

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199721678 B2
(10) Patent No. 712671

(54) Title
Call queuing and distribution

(51)⁶ International Patent Classification(s)
H04M 003/50

(21) Application No: **199721678** (22) Application Date: **1997.03.25**

(87) WIPO No: **WO97/36414**

(30) Priority Data

(31) Number **9606298** (32) Date **1996.03.26** (33) Country **GB**

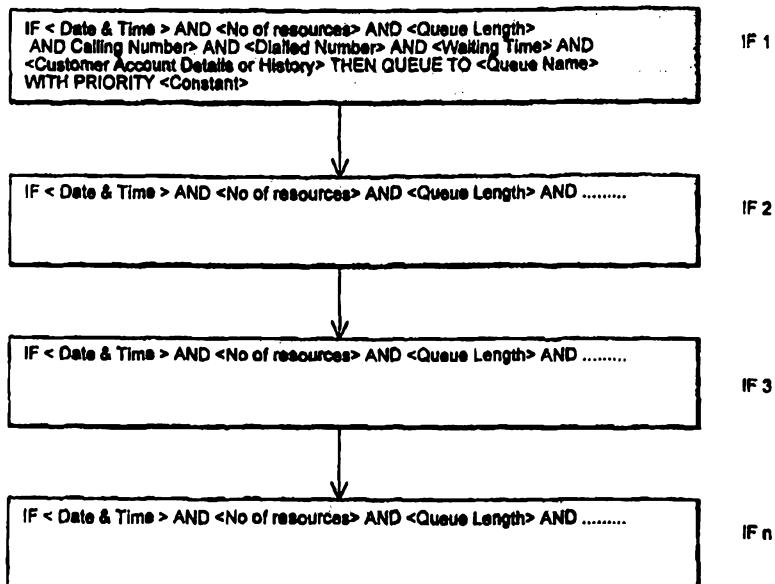
(43) Publication Date : **1997.10.17**

(43) Publication Journal Date : **1997.12.11**

(44) Accepted Journal Date : **1999.11.11**

(71) Applicant(s)
British Telecommunications Public Limited Company

(72) Inventor(s)
David Robert Donnelly


(74) Agent/Attorney
BALDWIN SHELSTON WATERS,Level 21,60 Margaret Street,SYDNEY NSW 2000

(56) Related Art
NL 7513932
DE 1277371
US 5206903

(51) International Patent Classification ⁶ :		A1	(11) International Publication Number: WO 97/36414
H04M 3/50			(43) International Publication Date: 2 October 1997 (02.10.97)
(21) International Application Number: PCT/GB97/00830		(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 25 March 1997 (25.03.97)		Published With international search report.	
(30) Priority Data: 9606298.9 26 March 1996 (26.03.96) GB			
(71) Applicant (for all designated States except US): BRITISH TELECOMMUNICATIONS PUBLIC LIMITED COMPANY [GB/GB]; 81 Newgate Street, London EC1A 7AJ (GB).			
(72) Inventor; and			
(75) Inventor/Applicant (for US only): DONNELLY, David, Robert [GB/GB]; 12 The Pines, Cliff Road, Felixstowe, Suffolk IP11 9SU (GB).			
(74) Agents: WOODWARD, John, Calvin et al.; Venner, Shipley & Co., 20 Little Britain, London EC1A 7DH (GB).			

(54) Title: CALL QUEUING AND DISTRIBUTION

(57) Abstract

Incoming calls on a plurality of lines (L_i) are distributed to a plurality of resources (R_n) by a queuing and distribution system which associates with each of the possible resource/line combinations a so-called "pleasure value" that indicates the desirability of making the line/resources connection according to predetermined criteria, such as waiting time, resource type, type of incoming call and other factors. The pleasure values are set up in a matrix which is scanned repetitively in order to determine the highest value and the runner up, and call connections are made on the basis of the outcome of the scanning process.

Call Queuing and Distribution

Field of the invention

This invention relates to an apparatus and method for distributing concurrent incoming calls on a plurality of lines to a plurality of resources.

Background of the invention

For a number of customer services, incoming telephone calls need to be distributed to a finite number of resources and difficulties have arisen hitherto in prioritising the calls for connection to the resources. For example, in a telephone directory assistance service, incoming calls need to be connected to a fixed number of resources in the form of manual telephone operators. A number of approaches have been adopted previously to optimise the connection of incoming calls so as to minimise queuing. Reference is directed to "The Edgeley Electronic Queuing Equipment" D. R. Donnelly and R. J Hirst, British Telecommunications Engineering, Vol. 1, part 3, October 1982, p 155. More sophisticated systems have been proposed, to include multiple queues, priority lines, alternative routings and calendar time of day routing plans. The previous approaches have all used rules-based algorithms in order to meet customers' requirements. However, as the number of incoming lines and resources is increased, the rules required for the algorithm become very complex and difficult to optimise in themselves. An example of a rules based procedure is set out in Figure 1 and comprises a series of IF statements IF1, IF2, etc. Each IF statement is designed to provide a specific test for incoming calls. The chevrons < > indicate customer specified tests or values to enable individual customers to be connected depending on their priority or their particular needs. Different priorities may be given to different telephone numbers, for example.

Whilst a call is waiting, the IF statements are read from the top down repetitively until one of the IF statements becomes true, and then the action specified in the statement is carried out.

- 2 -

However, it will be seen that this configuration becomes unwieldily and unduly complicated when a large number of incoming calls are to be processed and connected to a large number of resources. The rules based system shown in Figure 1 permits calls to be allocated to different queues.

- 5 The resources answering the calls may support more than one queue i.e. be able to deal with enquiries of more than one type, so that balancing the incoming call load to the individual resources becomes a complex problem usually requiring manual intervention by a network supervisor. The present invention provides an alternative approach which seeks to overcome the
- 10 restrictions associated with the prior rules-based systems.

Summary of the invention

According to the present invention there is provided a method of distributing concurrent incoming calls on a plurality of lines to a plurality of resources, comprising: associating with each of a plurality of different individual combinations of the lines and resources, a respective value of an operating parameter in dependence upon a desirability according to predetermined criteria, of interconnecting the line and resource of the combination, repeatedly reviewing the values of the operating parameter corresponding to the combinations, and selecting at least one of the combinations for interconnection as a result of the reviews.

Thus, in accordance with the invention, different individual combinations of the lines and resources are considered and are given an associated value of an operating parameter which indicates the desirability of making an interconnection between the line and resource. In the examples described hereinafter, the operating parameter comprises a "pleasure value" and the method involves selecting at least one of the line/resource combinations that exhibits the most pleasure i.e. the highest pleasure value.

30

The operating parameter associated with a particular line and resource combination may be a function of the time that an incoming call has been

- 3 -

waiting on the line to be connected to one of the resources. The parameter may also be associated with the time that the resource has been idle. The incoming calls may be of different classes e.g. from different telephone numbers, services or customer account types, and the value of the operating parameter associated with a particular line and resource combination may be a function of a precedence associated with the class of incoming call. By actively detecting the call class, different services or calls from particular customers may be processed in preference to calls from others.

Also, the resources may be arranged in classes e.g. resources capable of handling different types of incoming calls. For example, the resources may comprise telephone operators who have had different levels of training to deal with different types of enquiries. The resource classes may be allocated a precedence in a similar manner to the incoming call classes. The value of the operating parameter associated with the particular line and resource combinations may be a function of the class of the resource for the combination. Furthermore, particular calls may be given a priority value dependent upon the particular values of the call class and the resource class for the line and resource combination. The operating parameter for the combination may be set as a function of the priority value attributed to the combination.

The method of the invention is also susceptible to a manual override and the operating parameter may be set as a function of expert data defined for example by a service provider. In particular, the precedences and the priority values for particular line and resource combinations may be set according to user determined expert data.

The method may be used to select a first most desirable and a second next most desirable line and resource combination on the basis of the values of the operating parameter during each of the periodic reviews.

The invention also includes apparatus for distributing a plurality of concurrent incoming calls to a plurality of resources, comprising: a plurality of incoming lines for the calls, a plurality of outgoing lines for connection to the resources, means for associating with each of a plurality of different individual combinations of the incoming and outgoing lines, a respective value of an operating parameter as a function of a desirability according to predetermined criteria, of interconnecting a call on the incoming line and resource for the outgoing line corresponding to the combination, and means for repeatedly reviewing the values of the parameters corresponding to the combinations, and selecting at least one of the combinations in dependence upon the review.

The apparatus may include display means for displaying a two-dimensional matrix of call classes and resource classes, and for providing a visual indication on the matrix of the priority value currently associated with each resource class/call class combination. The display means may also provide a display of the current values of precedence associated with different call classes.

The apparatus may include cross connect means operative to interconnect the selected combination of input and output lines.

The apparatus may be configured for operation in a public telephone network with the incoming and outgoing lines being arranged to connect incoming calls from remote locations to the resources disposed at least in part at locations remote from the apparatus. In this way, the network provider can provide a service which allows customers of the network themselves to provide a service with a plurality of resources, for example telephone operators or voice mail machines or other recorded message devices, by which callers can be connected to the resources in a manner which minimises queuing, with the call distribution apparatus being configured in the network, rather than at the premises of the customer. The apparatus may be located in a public telephone network exchange. Hereinafter, the provision

- 5 -

of such a service is referred to as a Callcentre service. The apparatus according to the invention has the advantage that the Callcentre service can use resources, such as telephone sales personnel who are not located at the premises of the customer but may operate from a number of different locations e.g. from home. Thus, the network customer does not need to have all of the telephone sales operatives located in an office but can be located at different sites.

Alternatively, the apparatus may be configured for operation in a private branch telephone exchange, with the incoming and outgoing lines being arranged to connect incoming calls from remote locations to the resources disposed at least in part at locations proximate to the exchange. Thus, the apparatus can be used to control call distribution when a number of resources are located at the offices of a customer of the network provider, where incoming calls are fed through the network to private branch telephone exchange.

Preferably, the selecting means includes scanning means operative to scan through the current operating parameter values for all the incoming/outgoing line combinations, and parameter value selection means operative to select the combination which has an associated scanned value of said operating parameter that corresponds to the highest of the scanned values in respect of the desirability of connection, e.g. the highest pleasure value.

First and second scanning means and parameter selecting means may be provided together with means for choosing the combination to be connected as a function of the selection made by either or both of the first and second parameter value selection means. The first and second scanning means may run asynchronously.

30

The scanning means may alternatively include tile scanning means operative to scan through groups of the current operating parameter values successively, to

- 6 -

select from each of the groups the combination which has an associated scanned value of said parameter that corresponds to the highest of the scanned values in respect to the desirability of connection e.g. the highest pleasure value, and to compare the highest parameter values selected for each respective said group so as to select the highest value from all of the scanned groups.

In another configuration, the selecting means includes parallel scanning means operative to scan through groups of the operating parameter values concurrently.

10

A plurality of apparatuses in accordance with the invention may be provided, with control management means for allocating selected groups of the incoming and outgoing lines to each respective said apparatus so as to provide a distributed computing environment system. The distributed system can be 15 used to provide a plurality of different Callcentre services.

In order to simplify the computation of the operating parameter, the apparatus may include means for defining log-in objects, corresponding to the resources respectively as a function of static data in respect of the resource and 20 also dynamic data dependent upon whether the resource is idle or in an active state, and means for defining call objects comprising static data for particular call types and/or classes and dynamic data concerning the occurrence of calls on the incoming lines. In practice, there are far fewer active log-in-call object pairs than line-resource combinations, so the processing load is reduced 25 considerably.

In an alternative configuration the apparatus includes means for defining a plurality of software ants operative to wander initially essentially at random through a matrix of the values of the operating parameter associated with the 30 combination, to find a value thereof corresponding to the most desirable combination of incoming line and resource to be connected, the ants being operative to communicate with one another so that they move collectively

towards a region in the matrix in which at least one value of the operating parameter indicates an increased desirability of interconnection of the resource/incoming call combination associated therewith as compared with a majority of the parameter values in the matrix.

5

Alternatively, the apparatus may include a plurality of artificial lifeform software elements for computing the values of the operating parameter in the matrix, and means for allocating computing power to the lifeforms selectively depending on the success of the lifeform in computing a value of the operating parameter that indicates desirability of 10 the interconnection.

The invention further includes a method of distributing concurrent incoming calls of different call classes on any one of a plurality of incoming lines, to a plurality of resources, comprising:

15 detecting the classes of the incoming calls;

associating with each of a plurality of different individual combinations of the lines and resources, a respective value of an operating parameter in dependence upon a desirability according to predetermined criteria, of interconnecting the line and resource of the combination, said criteria including the time that the call on the incoming line has been 20 waiting to be connected to one of the resources and its class;

repeatedly reviewing the values of the operating parameter corresponding to the combinations; and

selecting at least one of the combinations for interconnection as a result of the reviews.

25 In another embodiment, a neural network is used to select the most desirable combination of resource/incoming call.

Unless the context clearly requires otherwise, throughout the description and the claims, the words 'comprise', 'comprising', and the like are to be construed in an inclusive sense

30 as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the invention may be more fully understood embodiments thereof will now
5 be described by way of example with reference to the accompanying drawings in which:

- Figure 1 is an illustration of a prior art rules-based algorithm;
- Figure 2 is a schematic diagram of a pleasure value matrix used in an apparatus according to the invention;
- 10 Figure 3 is a schematic diagram of pleasure values in the pleasure matrix of Figure 2;
- Figure 4 is a schematic block diagram of a call distribution apparatus according to the invention;
- Figure 5 is a flow chart of the operation of the apparatus shown in Figure 4;
- Figure 6 is a flow chart of the process by which winners and runners up of the pleasure
15 value matrix are recommended;
- Figure 7 is a flow chart of the computation of the pleasure values for the matrix;
- Figure 8 illustrates a method of scanning values of the pleasure value matrix-----

2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
50
53
56
59
62
65
68
71
74
77
80
83
86
89
92
95
98
101
104
107
110
113
116
119
122
125
128
131
134
137
140
143
146
149
152
155
158
161
164
167
170
173
176
179
182
185
188
191
194
197
200
203
206
209
212
215
218
221
224
227
230
233
236
239
242
245
248
251
254
257
260
263
266
269
272
275
278
281
284
287
290
293
296
299
302
305
308
311
314
317
320
323
326
329
332
335
338
341
344
347
350
353
356
359
362
365
368
371
374
377
380
383
386
389
392
395
398
401
404
407
410
413
416
419
422
425
428
431
434
437
440
443
446
449
452
455
458
461
464
467
470
473
476
479
482
485
488
491
494
497
500
503
506
509
512
515
518
521
524
527
530
533
536
539
542
545
548
551
554
557
560
563
566
569
572
575
578
581
584
587
590
593
596
599
602
605
608
611
614
617
620
623
626
629
632
635
638
641
644
647
650
653
656
659
662
665
668
671
674
677
680
683
686
689
692
695
698
701
704
707
710
713
716
719
722
725
728
731
734
737
740
743
746
749
752
755
758
761
764
767
770
773
776
779
782
785
788
791
794
797
800
803
806
809
812
815
818
821
824
827
830
833
836
839
842
845
848
851
854
857
860
863
866
869
872
875
878
881
884
887
890
893
896
899
902
905
908
911
914
917
920
923
926
929
932
935
938
941
944
947
950
953
956
959
962
965
968
971
974
977
980
983
986
989
992
995
998
1001
1004
1007
1010
1013
1016
1019
1022
1025
1028
1031
1034
1037
1040
1043
1046
1049
1052
1055
1058
1061
1064
1067
1070
1073
1076
1079
1082
1085
1088
1091
1094
1097
1100
1103
1106
1109
1112
1115
1118
1121
1124
1127
1130
1133
1136
1139
1142
1145
1148
1151
1154
1157
1160
1163
1166
1169
1172
1175
1178
1181
1184
1187
1190
1193
1196
1199
1202
1205
1208
1211
1214
1217
1220
1223
1226
1229
1232
1235
1238
1241
1244
1247
1250
1253
1256
1259
1262
1265
1268
1271
1274
1277
1280
1283
1286
1289
1292
1295
1298
1301
1304
1307
1310
1313
1316
1319
1322
1325
1328
1331
1334
1337
1340
1343
1346
1349
1352
1355
1358
1361
1364
1367
1370
1373
1376
1379
1382
1385
1388
1391
1394
1397
1400
1403
1406
1409
1412
1415
1418
1421
1424
1427
1430
1433
1436
1439
1442
1445
1448
1451
1454
1457
1460
1463
1466
1469
1472
1475
1478
1481
1484
1487
1490
1493
1496
1499
1502
1505
1508
1511
1514
1517
1520
1523
1526
1529
1532
1535
1538
1541
1544
1547
1550
1553
1556
1559
1562
1565
1568
1571
1574
1577
1580
1583
1586
1589
1592
1595
1598
1601
1604
1607
1610
1613
1616
1619
1622
1625
1628
1631
1634
1637
1640
1643
1646
1649
1652
1655
1658
1661
1664
1667
1670
1673
1676
1679
1682
1685
1688
1691
1694
1697
1700
1703
1706
1709
1712
1715
1718
1721
1724
1727
1730
1733
1736
1739
1742
1745
1748
1751
1754
1757
1760
1763
1766
1769
1772
1775
1778
1781
1784
1787
1790
1793
1796
1799
1802
1805
1808
1811
1814
1817
1820
1823
1826
1829
1832
1835
1838
1841
1844
1847
1850
1853
1856
1859
1862
1865
1868
1871
1874
1877
1880
1883
1886
1889
1892
1895
1898
1901
1904
1907
1910
1913
1916
1919
1922
1925
1928
1931
1934
1937
1940
1943
1946
1949
1952
1955
1958
1961
1964
1967
1970
1973
1976
1979
1982
1985
1988
1991
1994
1997
2000
2003
2006
2009
2012
2015
2018
2021
2024
2027
2030
2033
2036
2039
2042
2045
2048
2051
2054
2057
2060
2063
2066
2069
2072
2075
2078
2081
2084
2087
2090
2093
2096
2099
2102
2105
2108
2111
2114
2117
2120
2123
2126
2129
2132
2135
2138
2141
2144
2147
2150
2153
2156
2159
2162
2165
2168
2171
2174
2177
2180
2183
2186
2189
2192
2195
2198
2201
2204
2207
2210
2213
2216
2219
2222
2225
2228
2231
2234
2237
2240
2243
2246
2249
2252
2255
2258
2261
2264
2267
2270
2273
2276
2279
2282
2285
2288
2291
2294
2297
2300
2303
2306
2309
2312
2315
2318
2321
2324
2327
2330
2333
2336
2339
2342
2345
2348
2351
2354
2357
2360
2363
2366
2369
2372
2375
2378
2381
2384
2387
2390
2393
2396
2399
2402
2405
2408
2411
2414
2417
2420
2423
2426
2429
2432
2435
2438
2441
2444
2447
2450
2453
2456
2459
2462
2465
2468
2471
2474
2477
2480
2483
2486
2489
2492
2495
2498
2501
2504
2507
2510
2513
2516
2519
2522
2525
2528
2531
2534
2537
2540
2543
2546
2549
2552
2555
2558
2561
2564
2567
2570
2573
2576
2579
2582
2585
2588
2591
2594
2597
2600
2603
2606
2609
2612
2615
2618
2621
2624
2627
2630
2633
2636
2639
2642
2645
2648
2651
2654
2657
2660
2663
2666
2669
2672
2675
2678
2681
2684
2687
2690
2693
2696
2699
2702
2705
2708
2711
2714
2717
2720
2723
2726
2729
2732
2735
2738
2741
2744
2747
2750
2753
2756
2759
2762
2765
2768
2771
2774
2777
2780
2783
2786
2789
2792
2795
2798
2801
2804
2807
2810
2813
2816
2819
2822
2825
2828
2831
2834
2837
2840
2843
2846
2849
2852
2855
2858
2861
2864
2867
2870
2873
2876
2879
2882
2885
2888
2891
2894
2897
2900
2903
2906
2909
2912
2915
2918
2921
2924
2927
2930
2933
2936
2939
2942
2945
2948
2951
2954
2957
2960
2963
2966
2969
2972
2975
2978
2981
2984
2987
2990
2993
2996
2999
3002
3005
3008
3011
3014
3017
3020
3023
3026
3029
3032
3035
3038
3041
3044
3047
3050
3053
3056
3059
3062
3065
3068
3071
3074
3077
3080
3083
3086
3089
3092
3095
3098
3101
3104
3107
3110
3113
3116
3119
3122
3125
3128
3131
3134
3137
3140
3143
3146
3149
3152
3155
3158
3161
3164
3167
3170
3173
3176
3179
3182
3185
3188
3191
3194
3197
3200
3203
3206
3209
3212
3215
3218
3221
3224
3227
3230
3233
3236
3239
3242
3245
3248
3251
3254
3257
3260
3263
3266
3269
3272
3275
3278
3281
3284
3287
3290
3293
3296
3299
3302
3305
3308
3311
3314
3317
3320
3323
3326
3329
3332
3335
3338
3341
3344
3347
3350
3353
3356
3359
3362
3365
3368
3371
3374
3377
3380
3383
3386
3389
3392
3395
3398
3401
3404
3407
3410
3413
3416
3419
3422
3425
3428
3431
3434
3437
3440
3443
3446
3449
3452
3455
3458
3461
3464
3467
3470
3473
3476
3479
3482
3485
3488
3491
3494
3497
3500
3503
3506
3509
3512
3515
3518
3521
3524
3527
3530
3533
3536
3539
3542
3545
3548
3551
3554
3557
3560
3563
3566
3569
3572
3575
3578
3581
3584
3587
3590
3593
3596
3599
3602
3605
3608
3611
3614
3617
3620
3623
3626
3629
3632
3635
3638
3641
3644
3647
3650
3653
3656
3659
3662
3665
3668
3671
3674
3677
3680
3683
3686
3689
3692
3695
3698
3701
3704
3707
3710
3713
3716
3719
3722
3725
3728
3731
3734
3737
3740
3743
3746
3749
3752
3755
3758
3761
3764
3767
3770
3773
3776
3779
3782
3785
3788
3791
3794
3797
3800
3803
3806
3809
3812
3815
3818
3821
3824
3827
3830
3833
3836
3839
3842
3845
3848
3851
3854
3857
3860
3863
3866
3869
3872
3875
3878
3881
3884
3887
3890
3893
3896
3899
3902
3905
3908
3911
3914
3917
3920
3923
3926
3929
3932
3935
3938
3941
3944
3947
3950
3953
3956
3959
3962
3965
3968
3971
3974
3977
3980
3983
3986
3989
3992
3995
3998
4001
4004
4007
4010
4013
4016
4019
4022
4025
4028
4031
4034
4037
4040
4043
4046
4049
4052
4055
4058
4061
4064
4067
4070
4073
4076
4079
4082
4085
4088
4091
4094
4097
4100
4103
4106
4109
4112
4115
4118
4121
4124
4127
4130
4133
4136
4139
4142
4145
4148
4151
4154
4157
4160
4163
4166
4169
4172
4175
4178
4181
4184
4187
4190
4193
4196
4199
4202
4205
4208
4211
4214
4217
4220
4223
4226
4229
4232
4235
4238
4241
4244
4247
4250
4253
4256
4259
4262
4265
4268
4271
4274
4277
4280
4283
4286
4289
4292
4295
4298
4301
4304
4307
4310
4313
4316
4319
4322
4325
4328
4331
4334
4337
4340
4343
4346
4349
4352
4355
4358
4361
4364
4367
4370
4373
4376
4379
4382
4385
4388
4391
4394
4397
4400
4403
4406
4409
4412
4415
4418
4421
4424
4427
4430
4433
4436
4439
4442
4445
4448
4451
4454
4457
4460
4463
4466
4469
4472
4475
4478
4481
4484
4487
4490
4493
4496
4499
4502
4505
4508
4511
4514
4517
4520
4523
4526
4529
4532
4535
4538
4541
4544
4547
4550
4553
4556
4559
4562
4565
4568
4571
4574
4577
4580
4583
4586
4589
4592
4595
4598
4601
4604
4607
4610
4613
4616
4619
4622
4625
4628
4631
4634
4637
4640
4643
4646
4649
4652
4655
4658
4661
4664
4667
4670
4673
4676
4679
4682
4685
4688
4691
4694
4697
4700
4703
4706
4709
4712
4715
4718
4721
4724
4727
4730
4733
4736
4739
4742
4745
4748
4751
4754
4757
4760
4763
4766
4769
4772
4775
4778
4781
4784
4787
4790
4793
4796
4799
4802
4805
4808
4811
4814
4817
4820
4823
4826
4829
4832
4835
4838
4841
4844
4847
4850
4853
4856
4859
4862
4865
4868
4871
4874
4877
4880
4883
4886
4889
4892
4895
4898
4901
4904
4907
4910
4913
4916
4919
4922
4925
4928
4931
4934
4937
4940
4943
4946
4949
4952
4955
4958
4961
4964
4967
4970
4973
4976
4979
4982
4985
4988
4991
4994
4997
5000
5003
5006
5009
5012
5015
5018
5021
5024
5027
5030
5033
5036
5039
5042
5045
5048
5051
5054
5057
5060
5063
5066
5069
5072
5075
5078
5081
5084
5087
5090
5093
5096
5099
5102
5105
5108
5111
5114
5117
5120
5123
5126
5129
5132
5135
5138
5141
5144
5147
5150
5153
5156
5159
5162
5165
5168
5171
5174
5177
5180
5183
5186
5189
5192
5195
5198
5201
5204
5207
5210
5213
5216
5219
5222
5225
5228
5231
5234
5237
5240
5243
5246
5249
5252
5255
5258
5261
5264
5267
5270
5273
5276
5279
5282
5285
5288
5291
5294
5297
5300
5303
5306
5309
5312
5315
5318
5321
5324
5327
5330
5333
5336
5339
5342
5345
5348
5351
5354
5357
5360
5363
5366
5369
5372
5375
5378
5381
5384
5387
5390
5393
5396
5399
5402
5405
5408
5411
5414
5417
5420
5423
5426
5429
5432
5435
5438
5441
5444
5447
5450
5453
5456
5459
5462
5465
5468
5471
5474
5477
5480
5483
5486
5489
5492
5495
5498
5501
5504
5507
5510
5513
5516
5519
5522
5525
5528
5531
5534
5537
5540
5543
5546
5549
5552
5555
5558
5561
5564
5567
5570
5573
5576

M;

Figure 9 illustrates a scanning method in which two matrices of the pleasure values are computed in parallel;

5 Figure 10 illustrates a scanning method in which the pleasure value matrix is arranged in strips;

Figure 11 illustrates a scanning method in which the matrix is arranged in tiles;

Figure 12 illustrates an example of the apparatus according to the invention which makes use of a distributed computing environment;

10 Figure 13 illustrates an organisation of static data used in computing pleasure values;

Figure 14 illustrates an organisation of the dynamic data used in the pleasure value computation;

Figure 15 illustrates an alternative object oriented computing method;

15 Figure 16 illustrates a data organisation for the method described with reference to Figure 15;

Figure 17 illustrates a method of locating high values in the pleasure value matrix with software ants;

20 Figure 18 illustrates the use of a neural network to locate high values in the pleasure value matrix;

Figures 19 to 22 illustrate alternative hybrid configurations of pleasure value matrix for multiple Callcentres of different sizes;

Figure 23 is a block diagram of a distributed system that uses the different hybrid solutions described with reference to Figures 19 to 22;

25 Figure 24 is a schematic illustration of a display provided by the apparatus of Figure 4, of its Callcentre configuration; and

Figure 25 is a display provided by the apparatus of Figure 4, of the routing priorities for the Callcentre.

30 **Detailed description**

Referring to Figure 2, calls $C_1 - C_n$ on incoming lines $L_{i1} - L_{in}$ are to be connected to resources $R_1 - R_m$ through outgoing lines $L_{o1} - L_{om}$. In

- 9 -

accordance with the invention, rather than using a complex rules-based algorithm to determine the interconnections, the value of an operating parameter is attributed to each possible interconnection between the incoming lines and the outgoing lines that are connected to the resources. This is shown schematically as matrix M in Figure 2. The value of the operating parameter is referred to herein as a pleasure value and is given a value depending on the desirability of interconnecting a particular line and resource combination. As shown in Figure 2, an interconnection point l, r in the pleasure value matrix is attributed a pleasure value $P_{l,r}$.

10

The pleasure value $P_{l,r}$ at the interconnection point l, r is set according to predetermined criteria as will now be explained. Two of the criteria that are considered are the time that a call has been waiting on line L_i and the time that the resource R and outgoing line L_o has been idle. This is shown schematically in Figure 3. A series of line timers $LT_1 - LT_n$ are connected to the incoming lines $L_{i1} - L_{in}$ to provide an indication of the time that a call has been waiting. Similarly, resource timers $RT_1 - RT_m$ are connected to the resources $R_1 - R_m$. In the example shown in Figure 3, the line timers and resource timers are summed at the relevant points to provide the pleasure values P for the points l, r in the pleasure value matrix. The highest value of P and the next highest value denote the winner and runner up of the incoming line/resource combinations. The pleasure value matrix is repeatedly computed and the winner and runner up is repetitively calculated for each computational pass through the matrix. In Figure 3, line timer LT_1 indicates the value of 30 seconds and the resource timer RT_1 indicates a time of 10 seconds so that the interconnection of line L_{i1} to resource R_1 has the highest pleasure value P where $P = 30 + 10 = 40$ and constitutes the winner. The runner up is constituted by the interconnection between line L_{i2} and resource R_4 for which $P = 35$.

30

The pleasure values attributed to the points in the matrix are also a function of classifications of the incoming calls and the resources as will be explained

- 10 -

in more detail hereinafter.

Referring now to Figure 4, a schematic block diagram of an apparatus in accordance with the invention is shown. The incoming lines $L_{i1} - L_{in}$ and the outgoing lines $L_{o1} - L_{om}$ are coupled to a cross connect 10 which is controlled by a processor 11 in order to provide physical interconnections between the incoming and outgoing lines, so that any incoming line can be connected to any outgoing line under the control of the processor. The line timers LT are collectively shown as block 12 and determine the time for which calls on individual incoming lines have been waiting. Data concerning the waiting times are fed on line 13 to the processor 11. Similarly, the resource timers RT are shown as block 14, and provide information concerning the time that the individual resources $R_1 - R_m$ have been idle, the information being fed on line 15 to the processor 11.

15

The processor 11 computes the individual pleasure values for the pleasure value matrix M shown in Figure 2 and controls the cross connect 10 accordingly so as to attempt to interconnect the incoming and outgoing lines that correspond to the highest pleasure value. The pleasure value matrix is scanned repetitively by the processor and in the event that the highest value is already connected, the processor commands the cross connect to form an interconnection corresponding to the next highest value of the pleasure value matrix.

25 As previously mentioned, the pleasure values are determined in dependence on a number of factors in addition to the outputs of the line timers 12, 14. These additional factors depend upon other characteristics of the incoming calls and the resources. The way in which the system acquires data about the resources and incoming lines and uses it in the computation of the pleasure values as will now be described in detail. A number of factors are monitored, as follows:

Line State (Dynamic Data)

Each incoming line L_{i1} - L_{in} can be represented as a managed object governed by a finite state variable called the line state. The line state moves through a number of different conditions: Initialising, Idle, Alerting, Connecting, Answered, Transfer-Alert, Transfer-Connecting, Transfer-Answered, Archiving, and back to Idle. The transfer states may be skipped over or repeated as often as necessary. The processor 11, when computing the pleasure values, is only concerned with the Alert and Transfer-Alert states as this is when a cross-connection decision is required. The line state for each incoming line L_i is determined by means of a line processor 16 which provides data on line 17 to the processor 11.

Line Timer (Dynamic Data)

Each line object contains data concerning the time that the line L_i has been in an Alerting state, the data being obtained from the line timer 12. In practice, the line timer 12 and line processor 16 may be a single unit.

Telephone Number (Dynamic Data)

The number of the telephone from which the call is being made on line L_i , hereinafter the calling telephone number (CTN) and the number being dialled, hereinafter the dialled telephone number (DTN) are available as digital data for each incoming call. The CTN and DTN are detected by the line processor 16 and corresponding data is fed on line 17 to the processor 11.

25 Call Classification (Static and Dynamic Data)

The incoming calls are classified according to predetermined call classes as a function of the CTN and DTN and any other information available over the digital telephone network. The data concerning call classes may be held in a database, indicated schematically by memory 18 in Figure 4. The data base may be extended by making use of computer telephony integration (CTI) e.g. by accessing specific, remote, corporate databases. In this way, the customer account details or recent enquiries the customer has made, or recent purchases,

- 12 -

or sales opportunities, or the last human call receptionist, or a particular account manager, can be taken into consideration. Also, particular incoming lines L_i may be associated with particular private circuits. Furthermore, the call classification process performed by the line processor 16 may not find a suitable match in the memory 18. To take account of this, each line L_i is provided with a default call class.

Resource State (Dynamic Data)

Each resource R is represented as a managed object governed by a finite state variable called the resource state. Each resource state moves through Initialising, Logged-Off, Idle, Connecting, Alerting, Answered and back to Idle. The Idle state is detected by the resource timers 14 shown in Figure 4.

Resource Classification (Static and Dynamic Data)

Groups of resources offering the same services are considered as belonging to a single resource class. For example, a group of operators may be trained to a particular level to deal with a particular type of enquiry, whereas other operators will be able to deal with some types of enquiries and not others. Furthermore, the resources may comprise voicemail facilities with predetermined messages or voice driven computer databases. All of these different types of resources and functionalities may be classified in different resource classes.

The outgoing lines L_{o1} - L_{om} are each provided within associated default resource class.

The status of the various resources, and the lines L_o and their resource classes is monitored by a resource processor 19, which in practice may incorporate the resource timers 14.

30

Resource Timers (Dynamic Data)

Each resource object includes data from an appropriate resource timer 14, fed

- 13 -

to the processor on line 15.

Precedence (Static Data)

Certain call classes may be more important than others. Each call class is therefore allocated a precedence value. This can be considered to constitute a number of seconds "head start" that a call of a particular class will be given. For example if a call is classified to have a precedence 60, it is considered as if it has been waiting for 60 seconds at the time that the call is initiated with a result that it will be dealt with more quickly than otherwise would be the case.

Priority (Static Data)

When a call first arrives, it will usually be offered to one class of resource over what is referred to as a primary route. If time goes on and still none of those resources are available, then a secondary routing to other resource classes will be considered, and so on, to any number of alternative routings. This approach differs from conventional rules-based algorithms in that the call does not defect from one queue to another. Instead, the scope of the resources available to it is widened in an attempt to minimise call waiting times. This is achieved by providing each permissible combination of call class and resource class, with a priority value that is held in a configuration matrix which, in Figure 4, is maintained in the memory 18. Primary routes are allocated a priority value of 1 which will cause the processor 11 to endeavour to connect the call immediately. Other routes allocated a priority value of say 30 will only be considered after 29 seconds. All the resources considered for connection by the processor 11 are allocated a "head start" of $(\text{Priority_Value}_{\text{max}} - \text{Priority_Value})$ seconds over and above any precedence value associated with the call class. In this way, primary routes have a "head start" of the $\text{Priority_Value}_{\text{max}} - 1$ seconds.

30

Configuration Matrix (Static Data)

The configuration of the above described static data required to compute the

- 14 -

pleasure values, is referred to herein as a configuration matrix. The static data that comprises the matrix is primarily stored in the memory 18 shown in Figure 4 and in reality consists of a number of different arrays:

- 5 (i) a relatively small array that holds the precedence of each call class;
- (ii) a relatively large array that holds the class of each call on each line;
- (iii) a relatively large array that holds the class of each resource; and
- 10 (iv) a relatively very large array that holds a map of permissible associations between call classes and resource classes so as to provide the priority values. In practice, this array may include a very large number of zero values due to the fact that only a relatively small number of the permissible combinations will be allocated priority values. Consequently the array may 15 be a virtual array to minimise the data storage capacity required.

Algorithm - Pleasure Values

The processor 11 runs an algorithm to compute the individual pleasure values 20 $P_{l,r}$ that make up the pleasure value matrix shown in Figure 2. The values are computed repetitively on the basis of the static data of the configuration matrix from memory 18 and also dynamic data concerning the state of the lines L derived from the line processors 16, 19.

25 The processor 11 thus considers every combination of the incoming lines L_i in the Alerting State, and resources R in the Idle State and the pleasure values are calculated as follows:

REM: IF Statement (1)

IF(Priority(Call_Class, Resource_Class)=0)OR

30 (Timer_Value(Line L_i)<(Priority_Value(Call_Class,Resource_Class)-1)) THEN
Pleasure_Value ($P_{l,r}$) = 0 {i.e. do not consider this connection}.
ELSE

- 15 -

REM: Routine (2)

```
Pleasure_Value(Pi,r) = Timer_Value(line) + Timer_Value(Resource) + Precedence  
(Call_Class) + Priority_Valuemax Priority_Value(Call_Class, Resource_Class)  
ENDIF
```

5

Thus, the pleasure value $P_{i,r}$ is determined for each point of the matrix M as a function of the time that a call on an incoming line L_i has been waiting, the time that the resource for the incoming call-resource combination has been idle, the precedence of the call class and the priority value determined in 10 dependence upon the call class, resource class combination. The algorithm run by the processor 11 provides two outputs, namely a winner and a runner up as follows:

15 Winner: Line Number (L_i), Resource Number (R_i), Line state, Resource State

Runner up: Line Number (L_i), Resource Number (R_i), Line State, Resource State

These recommendations are then passed on line 20 to the cross connect 10 which runs a cross-connection program in order to make the physical cross- 20 connection between the selected incoming line and outgoing line combinations. The cross-connection program primarily attempts to connect the winning combination as determined by the pleasure value matrix algorithm but in certain circumstances, this may not be possible, due for example to the incoming call having been terminated or for some other 25 reason. In this situation, the cross-connection program reverts to the runner up. The runner up may also be used if L_i (winner) $\neq L_i$ (runner up) AND R_i (winner) $\neq R_i$ (runner up).

30 The pleasure value matrix algorithm runs repetitively so as to make new recommendations continuously. The line and resource processors 16, 19 update the dynamic data concerning the line states and the resource states asynchronously with the running of the pleasure value matrix algorithm. As

will be explained in more detail hereinafter, the lines and resources used by the cross-connect may be deleted (i.e. reset to zero) in the pleasure matrix in anticipation of the line and resource change of state that will occur from them being cross-connected. This minimises the number of duplicated cross-
5 connection recommendations that may occur during delays in acquiring updated line and resource state information.

Thus, the described system allows a number of incoming calls on a large number of incoming lines L_i to be connected to the resources R in a manner
10 that minimises call waiting. The system shown in Figure 4 may be configured in a public network telephone exchange where the incoming lines are arranged to connect incoming calls from remote locations e.g. on trunk lines to resources disposed at locations remote from the exchange. For example, the resource may comprise telephone operators working from home. This
15 permits the network provider to offer a Callcentre so that a customer of the network can offer services to consumers using telephone operators that work from home or at a location remote from the customer's premises. As an example, for a manufacturing business, an after sales service can be provided by telephone, with operators working from home. The operators may be
20 trained to different levels e.g. to be conversant with different products and the problems associated therewith and can be configured in appropriate resource classes so that calls can be directed to them selectively. Furthermore, data concerning consumers' telephone numbers can be included in the configuration matrix so that calls from particular consumers can be
25 preferentially routed to particular resources.

The network provider may provide a plurality of Callcentres within the telephone network and a more detailed example of the algorithm used to compute the pleasure value matrix will now be described with reference to
30 Figures 5, 6 and 7, for a configuration which provides a plurality of Callcentres.

Referring to Figure 5, this illustrates the overall operation. The procedure starts at step S0 and at step S1, the previously described static data is fetched from the Configuration Matrix. The static data includes the Call and resource classes and their associated Priority Values.

At step S2, the dynamic data previously described is fetched. The dynamic data includes the line timer values and the resource timer values derived from the line and resource timers 12, 14 shown in Figure 4 together with information concerning the line states and the dialled numbers on the 10 incoming lines L_i derived from the line processor 16.

At step S3, the pleasure value Matrix algorithm is run so that, at step S4, a winner and runner up for the incoming line/resource combinations is recommended on the basis of the values of the pleasure value Matrix. The 15 routine then returns to step S2 and the process is repeated successively.

The process for recommending cross-connects, shown at step S4, will now be described in more detail with reference to Figure 6. The winners and runners up of the pleasure values for individual Callcentres are loaded into a 20 Table shown in Figure 6, in which the winner and runner up for each Callcentre is loaded in an individual row of the table. The routine shown in Figure 6 is partitioned for individual Callcentres to ensure that the capacity of the system does not become spuriously used up by one Callcentre only. The sub-routine starts at step S4.1, and at step S4.2, the winner and the runner up 25 of the various pleasure values of the pleasure value Matrix M are loaded into an appropriate line of the table, the winner and runner up having been selected from the computed values for the matrix by a process which will be described later with reference to Figure 7. Before the values are loaded into the Table, the lines of the Table are reset to zero as will be explained later 30 with reference to Figure 7. At step S4.3, the routine is repeated for all of the Callcentres successively.

The running of the pleasure value Matrix algorithm (step S3 of Figure 5) will now be described in more detail with reference to Figure 7. In Figure 7, the routine is run individually for all Callcentres in succession, as shown at step S3.1. At step S3.2, the values for the winner and runner up previously loaded into the table (Figure 6) are set to zero in anticipation of new pleasure value data being computed. Then, as shown at step S3.3, all the incoming lines L_i are considered individually and, at step S3.4, it is determined whether the line L_i is in an Alerting state. If not, the next line is checked as shown at step S3.5. If the line is in the Alerting state, the routine proceeds to consider the pleasure values for the matrix M.

At step S3.7 the resources R are considered in sequence for the Callcentre, and at step S3.8, the IF statement (1) discussed previously, is checked to see whether it is true. If so, the pleasure value for the associated position l,r (in the pleasure value matrix M) is set to zero at step S3.9. Otherwise, the routine moves to step S3.10 and the pleasure value $P_{l,r}$ is computed according to Routine (2) discussed previously in connection with the pleasure value algorithm. As shown at step S3.11 the routine is repeated for all of the resources R so that all pleasure values in the matrix M are computed.

20

Referring back to Figure 6, the values for the matrix M are reviewed at step S4.2 and the winner and runner up are loaded into the Table.

Thus, for each Callcentre a winner and a runner up is successively directed to the cross-connection program that operates the cross-connect 10 shown in Figure 4. The cross-connection program will try to connect as many of the winners and runners up as possible. However, if the winner is already connected, the cross-connect will make use of the runner up. Alternatively, if the call on the incoming winning line has for some reason moved to an idle state, the system will make use of the runner up. Once connected, the incoming line/resource combination will remain connected until the call is completed. Thus, the cross-connect will make new connections on the basis

of the current winner as signified by the pleasure value matrix (or the runner up).

Hot Calls

5 Hot calls are defined where a particular call class is to be dealt with urgently by a particular resource. Hot calls can be given automatically a particular relatively large precedence value so that they are immediately provided with a high pleasure value. Hot calls also have another associated parameter referred to herein as reversion time. The reversion time may be user specified and
10 indicates how long a call should be considered as a hot call and thus indicates how long a specified resource should be considered before the other resources associated with the call class are also considered. However, when the specified resource is "logged-off" the hot call reverts immediately to consider the other resources associated with the call class.

15

Hot calls can be defined statically or dynamically. As an example of a static hot call, it is a situation in which a call from a particular business customer is always to be connected to a particular account manager (resource). Static hot calls details can be entered into the configuration matrix. However, it may
20 be desirable to store the hot calls information as an exception to the data stored in the configuration matrix, as a separate list. An example of a dynamic hot call is where a particular caller identified from the calling telephone number, is flagged for connection to a particular resource for subsequent enquiry later the same day, to ensure that the caller on a
25 subsequent call is connected to the same resource. The list of dynamic hot calls is given a finite cyclic storage space, or a "time to live" property in order to prevent the size of the exception list growing indefinitely.

30 The pleasure value matrix algorithm can be run in a number of different ways as will now be described. Referring to Figure 8, this shows the pleasure value matrix M with the resources R shown as the ordinate and the incoming lines L shown as the abscissa. The algorithm repetitively performs a raster type

- 20 -

scan through the points l, r of the matrix, computing the values $P_{l,r}$ for each matrix position successively. Thus, the step S3.10 is performed for each matrix position successively along the raster scan. In a test, this process was performed using a 120 MHz Pentium™ based microprocessor. The matrix M

5 consists of 240 lines L_i and 240 resources R, with 128 line classes and 128 resource classes. The matrix was arranged as eight Callcentres, each of 30 line across 30 resources. The results obtained showed that two cross-connection recommendations per Callcentre could be provided every 128 ms.

10 An alternative processing technique shown in Figure 9 makes use of two processors operating in parallel that compute two parallel pleasure matrices M1, M2. The speed of operation is the same as the configuration shown in Figure 8 but with the advantage that the resulting system is fault tolerant because either of the recommendations produced by the parallel processors can

15 be used.

A further alternative processing method is shown in Figure 10, in which the $L_i \times R$ matrix M is arranged in n strips S1, S2, Sn of L_{max}/n lines each. Each strip has access to all of the resources $R_1 - R_n$. The pleasure values for each

20 strip are computed in parallel by n parallel processors. Thus, referring to Figure 10, the winner and runner up for strip S1 is calculated with the processor for S1. The winner and runner up for strip S2 are calculated by the processor for S2, and similar parallel computations are carried out for the other strips, and the overall winner and runner up is selected for the matrix

25 M.

Referring to Figure 11, the pleasure matrix M is broken up into tiles T_n , which each has access to the configuration data for the entire system. The pleasure value matrix computations are carried out in parallel for each tile so

30 that individual processors are provided for the tiles respectively. The individual winners and runners up for each of the tiles are compared with one another so as to provide an overall output recommendation. In Figure 11, the

- 21 -

5 tiles are shown to be contiguous but as an alternative the tiles may overlap and may be of different sizes. Larger tiles can be used for regions of the matrix where little traffic is expected.

10 5 Referring to Figure 12, the configuration makes use of a distributed computing environment (DCE) in which a number of parallel algorithm processors are provided that are allocated to particular Callcentres, tiles or strips. The allocation of the processors can be varied dynamically to take account of changes in utilisation of the various Callcentres. Thus, as shown

15 10 in Figure 12, a plurality of pleasure value matrix algorithm processors P₁ - P_{n+1} are coupled to a DCE 21 to provide a dynamic pool of computation engines. A data acquisition server 22 provides the DCE 21 with current information concerning the lines and resources L_i, R. The cross-connect (reference 10 in Figure 4) is controlled by a server 23 in response to data from

20 15 the algorithm processors P. A support system server 24 is provided for remote access by service management and network management controllers, e.g. for dealing with faults, and setting up new customers. The choice of Callcentres, tiles or strips processed by the individual algorithm processors P, is controlled by a manager/allotter 25 and data concerning the current status

25 20 of this system is held in server 26. The system shown in Figure 12 can be distributed over a large geographical area e.g. over an entire country or state. Furthermore, the architecture allows additional processors to be added readily to provide additional Callcentres when required. Periodically, the manager/allotter 25 reviews the processing capacity assigned to each Callcentre

30 25 and may reallocate algorithm processors to ensure that the computing power is allocated where necessary to achieve satisfactory response times. The algorithm processors may be distributed around the country and allocated as required.

35 30 Referring now to Figure 13, this shows the configuration of the static data which is processed by the pleasure value matrix algorithm. It will be seen that the static data is arranged on the basis of Callcentres 28, outgoing lines

- 22 -

(trunks) L_o , incoming lines L_i , resource classes 29, log-on ID's 30, call classes 31, equipment types 32, hot calls 33, plans 34, plan elements 35 and plan schedulers 36.

5 It will be seen that this configuration allows Callcentres to be set up for use with particular sets of resources, call classes and hot calls. Furthermore, the plans 34, plan elements and plan scheduler allow particular hot calls to be implemented at different times of the day and particular priority values to be implemented at different times.

10

In the embodiments described so far, the dynamic data may be configured as shown in Figure 14, with the dynamic line data, resource data and hot call data being configured as shown in Tables 1.1, 1.2 and 1.3 respectively. Each pleasure value matrix algorithm processor thus extracts data from the various 15 static and dynamic tables in order to compute the pleasure values.

An alternative configuration of the tables will now be described, which speeds up the processing performed by the pleasure value algorithm processors. In this modification, the static and dynamic data are arranged in terms of call 20 objects associated with the individual incoming lines and log-in objects associated with the resources. The pleasure value matrix algorithm is configured so that the call objects continuously look for the most pleasurable log-in objects. Referring to Figure 15, there are a number of log-in objects CO1 - COm associated with incoming lines that are in the alerting state. 25 Similarly, log-in objects LO1 - LOm are created whenever a resource R enters an idle state. The call objects are destroyed when the relevant line become idle or when accepted for cross-connection by the cross-connection program. The log-in objects are destroyed whenever a resource is logged off or accepted for cross-connection by the cross-connection program. Examples of tables 30 that comprise the call object data and log-in object data are shown in table 1.4 and 1.5 in Figure 16. During initialisation, all the relevant static configuration data together with the relevant dynamic data is entered into the table for the

object. This has the advantage that the configuration data is looked up only once however many computations passes are made subsequently. Furthermore, because the pleasure value matrix includes many values of null data due to the fact that many of the incoming lines are not in the Alerting state and the probability that the resources are in an idle state is relatively low, the number of call in and log-in objects is significantly reduced compared to the number of incoming lines and resources.

Another way of identifying the positions of highest pleasure in the pleasure value matrix M will now be described with reference to Figure 17. In this arrangement, the pleasure value algorithm is configured to mimic the action of a swarm of ants moving around in the L - R space of the matrix M. A number of ant objects each having X and Y coordinate attributes are configured to wander around the matrix M at random looking for food which is defined as the matrix positions of non-zero pleasure value. Once one of the ants has been given food, it will call a friend i.e. one of the other ants in the swarm over to that vicinity. In this way, the computing power is focused at positions where the cross-connections look most promising. Thus referring to Figure 18, the software ants move along trails 38, 39 until they reach location 40 at which they find "food" namely a non-zero pleasure value in the matrix.

In a modification, the ants can be replaced by software semi-autonomous artificial lifeforms. Each lifeform is represented by a small segment of interpreted code competing for execution time and memory whilst wondering around the matrix M in L x R space. If a non-zero pleasure value is found, then more execution time and memory is allocated to the lucky lifeform, at the expense of others. Furthermore, successful lifeforms are allowed to reproduce i.e. copy themselves and occasionally mutate, by introducing an error, a delete or a new line of the interpreted software code. Some of the children may perform better than the parent. Others do not find any reward in a reasonable time and perish i.e. survival of the fittest. This approach

- 24 -

draws on ideas presented by J. F. Martin in British Telecommunications Engineering Vol. 13 part 4, Jan 1995, p. 319.

Another alternative is to use a neural network as shown in Figure 18. The 5 network has an input layer 41 which in this example includes 1002000 neurons 42 that each receive data from the line timers 12, the resource timers 14 and other inputs which receive priority data dependent on the call classes and resource class. Each input can receive multi-bit values e.g. 16 bit values. The neurons 42 are interconnected to hidden layer neurons 43, which are 10 connected to neurons 44 in an output layer. The output layer includes a configuration 45 for selecting the highest pleasure value for propagation as the winning recommendation for the cross-connection program. An example of building blocks which can be used to form the neural network is the "Hannibal" chip described by Myers, Vincent and Orrey, Neural Computing 15 5, 1993 pp 25 - 37. Reference is also directed to "A High Performance Digital Processor for Implementing Large Artificial Neural Networks" Myers, Vincent, Cox, Harbridge, Orrey, Williamson and Naylor, BT Technology Journal Vol.10 No. 3, July 1992 page 134. Hannibal allows 16 bit weights on each neuron input.

20

Another way of computing the pleasure values in the matrix M is to use a hybrid solution based on a combination of the previously described techniques.

25 Referring to Figure 19, this shows the pleasure value matrix in which the object orientation described with reference to Figure 15 is adopted, for Callcentres Cc of different sizes. A typical Callcentre Cc1 shown shaded, will require 40 lines and resources whereas some are larger e.g. Cc2 and would require Callcentres of size 300 lines x 300 resources. The Callcentres may be 30 arranged as shown in the L x R matrix shown in Figure 19.

In an alternative shown in Figure 20, parallel processors are used in order to

set up parallel matrices M in order to provide extra resilience. Each matrix includes the Callcentre configuration shown in Figure 20.

In Figure 21, the matrix is arranged in strips S in the manner described previously with reference to Figure 11. However, the individual Callcentres shown are each of different sizes, with different numbers of lines and resources.

In Figure 22, a tile configuration is shown which is processed in the manner described previously with reference to Figure 12. This arrangement is particularly suited to very large Callcentres and in the example shown, a Callcentre matrix of 1530 lines x 1530 resources is shown, which spans the individual tiles. Additionally, a number of smaller Callcentres are shown.

15 Referring now to Figure 23, this shows how the various computational techniques can be combined into a single DCE similar to that previously described with reference to Figure 12.

Referring again to Figure 4, a display 45 is shown connected to the processor 20 11, which is used to provide a display of the configuration for each Callcentre. The display 45 typically comprises a video monitor in association with a personal computer but other suitable displays will be readily apparent to those skilled in the art. An example of the display provided is shown in Figure 24. The display illustrates that three incoming trunk lines, that correspond to 25 incoming lines L_i are connected to the Callcentre, together with three outgoing lines L_o . Three resources R are connected to the outgoing lines, that comprise telephone operators David Donnelly and Phill Hunter and a voice mail facility VM1. The Callcentre is configured to perform three plans P. Three call classes are shown, together with three resource classes. It will be 30 seen that resource David Donnelly (OP1) falls within the resource class of an operator whereas Phill Hunter falls within the resource class of a supervisor. These two resource classes will be capable of handling different call classes.

The call class/resource class combinations that give rise to different priorities can be programmed using a mapping tool as shown in Figure 25. The mapping tool display "pops up" when a particular Plan number on the display 45 (Figure 24) is selected. The display shown in Figure 24 can be manipulated by a manual control 46 (Figure 4) which typically comprises a mouse or a conventional keyboard.

The display shown in Figure 25 consists of a central two dimensional grid 47 of call class versus resource class. The priority value associated with particular call class/resource class combinations is illustrated on the grid in terms of a colour, which indicates the urgency of the priority value. On the right hand side of the display, a palette 48 indicates the number of seconds delay associated with the displayed priority values.

15 On the left hand side of the display, a palette indicating the precedence associated with the call classes is given. The precedence of the call classes is shown on display 50, corresponding to the row of call classes shown for the display 47. The "head start" in seconds, associated with a particular precedence value, which are coded in terms of colours, is shown in the display 20 49. The display indicates the Plan 1 - Monday morning that is shown in the plan display P of Figure 24. Corresponding displays for the other plans e.g. Monday afternoon will be available as separate displays. Thus, an operator can set up appropriate plans with different priorities and precedences to optimise available resources. Furthermore, the Callcentre manager will be 25 able to customise the plans to take account of changes on a day to day basis for example national holidays, or when operators are sick or equipment problems arise. Furthermore, the plans can be modified on-line on the basis of expert information available to the Callcentre manager.

30 Many modifications to the described apparatus fall within the scope of the claimed invention. For example, whilst the apparatus has been described as being part of a public telephone network, it could be located in a private

exchange at a customers premises, with the resources at least in part being located at the premises of the customer. The inherent flexibility of the apparatus in accordance with the invention permits many different physical configurations to be used.

5 The invention also may be used in an Internet environment for example in relation to a local area network (LAN) or a wide area network (WAN) for routing calls (i.e. real time protocol sessions) to particular locations in the LAN, it being understood that in the usual way, packets which make up the 10 session or call can pass through the network along different routes to a common destination, in the usual way. It will be understood that packet data message switching through the Internet can be used for transmitting messages which may comprise voice, video or other forms of message data, and the incoming messages may be routed e.g. at a server to different resources 15 connected to the LAN. The invention may also have application to servers for domain providers for the Internet or World Wide Web.

Whilst in the described examples of the invention, a winner and runner up is selected from each pass through the pleasure matrix M, it would be possible to 20 perform a less processor intensive approach, which yields similar results to simulated annealing in an iterative process. Hitherto, it has been proposed to introduce noise into an iterative system in order to prevent the system becoming locked into localised maxima and minima and thereby achieve a non-optimal result. In the present invention, a similar result can be achieved 25 by rapidly scanning the pleasure matrix a plurality of times, on the assumption that the incoming and outgoing data on the lines Li and Lo do not change significantly during the period of the successive scans. For each scan, the winner and loser is calculated, but the winner is deliberately rejected. At the end of the plurality of scans, the winner and runner up are then 30 selected by choosing the options that result in the lowest pleasure values overall for the succession of scans of the matrix.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of distributing concurrent incoming calls on a plurality of lines to a plurality of resources, comprising:
 - 5 associating with each of a plurality of different individual combinations of the lines and resources, a respective value of an operating parameter in dependence upon a desirability according to predetermined criteria, of interconnecting the line and resource of the combination,
 - 10 repeatedly reviewing the values of the operating parameter corresponding to the combinations, and
 - 15 selecting at least one of the combinations for interconnection as a result of the reviews.
2. A method according to claim 1 wherein the value of the operating parameter associated with a particular line and resource combination is a function of the time that an incoming call has been waiting on the line to be connected to one of the resources.
3. A method according to claim 1 or 2 wherein the value of the parameter associated with a particular line and resource combination is a function of the time that the resource has been idle.
4. A method according to any preceding claim wherein the incoming calls on said plurality of lines are of plurality of different classes, the method including
 - 25 detecting the class of the incoming call for the respective combinations, and
 - 30 setting the value of the parameter associated with a particular line and resource combination as a function of a precedence associated with the class of the incoming call on the line for the combination.
- 30 5. A method according to any preceding claim wherein the resources are configured in resource classes, the method including monitoring the resource classes, and setting the value of the operating parameter associated with a particular line and resource combination as a function of the class of the resource for said combination.

6. A method according to claim 5 when appendant to claim 4 wherein the parameter is a function of a priority value that has predetermined value dependent upon the particular values of the call class and resource class for the line and 5 resource combination.

7. A method according to claim 4 wherein a particular call class is designated a hot call with a precedence for causing immediate selection of the line with the incoming hot call for connection to a particular one of said resources.


10

8. A method according to claim 7 wherein the precedence of the hot call reverts to a different value after a predetermined reversion time.

9. A method according to any preceding claim including selecting a first most 15 desirable and a second next most desirable line and resource combination on the basis of the values of the operating parameter associated therewith during each of said periodic reviews.

10. Apparatus for distributing a plurality of concurrent incoming calls to a 20 plurality of resources, comprising:
a plurality of incoming lines for the calls,
a plurality of outgoing lines for connection to the resources,
means for associating with each of a plurality of different individual combinations 25 of the incoming and outgoing lines, a respective value of an operating parameter as a function of a desirability according to predetermined criteria, of interconnecting a call on the incoming line and resource for the outgoing line corresponding to the combination, and
means for repeatedly reviewing the values of the parameters corresponding to the combinations, and selecting at least one of the combinations 30 in dependence upon the review.

11. Apparatus according to claim 10 including incoming call timing means for determining the durations for which incoming calls have been waiting on respective ones of the incoming lines to be connected to the resources, and processing

means for determining the value of the operating parameter associated with particular line and resource combinations as a function of the waiting time of the call on the respective incoming line.

5 12. Apparatus according to claim 10 or 11 including resource timer means for determining the durations for which resources have been idle, and processing means for determining the value of the operating parameter associated with particular incoming and outgoing line combinations as a function of the time that the resource associated therewith has been idle.

10

13. Apparatus according to claim 10, 11, or 12 including means responsive to the incoming calls to determine whether they are of particular classes and to attribute a precedence to each of the incoming calls according to its class, and processing means for determining the value of the operating parameter associated 15 with a particular incoming and outgoing line combination as a function of the precedence of the call on the incoming line for the combination.

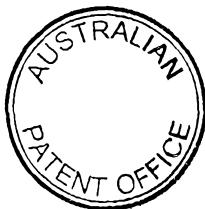
14. Apparatus according to claim 13 including means for designating a particular one of the call classes as a hot call with a precedence for causing 20 immediate selection of the incoming line with the hot call for connection to one of said resources.

15. Apparatus according to claim 14 including reversion means for changing the precedence of the hot call to a different value after a predetermined reversion 25 time.

16. Apparatus according to any one of claims 10 to 15 including resource classification means for classifying the resources associated with the outgoing lines into resource classes, and processing means for determining the value of the 30 operating parameter associated with a particular line and resource combination as a function of the class of the resource for said combination.

17. Apparatus according to claim 16 when appendant to claim 13 including means for attributing to each combination a priority value that has a value

dependent upon the particular values of the call class and resource class for said combination.


18. Apparatus according to any one of claims 10 to 17 including cross
5 connect means operative to interconnect the selected combination of input and output lines.

19. Apparatus according to any one of claims 10 to 17 including means for selecting a first most desirable and a second next most desirable incoming and
10 outgoing line combination on the basis of the values of the operating parameter associated therewith during each of said periodic reviews.

20. Apparatus according to any one of claims 10 to 19 claim wherein the selecting means includes scanning means operative to scan through the current
15 operating parameter values for all of said combinations, and parameter value selection means operative to select the combination which has an associated scanned value of said parameter that corresponds to the highest of the scanned values in respect of said desirability of connection.

20 21. Apparatus according to any one of claims 10 to 20 wherein the selecting means includes parallel scanning means operative to scan through groups of the current operating parameter values concurrently, to select for each said group the combination which has an associated scanned value of said parameter that corresponds to the highest of the scanned values in respect of said desirability of
25 connection, and to compare the highest parameter values selected for each respective said group so as to select the highest value from all the scanned groups.

22. Apparatus according to any one of claims 10 to 20 including means for
30 defining log-in objects corresponding to the resources respectively as function of static data in respect of the resource and also dynamic data dependent upon whether the resource is idle or in an active state, and means for defining call objects comprising static data for particular call types and\or classes and dynamic data concerning the occurrence of calls on the incoming lines.



23. Apparatus according to any one of claims 10 to 20 including means for defining a plurality of ants operative to wander initially essentially at random through a matrix of the values of the operating parameter associated with said 5 combinations to find the value thereof corresponding to the most desirable combination of incoming line and resource to be connected, the ants being operative to communicate with one another so that they move collectively toward a region of the matrix in which at least one value of the operating parameter indicates an increased desirability of interconnection of the resource/incoming call 10 combination associated therewith as compared with the majority of the parameter values in the matrix.

24. Apparatus according to any one of claims 10 to 20 including a plurality of artificial lifeform software elements for computing the values of the operating 15 parameter for positions in a matrix of the values associated with said incoming call/resource combinations, and means for allocating computing power to the lifeforms selectively depending on the success of the lifeform in computing a value of the operating parameter that indicates desirability of the interconnection of the resource/incoming call combination.

20

25. A method of distributing concurrent incoming calls of different call classes on any one of a plurality of incoming lines, to a plurality of resources, comprising: detecting the classes of the incoming calls; associating with each of a plurality of different individual combinations of the lines 25 and resources, a respective value of an operating parameter in dependence upon a desirability according to predetermined criteria, of interconnecting the line and resource of the combination, said criteria including the time that the call on the incoming line has been waiting to be connected to one of the resources and its class; 30 repeatedly reviewing the values of the operating parameter corresponding to the combinations; and selecting at least one of the combinations for interconnection as a result of the reviews.

26. A method according to claim 25 wherein the resources are of a plurality of different classes and the criteria include the time that the respective resources have been idle and their class.

5 27. A method of distributing concurrent incoming calls substantially as herein described with reference to any one embodiment and its associated drawings selected from Figures 2-25.

10 28. An apparatus for distributing a plurality of concurrent incoming calls substantially as herein described with reference to any one embodiment and its associated drawings selected from Figures 2-25.

DATED this 16th Day of April 1999

BRITISH TELECOMMUNICATIONS PUBLIC LIMITED COMPANY

15

Attorney: PETER R. HEATHCOTE
Fellow Institute of Patent Attorneys of Australia
of BALDWIN SHELSTON WATERS

2
3
4
5
6
7
8
9

1/15

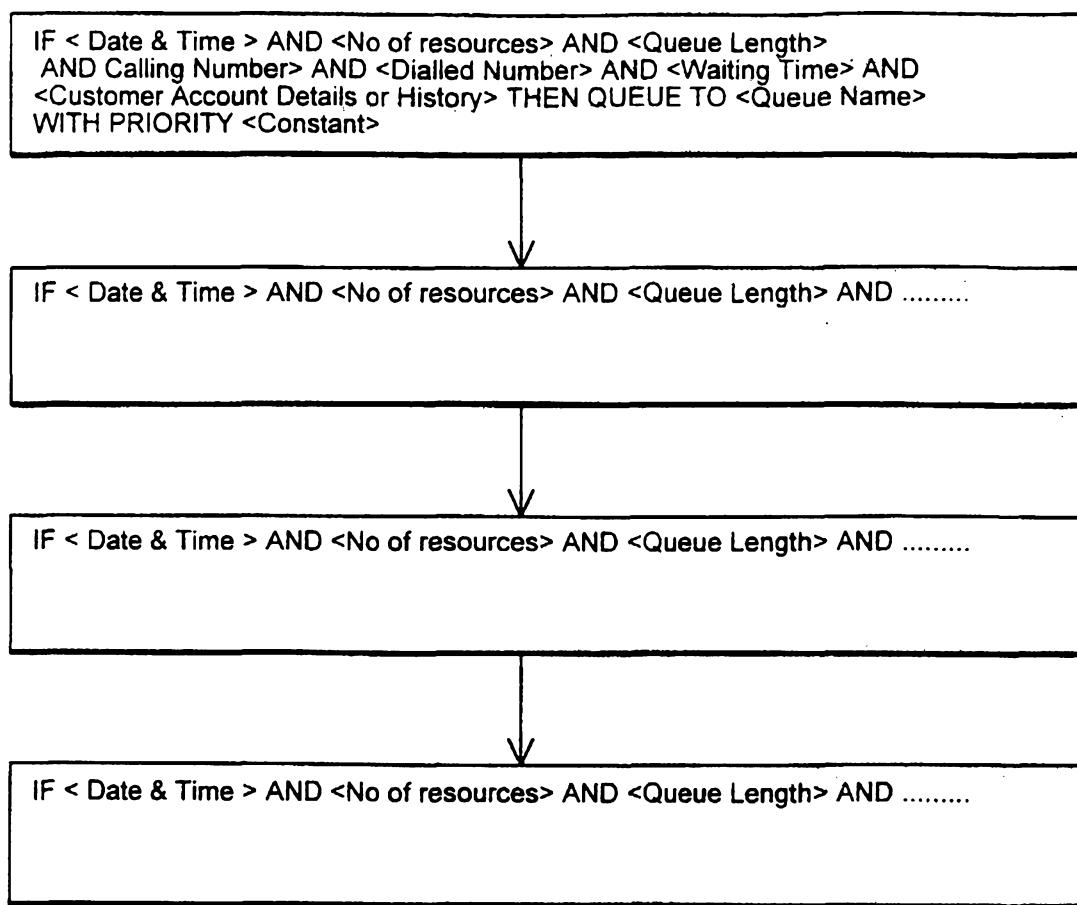


FIG.1 PRIOR ART

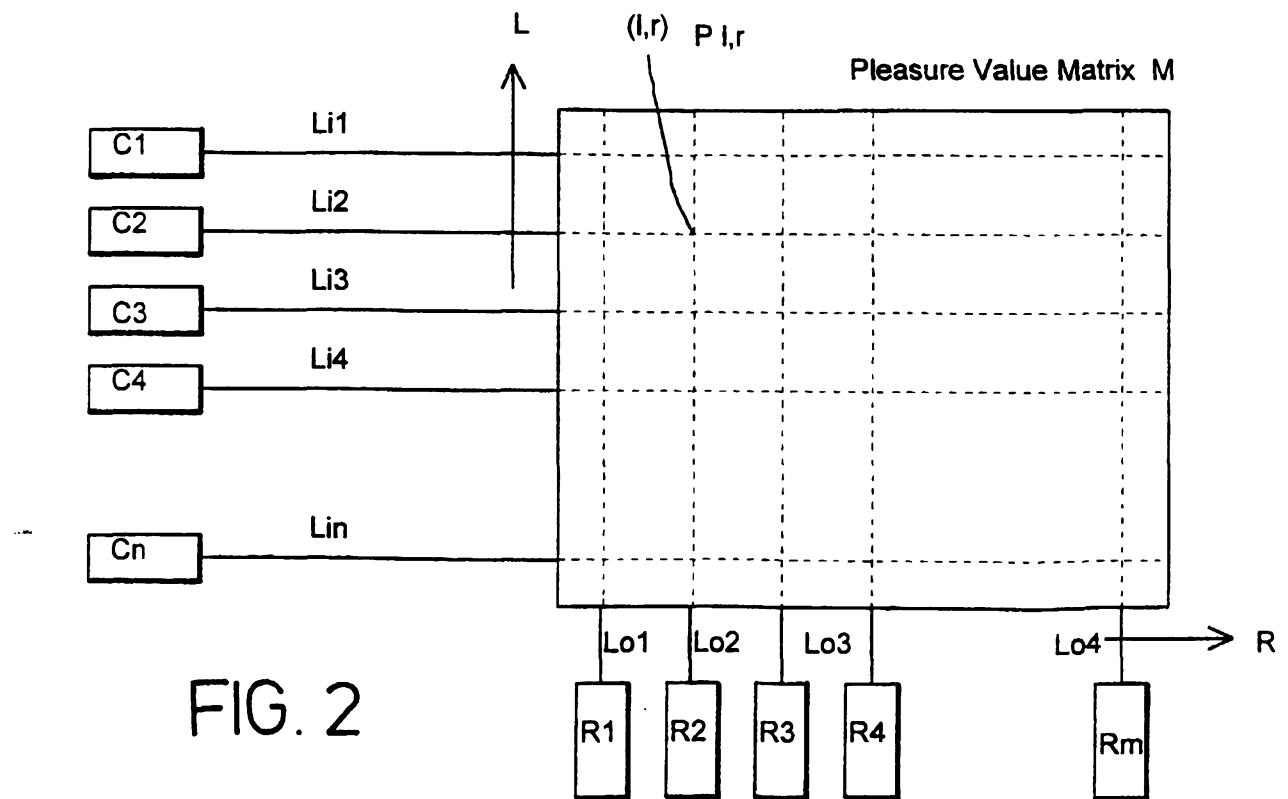
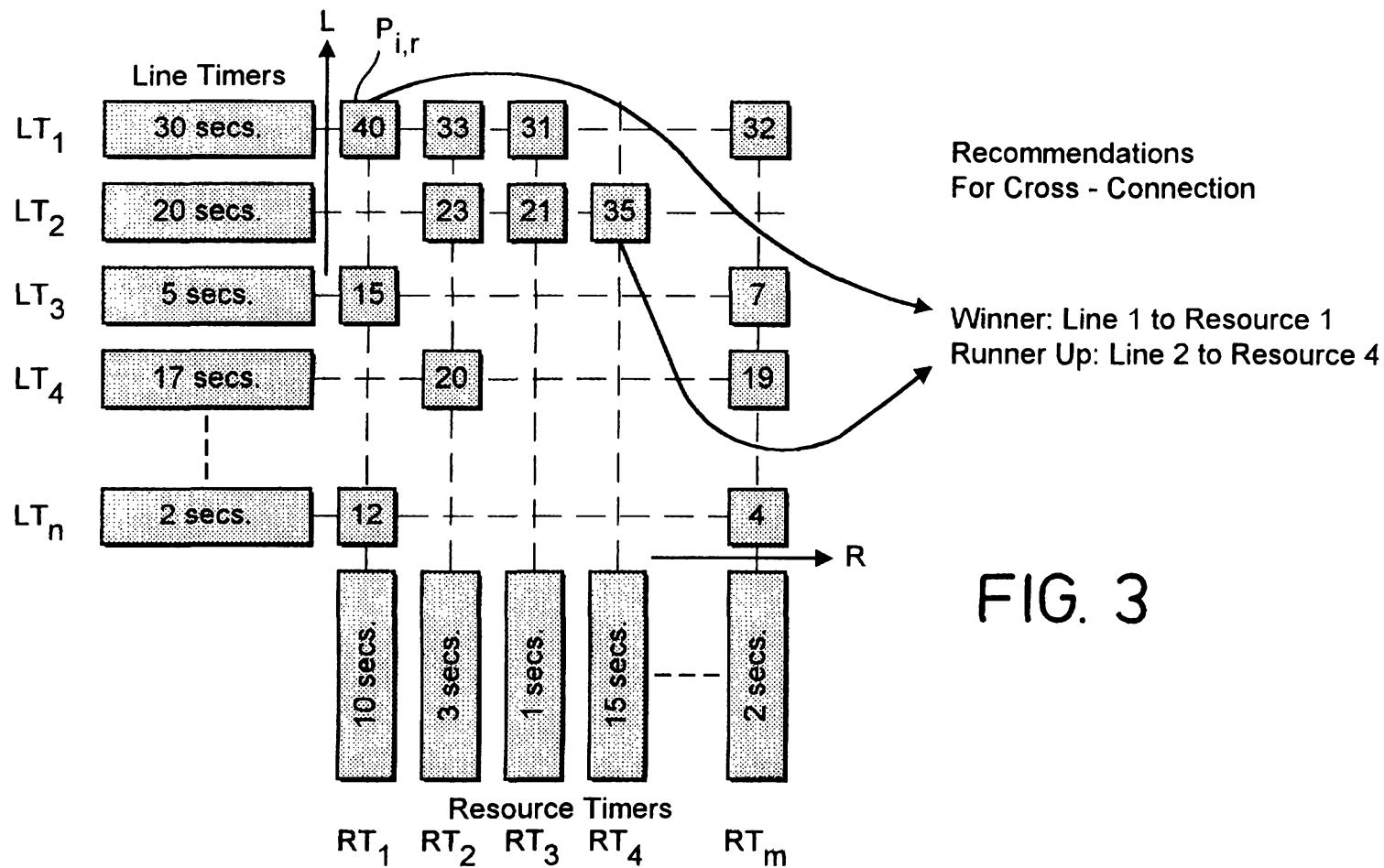



FIG. 2

2 / 15

3 / 15

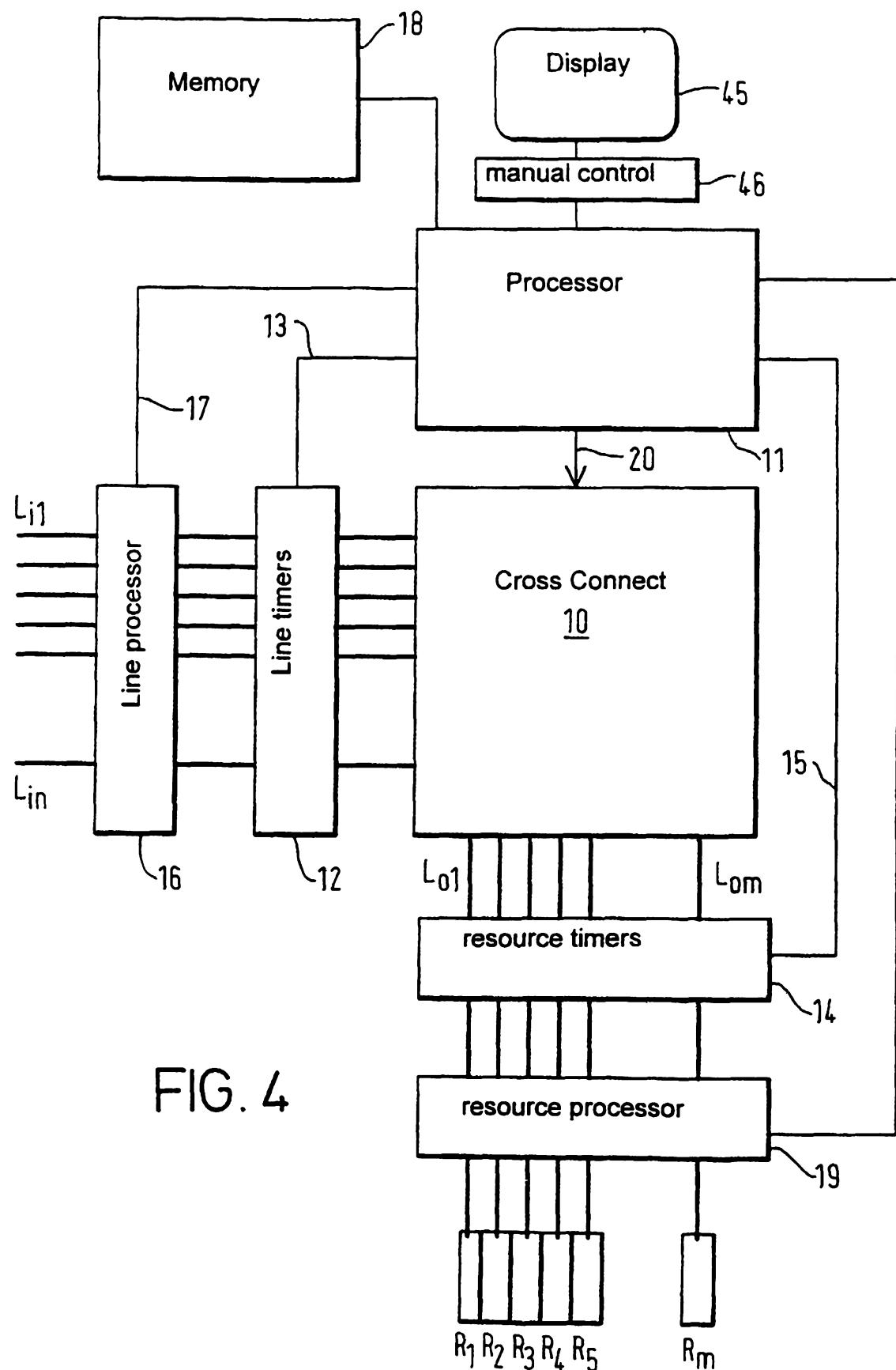


FIG. 4

4 / 15

FIG. 5

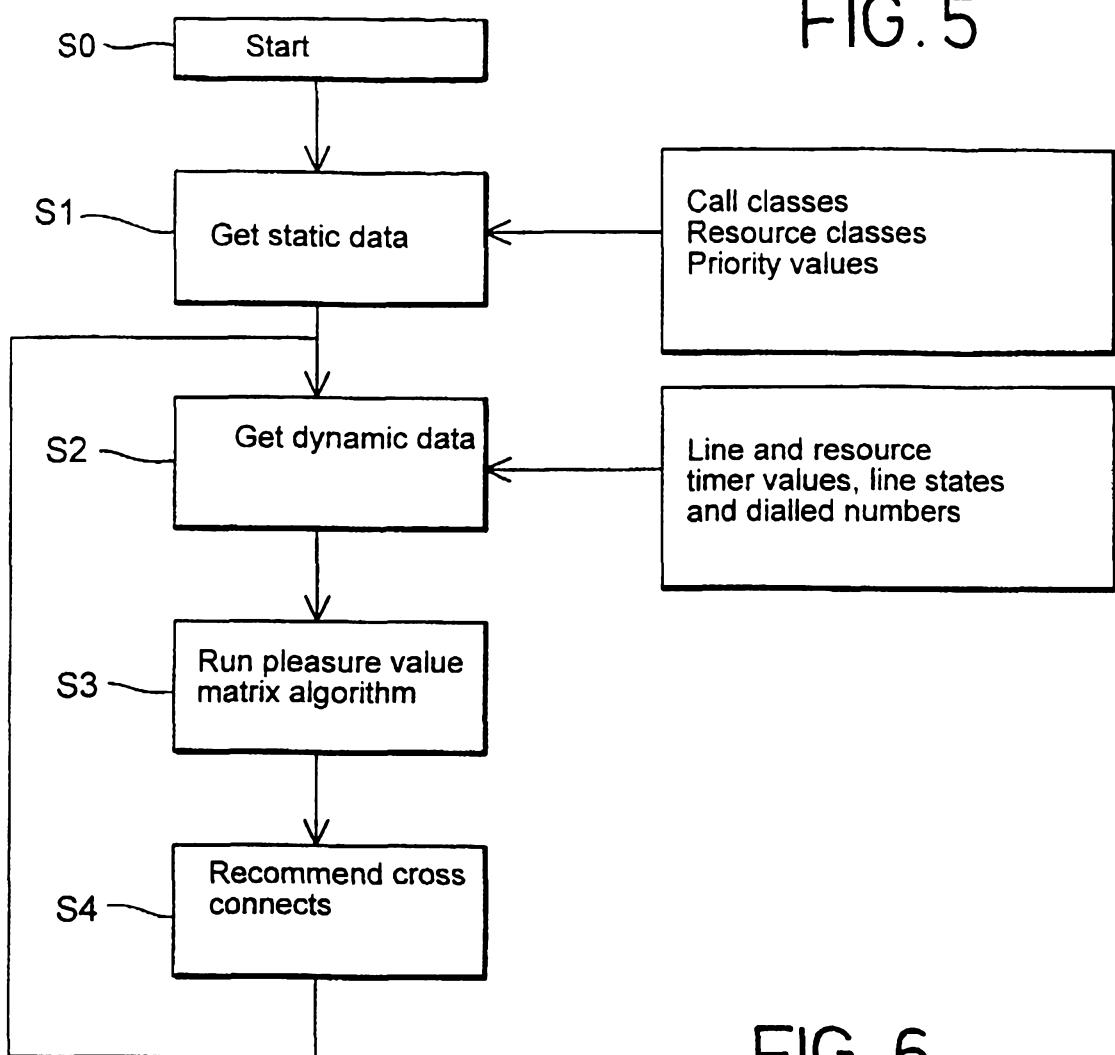
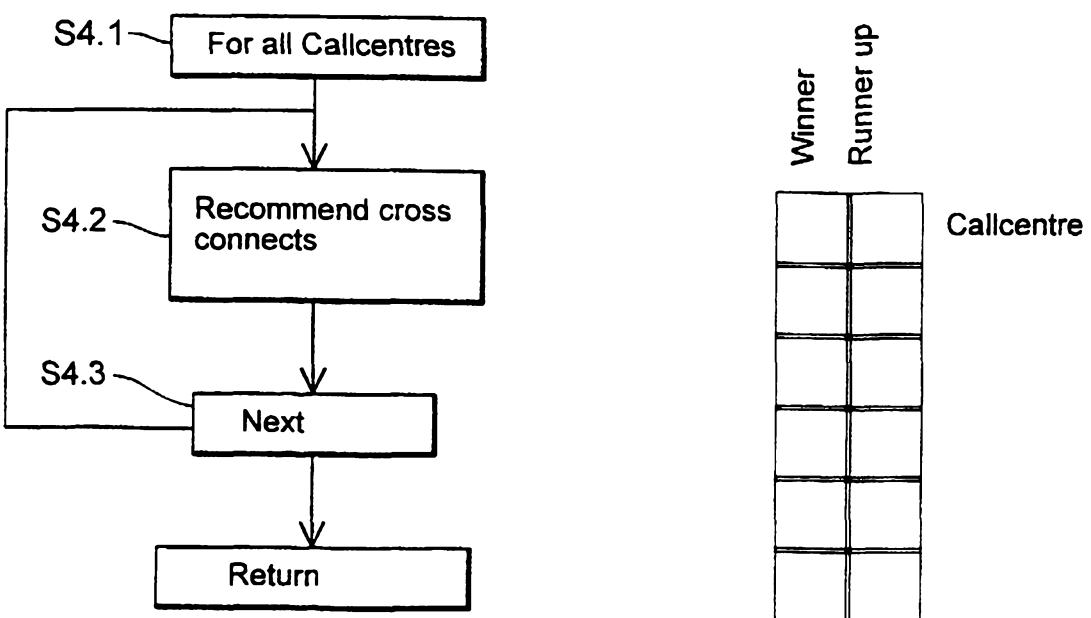



FIG. 6

TABLE

5 / 15

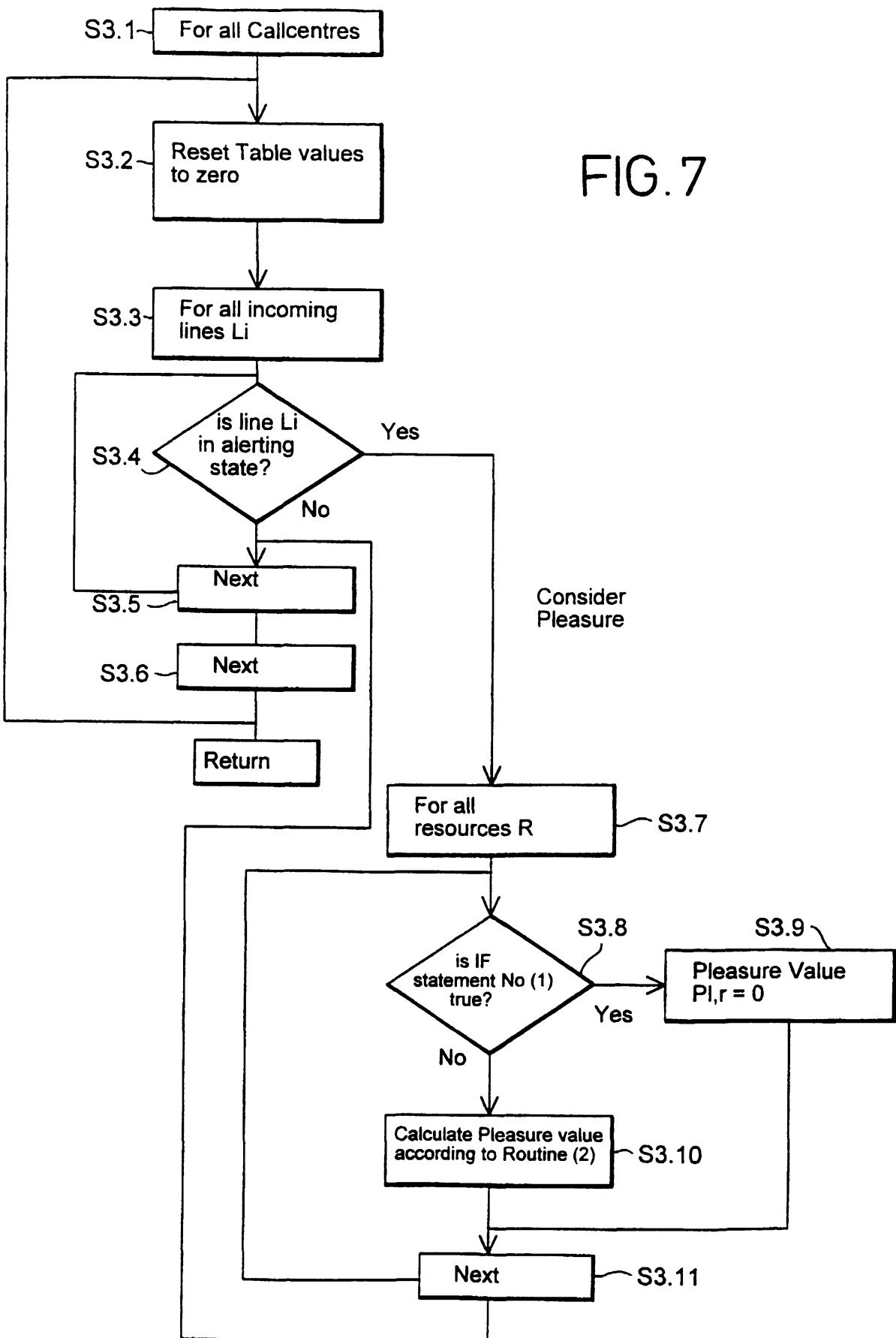


FIG. 7

6 / 15

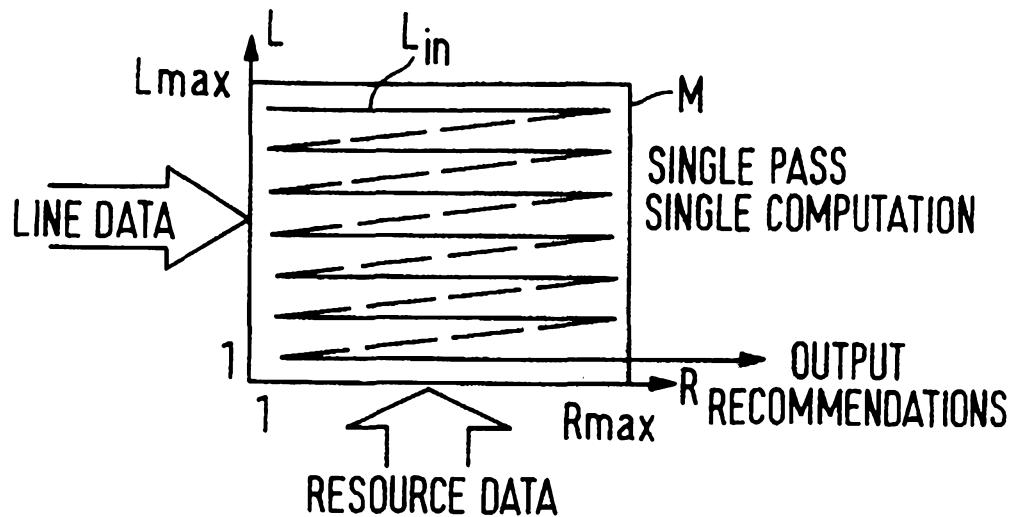


FIG. 8

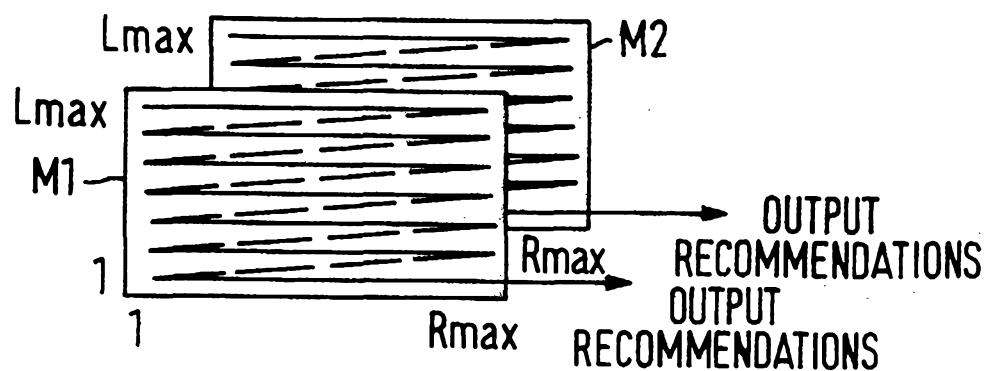


FIG. 9

7 / 15

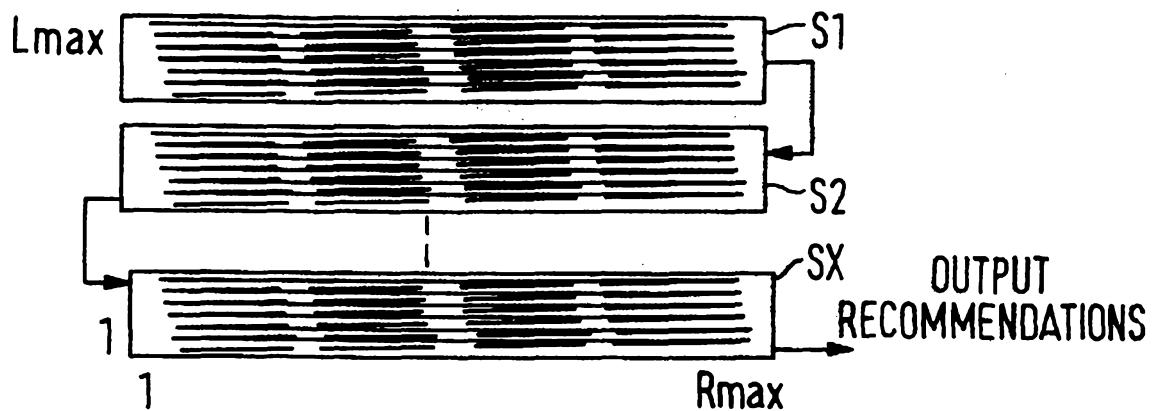


FIG. 10

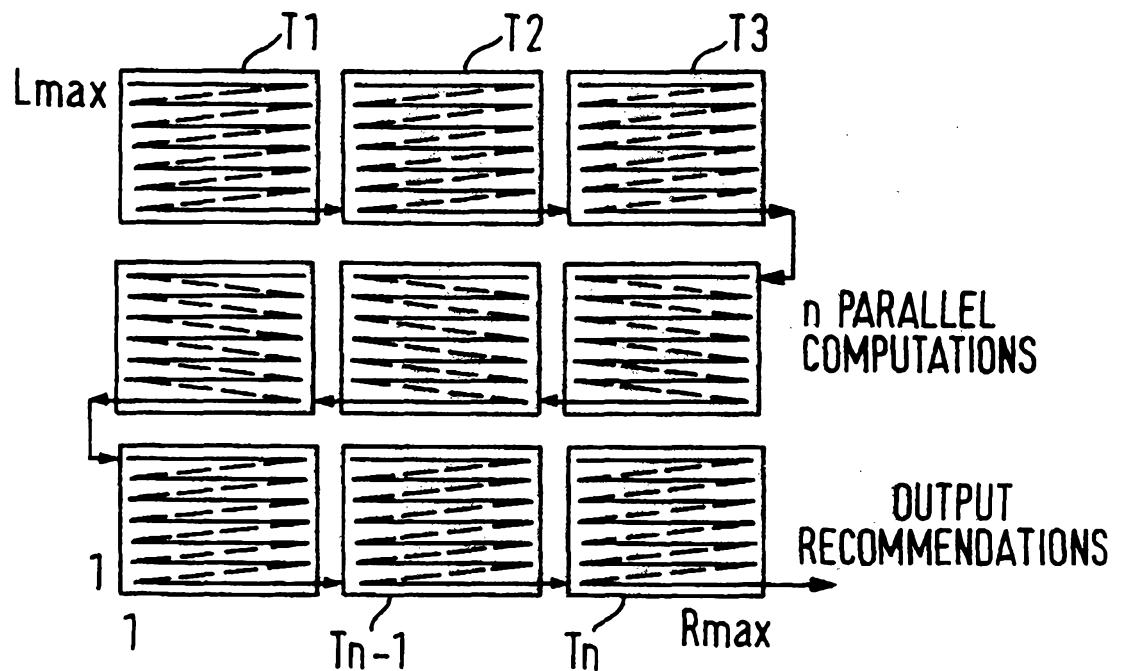


FIG. 11

8 / 15

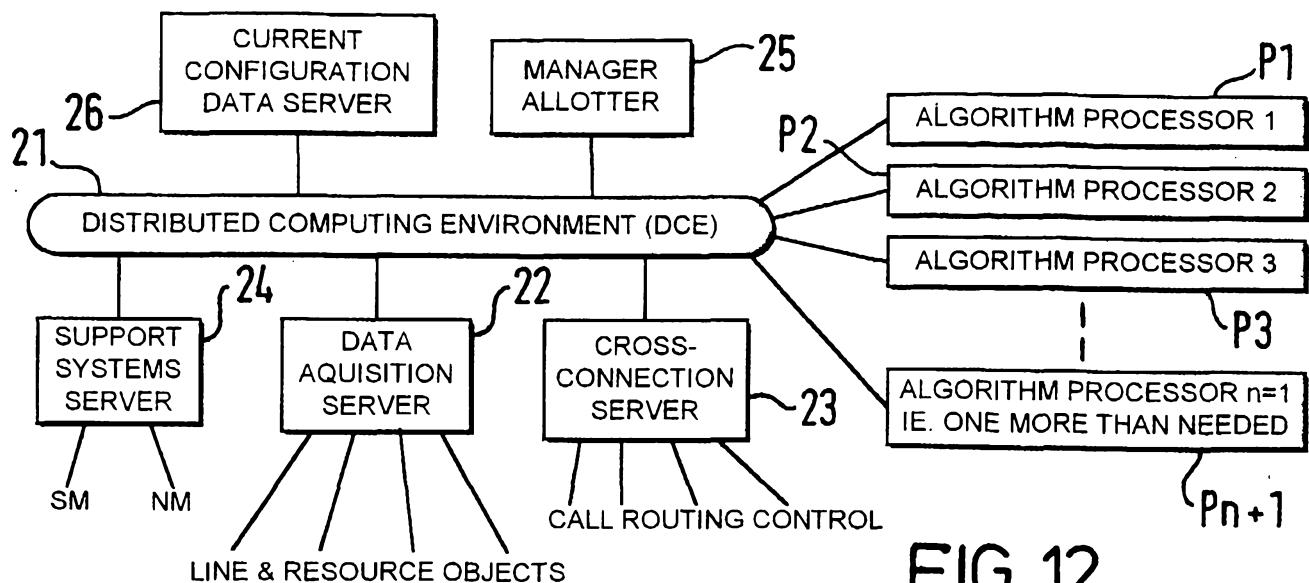


FIG. 12

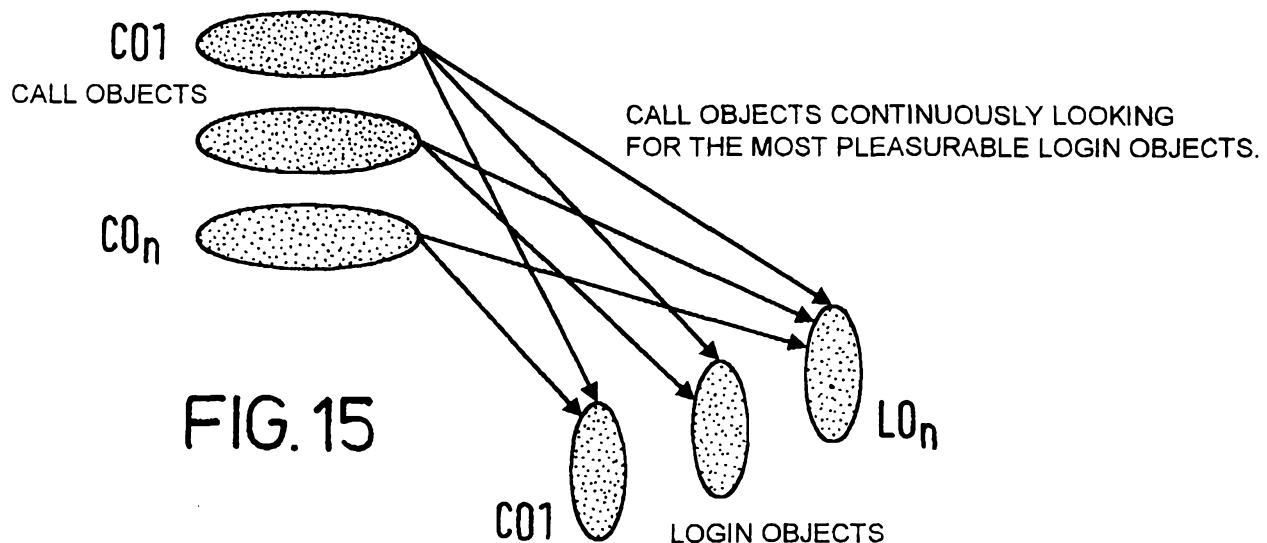


FIG. 15

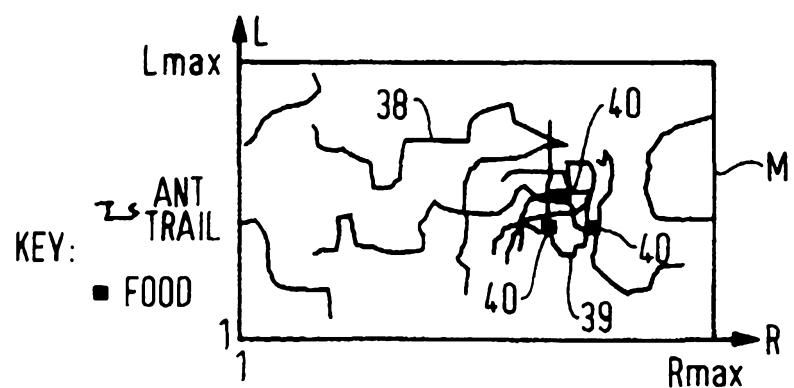
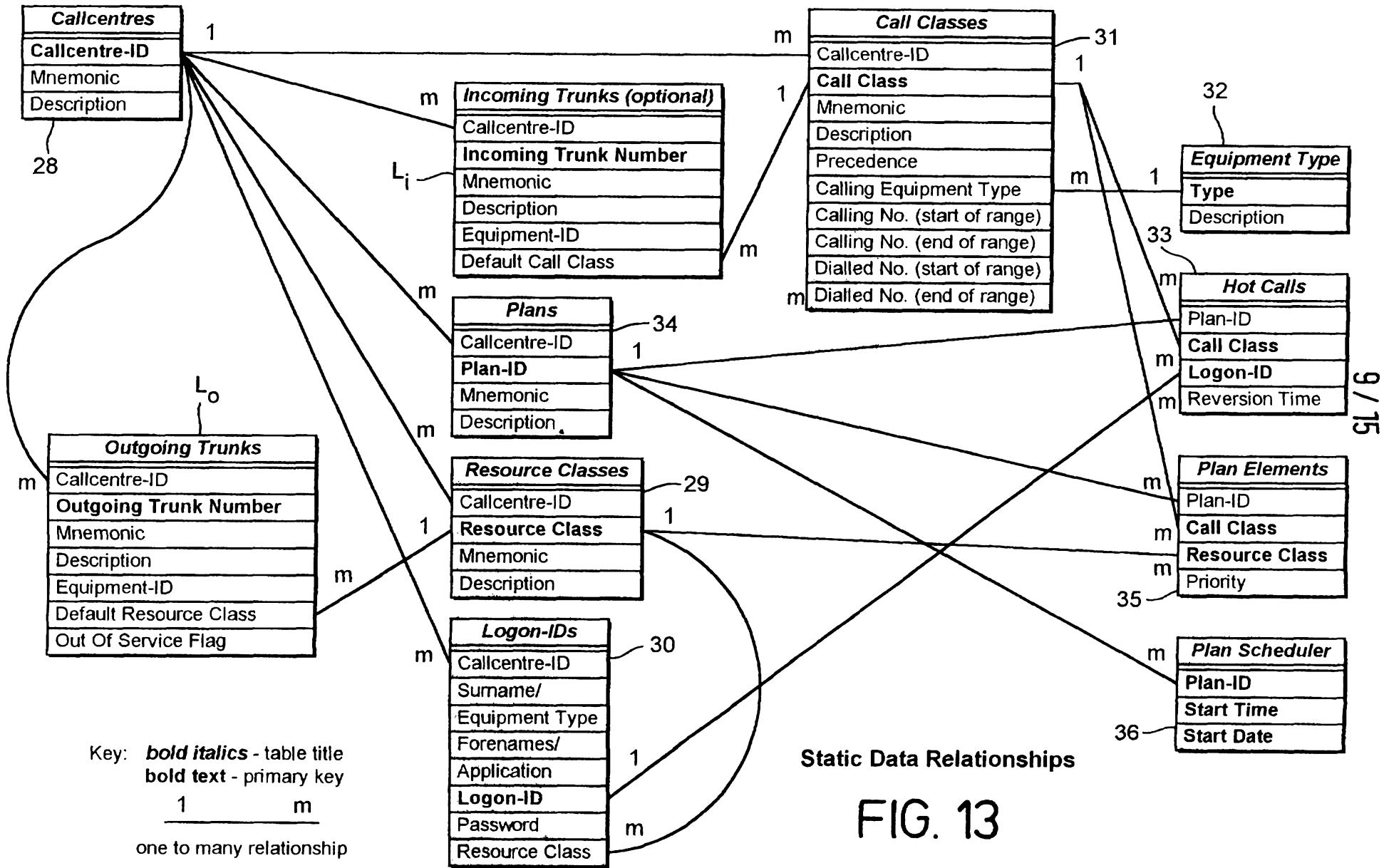



FIG. 17

10 / 15

Table 1.1-Dynamic Line Data

<i>Dynamic Line Data</i>
Incoming Trunk Number
Line State
Line Timer
Line Calling Telephone Number
Line Call Class

index.

integer (most significant bits may contain a sequence number).

integer: tenths of seconds from entering an alerting state.

string: containing the originating caller's line identity.

integer: call classification derived from Incoming Trunk Number, Calling Telephone Number and Dialled Telephone Number or CTI info from host computer.

Table 1.2-Dynamic Resource Data

<i>Dynamic Resource Data</i>
Outgoing Trunk Number
Resource State
Resource Timer
Resource Logon ID
Resource Class

index.

integer (most significant bits may contain a sequence number).

integer: tenths of seconds from entering idle state.

string: containing the human (or application) user identity.

integer: human user (or application) type derived from the Resource Logon ID.

Table 1.3-Dynamic Resource Data

<i>Dynamic Hot Call Data</i>
Hot Call Record Number
Hot Call Call Class
Hot Call Calling Telephone Number
Hot Call Logon ID
Hot Call Reversion

index.

integer: either Hot Call Call Class or

string: ii) Hot Call Calling Telephone Number specified.

string: Resource Logon ID to find.

integer: tenths of seconds delay before other resources considered.

FIG. 14

Table 1.4-Login Object Data

<i>Login Object: public data attributes...</i>	
Call Object Number	
Call Class	
Line Number	
Line State (& Seq.)	
Time Stamp	
Hot Call Reversion Time	
Hot Call Login-id	
Precedence	
Priority Value 1	
Resource Class 1	
Priority Value 2	
Resource Class 2	
Priority Value n-1	
Resource Class n-1	
Priority Value n	
Resource Class n	

index.

ie. looked up from the Configuration Data during instantiation.
 ie. the Incoming Trunk number that the call was presented on.
 ie. Line State (and optional Sequence number), as at Call Object instantiation, for later validation by the cross-connection program.

ie. Absolute time (eg. GMT) that the Line was raised to an Alerting state to the nearest of a second.

ie. looked up from the Configuration Data during instantiation.
 ie. looked up from the Configuration Data during instantiation.

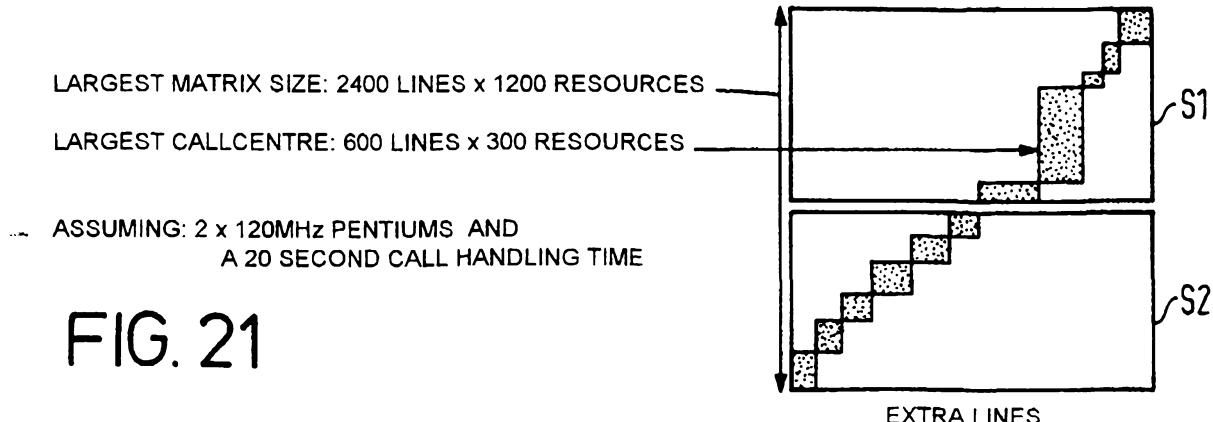
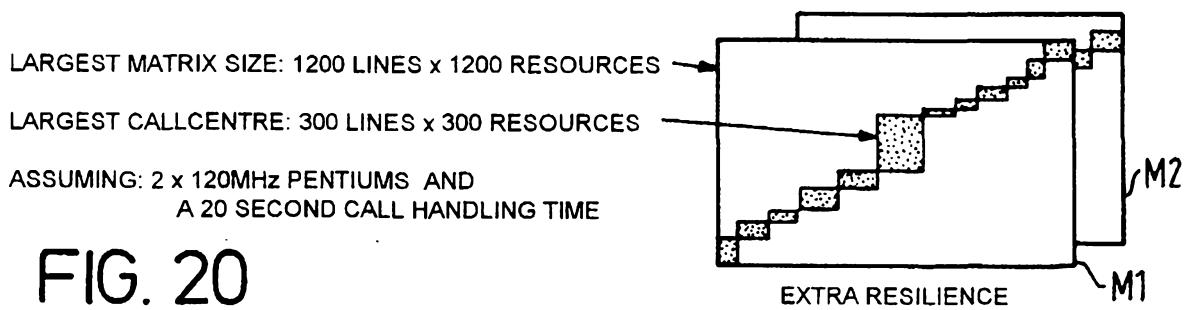
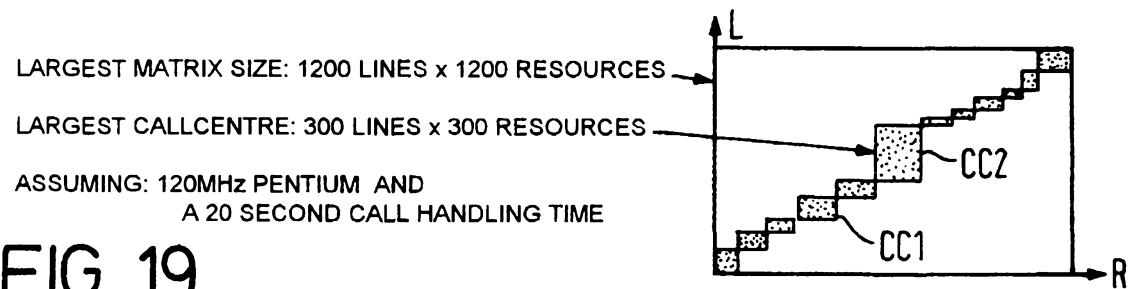
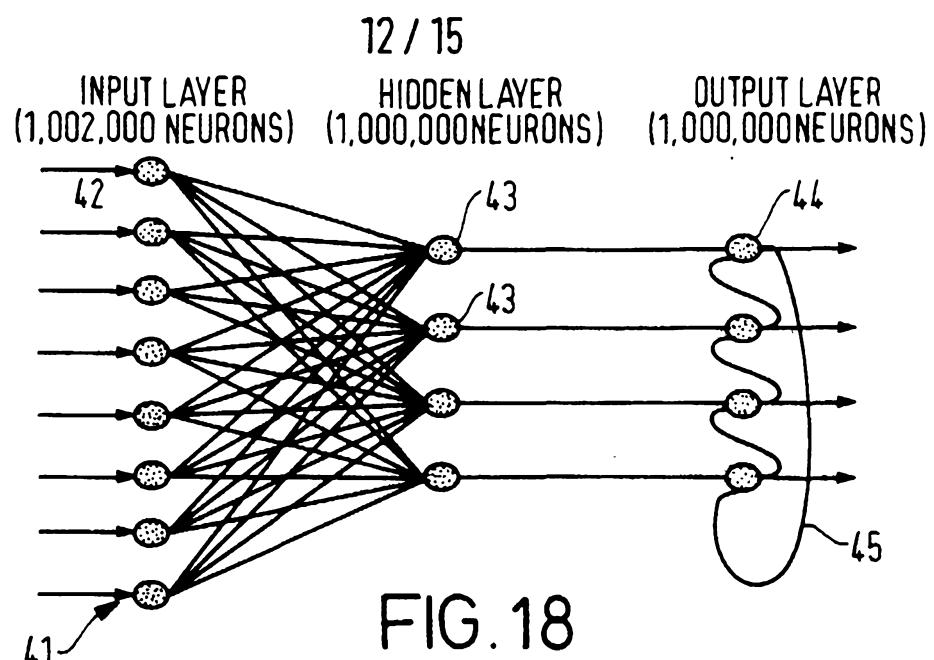
ie. looked up from the Configuration Data during instantiation.
 ie. looked up from the Configuration Data during instantiation.
 ie. looked up from the Configuration Data during instantiation.
 ie. looked up from the Configuration Data during instantiation.

ie. looked up from the Configuration Data during instantiation.
 ie. looked up from the Configuration Data during instantiation.
 ie. looked up from the Configuration Data during instantiation.
 ie. looked up from the Configuration Data during instantiation.

Table 1.5-Login Object Data

<i>Login Object: public data attributes...</i>	
Login-id	
Resource Class	
Resource Number	
Resource State (& Seq.)	
Time Stamp	
Call Class 1	
Call Class 2	
Call Class n-1	
Call Class n	

index.





ie. looked up from the Configuration Data during instantiation.
 ie. the Incoming Trunk number that the call was presented on.
 ie. Resource State (and optional Sequence number), as at Login Object instantiation, for later validation by the cross-connection program.

ie. Absolute time (eg. GMT) that the Resource became Idle to the nearest tenth of a second.

ie. looked up from the Configuration Data during instantiation.
 ie. looked up from the Configuration Data during instantiation.

ie. looked up from the Configuration Data during instantiation.
 ie. looked up from the Configuration Data during instantiation.

FIG. 16

13 / 15

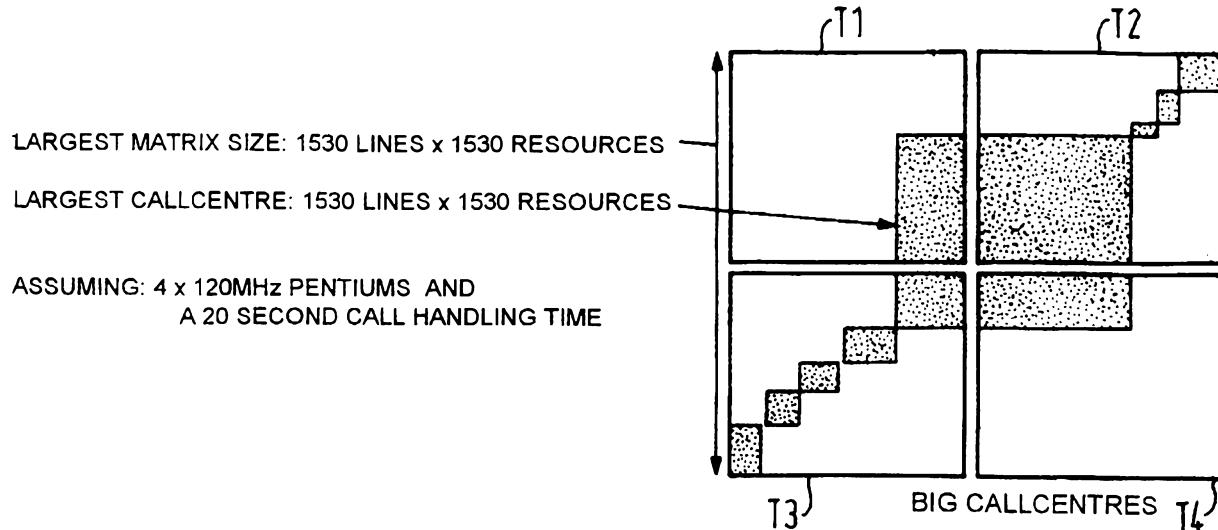


FIG.22

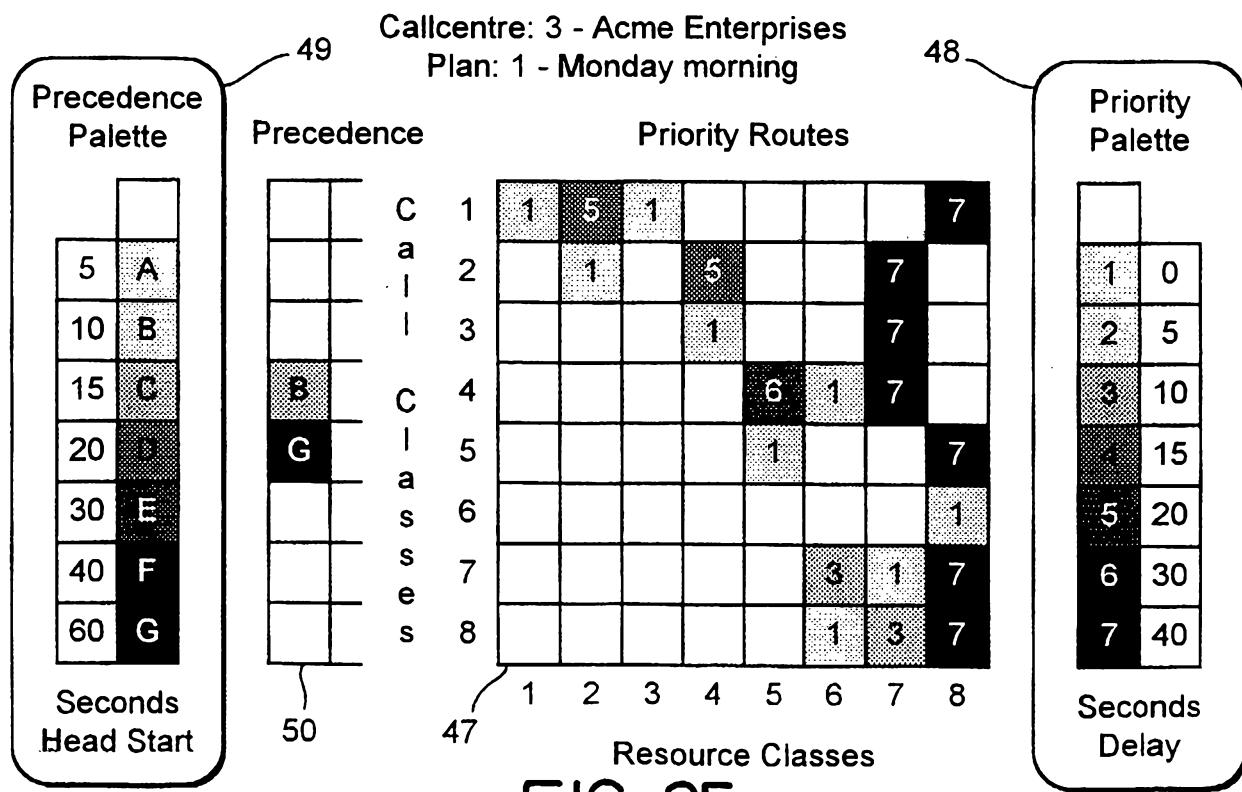


FIG. 25

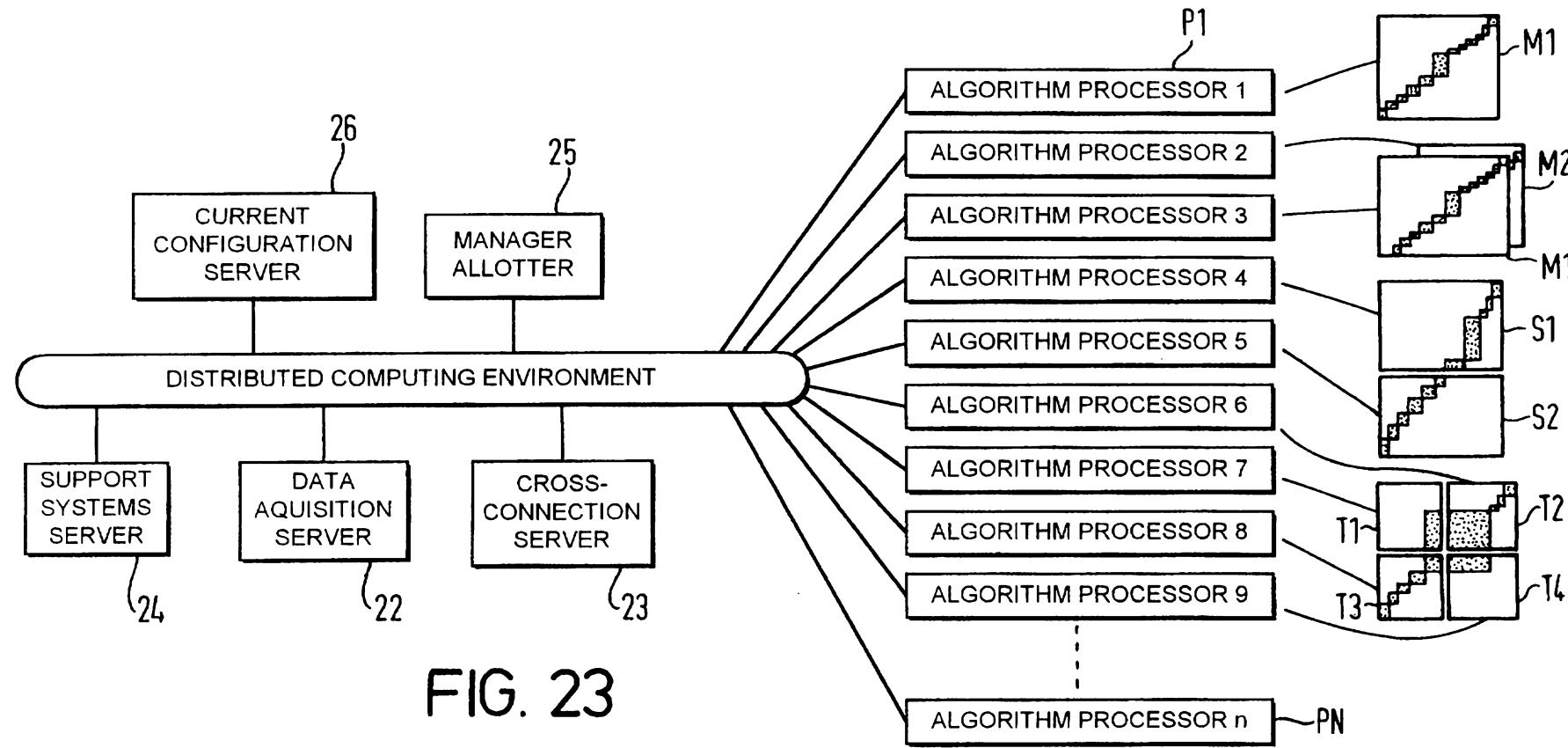


FIG. 23

BT Queuing Service Creation

Callcentre-id	3	
Mnemonic	ACME	
Description	ACME Enterprises	
Incoming Trunks:		
301	Ipswich 1	
302	Ipswich 2	
303	Woodbridge 1	
Outgoing Trunks:		
301	Workstation 1	
302	Workstation 2	
303	IVR Channel 1	
Resources:		
Donnelly	David	OP1
IVR	Voice Mail	VM1
Hunter	Phill	SUP
Plans:		
1	Monday Morning	
2	Monday Afternoon	
3	Tues-Fri Day Time	
4	Night & Weekend	
Call Classes:		
1	Sales (0800 xxxx)	
2	Field Operatives	
3	ACME HQ	
Resource Classes:		
1	Operator	OP
2	Supervisor	SUP
3	Voice Mail	VM

Li

Lo

R

P

15 / 15

FIG. 24