都通过 I2C 总线与 CPU 板连接，包括键盘、温度检测及风扇控制、实时时钟电路。键盘：键盘电路由 I2C 接口的 16 路 IO 芯片 PCA9555D 实现，采用扫描方式，目前为 3X7 路。温度监控：由 I2C 接口的温度监控芯片 AD7416AR 实现，通过 MOS 管 FDV303N 驱动散热风扇工作。实时时钟：由 I2C 接口的实时时钟芯片 PCF8563T 实现，3V 锂电池及 BAT54C 芯片用于在系统掉电后保存系统时间。

所述的 LCD 显示系统采用嵌入式 Linux 操作系统。内核版本为 2.4.18。LCD 显示系统包括 LCD 液晶屏和一些控制按钮，LCD 液晶屏安装于前盖上，由 CPU 板驱动显示。显示器的主要功能是人机接口，所有显示器软件系统的另外一个关键部分是图形用户接口 (GUI)。目前系统采用的 GUI 为 Tiny X，使用基于 FLTK 的图形化编程工具编写应用程序。

本发明的一种用于显示列车上各种设备及与列车运行有关的各种信息，并为操作者提供与各种设备交互信息与数据的接口的 IDD 装置的控制方法是：采用简统化的处理方式，用一块 CPU 板进行实施控制处理，将 IDD 装置所有控制部分（包括显示和通信）的处理放在一块 CPU 上完成，即使用一块 CPU 完成 IDD 的显示和 TCN 网络通信功能，同时采用嵌入式 Linux 操作系统，实现嵌入式 GUI（图形用户接口）和 TCN（列车控制网络）实时协议包功能。整个 IDD 系统控制程序流程如下：

首先，程序对中文字体进行初始化，可以根据需要设置为 16 点阵或 24 点阵字体。然后对 MVB 进行配置，包括设备地址、过程数据端口初始化、消息数据端口初始化、消息队列配置；对 TCN 协议栈的配置包括路由配置、功能号配置等；程序还需要设置散热风扇的启动和停止温度。用户程序使用了
控件的概念，界面上所有的元素都是控件，对程序员来讲，可以像搭积木一样地组建图形用户界面，并可以很好的实现上层界面和底层数据的分离。用户程序包括若干个窗口，每个窗口都放置有相关内容，程序首先对各个窗口的界面的内容和格式进行初始化。用户程序采用事件驱动结构，程序的流程不是只有一个入口和若干个出口的串行执行线路；相反，程序会一直处于一个循环状态，在这个循环中，程序不断从外部或内部获取某些事件，比如用户的按键，通讯端口数据的接收等，然后根据这些事件作出某种反应，并完成一定的功能，这个循环直到程序接收到某个退出消息循环为止。IDD 的用户程序主要使用了三类事件：键盘事件，定时器事件，TCN 协议栈事件。

键盘事件：当用户有键按下时，消息循环机制检测到键盘事件后，发送消息给用户程序窗口，该窗口检查该事件属于哪个子控件，若检测到合适的控件，程序将调用该控件的回调函数，对该事件进行处理。比如在本程序中，当用户按下 F1 键时，程序跳转到主界面，当用户按下 F2 键，则程序跳转到网络界面。

定时器事件：定时器事件主要用来更新数据，具体的时间可以依照需要而定。在本程序设置每隔 0.5s 更新界面上的数据。

TCN 协议栈事件：当有 TCN 协议栈事件（主要是接收到消息数据）发生，程序将调用相关函数进行事件处理，以获取 MVB 消息数据，并且根据消息数据的内容进行相应处理，如报警，回送消息，显示消息等。
图 4

图 5
图 8