

Published:
— with international search report (Art. 21(i)(j))

(54) Title: PROXIMAL MOUNTING OF TEMPERATURE SENSOR IN INTRAVASCULAR TEMPERATURE MANAGEMENT CATHETER

(57) Abstract: An intravascular temperature management catheter (12) includes a shaft (32) through which working fluid can circulate to and from a proximal location on the shaft. The catheter extends from a connector hub (34). At least one heat exchange element (37) is supported by a distal part of the shaft or other part of the catheter to receive circulating working fluid from the proximal location. A temperature sensor (30) is supported on the catheter for generating a temperature signal representative of blood temperature to a control system. The temperature sensor (30) includes first and second conductive leads (42, 44) having respective first and second distal segments (46, 48) on or in the catheter shaft. The first and second distal segments (46, 48) are arranged to be in thermal contact with blood flowing past the catheter (12) when the catheter is disposed in a blood vessel of a patient. Also, the temperature sensor (30) includes a joining body (52) connected to proximal segments of the first and second leads. The joining body (52) may be supported in the hub (34) or in another location proximal to the first and second conductive leads.
PROXIMAL MOUNTING OF TEMPERATURE SENSOR IN
INTRAVASCULAR TEMPERATURE MANAGEMENT CATHETER

TECHNICAL FIELD

The present application relates generally to heat exchange systems for patient temperature control with proximally mounted joining bodies or ceramic portions of an onboard temperature sensor.

BACKGROUND

Patient temperature control systems have been introduced to prevent fever in patients in the neuro ICU due to suffering from sub-arachnoid hemorrhage or other neurologic malady such as stroke. Also, such systems have been used to induce mild or moderate hypothermia to improve the outcomes of patients suffering from such maladies as stroke, cardiac arrest, myocardial infarction, traumatic brain injury, and high intracranial pressure. Moreover, such systems have been used for warming purposes such as for burn patients and other patients who may suffer from deleterious or accidental hypothermia. Examples of intravascular heat exchange catheters are disclosed in U.S. Patent Nos. 6,419,643, 6,416,533, 6,409,747, 6,405,080, 6,393,320, 6,368,304, 6,338,727, 6,299,599, 6,290,717, 6,287,326, 6,165,207, 6,149,670, 6,146,411, 6,126,684, 6,306,161, 6,264,679, 6,231,594, 6,149,676, 6,149,673, 6,10,10,168, 5,989,238, 5,879,329, 5,837,003, 6,383,210, 6,379,378, 6,364,899, 6,325,818, 6,312,452, 6,261,312, 6,254,626,
External patient temperature control systems may be used. Such systems are disclosed in U.S. Patent Nos. 6,827,728, 6,818,012, 6,799,063, 6,764,391, 6,692,518, 6,669,715, 6,660,027, 6,648,905, 6,645,232, 6,620,187, 6,461,379, 6,375,674, 6,197,045, and 6,188,930 (collectively, "the external pad patents"), all of which are incorporated herein by reference.

One or more of the above-referenced catheters may be equipped with a temperature sensor on the catheter to sense the temperature of blood flowing past the catheter. The temperature signal is fed back to the controller of one or more of the above-referenced systems and used to control the temperature of the working fluid circulating through the catheter.

SUMMARY

As understood herein, the desirability of minimizing the diameter of the catheter limits space on the intubated portion of the catheter that is available to support a temperature sensor.

Accordingly, an intravascular temperature management catheter includes a catheter shaft through which working fluid can circulate to and from a proximal location on the shaft. The catheter extends from a connector hub. At least one heat exchange member is supported by a part of the shaft, e.g., a distal part of the shaft, or by a catheter spine or other catheter portion, to receive circulating working fluid from the proximal location. One or more temperature sensors
are supported on or in the catheter for generating a temperature signal representative of blood temperature to a control system. The temperature sensor includes first and second conductive leads having respective first and second distal segments on or in the catheter shaft. The first and second distal segments are arranged to be in thermal contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient. Also, the temperature sensor includes a joining body connected to proximal segments of the first and second leads, wherein the temperature sensor is positioned or oriented such that the joining body is in a location which is proximal to the first and second conductive leads, e.g., the joining body maybe supported on or in the hub, an electrical connector or in another location proximal to the hub.

In examples, the temperature sensor may be a thermistor or other type of temperature sensor or detector, including but not limited to thermocouples, resistance temperature detectors (RTDs), or fiber optic temperature sensors. The temperature sensor can be a negative temperature coefficient (NTC) thermistor or a positive temperature coefficient (PTC) thermistor. The joining body may be made of various materials, e.g., a polymer or a ceramic. For instance the joining body can be made of sintered metal oxide. Or, the joining body, without limitation, may be made of a doped polycrystalline ceramic. If desired, a thermally conductive cover can physically shield the first and second distal segments from contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient.

In another aspect, a method includes thermally exposing first and second distal segments of first and second leads of one or more temperature sensors mounted on or in a closed loop
intravascular temperature management catheter to blood flowing past the catheter. The method includes receiving a signal representing blood temperature from a joining body, e.g., a ceramic or polymer joining body, connected to the leads, wherein the temperature sensor is positioned or oriented such that the joining body is disposed in a location which is proximal to at least a portion of the first and second conductive leads or distal segments of the leads and/or disposed on or in a proximal hub of the catheter, an electrical connector, or in a location proximal to the hub, and sending the signal to a control system for controlling a temperature of working fluid flowing through the catheter in a closed loop.

In another aspect, a device has a catheter shaft through which working fluid can circulate and one or more temperature sensors supported on or in the device for generating a temperature signal. The temperature sensor includes first and second conductive leads having respective first and second distal segments arranged to be in thermal contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient. Also, the temperature sensor has a joining body connected to proximal segments of the first and second leads, with the joining body being supported in a location proximal to the distal segments of the first and second leads. The temperature sensor may be positioned or oriented such that the joining body is in a location which is proximal to at least a portion of the distal segments of the first and second conductive leads, e.g., supported on or in the hub, an electrical connector, or in location proximal to a hub.
The details of the various embodiments and aspects described herein, both as to their structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic view of a non-limiting system in accordance with an embodiment of the present invention;

Figure 2 is a perspective view of an example catheter;

Figure 3 is a cross-section taken along the line 3-3 in Figure 2; and

Figure 4 is a close up view of the top portion of the structure shown in circle 4 in Figure 3.

DETAILED DESCRIPTION

Referring initially to Figure 1, in accordance with present principles, a system 10 may include one or more intravascular heat exchange catheters 12 controlled by a control system 14 to control patient temperature, e.g., to prevent the patient 16 from becoming febrile or to induce therapeutic hypothermia in the patient 16. In the catheter, working fluid or coolant, such as but not limited to saline, circulates (typically under the influence of a pump "P" in the control system) in a closed loop from the control system 14, through a fluid supply line L1, through the catheter 12, and back to the system 14 through a fluid return line L2, such that no working fluid or coolant enters the body. In this way, patient temperature can be managed by controlling the temperature
of the working fluid as appropriate to exchange heat with the blood. Without limitation, the catheter 12 may be implemented by any of the catheters disclosed in the patent documents incorporated by reference herein in the following U.S. patent documents, all incorporated herein by reference: USPN 5,486,208, 5,837,003, 6,110,168, 6,149,673, 6,149,676, 6,231,594, 6,264,679, 6,306,161, 6,235,048, 6,238,428, 6,245,095, 6,251,129, 6,251,130, 6,254,626, 6,261,312, 6,312,452, 6,325,818, 6,409,747, 6,368,304, 6,338,727, 6,299,599, 6,287,326, 6,126,684, 8,888,729, and USPPs 2013/0178923, 2013/0079855, 2013/0079856, 2014/0094880, 2014/0094882, 2014/0094883. The catheter 12 may be placed in the venous system, e.g., in the superior or inferior vena cava.

Instead of or in addition to the catheter 12, the system 10 may include one or more pads 18 that are positioned against the external skin of the patient 16 (only one pad 18 shown for clarity). The pad 18 may be, without limitation, any one of the pads disclosed in the external pad patents. The temperature of the pad 18 can be controlled by the control system 14 to exchange heat with the patient 16, including to induce therapeutic mild or moderate hypothermia in the patient in response to the patient presenting with, e.g., cardiac arrest, myocardial infarction, stroke, high intracranial pressure, traumatic brain injury, or other malady the effects of which can be ameliorated by hypothermia. The pad 18 may receive working fluid from the system 14 through a fluid supply line L3, and return working fluid to the system 14 through a fluid return line L4.

The control system 14 may include one or more microprocessors 20 receiving target and patient temperatures as input and controlling, among other things, the pump "P" and a refrigerant
compressor 22 and/or a bypass valve 24 that can be opened to permit refrigerant to bypass a condenser. The refrigerant circulates through a heat exchanger within the control system 14 as described further below. The processor 20 can access non-transitory computer memory 26 to execute instructions on the memory 26 to execute control logic.

As shown in the embodiment in Figures 2-4, a temperature sensor 30, e.g., a thermistor, may be supported on the catheter 12. As shown, the catheter 12 may have one or more hollow multi-lumen shaft portions 32 (a catheter with only a single shaft shown) through which working fluid can circulate to and from a proximal location on the shaft, at which the catheter shaft extends from a connector hub 34. The connector hub 34 fluidly interconnects working fluid supply and return lumens in the catheter shaft 32 to respective supply and return connector fittings 36, 38, which may be connected via respective tubing set connectors to the system 14 shown in Figure 1 in which the working fluid may be heated or cooled as desired to manage patient temperature.

The working fluid circulating in the supply and return lumens of the shaft 32 circulate into and out of one or more heat exchange members 37 that are supported by a distal part of the shaft 32 or by another part of the catheter. Any of the heat exchange members described in the patents may be used.

Additionally, a temperature connector 40 may provide electrical communication between the temperature sensor 30 and the system 14. One or more electrical connectors may extend from the temperature sensor 30 through the temperature connector 40, which may be engaged with a corresponding connector engaged with the system 14 to provide a path for electrical signal
transmission from the temperature sensor 30 to the system 14. Alternatively, a wireless transceiver may be provided, e.g., in the hub 34 to receive the temperature signal from the temperature sensor 30 and wirelessly transmit the signal to the system 14. While three connectors 36-40 are shown, it is to be understood that additional connectors may be provided on the hub 34. For example, a medicament infusion connector may be provided that fluidly connects an infusion lumen in the catheter shaft 32 with a source of medicament.

Figures 3 and 4 best show that the temperature sensor 30 includes at least first and second conductive leads 42, 44 having respective first and second distal segments 46, 48 (also shown schematically in Figure 2) on or in the catheter shaft 32. The leads 42, 44 may be molded into the wall of the catheter shaft 32 and extend proximally to the hub 34, or the leads 42, 44, with the possible exception of the distal segments 46, 48, may be disposed in a lumen of the catheter shaft 32.

In examples, the first and second distal segments 46, 48 are arranged to be in thermal contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient. In the example shown, the distal segments 46, 48 lie on the catheter shaft parallel to the axis of the shaft and on or near the outer surface of the shaft. In some embodiments the distal segments 46, 48 may be molded into the shaft and may lie on the outer surface, physically and thus thermally exposed to blood flowing past the catheter. In other embodiments the distal segments 46, 48 may be covered by a thermally conductive cover 50 to physically shield the distal segments 46, 48 from blood while thermally coupling the segments to the blood. In an example, the cover 50 may be established by an ultra-thin and flexible metal foil that can be wrapped
around the catheter shaft 32. Other materials may be used, e.g., thermally conductive plastic. In certain embodiments, a temperature sensor may have one or more leads.

As mentioned above, the first and second conductive leads 42, 44 may extend to and if desired into the hub 34, where proximal segments of the leads are connected to a joining body 52 or body (Figure 3) which may be supported in the hub or in a location proximal to the hub, e.g., in or on a connector, such as an electrical or temperature connector. It is to be understood that electrical signals representing patient temperature are taken from the joining body 52 and sent (e.g., via a lead 54 and the temperature connector 40) to the system 14 according to principles described above. The temperature sensor may be positioned or oriented such that the joining body is in a location proximal to or proximal relative to the position of at least a portion of the first and/or second conductive leads, e.g., the distal segment of a lead, whether the joining body is positioned on or in the catheter, hub or other location proximal to the hub. In certain embodiments, a joining body maybe located proximal to or proximal relative to at least a portion of the first and second conductive leads such that it is closer to a proximal end of the catheter, a hub or other connector than the location of at least a portion of the conductive leads is.

In any of the embodiments described herein, the temperature sensor 30 may be a thermistor or other type of sensor or detector, including but not limited to thermocouples, resistance temperature detectors (RTDs), or fiber optic temperature sensors. For example, a thermistor can be a negative temperature coefficient (NTC) or positive temperature coefficient (PTC) thermistor. The thermistor may include the first and second electrically conductive leads or wires 42, 44 which may be electrically insulated within the catheter and which join the joining
body 52, which may be a ceramic or polymer body. For example, NTC thermistors may have joining bodies made from a pressed disc, rod, plate, bead or cast chip of a semiconductor such as a sintered metal oxide, whereas a PTC thermistor may have a joining body made of a polycrystalline ceramic doped with barium titanate (BaTiO₃).

While various embodiments of a PROXIMAL MOUNTING OF TEMPERATURE SENSOR IN INTRAVASCULAR TEMPERATURE MANAGEMENT CATHETERS are herein shown and described in detail, the scope of the present invention is to be limited by nothing other than the appended claims.
WHAT IS CLAIMED IS:

1. An intravascular temperature management catheter, comprising:
 - at least one catheter shaft through which working fluid can circulate to and from a proximal location on the shaft, the catheter extending from a connector hub;
 - at least one heat exchange member configured to receive circulating working fluid from the proximal location;
 - at least one temperature sensor supported on or in the catheter for generating a temperature signal representative of blood temperature to a control system, the temperature sensor comprising:
 - at least first and second conductive leads having respective first and second distal segments on or in the catheter shaft, the first and second distal segments being arranged to be in thermal contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient, the temperature sensor further comprising a joining body connected to proximal segments of the first and second leads, wherein the joining body is supported in or on the hub or in a location proximal to the hub.

2. The catheter of Claim 1, wherein the temperature sensor is a thermistor.

3. The catheter of Claim 2, wherein the thermistor is a negative temperature coefficient (NTC) thermistor.
4. The catheter of Claim 2, wherein the thermistor is a positive temperature coefficient (PTC) thermistor.

5. The catheter of Claim 1, wherein the joining body is made of a polymer.

6. The catheter of Claim 1, wherein the joining body is made of a ceramic.

7. The catheter of Claim 1, wherein the joining body is made of sintered metal oxide.

8. The catheter of Claim 1, wherein the joining body is made of a doped polycrystalline ceramic.

9. The catheter of Claim 1, further comprising a thermally conductive cover to physically shield at least portions of the first and segment distal segments from contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient.

10. A method comprising:

thermally exposing, first and, second distal segments, of first and, second leads, of a temperature sensor mounted on, or in, a closed loop, intravascular temperature management catheter to, blood, flowing, past the, catheter,
receiving a signal representing blood temperature from a joining body connected to the leads, wherein the temperature sensor is positioned such that the joining body is disposed in a location which is proximal to at least a portion of the first and second leads; and

sending the signal to a control system for controlling a temperature of working fluid flowing through the catheter in a closed loop.

11. The method of claim 10, wherein the catheter extends from a connector hub and the joining body is disposed on or in the hub or in a location proximal to the hub.

12. A device comprising:

at least one catheter shaft through which working fluid can circulate;

at least one temperature sensor supported on or in the device for generating a temperature signal, the temperature sensor comprising:

at least first and second conductive leads having respective first and second distal segments, the first and second distal segments being arranged to be in thermal contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient, the temperature sensor further comprising a joining body connected to proximal segments of the first and second leads, the joining body being supported in a location proximal to the distal segments of the first and second leads.
13. The catheter of Claim 12, wherein the catheter extends from a connector hub and
the joining body is disposed on or in the hub or in a location proximal to the hub.

14. The catheter of Claim 12, wherein the temperature sensor is a thermistor.

15. The device of Claim 12, wherein the thermistor is a negative temperature
coefficient (NTC) thermistor.

16. The device of Claim 12, wherein the thermistor is a positive temperature
coefficient (PTC) thermistor.

17. The device of Claim 12, wherein the joining body is made of a polymer.

18. The device of Claim 12, wherein the joining body is made of a ceramic.

19. The device of Claim 12, wherein the joining body is made of sintered metal oxide.

20. The device of Claim 12, wherein the joining body is made of a doped polycrystalline ceramic.
21. The device of Claim 12, further comprising a thermally conductive cover to physically shield at least portions of the first and segment distal segments from contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient.
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☒ Claims Nos.: 10,11
 because they relate to subject matter not required to be searched by this Authority, namely:
 Claims 10 and 11 pertain to a method for treatment of human body by a diagnostic method, and thus relate to a subject matter which this International Searching Authority is not required to search under PCT Article 17(2)(a)(i) and PCT Rule 39.1(iv).

2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☑ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☑ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of any additional fees.

3. ☑ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☑ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
A61B 5/027(2006.01)i, A61B 5/01(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61B 5/027; A61M 3/100; A61B 18/14; A61F 7/12; A61F 7/00; A61B 5/00; A61B 5/01

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic database consulted during the international search (name of database and, where practicable, search terms used)
eKOMPASS(KIPO internal) & keywords: intravascular, temperature, heat, exchange, fluid, catheter, hub, lead, joining

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2004-0167467 Al (KENT HARRISON et a.l.) 26 August 2004 See abstract, paragraphs [06], [28]-[69] and figures 1-11.</td>
<td>1-9, 12-21</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0951244 BI (CORDIS WEBSTER, INC.) 03 March 2004 See paragraphs [11], [20]-[31], claim 1 and figures 1-11.</td>
<td>1-9, 12-21</td>
</tr>
<tr>
<td>A</td>
<td>US 2004-0220647 AL (WAYNE ARTHUR NODA) 04 November 2004 See abstract, claims 1-18 and figure 1.</td>
<td>1-9, 12-21</td>
</tr>
<tr>
<td>A</td>
<td>US 5596995 A (MARSHALL L. SHERMAN et a.l.) 28 January 1997 See abstract, column 4, line 25-20, column 7, line 55 and figures 1-3.</td>
<td>1-9, 12-21</td>
</tr>
<tr>
<td>A</td>
<td>US 2014-0094881 Al (ZOLL CIRCULATION, INC.) 03 April 2014 See abstract, claims 1-7 and figures 1-5.</td>
<td>1-9, 12-21</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
01 July 2016 (01.07.2016)

Date of mailing of the international search report
07 July 2016 (07.07.2016)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea
Facsimile No. +82-42-481-8578

Authorized officer
KEVI, Yeon Kyung
Telephone No. +82-42-481-3325

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2515575 Al</td>
<td>10/09/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1594400 Al</td>
<td>16/11/2005</td>
</tr>
<tr>
<td>EP 0951244 Bl</td>
<td>03/03/2004</td>
<td>CA 2270235 Al</td>
<td>14/05/1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2270235 C</td>
<td>19/12/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69727968 T2</td>
<td>10/02/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0951244 Al</td>
<td>27/10/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0951244 A4</td>
<td>19/07/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001-526554 A</td>
<td>18/12/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4166281 B2</td>
<td>15/10/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5893885 A</td>
<td>13/04/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 98-19611 Al</td>
<td>14/05/1998</td>
</tr>
<tr>
<td>US 2014-0094881 Al</td>
<td>03/04/2014</td>
<td>EP 2827815 Al</td>
<td>28/01/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2827815 A4</td>
<td>16/12/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015-518780 A</td>
<td>06/07/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014-051986 Al</td>
<td>03/04/2014</td>
</tr>
</tbody>
</table>