
(12) United States Patent
Logue et al.

US009172759B2

(10) Patent No.: US 9,172,759 B2
(45) Date of Patent: Oct. 27, 2015

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

FABRCNETWORK

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Jay D. Logue, San Jose, CA (US);
Grant M. Erickson, Sunnyvale, CA
(US); Zachary B. Smith, San Francisco,
CA (US); Osborne B. Hardison, Palo
Alto, CA (US); Richard J. Schultz,
Mountain View, CA (US); Sunny P.
Gujjaru, Sunnyvale, CA (US); Matthew
G. Neeley, San Mateo, CA (US)

Assignee: Google Inc., Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/504,296

Filed: Oct. 1, 2014

Prior Publication Data

US 2015/OO1965O A1 Jan. 15, 2015

Related U.S. Application Data
Continuation of application No. 13/926,302, filed on
Jun. 25, 2013.

Int. C.
G06F 15/16 (2006.01)
H04L 29/08 (2006.01)
H04L 2/93 (2013.01)

(Continued)
U.S. C.
CPC H04L 67/147 (2013.01); G06Q 10/107

(2013.01); H04L 12/2807 (2013.01); H04L
29/06 (2013.01); H04L 43/0805 (2013.01);

H04L 49/20 (2013.01); H04L 49/355
(2013.01); H04L 61/2069 (2013.01); H04L

67/10 (2013.01); H04L 69/22 (2013.01); H04L
61/6018 (2013.01)

46

(58) Field of Classification Search
USPC 709/203, 206-207,217 218, 223-229,

709/250
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,539,567 B1
2003/0O88697 A1*

9/2013 Logue et al.
5/2003 Matsuhira TO9,238

(Continued)

FOREIGN PATENT DOCUMENTS

WO 20060135758 A1 12/2006

OTHER PUBLICATIONS

U.S. Appl. No. 13/926,335, filed Jun. 25, 2013, Grant M. Erickson.
(Continued)

Primary Examiner — Zarni Maung

(57) ABSTRACT

Systems and methods relating to communication within a
fabric network are presented. The fabric network includes one
or more logical networks that enables devices connected to
the fabric to communicate with each other using various
profiles known to the devices. A device sending a message
may follow a general message format to encode the message
so that other devices in the fabric may understand the message
regardless of which logical networks the devices are con
nected to. Within the message format, a payload of data may
be included for the receiving device to forward, store, or
process the message. The format and the contents of the
payload may vary according to a header within the payload
that indicates a profile and a message type within the profile.
Using the profile and message type, the receiving devices may
decode the message to process the message.

20 Claims, 22 Drawing Sheets

-8 BS --8 BTS -- 18 BTS -
7) 12

VERSION MSG TYPE EXCHANGE ID -1174
3.

APCAON PAYEA SB-FE -1180

US 9,172,759 B2
Page 2

(51) Int. Cl. 2007,0253431 A1* 11/2007 Park et al. 370,395.52

H04L 29/06 (2006.01) 3988. A 398, Syal. r 370/467 cuoy
G06O 10/10 (2012.01) 2009/005.2409 A1 2/2009 Chen et al. 370,338
H04L 2/28 (2006.01) 2009.0323688 A1* 12/2009 Torii 370,390
H04L 2/26 (2006.01) 2010/0232317 A1 9/2010 Jing et al.
H04L 29/2 (2006.01) 58,868. A 58. Sinea TO5, 14.56 arlSOn et al.
GO6F 2/OO (2006.01) 2014/0089671 A1 3/2014 Logue et al.

(56) References Cited 2014/0282923 A1 9/2014 Narayan et al.

OTHER PUBLICATIONS U.S. PATENT DOCUMENTS

2004/0022257 A1*
2004.0024903 A1*
2006/0271682 A1*
2007/O165625 A1*

2/2004 Green et al.
2, 2004 Costatino et al.
11/2006 Choo et al.
7/2007 Eisner et al. 370,389

. 370/401

TO9,226
* cited by examiner

PCT ISR & WO for Application No. PCT/US2014/043695 mailed

U.S. Patent Oct. 27, 2015 Sheet 1 of 22 US 9,172,759 B2

-10

PROCESSORS)

USER
NTERFACE SENSOR

NETWORK OWER
NTERFACE SPY

FG. I.

T?EZET

US 9,172,759 B2 Sheet 2 of 22 Oct. 27, 2015

ggº T,5)

U.S. Patent

U.S. Patent Oct. 27, 2015 Sheet 3 of 22 US 9,172,759 B2

-90

AP CAN AYER O2

98

38

34.

FYSCA, AYER -

FG. 3

92

U.S. Patent Oct. 27, 2015 Sheet 4 of 22 US 9,172,759 B2

O8
OOO f O8 (08

8 O N iO38 042

U.S. Patent Oct. 27, 2015 Sheet 5 of 22 US 9,172,759 B2

1078

WEAE
FABRC

Of

Y SERVICE,
END is ra---a

weAVES ONL/
FABRC

SERVICE
WEAWE
FABRC

a Y-1 a / CONSER
1 ^ Y sesses DE, CE 8

DEWECE is $8 ECE

U.S. Patent Oct. 27, 2015 Sheet 6 of 22 US 9,172,759 B2

loe A (NERE OCA ADRESS
- O -02 - 4

GOA . SUBNET iD NERFACE D

- 40 BITS--i6 BITS --64. BITS

fabric ID no:
FG. 9

OS

N ASSIGN VIRTUAL ADDRESS -
To PERIPHERY NODE

MANTAIN Sr of
PERIPHERY NODES 8

MONITOR FOR NEIGHBOR
SOLICITATION MESSAGE OF
WRA ARESS

NSI

O

ASSIGN VIRTUAL ADDRESS TO
HUB NETWORK iNTERFACE - 1112

MX XXXX XXX XXX XXXFOR ROUTING NODE

RESEND TO NEIGHBOR
SOLICITATION MESSAGE AND rill4

RECEIVE PACKEI.

REWRITE DESTINATION is

FORWARD PACKE 8

A O E. S S

U.S. Patent Oct. 27, 2015 Sheet 7 of 22 US 9,172,759 B2

F.G.

U.S. Patent Oct. 27, 2015 Sheet 8 of 22 US 9,172,759 B2

(GENERA ESSAGE PROOCO
is us are as an arm as a rom as was us was an in as a ran are as as or in a ran as as a

2 BYTES5 PACKE ENG 0-130 so a on to a wo occo w is ace Davos oo or a roo to zoo avoc or us woo is a coor out or oo rooroo work or ous os oo or

-1134
A BYES ESSAGE

as as were retire - or as a was in or are are arr as an a rare as aws a rom

:63
M.

38
8 BYES SOURCE NOE D

5 O. :
---, -
is unre is as are error f is use of rare as or or a rare as as or for ran as as or
63 48
- M

-a 38
8 BYES - ESNAON NODE -

- o
5

-

is a cre - - - are err - frr or r -

2 BYTES 15 KY -1140 roo as a to a voiceos w is a cus oc or oil a roo to us apoc to us oo roooo as coor our or cocorus work or as or os or

as or or Fre are is as a ruras - F - frr is is - as or as are is or or re s

2 BYTES 15 PAYOA) ENG - 42 --

VARABE ". NAZAON WECTOR -

s

WARIABE - iSSAGE SNARE o
/ a wa in a on a on is a won an aim an in a was a a man was a on ... an aim was a win on a

28 F.G. 12

U.S. Patent Oct. 27, 2015 Sheet 9 of 22 US 9,172,759 B2

32
N S8 18

-58 M -84

15 versios III's of earlilsen fro)
H-4 BITS-4. BITS-- 4 BTS-4 BITS

F.G. 13

15 KEYTYPE 1211 KEY NUMBER
H- 4 BITS 2 BS

F.G. 14

U.S. Patent Oct. 27, 2015 Sheet 10 of 22 US 9,172,759 B2

48
N

-8 BS --8 BTS-o-i6 BITS -o

APPCAON PAYOA. SB-FE) -1180

F.G. 5

U.S. Patent Oct. 27, 2015 Sheet 11 of 22 US 9,172,759 B2

82
N

l- 84.
A BYES ROFE

BYES 5 STATUS CODE -1186

1 BYTE o NEXT status 7-1188
- or n - - - - - - - - - -

VARIABLE AOCNA SAS NF - 9.
roo as a boe or is a locao soa is bor a too loo, a roo roo a boa aaoo ea is a rao as so be or oo is a rootsoa as a sor oo is a rol

FG 16

PROFILE ' ' ' ' ' 15-1192
VENDOR D |-1194
F.G. 17

U.S. Patent Oct. 27, 2015 Sheet 12 of 22 US 9,172,759 B2

SW UPDATE -
CLENI

NOFY RESPONSE (1214
x wi

:
$

F.G. 18

U.S. Patent Oct. 27, 2015 Sheet 13 of 22 US 9,172,759 B2

a.

BYTE o FRAME CONTROL 7-1218

: BYES PROC SEC FiATON

ARASE; WENOR SECF AA -1222
an an is a win a man was as a an an in a was on as an an is a was a man an am was one on is an an an a

VERSION specification -1224
- - - - - - - - -r--ry r-r- -r-, -r --- - - - -

ARBE; {CAE SPECFCAON -1226
an an is a was a man was a on k on an in a was on as an an is a was a man an am was one on is an an an a

ARIABE

2, BYTES -1228

2.5 BYTES -1230

28 FIG. 19

r FIG. 2O
w 15-1236

PRODUCTD 31-1238
PRODUCT REVISION 47-1240

U.S. Patent Oct. 27, 2015 Sheet 14 of 22 US 9,172,759 B2

228
N 25 -1252

28 F.G. 25
N

WARAEE QUERYSTATUS -1258
8 -

VARAB or R 8.

-- ar...r...."--------...------------------ ---------
ARABE NEGREY SPECIFICAON -1262

s: err-ee-stree-isser--ee
2 BYTES QUPDATESCHEME 79 PDATEOPTIONSZ-1266

2. F.G. 26
N

-1268
27

Fig. 27

-1272
-1274

U.S. Patent Oct. 27, 2015 Sheet 15 of 22 US 9,172,759 B2

-1278 -1280 -1282
PAE FRORY A CONEON

-2 BITS--3 BS -- B --2 BITS

FG. 29

28d.

MXXX XXX g PAE REQUES 13. -

FG. 3O

U.S. Patent

92
N

VARIABLE

34.
N

Oct. 27, 2015 Sheet 16 of 22

view HANDLE
PATH LST LENGTH

PATH ST.
FG, 3.

FOO PROFE

ANA
FS:

E}:
SE

FOW
E}:

SE:
ECYCE:
ROA:

i OF GEARS
SE:

WEIGHT: iONAN:
OF GEARS:
SE:
EG-:

RACK
OF GEARS:
SE:
WEG-:

| 1300

-1302

US 9,172,759 B2

-1294

296

298

F.G. 32

A BYES

WARABE

PROFE DENFER

vdAA
FG. 33

-1306

-1308

U.S. Patent Oct. 27, 2015 Sheet 17 of 22 US 9,172,759 B2

3.
N

VIEW HANDLE -1312
PATH ST LENGTH 15-1314

VARIABLE PATH ST. -1316
BY 38

ise F.G. 34
2 EYES 32

2 BYTES -1324
VARIABLE -1326

-1328
a BYES

330
N

2 BYES

33
N

2 BYES

33
N

2 BYTES -1338
-1340 VARIABLE

- r or or room - or or romo an or or a rom r - or- or w an in or or of Mao VARIABLE DATAEMS -1342
an an an an an as as an an is an an an an a one an in an aan was one an an an at a wa ka one anian an as a wa an as a

FG. 38

U.S. Patent Oct. 27, 2015 Sheet 18 of 22 US 9,172,759 B2

346
N

2 BYES 1348

2 BYES -1350

WARAS 3S2

VARIABLE 3S4.

356 F.G. 39
N

2 BYES -1358

2 BYES -360

2 BYTES 0. -1362
WARABE -1364

366 FG. A.O
N

2 BYTESO EMINDEX lish-1368
370

A BYS “ E, ESAP -

VARIABLE DATA TEM -1372
376 FG. A
N

2 BYTES UPDATE HANDLE h978
WARABE UPDATE REGUEST STATUs -1380

F.G. 42

U.S. Patent Oct. 27, 2015 Sheet 19 of 22 US 9,172,759 B2

di

SENDER RECEIVER
A 3

F.G. 43

U.S. Patent Oct. 27, 2015 Sheet 20 of 22 US 9,172,759 B2

420
N

-1422 -1424
2 BYTESO TRANSFER CONTROL 78 RANGE CONTROL 15
2 BYTES -1426

2 BYTES O MAXBLOCKSIZE 15-1428

SAR OFFSE
43

4-8 BYTES

ENG
-432

4-8 BYTES A3

- --1434
VARIABLE FE ESGNAOR

0
- -

VARIABLE - EAAA --1480
'- -
w are k n w is www w k in reser w w w w in a new w w w w w w w w in me was an in w w w w w

FG. 44

U.S. Patent Oct. 27, 2015 Sheet 21 of 22 US 9,172,759 B2

122
1450 -452 -1454 -458

ON

N M M

- BT --187--187--187-- 4 BTS
FG. A5

s
N

SYE SO2

2 SYES

- - - - - - - - - - - - - - r -

VARABE - - if AAA --1506

52
N

2 SYES r stars copf r -1522

BYE -1524

WARABE AD) NFO - -1526

to order k -

F.G. 48

U.S. Patent Oct. 27, 2015 Sheet 22 of 22 US 9,172,759 B2

540

- - - r - or - - - - - - - - r - - - - - - - r - - - - - - - - - - -
O 15;
16 ENG (4.3 BYTES) 3.
!--------------------------------'
32 39;

m

4. 47; or or cooke o or or dooroo or i or or 8 or our or k or or to or over is or co-oo or corous or in

F.G. 49

US 9, 172,759 B2
1.

FABRCNETWORK

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation Application of, and
claims priority to, U.S. patent application Ser. No. 13/926,
302, filed Jun. 25, 2013, entitled “Fabric Network', in the
name of Jay D. Logue et al., the entirety of which is incorpo
rated by reference herein for all purposes.

BACKGROUND

This disclosure relates to a fabric network that couples
electronic devices using one or more network types.

This section is intended to introduce the reader to various
aspects of art that may be related to various aspects of the
present techniques, which are described and/or claimed
below. This discussion is believed to be helpful in providing
the reader with background information to facilitate a better
understanding of the various aspects of the present disclosure.
Accordingly, it should be understood that these statements are
to be read in this light, and not as admissions of prior art.

Network-connected devices appear throughout homes.
Some of these devices are often capable of communicating
with each other through a single network type (e.g., WiFi
connection) using a transfer protocol. It may be desired to use
less power intensive connection protocols for Some devices
that are battery powered or receive a reduced charge. How
ever, in Some scenarios, devices connected to a lower power
protocol may not be able to communicate with devices con
nected to a higher power protocol (e.g., WiFi).

SUMMARY

A Summary of certain embodiments disclosed herein is set
forth below. It should be understood that these aspects are
presented merely to provide the reader with a brief summary
of these certain embodiments and that these aspects are not
intended to limit the scope of this disclosure. Indeed, this
disclosure may encompass a variety of aspects that may not
be set forth below.

Embodiments of the present disclosure relate to systems
and methods a fabric network that includes one or more
logical networks that enables devices connected to the fabric
to communicate with each other using a list of protocols
and/or profiles known to the devices. The communications
between the devices may follow a typical message format that
enables the devices to understand communications between
the devices regardless of which logical networks the commu
nicating devices are connected to in the fabric. Within the
message format, a payload of data may be included for the
receiving device to store and/or process. The format and the
contents of the payload may vary according to a header within
the payload that indicates a profile (including one or more
protocols) and/or a type of message that is being sent accord
ing to the profile.

According to Some embodiments, two or more devices in a
fabric may communicate using status reporting protocols or
profiles. For example, in certain embodiments, a status
reporting protocol or schema may be included in a core profile
that is available to devices connected to the fabric. Using the
status reporting protocol, devices may send or request status
information to or from other devices in the fabric.

Similarly, in certain embodiments, two or more devices in
a fabric may communicate using update software protocols or
profiles. In some embodiments, the update software protocol

10

15

25

30

35

40

45

50

55

60

65

2
or schema may be included in a core profile that is available to
devices connected to the fabric. Using the update software
protocol, devices may request, send, or notify the presence of
updates within the fabric.

In certain embodiments, two or more devices in a fabric
may communicate using data management protocols or pro
files. In some embodiments, the data management protocol or
schema may be included in a core profile that is available to
devices connected to the fabric. Using the update data man
agement protocol, devices may request, view, or track node
resident information that is stored in other devices.

Furthermore, in certain embodiments, two or more devices
in a fabric may transfer data using bulk data transfer protocols
or profiles. In some embodiments, the bulk data transfer pro
tocol or schema may be included in a core profile that is
available to devices connected to the fabric. Using the bulk
data transfer protocol, devices may initiate, send, or receive
bulk data using any logical networks in the fabric. In certain
embodiments, either a sending or a receiving device using the
bulk data transfer protocol may be able to “drive a synchro
nous transfer between the devices. In other embodiments, the
bulk transfer may be performed with an asynchronous trans
fer.

Various refinements of the features noted above may exist
in relation to various aspects of the present disclosure. Further
features may also be incorporated in these various aspects as
well. These refinements and additional features may exist
individually or in any combination. For instance, various
features discussed below in relation to one or more of the
illustrated embodiments may be incorporated into any of the
above-described aspects of the present disclosure alone or in
any combination. The brief summary presented above is
intended only to familiarize the reader with certain aspects
and contexts of embodiments of the present disclosure with
out limitation to the claimed Subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of this disclosure may be better understood
upon reading the following detailed description and upon
reference to the drawings in which:

FIG. 1 is a block diagram of an electronic device having
that may be interconnected with other devices using a fabric
network, in accordance with an embodiment;

FIG. 2 illustrates a block diagram of a home environment in
which the general device of FIG. 1 may communicate with
other devices via the fabric network, in accordance with an
embodiment;

FIG. 3 illustrates a block diagram of an Open Systems
Interconnection (OSI) model that characterizes a communi
cation system for the home environment of FIG. 2, in accor
dance with an embodiment;

FIG. 4 illustrates the fabric network having a single logical
network topology, in accordance with an embodiment;

FIG. 5 illustrates the fabric network having a star network
topology, in accordance with an embodiment;

FIG. 6 illustrates the fabric network having an overlapping
networks topology, in accordance with an embodiment;

FIG. 7 illustrates a service communicating with one or
more fabric networks, in accordance with an embodiment;

FIG. 8 illustrates two devices in a fabric network in com
municative connection, in accordance with an embodiment;

FIG. 9 illustrates a unique local address format (ULA) that
may be used to address devices in a fabric network, in accor
dance with an embodiment;

FIG.10 illustrates a process for proxying periphery devices
on a hub network, in accordance with an embodiment;

US 9, 172,759 B2
3

FIG. 11 illustrates a tag-length-value (TLV) packet that
may be used to transmit data over the fabric network, in
accordance with an embodiment;

FIG. 12 illustrates a general message protocol (GMP) that
may be used to transmit data over the fabric network that may
include the TLV packet of FIG. 11, in accordance with an
embodiment;

FIG. 13 illustrates a message header field of the GMP of
FIG. 12, in accordance with an embodiment;

FIG. 14 illustrates a key identifier field of the GMP of FIG.
12, in accordance with an embodiment;

FIG. 15 illustrates an application payload field of the GMP
of FIG. 12, in accordance with an embodiment;

FIG. 16 illustrates a status reporting schema that may be
used to update status information in the fabric network, in
accordance with an embodiment;

FIG. 17 illustrates a profile field of the status reporting
schema of FIG. 16, in accordance with an embodiment;

FIG. 18 illustrates a protocol sequence that may be used to
perform a software update between a client and a server, in
accordance with an embodiment;

FIG. 19 illustrates an image query frame that may be used
in the protocol sequence of FIG. 18, in accordance with an
embodiment;

FIG. 20 illustrates a frame control field of the image query
frame of FIG. 19, in accordance with an embodiment;

FIG.21 illustrates a product specification field of the image
query frame of FIG. 19, in accordance with an embodiment;

FIG.22 illustrates a version specification field of the image
query frame of FIG. 19, in accordance with an embodiment;

FIG. 23 illustrates a locale specification field of the image
query frame of FIG. 19, in accordance with an embodiment;

FIG. 24 illustrates an integrity types supported field of the
image query frame of FIG. 19, inaccordance with an embodi
ment,

FIG.25 illustrates an update schemes supported field of the
image query frame of FIG. 19, inaccordance with an embodi
ment,

FIG. 26 illustrates an image query response frame that may
be used in the protocol sequence of FIG. 18, in accordance
with an embodiment;

FIG. 27 illustrates a uniform resource identifier (URI) field
of the image query response frame of FIG. 26, in accordance
with an embodiment;

FIG. 28 illustrates a integrity specification field of the
image query response frame of FIG. 26, inaccordance with an
embodiment;

FIG. 29 illustrates an update scheme field of the image
query response frame of FIG. 26, in accordance with an
embodiment;

FIG. 30 illustrates a sequence used to employ a data man
agement protocol to manage data between devices in the
fabric network, in accordance with an embodiment;

FIG. 31 illustrates a snapshot request frame that may be
used in the sequence of FIG. 30, in accordance with an
embodiment;

FIG. 32 illustrates an example profile schema that may be
accessed using the Snapshot request frame of FIG. 31, in
accordance with an embodiment;

FIG.33 is a binary format of a path that may indicate a path
in a profile Schema, in accordance with an embodiment;

FIG. 34 illustrates a watch request frame that may be used
in the sequence of FIG. 30, in accordance with an embodi
ment,

FIG.35 illustrates a periodic update request frame that may
be used in the sequence of FIG. 30, in accordance with an
embodiment;

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 36 illustrates a refresh request frame that may be used

in the sequence of FIG. 30, in accordance with an embodi
ment;

FIG. 37 illustrates a cancel view request that may be used
in the sequence of FIG. 30, in accordance with an embodi
ment;
FIG.38 illustrates a view response frame that may be used

in the sequence of FIG. 30, in accordance with an embodi
ment;

FIG. 39 illustrates an explicit update request frame that
may be used in the sequence of FIG.30, in accordance with an
embodiment;

FIG. 40 illustrates a view update request frame that may be
used in the sequence of FIG. 30, in accordance with an
embodiment;

FIG. 41 illustrates an update item frame that may be
updated using the sequence of FIG. 30, inaccordance with an
embodiment;

FIG. 42 illustrates an update response frame that may be
sent as an update response message in the sequence FIG. 30.
in accordance with an embodiment;

FIG. 43 illustrates a communicative connection between a
sender and a receiver in a bulk data transfer, in accordance
with an embodiment;

FIG. 44 illustrates a SendInit message that may be used to
initiate the communicative connection by the sender of FIG.
43, in accordance with an embodiment;

FIG. 45 illustrates a transfer control field of the Sendinit
message of FIG. 44, in accordance with an embodiment;

FIG. 46 illustrates a range control field of the SendInit
message of FIG. 45, in accordance with an embodiment;

FIG. 47 illustrates a Send Accept message that may be used
to accept a communicative connection proposed by the Sen
dInit message of FIG. 44 sent by the sender of FIG. 44, in
accordance with an embodiment;

FIG. 48 illustrates a SendReject message that may be used
to reject a communicative connection proposed by the Sen
dInit message of FIG. 44 sent by the sender of FIG. 44, in
accordance with an embodiment; and

FIG. 49 illustrates a ReceiveAccept message that may be
used to accept a communicative connection proposed by the
receiver of FIG. 44, in accordance with an embodiment.

DETAILED DESCRIPTION

One or more specific embodiments of the present disclo
sure will be described below. These described embodiments
are only examples of the presently disclosed techniques.
Additionally, in an effort to provide a concise description of
these embodiments, all features of an actual implementation
may not be described in the specification. It should be appre
ciated that in the development of any such actual implemen
tation, as in any engineering or design project, numerous
implementation-specific decisions must be made to achieve
the developers specific goals, such as compliance with sys
tem-related and business-related constraints, which may vary
from one implementation to another. Moreover, it should be
appreciated that such a development effort might be complex
and time consuming, but may nevertheless be a routine under
taking of design, fabrication, and manufacture for those of
ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the

present disclosure, the articles “a” “an and “the are
intended to mean that there are one or more of the elements.
The terms “comprising.” “including.” and “having are
intended to be inclusive and mean that there may be addi
tional elements other than the listed elements. Additionally, it

US 9, 172,759 B2
5

should be understood that references to "one embodiment” or
“an embodiment of the present disclosure are not intended to
be interpreted as excluding the existence of additional
embodiments that also incorporate the recited features.

Embodiments of the present disclosure relate generally to
an efficient fabric network that may be used by devices and/or
services communicating with each other in a home environ
ment. Generally, consumers living in homes may find it useful
to coordinate the operations of various devices within their
home such that all of their devices are operated efficiently. For
example, a thermostat device may be used to detect a tem
perature of a home and coordinate the activity of other devices
(e.g., lights) based on the detected temperature. In this
example, the thermostat device may detect a temperature that
may indicate that the temperature outside the home corre
sponds to daylight hours. The thermostat device may then
convey to the light device that there may be daylight available
to the home and that thus the light should turn off.

In addition to operating these devices efficiently, consum
ers generally prefer to use user-friendly devices that involve a
minimum amount of set up or initialization. That is, consum
ers may generally prefer to purchase devices that are fully
operational after performing a few numberinitialization steps
that may be performed by almost any individual regardless of
age or technical expertise.

With the foregoing in mind, to enable to effectively com
municate data between each other within the home environ
ment, the devices may use a fabric network that includes one
or more logical networks to manage communication between
the devices. That is, the efficient fabric network may enable
numerous devices within a home to communicate with each
other using one or more logical networks. The communica
tion network may support Internet Protocol version 6 (IPv6)
communication Such that each connected device may have a
unique local address (LA). Moreover, to enable each device to
integrate with a home, it may be useful for each device to
communicate within the network using low amounts of
power. That is, by enabling devices to communicate using low
power, the devices may be placed anywhere in a home with
out being coupled to a continuous power Source (e.g., battery
powered).

I. Fabric Introduction
By way of introduction, FIG. 1 illustrates an example of a

general device 10 that may that may communicate with other
like devices within a home environment. In one embodiment,
the device 10 may include one or more sensors 12, a user
interface component 14, a power Supply 16 (e.g., including a
power connection and/or battery), a network interface 18, a
processor 20, and the like. Particular sensors 12, user-inter
face components 14, and power-supply configurations may
be the same or similar with each devices 10. However, it
should be noted that in some embodiments, each device 10
may include particular sensors 12, user-interface components
14, power-supply configurations, and the like based on a
device type or model.
The sensors 12, in certain embodiments, may detect vari

ous properties such as acceleration, temperature, humidity,
water, Supplied power, proximity, external motion, device
motion, Sound signals, ultrasound signals, light signals, fire,
Smoke, carbon monoxide, global-positioning-satellite (GPS)
signals, radio-frequency (RF), other electromagnetic signals
or fields, or the like. As such, the sensors 12 may include
temperature sensor(s), humidity sensor(s), hazard-related
sensor(s) or other environmental sensor(s), accelerometer(s),
microphone(s), optical sensors up to and including camera(s)
(e.g., charged coupled-device or video cameras), active or
passive radiation sensors, GPS receiver(s) or radiofrequency

10

15

25

30

35

40

45

50

55

60

65

6
identification detector(s). While FIG. 1 illustrates an embodi
ment with a single sensor, many embodiments may include
multiple sensors. In some instances, the device 10 may
includes one or more primary sensors and one or more sec
ondary sensors. Here, the primary sensor(s) may sense data
central to the core operation of the device (e.g., sensing a
temperature in a thermostat or sensing Smoke in a Smoke
detector), while the secondary sensor(s) may sense other
types of data (e.g., motion, light or Sound), which can be used
for energy-efficiency objectives or Smart-operation objec
tives.
One or more user-interface components 14 in the device 10

may receive input from the user and/or present information to
the user. The user-interface component 14 may also include
one or more user-input components that may receive infor
mation from the user. The received input may be used to
determine a setting. In certain embodiments, the user-input
components may include a mechanical or virtual component
that responds to the user's motion. For example, the user can
mechanically move a sliding component (e.g., along a verti
cal or horizontal track) or rotate a rotatable ring (e.g., along a
circular track), the user's motion along a touchpad may be
detected, or motions/gestures may be detected using a con
tactless gesture detection sensor (e.g., infrared sensor or cam
era). Such motions may correspond to a setting adjustment,
which can be determined based on an absolute position of a
user-interface component 104 or based on a displacement of
a user-interface components 104 (e.g., adjusting a setpoint
temperature by 1 degree F. for every 10° rotation of a rotat
able-ring component). Physically and virtually movable user
input components can allow a user to set a setting along a
portion of an apparent continuum. Thus, the user may not be
confined to choose between two discrete options (e.g., as
would be the case if up and down buttons were used) but can
quickly and intuitively define a setting along a range of pos
sible setting values. For example, a magnitude of a movement
of a user-input component may be associated with a magni
tude of a setting adjustment, such that a user may dramatically
alter a setting with a large movement or finely tune a setting
with S. Small movement.
The user-interface components 14 may also include one or

more buttons (e.g., up and downbuttons), a keypad, a number
pad, a Switch, a microphone, and/or a camera (e.g., to detect
gestures). In one embodiment, the user-input component 14
may include a click-and-rotate annular ring component that
may enable the user to interact with the component by rotat
ing the ring (e.g., to adjust a setting) and/or by clicking the
ring inwards (e.g., to select an adjusted setting or to select an
option). In another embodiment, the user-input component 14
may include a camera that may detect gestures (e.g., to indi
cate that a power or alarm state of a device is to be changed).
In some instances, the device 10 may have one primary input
component, which may be used to set various types of set
tings. The user-interface components 14 may also be config
ured to present information to a user via, e.g., a visual display
(e.g., a thin-film-transistor display or organic light-emitting
diode display) and/or an audio speaker.
The power-supply component 16 may include a power

connection and/or a local battery. For example, the power
connection may connect the device 10 to a power source Such
as a line Voltage source. In some instances, an AC power
Source can be used to repeatedly charge a (e.g., rechargeable)
local battery, such that the battery may be used later to supply
power to the device 10 when the AC power source is not
available. In certain embodiments, the power Supply compo
nent 16 may include intermittent or reduced power connec
tions that may be less than that provided via an AC plugin the

US 9, 172,759 B2
7

home. In certain embodiments, devices with batteries and/or
intermittent or reduced power may be operated as “sleepy
devices' that alternate between an online/awake state and an
offline/sleep state to reduce power consumption.
The network interface 18 may include one or more com

ponents that enable the device 10 to communicate between
devices using one or more logical networks within the fabric
network. In one embodiment, the network interface 18 may
communicate using an efficient network layer as part of its
Open Systems Interconnection (OSI) model. In certain
embodiments, one component of the network interface 18
may communicate with one logical network (e.g., WiFi) and
another component of the network interface may communi
cate with another logical network (e.g., 802.15.4). In other
words, the network interface 18 may enable the device 10 to
wirelessly communicate via multiple IPv6 networks. As such,
the network interface 18 may include a wireless card, Ether
net port, and/or other Suitable transceiver connections.
The processor 20 may support one or more of a variety of

different device functionalities. As such, the processor 20
may include one or more processors configured and pro
grammed to carry out and/or cause to be carried out one or
more of the functionalities described herein. In one embodi
ment, the processor 20 may include general-purpose proces
sors carrying out computer code stored in local memory (e.g.,
flash memory, hard drive, random access memory), special
purpose processors or application-specific integrated circuits,
other types of hardware/firmware/software processing plat
forms, and/or some combination thereof. Further, the proces
Sor 20 may be implemented as localized versions or counter
parts of algorithms carried out or governed remotely by
central servers or cloud-based systems, such as by virtue of
running a Java virtual machine (JVM) that executes instruc
tions provided from a cloud server using Asynchronous Java
script and XML (AJAX) or similar protocols. By way of
example, the processor 20 may detect when a location (e.g., a
house or room) is occupied, up to and including whether it is
occupied by a specific person or is occupied by a specific
number of people (e.g., relative to one or more thresholds). In
one embodiment, this detection can occur, e.g., by analyzing
microphone signals, detecting user movements (e.g., in front
of a device), detecting openings and closings of doors or
garage doors, detecting wireless signals, detecting an IP
address of a received signal, detecting operation of one or
more devices within a time window, or the like. Moreover, the
processor 20 may include image recognition technology to
identify particular occupants or objects.

In some instances, the processor 20 may predict desirable
settings and/or implement those settings. For example, based
on presence detection, the processor 20 may adjust device
settings to, e.g., conserve power when nobody is home or in a
particular room or to accord with user preferences (e.g., gen
eral at-home preferences or user-specific preferences). As
another example, based on the detection of a particular per
son, animal or object (e.g., a child, pet or lost object), the
processor 20 may initiate an audio or visual indicator of
where the person, animal or object is or may initiate an alarm
or security feature if an unrecognized person is detected
under certain conditions (e.g., at night or when lights are off).

In some instances, devices may interact with each other
such that events detected by a first device influences actions of
a second device using one or more common profiles between
the devices. For example, a first device can detect that a user
has pulled into a garage (e.g., by detecting motion in the
garage, detecting a change in light in the garage or detecting
opening of the garage door). The first device can transmit this
information to a second device via the fabric network, such

10

15

25

30

35

40

45

50

55

60

65

8
that the second device can, e.g., adjust a home temperature
setting, a light setting, a music setting, and/or a security-alarm
setting. As another example, a first device can detect a user
approaching a front door (e.g., by detecting motion or Sudden
light pattern changes). The first device may cause a general
audio or visual signal to be presented (e.g., such as Sounding
of a doorbell) or cause a location-specific audio or visual
signal to be presented (e.g., to announce the visitors presence
within a room that a user is occupying).

With the foregoing in mind, FIG. 2 illustrates a block
diagram of a home environment 30 in which the device 10 of
FIG. 1 may communicate with other devices via the fabric
network. The depicted home environment 30 may include a
structure 32 Such as a house, office building, garage, or
mobile home. It will be appreciated that devices can also be
integrated into a home environment that does not include an
entire structure 32, Such as an apartment, condominium,
office space, or the like. Further, the home environment 30
may control and/or be coupled to devices outside of the actual
structure 32. Indeed, several devices in the home environment
30 need not physically be within the structure 32 at all. For
example, a device controlling a pool heater 34 or irrigation
system 36 may be located outside of the structure 32.
The depicted structure 32 includes multiple rooms 38,

separated at least partly from each other via walls 40. The
walls 40 can include interior walls or exterior walls. Each
room 38 can further include a floor 42 and a ceiling 44.
Devices can be mounted on, integrated with and/or Supported
by the wall 40, the floor 42, or the ceiling 44.
The home environment 30 may include multiple devices,

including intelligent, multi-sensing, network-connected
devices that may integrate seamlessly with each other and/or
with cloud-based server systems to provide any of a variety of
useful home objectives. One, more or each of the devices
illustrated in the home environment 30 may include one or
more sensors 12, a user interface 14, a power Supply 16, a
network interface 18, a processor 20 and the like.
Example devices 10 may include a network-connected

thermostat 46 that may detect ambient climate characteristics
(e.g., temperature and/or humidity) and control a heating,
ventilation and air-conditioning (HVAC) system 48. Another
example device 10 may include a hazard detection unit 50 that
can detect the presence of a hazardous Substance and/or a
hazardous condition in the home environment 30 (e.g.,
Smoke, fire, or carbon monoxide). Additionally, entryway
interface devices 52, which can be termed a “smart doorbell',
can detect a person’s approach to or departure from a loca
tion, control audible functionality, announce a person’s
approach or departure via audio or visual means, or control
settings on a security system (e.g., to activate or deactivate the
security system).

In certain embodiments, the device 10 may include a light
Switch 54 that may detect ambient lighting conditions, detect
room-occupancy states, and control a power and/or dim state
of one or more lights. In some instances, the light Switches 54
may control a power state or speed of a fan, Such as a ceiling
fan.

Additionally, wall plug interfaces 56 may detect occu
pancy of a room or enclosure and control Supply of power to
one or more wall plugs (e.g., Such that power is not supplied
to the plug if nobody is at home). The device 10 within the
home environment 30 may further include an appliance 58,
Such as refrigerators, Stoves and/or ovens, televisions, wash
ers, dryers, lights (inside and/or outside the structure 32),
Stereos, intercom systems, garage-door openers, floor fans,
ceiling fans, whole-house fans, wall air conditioners, pool
heaters 34, irrigation systems 36, security systems, and so

US 9, 172,759 B2
9

forth. While descriptions of FIG. 2 may identify specific
sensors and functionalities associated with specific devices, it
will be appreciated that any of a variety of sensors and func
tionalities (such as those described throughout the specifica
tion) may be integrated into the device 10.

In addition to containing processing and sensing capabili
ties, each of the example devices described above may be
capable of data communications and information sharing
with any other device, as well as to any cloud server or any
other device that is network-connected anywhere in the
world. In one embodiment, the devices 10 may send and
receive communications via a fabric network discussed
below. In one embodiment, fabric may enable the devices 10
to communicate with each other via one or more logical
networks. As such, certain devices may serve as wireless
repeaters and/or may function as bridges between devices,
services, and/or logical networks in the home environment
that may not be directly connected (i.e., one hop) to each
other.

In one embodiment, a wireless router 60 may further com
municate with the devices 10 in the home environment 30 via
one or more logical networks (e.g., WiFi). The wireless router
60 may then communicate with the Internet 62 or other net
work such that each device 10 may communicate with a
remote service or a cloud-computing system 64 through the
Internet 62. The cloud-computing system 64 may be associ
ated with a manufacturer, Support entity or service provider
associated with a particular device 10. AS Such, in one
embodiment, a user may contact customer Support using a
device itself rather than using some other communication
means such as a telephone or Internet-connected computer.
Further, software updates can be automatically sent from the
cloud-computing system 64 or devices in the home environ
ment 30 to other devices in the fabric (e.g., when available,
when purchased, when requested, or at routine intervals).
By virtue of network connectivity, one or more of the

devices 10 may further allow a user to interact with the device
even if the user is not proximate to the device. For example, a
user may communicate with a device using a computer (e.g.,
a desktop computer, laptop computer, or tablet) or other por
table electronic device (e.g., a Smartphone) 66. A webpage or
application may receive communications from the user and
control the device 10 based on the received communications.
Moreover, the webpage or application may present informa
tion about the device's operation to the user. For example, the
user can view a current setpoint temperature for a device and
adjust it using a computer that may be connected to the
Internet 62. In this example, the thermostat 46 may receive the
current setpoint temperature view request via the fabric net
work via one or more underlying logical networks.

In certain embodiments, the home environment 30 may
also include a variety of non-communicating legacy appli
ances 68, Such as old conventional washer/dryers, refrigera
tors, and the like which can be controlled, albeit coarsely
(ON/OFF), by virtue of the wall plug interfaces 56. The home
environment 30 may further include a variety of partially
communicating legacy appliances 70. Such as infra-red (IR)
controlled wall air conditioners or other IR-controlled
devices, which can be controlled by IR signals provided by
the hazard detection units 50 or the light switches 54.
As mentioned above, each of the example devices 10

described above may form a portion of a fabric network.
Generally, the fabric network may be part of an Open Systems
Interconnection (OSI) model 90 as depicted in FIG. 4. The
OSI model 90 illustrates functions of a communication sys
tem with respect to abstraction layers. That is, the OSI model
may specify a networking framework or how communica

10

15

25

30

35

40

45

50

55

60

65

10
tions between devices may be implemented. In one embodi
ment, the OSI model may include six layers: a physical layer
92, a data link layer 94, a network layer 96, a transport layer
98, a platform layer 100, and an application layer 102. Gen
erally, each layer in the OSI model 90 may serve the layer
above it and may be served by the layer below it.

Keeping this in mind, the physical layer 92 may provide
hardware specifications for devices that may communicate
with each other. As such, the physical layer 92 may establish
how devices may connect to each other, assist in managing
how communication resources may be shared between
devices, and the like.
The data link layer 94 may specify how data may be trans

ferred between devices. Generally, the data link layer 94 may
provide away in which data packets being transmitted may be
encoded and decoded into bits as part of a transmission pro
tocol.
The network layer 96 may specify how the data being

transferred to a destination node is routed. The network layer
96 may also provide a security protocol that may maintain the
integrity of the data being transferred. The efficient network
layer discussed above corresponds to the network layer96. In
certain embodiments, the network layer 96 may be com
pletely independent of the platform layer 100 and include any
suitable IPv6 network type (e.g., WiFi, Ethernet, HomePlug,
802.15.4, etc).
The transport layer 98 may specify a transparent transfer of

the data from a source node to a destination node. The trans
port layer 98 may also control how the transparent transfer of
the data remains reliable. As such, the transport layer 98 may
be used to verify that data packets intended to transfer to the
destination node indeed reached the destination node.
Example protocols that may be employed in the transport
layer 98 may include Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP).
The platform layer 100 includes the fabric network and

establishes connections between devices according to the
protocol specified within the transport layer 98 and may be
agnostic of the network type used in the network layer96. The
platform layer 100 may also translate the data packets into a
form that the application layer 102 may use. The application
layer 102 may support a software application that may
directly interface with the user. As such, the application layer
102 may implement protocols defined by the software appli
cation. For example, the Software application may provide
serves such as file transfers, electronic mail, and the like.

II. Fabric Device Interconnection
As discussed above, a fabric may be implemented using

one or more Suitable communications protocols, such as IPv6
protocols. In fact, the fabric may be partially or completely
agnostic to the underlying technologies (e.g., network types
or communication protocols) used to implement the fabric.
Within the one or more communications protocols, the fabric
may be implemented using one or more network types used to
communicatively couple electrical devices using wireless or
wired connections. For example, certain embodiments of the
fabric may include Ethernet, WiFi, 802.15.4, ZigBeeR),
ISA100.11a, WirelessHART, MiWiTM, power-line networks,
and/or other suitable network types. Within the fabric devices
(e.g., nodes) can exchange packets of information with other
devices (e.g., nodes) in the fabric, either directly or via inter
mediary nodes, such as intelligent thermostats, acting as IP
routers. These nodes may include manufacturer devices (e.g.,
thermostats and Smoke detectors) and/or customer devices
(e.g., phones, tablets, computers, etc.). Additionally, some
devices may be "always on and continuously powered using
electrical connections. Other devices may have partially

US 9, 172,759 B2
11

reduced power usage (e.g., medium duty cycle) using a
reduced/intermittent power connection, Such as a thermostat
or doorbell power connection. Finally, Some devices may
have a short duty cycle and run solely on battery power. In
other words, in certain embodiments, the fabric may include
heterogeneous devices that may be connected to one or more
Sub-networks according to connection type and/or desired
power usage. FIGS. A-C illustrate three embodiments that
may be used to connect electrical devices via one or more
sub-networks in the fabric.

A. Single Network Topology
FIG. 4 illustrates an embodiment of the fabric 1000 having

a single network topology. As illustrated, the fabric 1000
includes a single logical network 1002. The network 1002
could include Ethernet, WiFi 802.15.4, power-line networks,
and/or other suitable network types in the IPv6 protocols. In
fact, in some embodiments where the network 1002 includes
a WiFi or Ethernet network, the network 1002 may span
multiple WiFi and/or Ethernet segments that are bridged at a
link layer.
The network 1002 includes one or more nodes 1004, 1006,

1008, 1010, 1012, 1014, and 1016, referred to collectively as
1004-1016. Although the illustrated network 1002 includes
seven nodes, certain embodiments of the network 1002 may
include one or more nodes interconnected using the network
1002. Moreover, if the network 1002 is a WiFi network, each
of the nodes 1004-1016 may be interconnected using the node
1016 (e.g., WiFi router) and/or paired with other nodes using
WiFi Direct (i.e., WiFi P2P).

B. Star Network Topology
FIG.S illustrates an alternative embodiment of fabric 1000

as a fabric 1018 having a star network topology. The fabric
1018 includes a hub network 1020 that joins together two
periphery networks 1022 and 1024. The hub network 1020
may include a home network, such as WiFi/Ethernet network
or power line network. The periphery networks 1022 and
1024 may additional network connection types different of
different types than the hub network 1020. For example, in
some embodiments, the hub network 1020 may be a WiFi/
Ethernet network, the periphery network 1022 may include
an 802.15.4 network, and the periphery network 1024 may
include a power line network, a ZigBee(R) network, a
ISA100.11a network, a WirelessHART, network, or a
MiWiTM network. Moreover, although the illustrated embodi
ment of the fabric 1018 includes three networks, certain
embodiments of the fabric 1018 may include any number of
networks, such as 2, 3, 4, 5, or more networks. In fact, some
embodiments of the fabric 1018 include multiple periphery
networks of the same type.

Although the illustrated fabric 1018 includes fourteen
nodes, each referred to individually by reference numbers
1024-1052, respectively, it should be understood that the
fabric 1018 may include any number of nodes. Communica
tion within each network 1020, 1022, or 1024, may occur
directly between devices and/or through an access point, Such
as node 1042 in a WiFi/Ethernet network. Communications
between periphery network 1022 and 1024 passes through the
hub network 1020 using inter-network routing nodes. For
example, in the illustrated embodiment, nodes 1034 and 1036
are be connected to the periphery network 1022 using a first
network connection type (e.g., 802.15.4) and to the hub net
work 1020 using a second network connection type (e.g.,
WiFi) while the node 1044 is connected to the hub network
1020 using the second network connection type and to the
periphery network 1024 using a third network connection
type (e.g., power line). For example, a message sent from

10

15

25

30

35

40

45

50

55

60

65

12
node 1026 to node 1052 may pass through nodes 1028, 1030,
1032, 1036, 1042, 1044, 1048, and 1050 in transit to node
1052.

C. Overlapping Networks Topology
FIG. 6 illustrates an alternative embodiment of the fabric

1000 as a fabric 1054 having an overlapping networks topol
ogy. The fabric 1054 includes networks 1056 and 1058. As
illustrated, each of the nodes 1062, 1064, 1066, 1068, 1070,
and 1072 may be connected to each of the networks. In other
embodiments, the node 1072 may include an access point for
an Ethernet/WiFi network rather than an end point and may
not be present on either the network 1056 or network 1058,
whichever is not the Ethernet/WiFi network. Accordingly, a
communication from node 1062 to node 1068 may be passed
through network 1056, network 1058, or some combination
thereof. In the illustrated embodiment, each node can com
municate with any other node via any network using any
network desired. Accordingly, unlike the Star network topol
ogy of FIG. 5, the overlapping networks topology may com
municate directly between nodes via any network without
using inter-network routing.

D. Fabric Network Connection to Services
In addition to communications between devices within the

home, a fabric (e.g., fabric 1000) may include services that
may be located physically near other devices in the fabric or
physically remote from such devices. The fabric connects to
these services through one or more service endpoints. FIG.7
illustrates an embodiment of a service 1074 communicating
with fabrics 1076, 1078, and 1080. The service 1074 may
include various services that may be used by devices in fab
rics 1076, 1078, and/or 1080. For example, in some embodi
ments, the service 1074 may be a time of day service that
Supplies a time of day to devices, a weather service to provide
various weather data (e.g., outside temperature, Sunset, wind
information, weather forecast, etc.), an echo service that
“pings” each device, data management services, device man
agement services, and/or other Suitable services. As illus
trated, the service 1074 may include a server 1082 (e.g., web
server) that stores/accesses relevant data and passes the infor
mation through a service end point 1084 to one or more end
points 1086 in a fabric, such as fabric 1076. Although the
illustrated embodiment only includes three fabrics with a
single server 1082, it should be appreciated that the service
1074 may connect to any number of fabrics and may include
servers in addition to the server 1082 and/or connections to
additional services.

In certain embodiments, the service 1074 may also connect
to a consumer device 1088, such as a phone, tablet, and/or
computer. The consumer device 1088 may be used to connect
to the service 1074 via a fabric, such as fabric 1076, an
Internet connection, and/or some other Suitable connection
method. The consumer device 1088 may be used to access
data from one or more end points (e.g., electronic devices) in
a fabric either directly through the fabric or via the service
1074. In other words, using the service 1074, the consumer
device 1088 may be used to access/manage devices in a fabric
remotely from the fabric.

E. Communication Between Devices in a Fabric
As discussed above, each electronic device or node may

communicate with any other node in the fabric, either directly
or indirectly depending upon fabric topology and network
connection types. Additionally, some devices (e.g., remote
devices) may communicate through a service to communi
cate with other devices in the fabric. FIG. 8 illustrates an
embodiment of a communication 1090 between two devices
1092 and 1094. The communication 1090 may span one or
more networks either directly or indirectly through additional

US 9, 172,759 B2
13

devices and/or services, as described above. Additionally, the
communication 1090 may occur over an appropriate commu
nication protocol. Such as IPv6, using one or more transport
protocols. For example, in some embodiments the communi
cation 1090 may include using the transmission control pro
tocol (TCP) and/or the user datagram protocol (UDP). In
some embodiments, the device 1092 may transmit a first
signal 1096 to the device 1094 using a connectionless proto
col (e.g., UDP). In certain embodiments, the device 1092 may
communicate with the device 1094 using a connection-ori
ented protocol (e.g., TCP). Although the illustrated commu
nication 1090 is depicted as a bi-directional connection, in
some embodiments, the communication 1090 may be a uni
directional broadcast.

i. Unique Local Address
As discussed above, data transmitted within a fabric

received by a node may be redirected or passed through the
node to another node depending on the desired target for the
communication. In some embodiments, the transmission of
the data may be intended to be broadcast to all devices. In
such embodiments, the data may be retransmitted without
further processing to determine whether the data should be
passed along to another node. However, some data may be
directed to a specific endpoint. To enable addressed messages
to be transmitted to desired endpoints, nodes may be assigned
identification information.

Each node may be assigned a set of link-local addresses
(LLA), one assigned to each network interface. These LLAS
may be used to communicate with other nodes on the same
network. Additionally, the LLAs may be used for various
communication procedures, such as IPv6 Neighbor Discov
ery Protocol. In addition to LLAs, each node is assigned a
unique local address (ULA).

FIG. 9 illustrates an embodiment of a unique local address
(ULA) 1098 that may be used to address each node in the
fabric. In certain embodiments, the ULA 1098 may be for
matted as an IPv6 address format containing 128 bits divided
into a global ID 1100, a subnet ID 1102, and an interface ID
1104. The global ID 1100 includes 40 bits and the subnet ID
1102 includes 16 bits. The global ID 1100 and subnet ID 1102
together form a fabric ID 1103 for the fabric.

The fabric ID 1103 is a unique 64-bit identifier used to
identify a fabric. The fabric ID 1103 may be generated at
creation of the associated fabric using a pseudo-random algo
rithm. For example, the pseudo-random algorithm may 1)
obtain the current time of day in 64-bit NTP format, 2) obtain
the interface ID 1104 for the device, 3) concatenate the time
of day with the interface ID1 104 to create a key, 4) compute
and SHA-1 digest on the key resulting in 160 bits, 5) use the
least significant 40 bits as the global ID 1100, and 6) concat
enate the ULA and set the least significant bit to 1 to create the
fabric ID 1103. In certain embodiments, once the fabric ID
1103 is created with the fabric, the fabric ID 1103 remains
until the fabric is dissolved.

The global ID 1100 identifies the fabric to which the node
belongs. The subnet ID 1102 identifies logical networks
within the fabric. The subnet ID F3 may be assigned mono
tonically starting at one with the addition of each new logical
network to the fabric. For example, a WiFi network may be
identified with a hex value of 0x01, and a later connected
802.15.4 network may be identified with a hex value of 0x02
continuing on incrementally upon the connection of each new
network to the fabric.

Finally, the ULA 1098 includes an interface ID 1104 that
includes 64bits. The interface ID 1104 may be assigned using
a globally-unique 64-bit identifier according to the IEEE
EUI-64 standard. For example, devices with IEEE 802 net

10

15

25

30

35

40

45

50

55

60

65

14
work interfaces may derive the interface ID 1104 using a
burned-in MAC address for the devices “primary interface.”
In some embodiments, the designation of which interface is
the primary interface may be determined arbitrarily. In other
embodiments, an interface type (e.g., WiFi) may be deemed
the primary interface, when present. If the MAC address for
the primary interface of a device is 48 bits rather than 64-bit,
the 48-bit MAC address may be converted to a EUI-64 value
via encapsulation (e.g., organizationally unique identifier
encapsulating). In consumer devices (e.g., phones or comput
ers), the interface ID 1104 may be assigned by the consumer
devices local operating systems.

ii. Routing Transmissions between Logical Networks
As discussed above in relation to a star network topology,

inter-network routing may occur in communication between
two devices across logical networks. In some embodiments,
inter-network routing is based on the subnet ID 1102. Each
inter-networking node (e.g., node 1034 of FIG. 5) may main
tain a list of other routing nodes (e.g., node B 14 of FIG. 5) on
the hub network 1020 and their respective attached periphery
networks (e.g., periphery network 1024 of FIG. 5). When a
packet arrives addressed to a node other than the routing node
itself, the destination address (e.g., address for node 1052 of
FIG. 5) is compared to the list of network prefixes and a
routing node (e.g., node 1044) is selected that is attached to
the desired network (e.g., periphery network 1024). The
packet is then forwarded to the selected routing node. If
multiple nodes (e.g., 1034 and 1036) are attached to the same
periphery network, routing nodes are selected in an alternat
ing fashion.

Additionally, inter-network routing nodes may regularly
transmit Neighbor Discovery Protocol (NDP) router adver
tisement messages on the hub network to alert consumer
devices to the existence of the hub network and allow them to
acquire the Subnet prefix. The router advertisements may
include one or more route information options to assist in
routing information in the fabric. For example, these route
information options may inform consumer devices of the
existence of the periphery networks and how to route packets
the periphery networks.

In addition to, or in place of route information options,
routing nodes may act as proxies to provide a connection
between consumer devices and devices in periphery net
works, such as the process 1105 as illustrated in FIG. 10. As
illustrated, the process 1105 includes each periphery network
device being assigned a virtual address on the hub network by
combining the subnet ID 1102 with the interface ID 1104 for
the device on the periphery network (block 1106). To proxy
using the virtual addresses, routing nodes maintain a list of all
periphery nodes in the fabric that are directly reachable via
one of its interfaces (block 1108). The routing nodes listen on
the hub network for neighbor Solicitation messages request
ing the link address of a periphery node using its virtual
address (block 1110). Upon receiving Such a message, the
routing node attempts to assign the virtual address to its hub
interface after a period of time (block 1112). As part of the
assignment, the routing node performs duplicate address
detection so as to block proxying of the virtual address by
more than one routing node. After the assignment, the routing
node responds to the neighbor Solicitation message and
receives the packet (block 1114). Upon receiving the packet,
the routing node rewrites the destination address to be the real
address of the periphery node (block 1116) and forwards the
message to the appropriate interface (block 1118).

iii. Consumer Devices Connecting to a Fabric
To join a fabric, a consumer device may discover an

address of a node already in the fabric that the consumer

US 9, 172,759 B2
15

device wants to join. Additionally, if the consumer device has
been disconnected from a fabric for an extended period of
time may need to rediscover nodes on the network if the fabric
topology/layout has changed. To aid in discovery/rediscov
ery, fabric devices on the hub network may publish Domain
Name System-Service Discovery (DNS-SD) records via
mDNS that advertise the presence of the fabric and provide
addresses to the consumer device

III. Data Transmitted in the Fabric
After creation of a fabric and address creation for the

nodes, data may be transmitted through the fabric. Data
passed through the fabric may be arranged in a format com
mon to all messages and/or common to specific types of
conversations in the fabric. In some embodiments, the mes
sage format may enable one-to-one mapping to JavaScript
Object Notation (JSON) using a TLV serialization format
discussed below. Additionally, although the following data
frames are described as including specific sizes, it should be
noted that lengths of the data fields in the data frames may be
varied to other suitable bit-lengths.

It should be understood that each of the following data
frames, profiles, and/or formats discussed below may be
stored in memory (e.g., memory of the device 10) prior to
and/or after transmission of a message. In other words,
although the data frame, profiles, and formats may be gener
ally discussed as transmissions of data, they may also be
physically stored (e.g., in a buffer) before, during, and/or after
transmission of the data frame, profiles, and/or formats.
Moreover, the following data frames, profiles, schemas, and/
or formats may be stored on a non-transitory, computer-read
able medium that allows an electronic device to access the
data frames, profiles, schemas, and/or formats. For example,
instructions for formatting the data frames, profiles, schemas,
and/or formats may be stored in any suitable computer-read
able medium, such as in memory for the device 10, memory
of another device, a portable memory device (e.g., compact
disc, flash drive, etc.), or other suitable physical device suit
able for storing the data frames, profiles, schemas, and/or
formats.

A. Security
Along with data intended to be transferred, the fabric may

transfer the data with additional security measures Such as
encryption, message integrity checks, and digital signatures.
In some embodiments, a level of security Supported for a
device may vary according to physical security of the device
and/or capabilities of the device. In certain embodiments,
messages sent between nodes in the fabric may be encrypted
using the Advanced Encryption Standard (AES) block cipher
operating in counter mode (AES-CTR) with a 128-bit key. As
discussed below, each message contains a 32-bit message id.
The message id may be combined with a sending nodes id to
form a nonce for the AES-CTR algorithm. The 32-bit counter
enables 4 billion messages to be encrypted and sent by each
node before a new key is negotiated.

In some embodiments, the fabric may insure message
integrity using a message authentication code. Such as
HMAC-SHA-1, that may be included in each encrypted mes
sage. In some embodiments, the message authentication code
may be generated using a 160-bit message integrity key that is
paired one-to-one with the encryption key. Additionally, each
node may check the messageid of incoming messages against
a list of recently received ids maintained on a node-by-node
basis to block replay of the messages.

B. Tag Length Value (TLV) Formatting
To reduce power consumption, it is desirable to send at

least a portion of the data sent over the fabric that compactly
while enabling the data containers to flexibly represents data

10

15

25

30

35

40

45

50

55

60

65

16
that accommodates skipping data that is not recognized or
understood by skipping to the next location of data that is
understood within a serialization of the data. In certain
embodiments, tag-length-value (TLV) formatting may be
used to compactly and flexibly encode/decode data. By stor
ing at least a portion of the transmitted data in TLV, the data
may be compactly and flexibly stored/sent along with low
encode/decode and memory overhead, as discussed below in
reference to Table 7. In certain embodiments, TLV may be
used for some data as flexible, extensible data, but other
portions of data that is not extensible may be stored and sent
in an understood standard protocol data unit (PDU).

Data formatted in a TLV format may be encoded as TLV
elements of various types, such as primitive types and con
tainer types. Primitive types include data values in certain
formats, such as integers or strings. For example, the TLV
format may encode: 1, 2, 3, 4, or 8 byte signed/unsigned
integers, UTF-8 strings, byte strings, single/double-precision
floating numbers (e.g., IEEE 754-1985 format), boolean,
null, and other suitable data format types. Container types
include collections of elements that are then sub-classified as
container or primitive types. Container types may be classi
fied into various categories, such as dictionaries, arrays, paths
or other Suitable types for groupingTLV elements, known as
members. A dictionary is a collection of members each hav
ing distinct definitions and unique tags within the dictionary.
An array is an ordered collection of members with implied
definitions or no distinct definitions. A path is an ordered
collection of members that described how to traversea tree of
TLV elements.
As illustrated in FIG. 11, an embodiment of a TLV packet

1120 includes three data fields: a tag field 1122, a length field
1124, and a value field 1126. Although the illustrated fields
1122, 1124, and 1126 are illustrated as approximately equiva
lent in size, the size of each field may be variable and vary in
size in relation to each other. In other embodiments, the TLV
packet 1120 may further include a control byte before the tag
field 1122.

In embodiments having the control byte, the control byte
may be sub-divided into an element type field and a tag
control field. In some embodiments, the element type field
includes 5 lower bits of the control byte and the tag control
field occupies the upper 3 bits. The element type field indi
cates the TLV elements type as well as the how the length
field 1124 and value field 1126 are encoded. In certain
embodiments, the element type field also encodes Boolean
values and/or null values for the TLV. For example, an
embodiment of an enumeration of element type field is pro
vided in Table 1 below.

TABLE 1

Example element type field values.

7 6 5 4 3 2 1 O

Signed Integer, 1 byte value
Signed Integer, 2 byte value
Signed Integer, 4 byte value
Signed Integer, 8 byte value
Unsigned Integer, 1 byte value
Unsigned Integer, 2 byte value
Unsigned Integer, 4 byte value
Unsigned Integer, 8 byte value
Boolean False
Boolean True
Floating Point Number, 4 byte
value

US 9, 172,759 B2
17

TABLE 1-continued

Example element type field values.

7 6 5 4 3 2 O

O 1 O 1 Floating Point Number, 8 byte
value

0 1 1 0 0 UTF8-String, 1 byte length
0 1 1 0 1 UTF8-String, 2 byte length
O 1 1 0 UTF8-String, 4 byte length
O 1 1 1 UTF8-String, 8 byte length
1 O O O O Byte String, 1 byte length
1 O 0 0 1 Byte String, 2 byte length
1 O O O Byte String, 4 byte length
1 O O 1 Byte String, 8 byte length
1 0 1 0 O Null
1 0 1 0 1 Dictionary
1 O 1 O Array
1 O 1 1 Path
1 1 0 O O End of Container

The tag control field indicates a form of the tag in the tag field
1122 assigned to the TLV element (including a zero-length
tag). Examples, of tag control field values are provided in
Table 2 below.

TABLE 2

Example values for tag control field.

7 6 5 4 3 2 1 0

O Anonymous, O bytes
1 Context-specific Tag, 1 byte
O Core Profile Tag, 2 bytes
1 Core Profile Tag, 4 bytes
O Implicit Profile Tag, 2 bytes
1 Implicit Profile Tag, 4 bytes
O Fully-qualified Tag, 6 bytes
1 Fully-qualified Tag, 8 bytes

In other words, in embodiments having a control byte, the
control byte may indicate a length of the tag.

In certain embodiments, the tag field 1122 may include
Zero to eight bytes, such as eight, sixteen, thirty two, or sixty
four bits. In some embodiments, the tag of the tag field may be
classified as profile-specific tags or context-specific tags. Pro
file-specific tags identify elements globally using a vendor Id,
a profile Id, and/or tag number as discussed below. Context
specific tags identify TLV elements within a context of a
containing dictionary element and may include a single-byte
tag number. Since context-specific tags are defined in context
of their containers, a single context-specific tag may have
different interpretations when included in different contain
ers. In some embodiments, the context may also be derived
from nested containers.

In embodiments having the control byte, the tag length is
encoded in the tag control field and the tag field 1122 includes
a possible three fields: a vendor Id field, a profile Id field, and
a tag number field. In the fully-qualified form, the encoded tag
field 1122 includes all three fields with the tag number field
including 16 or 32 bits determined by the tag control field. In
the implicit form, the tag includes only the tag number, and
the vendor Id and profile number are inferred from the pro
tocol context of the TLV element. The core profile form
includes profile-specific tags, as discussed above. Context
specific tags are encoded as a single byte conveying the tag
number. Anonymous elements have Zero-length tag fields
1122.

In some embodiments without a control byte, two bits may
indicate a length of the tag field 1122, two bits may indicate a

10

15

25

30

35

40

45

50

55

60

65

18
length of the length field 1124, and four bits may indicate a
type of information stored in the value field 1126. An example
of possible encoding for the upper 8 bits for the tag field is
illustrated below in Table 3.

TABLE 3

Tag field of a TLV packet

Byte
O
7 6 5 4 3 2 1 O Description

Tag is 8 bits
Tag is 16 bits
Tag is 32 bits
Tag is 64 bits
Length is 8 bits
Length is 16 bits
Length is 32 bits
Length is 64 bits
Boolean
Fixed 8-bit Unsigned
Fixed 8-bit Signed
Fixed 16-bit Unsigned
Fixed 16-bit Signed
Fixed 32-bit Unsigned
Fixed 32-bit Signed
Fixed 64-bit Unsigned
Fixed 64-bit Signed
32-bit Floating Point
64-bit Floating Point
UTF-8 String

O Opaque Data
1 Container

As illustrated in Table 3, the upper 8 bits of the tag field 1122
may be used to encode information about the tag field 1122.
length field 1124, and the value field 1126, such that the tag
field 112 may be used to determine length for the tag field 122
and the length fields 1124. Remaining bits in the tag field
1122 may be made available for user-allocated and/or user
assigned tag Values.
The length field 1124 may include eight, sixteen, thirty

two, or sixty four bits as indicated by the tag field 1122 as
illustrated in Table 3 or the element field as illustrated in Table
2. Moreover, the length field 1124 may include an unsigned
integer that represents a length of the encoded in the value
field 1126. In some embodiments, the length may be selected
by a device sending the TLV element. The value field 1126
includes the payload data to be decoded, but interpretation of
the value field 1126 may depend upon the tag length fields,
and/or control byte. For example, a TLV packet without a
control byte including an 8 bit tag is illustrated in Table 4
below for illustration.

TABLE 4

Example of a TLV packet including an 8-bit tag

Tag Length Value Description

OxOd Ox24
Ox09 Ox04 Ox4295 OOOO 74.5
Ox09 Ox04 Ox4298 66 66 76.2
Ox09 Ox04 Ox4294 999a 74.3
Ox09 Ox04 Ox4298.999a 76.3
Ox09 Ox04 Ox4295 33 33 74.6
Ox09 Ox04 Ox42 9833 33 76.1

As illustrated in Table 4, the first line indicates that the tag
field 1122 and the length field 1124 each have a length of 8
bits. Additionally, the tag field 1122 indicates that the tag type
is for the first line is a container (e.g., the TLV packet). The tag

21
TABLE 5

US 9, 172,759 B2

Example representation of the XML Property List in TLV format

XML Key Tag Type Tag Number

OfflineMode Boolean 1
IPv4 Container 3
IPv6 Container 4
Method String 5
Technologies Container 6
WF Container 7
802.15.4 Container 8
Enabled Boolean 9
Devices Container 10
ID String 11
Services Container 12
Name String 13
SSID Data 14

Tag

Ox4001

Ox4d O2
Ox4d03

Ox4b OS
Ox4d04

Ox4b OS
Ox4d06

Ox4d O7

Ox4009
Ox4d Oa.

Ox4d 16

Ox4b Ob

Ox4009

Ox4d Oc

OxOb

Ox4d08

Ox4009

Ox4d Oa.

Ox4d 16

Ox4b Ob
Ox4009

Ox4d Oc

OxOb
Ox4d Oc

Ox4d 17

Ox4b Ob

Ox4b Od
Ox4c Of

Ox45 10

Ox40 11

Ox4012

Ox4d O2
Ox4d03

Ox4d 14
Ox4S 15

Ox4d 17

Ox4b Ob
Ox4c Od

Ox4c Of
Ox45 10

Ox40 11

Ox4012

22
TABLE 5-continued

Example representation of the XML Property List in TLV format

5 XML Key Tag Type Tag Number

EPANID Data 15
Frequency 16-bit Unsigned 16
AutoConnect Boolean 17
Favorite Boolean 18
Error String 19

10 DHCP String 2O
LastAddress Data 21
Device Container 22
Service Container 23

is Similarly, Table 6 illustrates an example of literal tag, length,
and value representations for the example XML Property
List.

TABLE 6

Example of literal values for tag, length, and value fields for XML Property List

Length Value

auto

“wifi 18b43... '
1

“wifi 18b43... '

“802.15.4 18...
1

“802.15.4 18...

“wifi 18b43... '
“998-3 Alp ... "
3939382d . . .

2462

1

1

“802.15.4 18...
“998-3 Alp ... "
3939382d . . .
2412

1

1

Description

OfflineMode
Network
Network.IPv4

Network.IPv4.Method
Network.IPv6

Network.IPv6. Method
echnologies

Technologies.wifi

Services

Services.Service.
Services.Service.

Services.Service.
Services.Service.

Services.Service.

Services.Service.
Services.Service.

Services.Service.
Services.Service.

Services.Service.
Services.Service.

Services.Service.

Services.Service.
Services.Service.

Services.Service.
Services.Service.

Services.Service.

Services.Service.

echnologies.wif.
echnologies.wifi.
echnologies.wifi.
echnologies.wifi.
echnologies.wifi.
echnologies.wifi.
echnologies.wifi.
echnologies. 802.
echnologies. 802.
echnologies. 802.
echnologies. 802.
echnologies. 802.
echnologies. 802.
echnologies. 802.
echnologies. 802.

Enabled
Devices

Devices. Device.O.
Devices. Device.O.ID
Devices. Device.O.Enabled
Devices. Device.O.Services
Devices. Device.O.Services.O.
5.4

5.4.Enabled

5.4.Devices

5.4.Devices.Device.O.
5.4.Devices.Device.O.ID
5.4.Devices.Device.O.Enabled

O
O

5.4.Devices.Device.O.Services

5.4.Devices.Device.O.Services.O.

ID

.Name

SSID

..Frequency

. AutoConnect

.Favorite

.Network
Network.IPv4

Network.IPv4.DHCP
.Network.IPv4.LastAddress

ID

.Name

EPANID

..Frequency

. AutoConnect

.Favorite

US 9, 172,759 B2
23

The TLV format enables reference of properties that may also
be enumerated with XML, but does so with a smaller storage
size. For example, Table 7 illustrates a comparison of data
sizes of the XML Property List, a corresponding binary prop
erty list, and the TLV format.

TABLE 7

Comparison of the sizes of property list data sizes.

List Type Size in Bytes Percentage of XML Size

XML 2,199
Binary 730 -66.8%
TLV 450 -79.5%

By reducing the amount of data used to transfer data, the TLV
format enables the fabric 1000 transfer data to and/or from
devices having short duty cycles due to limited power (e.g.,
battery supplied devices). In other words, the TLV format
allows flexibility of transmission while increasing compact
ness of the data to be transmitted.

C. General Message Protocol
In addition to sending particular entries of varying sizes,

data may be transmitted within the fabric using a general
message protocol that may incorporate TLV formatting. An
embodiment of a general message protocol (GMP) 1128 is
illustrated in FIG. 12. In certain embodiments, the general
message protocol (GMP) 1128 may be used to transmit data
within the fabric. The GMP 1128 may be used to transmit data
via connectionless protocols (e.g., UDP) and/or connection
oriented protocols (e.g., TCP). Accordingly, the GMP 1128
may flexibly accommodate information that is used in one
protocol while ignoring Such information when using another
protocol. Moreover, the GMP 1226 may enable omission of
fields that are not used in a specific transmission. Data that
may be omitted from one or more GMP 1226 transfers is
generally indicated using grey borders around the data units.
In some embodiments, the multi-byte integer fields may be
transmitted in a little-endian order or a big-endian order.

i. Packet Length
In some embodiments, the GMP 1128 may include a

Packet Length field 1130. In some embodiments, the Packet
Length field 1130 includes 2 bytes. A value in the Packet
Length field 1130 corresponds to an unsigned integer indi
cating an overall length of the message in bytes, excluding the
Packet Length field 1130 itself. The Packet Length field 1130
may be present when the GMP 1128 is transmitted overa TCP
connection, but when the GMP 1128 is transmitted over a
UDP connection, the message length may be equal to the
payload length of the underlying UDP packet obviating the
Packet Length field 1130.

ii. Message Header
The GMP 1128 may also include a Message Header 1132

regardless of whether the GMP 1128 is transmitted using TCP
or UDP connections. In some embodiments, the Message
Header 1132 includes two bytes of data arranged in the format
illustrated in FIG. 13. As illustrated in FIG. 13, the Message
Header 1132 includes a Version field 1156. The Version field
1156 corresponds to a version of the GMP 1128 that is used to
encode the message. Accordingly, as the GMP 1128 is
updated, new versions of the GMP 1128 may be created, but
each device in a fabric may be able to receive a data packet in
any version of GMP 1128 known to the device. In addition to
the Version field 1156, the Message Header 1132 may include
an S Flag field 1158 and a D Flag 1160. The S Flag 1158 is a
single bit that indicates whether a SourceNode Id (discussed
below) field is included in the transmitted packet. Similarly,

10

15

25

30

35

40

45

50

55

60

65

24
the D Flag 1160 is a single bit that indicates whether a Des
tination Node Id (discussed below) field is included in the
transmitted packet.
The Message Header 1132 also includes an Encryption

Type field 1162. The Encryption Type field 1162 includes
four bits that specify which type of encryption/integrity
checking applied to the message, if any. For example, 0x0
may indicate that no encryption or message integrity check
ing is included, but a decimal 0x1 may indicate that AES-128
CTR encryption with HMAC-SHA-1 message integrity
checking is included.

Finally, the Message Header 1132 further includes a Sig
nature Type field 1164. The Signature Type field 1164
includes four bits that specify which type of digital signature
is applied to the message, if any. For example, 0x0 may
indicate that no digital signature is included in the message,
but 0x1 may indicate that the Elliptical Curve Digital Signa
ture Algorithm (ECDSA) with Prime256v1 elliptical curve
parameters is included in the message.

iii. Message Id
Returning to FIG. 12, the GMP 1128 also includes a Mes

sage Id field 1134 that may be included in a transmitted
message regardless of whether the message is sent using TCP
or UDP. The Message Id field 1134 includes four bytes that
correspond to an unsigned integer value that uniquely iden
tifies the message from the perspective of the sending node. In
Some embodiments, nodes may assign increasing Message Id
1134 values to each message that they send returning to Zero
after reaching 2 messages.

iv. Source Node Id
In certain embodiments, the GMP 1128 may also include a

Source Node Id field 1136 that includes eight bytes. As dis
cussed above, the Source Node Id field 1136 may be present
in a message when the single-bit S Flag 1158 in the Message
Header 1132 is set to 1. In some embodiments, the Source
Node Id field 1136 may contain the Interface ID 1104 of the
ULA1098 or the entire ULA 1098. In some embodiments, the
bytes of the Source Node Id field 1136 are transmitted in an
ascending index-value order (e.g., EUIO then EUI1 then
EUIL2 then EUIL3), etc.).

V. Destination Node Id
The GMP 1128 may include a Destination Node Id field

1138 that includes eight bytes. The Destination Node Id field
1138 is similar to the Source Node Id field 1136, but the
Destination Node Id field 1138 corresponds to a destination
node for the message. The Destination Node Id field 1138
may be present in a message when the single-bit D Flag 1160
in the Message Header 1132 is set to 1. Also similar to the
SourceNode Idfield 1136, in some embodiments, bytes of the
Destination Node Id field 1138 may be transmitted in an
ascending index-value order (e.g., EUIO then EUI1 then
EUIL2 then EUI3), etc.).

vi. Key Id
In some embodiments, the GMP 1128 may include a Key

Id field 1140. In certain embodiments, the Key Id field 1140
includes two bytes. The Key Id field 1140 includes an
unsigned integer value that identifies the encryption/message
integrity keys used to encrypt the message. The presence of
the Key Id field 1140 may be determined by the value of
Encryption Type field 1162 of the Message Header 1132. For
example, in some embodiments, when the value for the
Encryption Type field 1162 of the Message Header 1132 is
0x0, the Key Id field 1140 may be omitted from the message.
An embodiment of the Key Id field 1140 is presented in

FIG. 14. In the illustrated embodiment, the Key Id field 1140
includes a Key Type field 1166 and a Key Number field 1168.
In some embodiments, the Key Type field 1166 includes four

US 9, 172,759 B2
25

bits. The Key Type field 1166 corresponds to an unsigned
integer value that identifies a type of encryption/message
integrity used to encrypt the message. For example, in some
embodiments, if the Key Type field 1166 is 0x0, the fabrickey
is shared by all or most of the nodes in the fabric. However, if
the Key Type field 1166 is 0x1, the fabric key is shared by a
pair of nodes in the fabric.

The Key Id field 1140 also includes a Key Number field
1168 that includes twelve bits that correspond to an unsigned
integer value that identifies a particular key used to encrypt
the message out of a set of available keys, either shared or
fabric keys.

vii. Payload Length
In some embodiments, the GMP 1128 may include a Pay

load Length field 1142. The Payload Length field 1142, when
present, may include two bytes. The Payload Length field
1142 corresponds to an unsigned integer value that indicates
a size in bytes of the Application Payload field. The Payload
Length field 1142 may be present when the message is
encrypted using an algorithm that uses message padding, as
described below in relation to the Padding field.

viii. Initialization Vector
In some embodiments, the GMP 1128 may also include an

Initialization Vector (IV) field 1144. The IV field 1144, when
present, includes a variable number of bytes of data. The IV
field 1144 contains cryptographic IV values used to encrypt
the message. The IV field 1144 may be used when the mes
sage is encrypted with an algorithm that uses an IV. The
length of the IV field 1144 may be derived by the type of
encryption used to encrypt the message.

ix. Application Payload
The GMP 1128 includes an Application Payload field

1146. The Application Payload field 1146 includes a variable
number of bytes. The Application Payload field 1146 includes
application data conveyed in the message. The length of the
Application Payload field 1146 may be determined from the
Payload Length field 1142, when present. If the Payload
Length field 1142 is not present, the length of the Application
Payload field 1146 may be determined by subtracting the
length of all other fields from the overall length of the mes
sage and/or data values included within the Application Pay
load 1146 (e.g., TLV).
An embodiment of the Application Payload field 1146 is

illustrated in FIG. 15. The Application Payload field 1146
includes an APVersion field 1170. In some embodiments, the
APVersion field 1170 includes eight bits that indicate what
version of fabric software is supported by the sending device.
The Application Payload field 1146 also includes a Message
Type field 1172. The Message Type field 1172 may include
eight bits that correspond to a message operation code that
indicates the type of message being sent within a profile. For
example, in a software update profile, a 0x00 may indicate
that the message being sent is an image announce. The Appli
cation Payload field 1146 further includes an Exchange Id
field 1174 that includes sixteen bits that corresponds to an
exchange identifier that is unique to the sending node for the
transaction.

In addition, the Application Payload field 1146 includes a
Profile Id field 1176. The Profile Id 1176 indicates a “theme of
discussion' used to indicate what type of communication
occurs in the message. The Profile Id 1176 may correspond to
one or more profiles that a device may be capable of commu
nicating. For example, the Profile Id 1176 may indicate that
the message relates to a core profile, a software update profile,
a status update profile, a data management profile, a climate
and comfort profile, a security profile, a safety profile, and/or
other suitable profile types. Each device on the fabric may

5

10

15

25

30

35

40

45

50

55

60

65

26
include a list of profiles which are relevant to the device and
in which the device is capable of "participating in the discus
Sion.” For example, many devices in a fabric may include the
core profile, the software update profile, the status update
profile, and the data management profile, but only some
devices would include the climate and comfort profile. The
APVersion field 1170, Message Type field 1172, the
Exchange Id field, the Profile Id field 1176, and the Profile
Specific Header field 1176, if present, may be referred to in
combination as the Application Header.”

In some embodiments, an indication of the Profile Id via
the Profile Idfield 1176 may provide sufficient information to
provide a schema for data transmitted for the profile. How
ever, in some embodiments, additional information may be
used to determine further guidance for decoding the Applica
tion Payload field 1146. In such embodiments, the Applica
tion Payload field 1146 may include a Profile-Specific Header
field 1178. Some profiles may not use the Profile-Specific
Header field 1178 thereby enabling the Application Payload
field 1146 to omit the Profile-Specific Header field 1178.
Upon determination of a schema from the Profile Idfield 1176
and/or the Profile-Specific Header field 1178, data may be
encoded/decoded in the Application Payload sub-field 1180.
The Application Payload sub-field 1180 includes the core
application data to be transmitted between devices and/or
services to be stored, rebroadcast, and/or acted upon by the
receiving device/service.

X. Message Integrity Check
Returning to FIG. 12, in some embodiments, the GMP

1128 may also include a Message Integrity Check (MIC) field
1148. The MIC field 1148, when present, includes a variable
length of bytes of data containing a MIC for the message. The
length and byte order of the field depends upon the integrity
check algorithm in use. For example, if the message is
checked for message integrity using HMAC-SHA-1, the MIC
field 1148 includes twenty bytes in big-endian order. Further
more, the presence of the MIC field 1148 may be determined
by whether the Encryption Type field 1162 of the Message
Header 1132 includes any value other than 0x0.

xi. Padding
The GMP 1128 may also includeaPadding field 1150. The

Padding field 1150, when present, includes a sequence of
bytes representing a cryptographic padding added to the mes
sage to make the encrypted portion of the message evenly
divisible by the encryption block size. The presence of the
Padding field 1150 may be determined by whether the type of
encryption algorithm (e.g., block ciphers in cipher-block
chaining mode) indicated by the Encryption Type field 1162
in the Message Header 1132 uses cryptographic padding.

Xii. Encryption
The Application Payload field 1146, the MIC field 1148,

and the Padding field 1150 togetherforman Encryption block
1152. The Encryption block 1152 includes the portions of the
message that are encrypted when the Encryption Type field
1162 in the Message Header 1132 is any value other than 0x0.

xiii. Message Signature
The GMP 1128 may also include a Message Signature field

1154. The Message Signature field 1154, when present,
includes a sequence of bytes of variable length that contains a
cryptographic signature of the message. The length and the
contents of the Message Signature field may be determined
according to the type of signature algorithm in use and indi
cated by the SignatureType field 1164 of the Message Header
1132. For example, if ECDSA using the Prime256v1 ellipti
cal curve parameters is the algorithm in use, the Message
Signature field 1154 may include two thirty-two bit integers
encoded in little-endian order.

US 9, 172,759 B2
27

IV. Profiles and Protocols
As discussed above, one or more schemas of information

may be selected upon desired general discussion type for the
message. A profile may consist of one or more schemas. For
example, one set of schemas of information may be used to
encode/decode data in the Application Payload sub-field
1180 when one profile is indicated in the Profile Id field 1176
of the Application Payload 1146. However, a different set of
schemas may be used to encode/decode data in the Applica
tion Payload sub-field 1180 when a different profile is indi
cated in the Profile Id field 1176 of the Application Payload
1146.

Additionally, in certain embodiments, each device may
include a set of methods used to process profiles. For
example, a core protocol may include the following profiles:
GetProfiles, GetSchema, GetSchemas, GetProperty, Get
Properties, SetProperty, SetProperties, RemoveProperty,
RemoveProperties, RequestEcho, NotifyPropertyChanged,
and/or NotifyPropertiesChanged. The Get Profiles method
may return an array of profiles Supported by a queried node.
The GetSchema and GetSchemas methods may respectively
return one or all schemas for a specific profile. GetProperty
and GetProperties may respectively return a value or all value
pairs for a profile schema. SetProperty and SetProperties may
respectively set single or multiple values for a profile schema.
RemoveProperty and RemoveProperties may respectively
attempt to remove a single or multiple values from a profile
schema. RequestEcho may send an arbitrary data payload to
a specified node which the node returns unmodified. Noti
fyPropertyChange and NotifyPropertiesChanged may
respectively issue a notification if a single/multiple value
pairs have changed for a profile Schema.

To aid in understanding profiles and schemas, a non-exclu
sive list of profiles and schemas are provided below for illus
trative purposes.

A. Status Reporting
A status reporting schema is presented as the status report

ing frame 1182 in FIG. 16. The status reporting schema may
be a separate profile or may be included in one or more
profiles (e.g., a core profile). In certain embodiments, the
status reporting frame 1182 includes a profile field 1184, a
status code field 1186, a next status field 1188, and may
include an additional status info field 1190.

i. Profile Field
In some embodiments, the profile field 1184 includes four

bytes of data that defines the profile under which the infor
mation in the present status report is to be interpreted. An
embodiment of the profile field 1184 is illustrated in FIG. 17
with two sub-fields. In the illustrated embodiment, the profile
field 1184 includes a profile Id sub-field 1192 that includes
sixteen bits that corresponds to a vendor-specific identifier for
the profile under which the value of the status code field 1186
is defined. The profile field 1184 may also includes a vendor
Id Sub-field 1194 that includes sixteen bits that identifies a
vendor providing the profile identified in the profile Id sub
field 1192.

ii. Status Code
In certain embodiments, the status code field 1186 includes

sixteen bits that encode the status that is being reported. The
values in the status code field 1186 are interpreted in relation
to values encoded in the vendor Id sub-field 1192 and the
profile Id sub-field 1194 provided in the profile field 1184.
Additionally, in some embodiments, the status code space
may be divided into four groups, as indicated in Table 8
below.

10

15

25

30

35

40

45

50

55

60

65

28
TABLE 8

Status Code Range Table

Range Name Description

OxOOOO ... OxOO1O SUCCESS A request was successfully
processed.

OxOO11 ... OxOO2O client error An error has or may have
occurred on the client-side
of a client server exchange.
For example, the client
has made a badly-formed
request.
An error has or may have
occurred on the server side
of a client server exchange.
For example, the server
has failed to process a client
request to an operating
system error.
Additional processing will
be used, such as redirection,
to complete a particular
exchange, but no errors yet.

OxOO21 ... OxOO3O Sewer ed

OxOO31 ... Ox0040 continue/redirect

Although Table 8 identifies general status code ranges that
may be used separately assigned and used for each specific
profile Id, in Some embodiments, some status codes may be
common to each of the profiles. For example, these profiles
may be identified using a common profile (e.g., core profile)
identifier, such as 0x00000000.

iii. Next Status
In some embodiments, the next status code field 1188

includes eight bits. The next status code field 1188 indicates
whether there is following status information after the cur
rently reported status. If following status information is to be
included, the next status code field 1188 indicates what type
of status information is to be included. In some embodiments,
the next status code field 1188 may always be included,
thereby potentially increasing the size of the message. How
ever, by providing an opportunity to chain status information
together, the potential for overall reduction of data sent may
be reduced. If the next status field 1186 is 0x00, no following
status information field 1190 is included. However, non-zero
values may indicate that data may be included and indicate
the form in which the data is included (e.g., in a TLV packet).

iv. Additional Status Info
When the next status code field 1188 is non-zero, the addi

tional status info field 1190 is included in the message. If
present, the status item field may contain status in a form that
may be determined by the value of the preceding status type
field (e.g., TLV format)

B. Software Update
The software update profile or protocol is a set of schemas

and a client/server protocol that enables clients to be made
aware of or seek information about the presence of software
that they may download and install. Using the Software
update protocol, a Software image may be provided to the
profile client in a format known to the client. The subsequent
processing of the Software image may be generic, device
specific, or vendor-specific and determined by the software
update protocol and the devices.

i. General Application Headers for the Application Payload
In order to be recognized and handled properly, Software

update profile frames may be identified within the Applica
tion Payload field 1146 of the GMP 1128. In some embodi
ments, all software update profile frames may use a common
Profile Id 1176, such as 0x0000000C. Additionally, software
update profile frames may include a Message Type field 1172

US 9, 172,759 B2
29

that indicates additional information and may chosen accord
ing to Table 9 below and the type of message being sent.

TABLE 9
5

Software update profile message types

Type Message

OxOO image announce
OxO1 image query

10
OxO2 Image query

response
OxO3 download notify
Ox04 notify response
OxOS update notify
0x06... 0xff reserved 15

Additionally, as described below, the software update
sequence may be initiated by a server sending the update as an
image announce or a client receiving the update as an image
query. In either embodiment, an Exchange Id 1174 from the 20
initiating event is used for all messages used in relation to the
Software update.

ii. Protocol Sequence
FIG. 18 illustrates an embodiment of a protocol sequence

1196 for a software update between a software update client 25
1198 and a software update server 1200. In certain embodi
ments, any device in the fabric may be the software update
client 1198 or the software update server 1200. Certain
embodiments of the protocol sequence 1196 may include
additional steps, such as those illustrated as dashed lines that 30
may be omitted in Some software update transmissions.

1. Service Discovery
In some embodiments, the protocol sequence 1196 begins

with a software update profile server announcing a presence
of the update. However, in other embodiments, such as the 35
illustrated embodiment, the protocol sequence 1196 begins
with a service discovery 1202, as discussed above.

2. Image Announce
In some embodiments, an image announce message 1204

may be multicast or unicast by the software update server 40
1200. The image announce message 1204 informs devices in
the fabric that the server 1200 has a software update to offer.
If the update is applicable to the client 1198, upon receipt of
the image announce message 1204, the Software update client
1198 responds with an image query message 1206. In certain 45
embodiments, the image announce message 1204 may not be
included in the protocol sequence 1196. Instead, in such
embodiments, the software update client 1198 may use a
polling schedule to determine when to send the image query
message 1206. 50

3. Image Query
In certain embodiments, the image query message 1206

may be unicast from the software update client 1198 either in
response to an image announce message 1204 or according to
a polling schedule, as discussed above. The image query 55
message 1206 includes information from the client 1198
about itself. An embodiment of a frame of the image query
message 1206 is illustrated in FIG. 19. As illustrated in FIG.
19, certain embodiments of the image query message 1206
may include a frame control field 1218, a product specifica- 60
tion field 1220, a vendor specific data field 1222, a version
specification field 1224, a locale specification field 1226, an
integrity type Supported field 1228, and an update schemes
supported field 1230.

a. Frame Control 65
The frame control field 1218 includes 1 byte and indicates

various information about the image query message 1204. An

30
example of the frame control field 128 is illustrated in FIG.
20. As illustrated, the frame control field 1218 may include
three sub-fields: vendor specific flag 1232, locale specifica
tion flag 1234, and a reserved field S3. The vendor specific
flag 1232 indicates whether the vendor specific data field
1222 is included in the message image query message. For
example, when the vendor specific flag 1232 is 0 no vendor
specific data field 1222 may be present in the image query
message, but when the vendor specific flag 1232 is 1 the
vendor specific data field 1222 may be present in the image
query message. Similarly, a 1 value in the locale specification
flag 1234 indicates that a locale specification field 1226 is
present in the image query message, and a 0 value indicates
that the locale specification field 1226 in not present in the
image query message.

b. Product Specification
The product specification field 1220 is a six byte field. An

embodiment of the product specification field 1220 is illus
trated in FIG. 21. As illustrated, the product specification field
1220 may include three sub-fields: a vendor Id field 1236, a
product Id field 1238, and a product revision field 1240. The
vendor Id field 1236 includes sixteen bits that indicate a
vendor for the software update client 1198. The product Id
field 1238 includes sixteen bits that indicate the device prod
uct that is sending the image query message 1206 as the
software update client 1198. The product revision field 1240
includes sixteen bits that indicate a revision attribute of the
software update client 1198.

c. Vendor Specific Data
The vendor specific data field 1222, when present in the

image query message 1206, has a length of a variable number
of bytes. The presence of the vendor specific data field 1222
may be determined from the vendor specific flag 1232 of the
frame control field 1218. When present, the vendor specific
data field 1222 encodes vendor specific information about the
software update client 1198 in a TLV format, as described
above.

d. Version Specification
An embodiment of the version specification field 1224 is

illustrated in FIG. 22. The version specification field 1224
includes a variable number of bytes sub-divided into two
sub-fields: a version length field 1242 and a version string
field 1244. The version length field 1242 includes eight bits
that indicate a length of the version string field 1244. The
version string field 1244 is variable in length and determined
by the version length field 1242. In some embodiments, the
version string field 1244 may be capped at 255 UTF-8 char
acters in length. The value encoded in the version string field
1244 indicates a software version attribute for the software
update client 1198.

e. Locale Specification
In certain embodiments, the locale specification field 1226

may be included in the image query message 1206 when the
locale specification flag 1234 of the frame control 1218 is 1.
An embodiment of the locale specification field 1226 is illus
trated in FIG. 23. The illustrated embodiment of the locale
specification field 1226 includes a variable number of bytes
divided into two sub-fields: a locale string length field 1246
and a locale string field 1248. The locale string length field
1246 includes eight bits that indicate a length of the locale
string field 1248. The locale string field 1248 of the locale
specification field 1226 may be variable in length and contain
a string of UTF-8 characters encoding a local description
based on Portable Operating System Interface (POSIX)
locale codes. The standard format for POSIX locale codes is

US 9, 172,759 B2
31

language territory.codeset (amodifier For example,
the POSIX representation for Australian English is en A
U.UTF8.

f. Integrity Types Supported
An embodiment of the integrity types field 1228 is illus

trated in FIG. 24. The integrity types supported field 1228
includes two to four bytes of data divided into two sub-fields:
a type list length field 1250 and an integrity type list field
1252. The type list length field 1250 includes eight bits that
indicate the length in bytes of the integrity type list field 1252.
The integrity type list field 1252 indicates the value of the
software update integrity type attribute of the software update
client 1198. In some embodiments, the integrity type may be
derived from Table 10 below.

TABLE 10

Example integrity types

Value Integrity Type

OxOO SHA-160
OXO1 SHA-256
OxO2 SHA-512

The integrity type list field 1252 may contain at least one
element from Table 10 or other additional values not
included.

g. Update Schemes Supported
An embodiment of the schemes supported field 1230 is

illustrated in FIG. 25. The schemes supported field 1230
includes a variable number of bytes divided into two sub
fields: a scheme list length field 1254 and an update scheme
list field 1256. The scheme list length field 1254 includes
eight bits that indicate a length of the update scheme list field
in bytes. The update scheme list field 1256 of the update
schemes supported field 1222 is variable in length determined
by the scheme list length field 1254. The update scheme list
field 1256 represents an update schemes attributes of the
software update profile of the software update client 1198. An
embodiment of example values is shown in Table 11 below.

TABLE 11

Example update Schemes

Value Update Scheme

OxOO HTTP
OXO1 HTTPS
OxO2 SFTP
OXO3 Fabric-specific File Transfer Protocol

(e.g., Bulk Data Transfer discussed
below)

Upon receiving the image query message 1206, the Software
update server 1200 uses the transmitted information to deter
mine whether the software update server 1200 has an update
for the software update client 1198 and how best to deliver the
update to the software update client 1198.

4. Image Query Response
Returning to FIG. 18, after the software update server 1200

receives the image query message 1206 from the Software
update client 1198, the software update server 1200 responds
with an image query response 1208. The image query
response 1208 includes either information detailing why an
update image is not available to the Software update client
1198 or information about the available image update to
enable to software update client 1198 to download and install
the update.

10

15

25

30

35

40

45

50

55

60

65

32
An embodiment of a frame of the image query response

1208 is illustrated in FIG. 26. As illustrated, the image query
response 1208 includes five possible sub-fields: a query status
field 1258, a uniform resource identifier (URI) field 1260, an
integrity specification field 1262, an update scheme field
1264, and an update options field 1266.

a. Query Status
The query status field 1258 includes a variable number of

bytes and contains status reporting formatted data, as dis
cussed above in reference to status reporting. For example,
the query status field 1258 may include image query response
status codes, such as those illustrated below in Table 12.

TABLE 12

Example image query response status codes

Profile Code Description

OxOOOOOOOO 0x0000 The server has processed the image query
message 1206 and has an update for the
software update client 1198.

OxOOOOOOOC 0x0001 The server has processed the image query
message 1206, but the server does not have an
update for the software update client 1198.

OxOOOOOOOO 0x0010 The server could not process the request because
of improper form for the request.

OxOOOOOOOO 0x0020 The server could not process the request due to
8
internal error

b. URI

The URI field 1260 includes a variable number of bytes.
The presence of the URI field 1260 may be determined by the
query status field 1258. If the query status field 1258 indicates
that an update is available, the URI field 1260 may be
included. An embodiment of the URI field 1260 is illustrated
in FIG. 27. The URI field 1260 includes two Sub-fields: a URI
length field 1268 and a URI string field 1270. The URI length
field 1268 includes sixteen bits that indicates the length of the
URI string field 1270 in UTF-8 characters. The URI string
field 1270 and indicates the URI attribute of the Software
image update being presented, such that the Software update
client 1198 may be able to locate, download, and install a
Software image update, when present.

c. Integrity Specification
The integrity specification field 1262 may variable in

length and present when the query status field 1258 indicates
that an update is available from the software update server
1198 to the software update client 1198. An embodiment of
the integrity specification field 1262 is illustrated in FIG. 28.
As illustrated, the integrity specification field 1262 includes
two sub-fields: an integrity type field 1272 and an integrity
value field 1274. The integrity type field 1272 includes eight
bits that indicates an integrity type attribute for the software
image update and may be populated using a list similar to that
illustrated in Table 10 above. The integrity value field 1274
includes the integrity value that is used to verify that the
image update message has maintained integrity during the
transmission.

d. Update Scheme
The update scheme field 1264 includes eight bits and is

present when the query status field 1258 indicates that an
update is available from the software update server 1198 to
the software update client 1198. If present, the update scheme
field 1264 indicates a scheme attribute for the software update
image being presented to the software update server 1198.

US 9, 172,759 B2
33

e. Update Options
The update options field 1266 includes eight bits and is

present when the query status field 1258 indicates that an
update is available from the software update server 1198 to
the software update client 1198. The update options field
1266 may be sub-divided as illustrated in FIG. 29. As illus
trated, the update options field 1266 includes four sub-fields:
an update priority field 1276, an update condition field 1278,
a report status flag 1280, and a reserved field 1282. In some
embodiments, the update priority field 1276 includes two
bits. The update priority field 1276 indicates a priority
attribute of the update and may be determined using values
such as those illustrated in Table 13 below.

TABLE 13

Example update priority values

Value Description

OO Normal - update during a period of low network traffic
O1 Critical - update as quickly as possible

The update condition field 1278 includes three bits that may
be used to determine conditional factors to determine when or
if to update. For example, values in the update condition field
1278 may be decoded using the Table 14 below.

TABLE 1.4

Example update conditions

Value Decryption

O Update without conditions
1 Update if the version of the so

client Software does not match the update version.
2 Update if the version of the software running on the update

client software is older than the update version.
3 Update if the user opts into an update with a user interface

ware running on the update

The report status flag 1280 is a single bit that indicates
whether the software update client 1198 should respond with
a download notify message 1210. If the report status flag 1280
is set to 1 the software update server 1198 is requesting a
download notify message 1210 to be sent after the software
update is downloaded by the software update client 1200.

If the image query response 1208 indicates that an update
is available. The software update client 1198 downloads 1210
the update using the information included in the image query
response 1208 at a time indicated in the image query response
1208.

5. Download Notify
After the update download 1210 is successfully completed

or failed and the report status flag 1280 value is 1, the software
update client 1198 may respond with the download notify
message 1212. The download notify message 1210 may be
formatted in accordance with the status reporting format dis
cussed above. An example of status codes used in the down
load notify message 1212 is illustrated in Table 15 below.

TABLE 1.5

Example download notify status codes

Profile Code Description

OxOOOOOOOO OxOOOO The download has been completed,
and integrity verified

5

10

15

25

30

35

40

45

50

55

60

65

34
TABLE 15-continued

Example download notify status codes

Profile Code Description

OxOOOOOOOC OxOO2O The download could not be
completed due to faulty download
instructions.
The image query response
message 1208 appears proper, but
the download or integrity
verification failed.
The integrity of the download could
not be verified.

OxOOOOOOOC OxOO21

OxOOOOOOOC OxOO22

In addition to the status reporting described above, the down
load notify message 1208 may include additional status infor
mation that may be relevant to the download and/or failure to
download.

6. Notify Response
The software update server 1200 may respond with a notify

response message 1214 in response to the download notify
message 1212 or an update notify message 1216. The notify
response message 1214 may include the status reporting for
mat, as described above. For example, the notify response
message 1214 may include status codes as enumerated in
Table 16 below.

TABLE 16

Example notify response status codes

Profile Code Description

OxOOOOOOOO 0x0030 Continue- the notification is acknowledged,
but the update has not completed, such as
download notify message 1214 received but
update notify message 1216 has not.

OxOOOOOOOO 0x0000 Success - the notification is acknowledged,
and the update has completed.

OxOOOOOOOC 0x0023 Abort - the notification is acknowledged,
but the server cannot continue the update.

OxOOOOOOOC 0x0031 Retry query - the notification is acknowledged,
and the software update client 1198 is directed to
retry the update by Submitting another image
query message 1206.

In addition to the status reporting described above, the notify
response message 1214 may include additional status infor
mation that may be relevant to the download, update, and/or
failure to download/update the software update.

7. Update Notify
After the update is successfully completed or failed and the

report status flag 1280 value is 1, the software update client
1198 may respond with the update notify message 1216. The
update notify message 1216 may use the status reporting
format described above. For example, the update notify mes
sage 1216 may include status codes as enumerated in Table 17
below.

TABLE 17

Example update notify status codes

Profile Code Description

OxOOOOOOOO OxOOOO Success - the update has been completed.
OxOOOOOOOC OxOO1O Client error - the update failed due to a

problem in the software update client 1198.

In addition to the status reporting described above, the update
notify message 1216 may include additional status informa
tion that may be relevant to the update and/or failure to
update.

US 9, 172,759 B2
35

C. Data Management Protocol
Data management may be included in a common profile

(e.g., core profile) used in various electronic devices within
the fabric or may be designated as a separate profile. In either
situation, the device management protocol (DMP) may be
used for nodes to browse, share, and/or update node-resident
information. A sequence 1284 used in the DMP is illustrated
in FIG. 30. The sequence 1284 illustrates a viewing node
1286 that requests to view and/or change resident data of a
viewed node 1288. Additionally, the viewing node 1286 may
request to view the resident data using one of several viewing
options, such as a Snapshot request, a watching request that
the viewing persists over a period of time, or other suitable
viewing type. Each message follows the format for the Appli
cation Payload 1146 described in reference to FIG. 15. For
example, each message contains a profile Id 1176 that corre
sponds to the data management profile and/or the relevant
core profile, such as 0x235A0000. Each message also con
tains a message type 1172. The message type 1172 may be
used to determine various factors relating the conversation,
Such as viewing type for the view. For example, in some
embodiments, the message type field 1172 may be encoded/
decoded according to Table 18 below.

TABLE 18

Example software
update profile message types

Type Message

OxOO Snapshot request
OxO1 watch request
OxO2 periodic update request
OXO3 refresh update
OXO4 cancel view update
OxOS view response
OxO6 explicit update request
OxO7 view update request
Ox08 update response

i. View Request
Although a view request message 1290 requests to view

node-resident data, the type of request may be determined by
the message type field 1172, as discussed above. Accordingly
each request type may include a different view request frame.

1. Snapshot Request
A snapshot request may be sent by the viewing node 1286

when the viewing node 1286 desires an instantaneous view
into the node-resident data on the viewed node 1288 without
requesting future updates. An embodiment of a Snapshot
request frame 1292 is illustrated in FIG. 31.
As illustrated in FIG. 31, the snapshot request frame 1292

may be variable in length and include three fields: a view
handle field 1294, a path length list field 1296, and a path list
field 1298. The view handle field 1294 may include two bits
that provide a “handle' to identify the requested view. In
some embodiments, the view handle field 1294 is populated
using a random 16-bit number or a 16-bit sequence number
along with a uniqueness check performed on the viewing
node 1286 when the request is formed. The path list length
field 1296 includes two bytes that indicate a length of the path
list field 1298. The path list field 1298 is variable in length and
indicated by the value of the path list length field 1296. The
value of the path list field 1298 indicates a schema path for
nodes.
A schema path is a compact description for a data item or

container that is part of a schema resident on the nodes. For
example, FIG. 32 provides an example of a profile schema

10

15

25

30

35

40

45

50

55

60

65

36
1300. In the illustrated profile schema 1300, a path to data
item 1302 may be written as “Foo:bicycle:mountain” in a
binary format. The binary format of the path may be repre
sented as a profile binary format 1304, as depicted in FIG.33.
The profile binary format 1304 includes two sub-fields: a
profile identifier field 1306 and a TLV data field 1308. The
profile identifier field 1306 identifies which profile is being
referenced (e.g., Foo profile). The TLV data field 1308 path
information. As previously discussed TLV data includes a tag
field that includes information about the enclosed data. Tag
field values used to refer to the Foo profile of FIG. 32 may be
similar to those values listed in Table 19.

TABLE 19

Example tag
values for the Foo profile

Name Tag

animal Ox43O1
fish Ox43O2
fowl Ox43O3
medium Ox4304
size Ox43OS
bicycle Ox4306
road Ox4307
mountain Ox43O8
track Ox4309
of gears Ox43OA
weight Ox43OB

Using Table 19 and the Foo profile of FIG.32, a binary string
in TLV format representing the path "Foo:bicycle: mountain'
may be represented as shown in Table 20 below.

TABLE 20

Example binary tag list for a schema path

Profile ID Tag and Length (TL) “bicycle' “mountain

CD:ABOOOO OD:O2 O6:43 08:43

If the viewing node 1286 desires to receive an entire data set
defined in a profile schema (e.g. Foo profile schema of FIG.
33), the view request message 1290 may request a "nil item
(e.g. 0x0D00 TL and an empty length referring to the con
tainer.

2. Watch Request
If the viewing node 1286 desires more than a snapshot, the

viewing node 1286 may request a watch request. A watch
request asks the viewed node 1288 to send updates when
changes are made to the data of interest in viewed node 1288
so that viewing node 1286 can keep a synchronized list of the
data. The watch request frame may have a different format
than the snapshot request of FIG. 31. An embodiment of a
watch request frame 1310 is illustrated in FIG. 34. The watch
request frame 1310 includes four fields: a view handle field
1312, a path list length field 1314, a path list field 1316, and
a change count field 1318. The view handle field 1312, the
path list length field 1314, and the path list field may be
respectively formatted similar to the view handle field 1294,
the path list length field 1296, and the path list field 1298 of
the snapshot request of FIG. 31. The additional field, the
change count field 1318, indicates a threshold of a number of
changes to the requested data at which an update is sent to the
viewing node 1286. In some embodiments, if the value of the
change count field 1318 is 0, the viewed node 1288 may
determine when to send an update on its own. If the value of

US 9, 172,759 B2
37

the change count field 1318 is nonzero then after a number of
changes equal to the value, then an update is sent to the
viewing node 1286.

3. Periodic Update Request
A third type of view may also be requested by the viewing

node 1286. This third type of view is referred to as a periodic
update. A periodic update includes a Snapshot view as well as
periodic updates. As can be understood, a periodic update
request may be similar to the Snapshot request with additional
information determining the update period. For example, an
embodiment of a periodic update request frame 1320 is
depicted in FIG. 35. The periodic update request frame 1320
includes four fields: a view handle field 1322, a path list
length field 1324, a path list field 1326, and an update period
field 1328. The view handle field 1322, the path list length
field 1324, and the path list field 1326 may be formatted
similar to their respective fields in the Snapshot request frame
1292. The update period field 1328 is four bytes in length and
contains a value that corresponds to a period of time to lapse
between updates in a relevant unit of time (e.g., seconds).

4. Refresh Request
When the viewing node 1286 desires to receive an updated

Snapshot, the viewing node 1286 may send a view request
message 1290 in the form of a refresh request frame 1330 as
illustrated in FIG. 36. The refresh request frame 1330 essen
tially resends a Snapshot view handle field (e.g., view handle
field 1294) from a previous snapshot request that the viewed
node 1288 can recognize as a previous request using the view
handle value in the refresh request frame 1330.

5. Cancel View Request
When the viewing node 1286 desires to cancel an ongoing

view (e.g., periodic update or watch view), the viewing node
1286 may send a view request message 1290 in the form of a
cancel view request frame 1332 as illustrated in FIG. 37. The
cancel view request frame 1332 essentially resends a view
handle field from a previous periodic update or watch view
(e.g., view handle fields 1310, or 1322) from a previous
request that the viewed node 1288 can recognize as a previous
request using the view handle value in the refresh request
frame 1330 and to cancel a currently periodic update or watch
view.

ii. View Response
Returning to FIG. 30, after the viewed node 1288 receives

a view request message 1290, the viewed node 1288 responds
with a view response message 1334. An example of a view
response message frame 1336 is illustrated in FIG. 38. The
view response message frame 1336 includes three fields: a
view handle field 1338, a view request status field 1240, and
a data item list 1242. The view handle field 1338 may be
formatted similar to any of the above referenced view handle
fields 1338. Additionally, the view handlefield 1338 contains
a value that matches a respective view handle field from the
view request message 1290 to which the view response mes
sage 1334 is responding. The view request status field 1340 is
a variable length field that indicates a status of the view
request and may beformatted according to the status updating
format discussed above. The data item list field 1342 is a
variable length field that is present when the view request
status field 1340 indicates that the view request was success
ful. When present, the data item list field 1342 contains an
ordered list of requested data corresponding to the path list of
the view request message 1290. Moreover, the data in the data
item list field 1342 may be encoded in a TLV format, as
discussed above.

iii. Update Request
As discussed above, in Some embodiments, the viewed

node 1288 may send updates to the viewing node 1286. These

10

15

25

30

35

40

45

50

55

60

65

38
updates may be sent as an update request message 1344. The
update request message 1344 may include a specified format
dependent upon a type of update request. For example, an
update request may be an explicit update request or a view
update request field that may be identified by the Message Id
1172.

1. Explicit Update Request
An explicit update request may be transmitted at any time

as a result of a desire for information from another node in the
fabric 1000. An explicit update request may be formatted in
an update request frame 1346 illustrated in FIG. 39. The
illustrated update request frame 1346 includes four fields: an
update handle field 1348, a path list length field 1350, a path
list field 1352, and a data item list field 1354.
The update handle field 1348 includes two bytes that may

be populated with random or sequential numbers with
uniqueness checks to identify an update request or responses
to the request. The path list length field 1350 includes two
bytes that indicate a length of the path list field 1352. The path
list field 1352 is a variable length field that indicates a
sequence of paths, as described above. The data item list field
1354 may be formatted similar to the data item list field 1242.

2. View Update Request
A view update request message may be transmitted by a

node that has previously requested a view into a schema of
another node or a node that has established a view into its own
data on behalf of another node. An embodiment of a view
update request frame 1356 illustrated in FIG. 40. The view
update request frame 1356 includes four fields: an update
handle field 1358, a view handle field 1360, an update item
list length field 1362, and an update item list field 1364. The
update handle field 1358 may be composed using the format
discussed above in reference to the update handle field 1348.
The view handle field 1360 includes two bytes that identify
the view created by a relevant view request message 1290
having the same view handle. The update item list length field
1362 includes two bytes and indicates the number of update
items that are included in the update item list field 1364.
The update item list field 1364 includes a variable number

of bytes and lists the data items constituting the updated
values. Each updated item list may include multiple update
items. The individual update items are formatted accordingly
to the update item frame 1366 illustrated in FIG. 41. Each
update item frame 1366 includes three sub-fields: an item
index field 1368, an item timestamp field 1370, and a data
item field 1372. The item index field 1368 includes two bytes
that indicate the view under which the update is being
requested and the index in the path list of that view for the data
item field 1372.
The item timestamp field 1370 includes four bytes and

indicates the elapsed time (e.g., in seconds) from the change
until the update being communicated was made. If more than
one change has been made to the data item, the item times
tamp field 1370 may indicate the most recent or the earliest
change. The data item field 1372 is a variable length field
encoded in TLV format that is to be received as the updated
information.

iv. Update Response
After an update is received, a node (e.g., viewing node

1286) may send an update response message 1374. The
update response message 1374 may be encoded using an
update response frame 1376 illustrated in FIG. 42. The update
response frame 1376 includes two fields: an update handle
field 1378 and an update request status field 1380. The update
handle field 1378 corresponds to an update handle field value
of the update request message 1344 to which the update
response message 1374 is responding. The update request

US 9, 172,759 B2
39

status field 1380 reports a status of the update in accordance
with the status reporting format discussed above. Addition
ally, a profile using the DMP (e.g., a core profile or a data
management profile) may include profile-specific codes, such
as those enumerated in Table 21 below.

TABLE 21

Example of status codes for a profile including the DMP

Name Value Description

SUCCESS 0x0000 Request successfully processed
ill-formed request 0x0010 Received request was unparseable (e.g.,

missing fields, extra fields, etc.)
invalid path 0x0011 A path from the path list of the view or

update request did not match a node
residentschema of the responding device.

unknown view 0x0012 The view handle in the update request did
handle not match a view on the receiving node.
illegal read request 0x0013 The node making a request to read a

particular data item does not have
permission to do so.

illegal write request 0x0014. The node making the request to write a
particular data item does not have
permission to do so.

internal server error 0x0020 The server could not process the request
because of an internal error.

out of memory 0x0021 The update request could not executed
because it would overrun the available
memory in the receiving device.

continue 0x0030 The request was successfully handled but
more action by the requesting device may
OCC.

D. Bulk Transfer
In some embodiments, it may be desirable to transfer bulk

data files (e.g., sensor data, logs, or update images) between
nodes/services in the fabric 1000. To enable transfer of bulk
data, a separate profile or protocol may be incorporated into
one or more profiles and made available to the nodes/services
in the nodes. The bulk data transfer protocol may model data
files as collections of data with metadata attachments. In
certain embodiments, the data may be opaque, but the meta
data may be used to determine whether to proceed with a
requested file transfer.

Devices participating in a bulk transfer may be generally
divided according to the bulk transfer communication and
event creation. As illustrated in FIG.43, each communication
1400 in a bulk transfer includes a sender 1402 that is a node/
service that sends the bulk data 1404 to a receiver 1406 that is
a node/service that receives the bulk data 1404. In some
embodiments, the receiver may send status information 1408
to the sender 1402 indicating a status of the bulk transfer.
Additionally, a bulk transfer event may be initiated by either
the sender 1402 (e.g., upload) or the receiver 1406 (e.g.,
download) as the initiator. A node/service that responds to the
initiator may be referred to as the responder in the bulk data
transfer.

Bulk data transfer may occur using either synchronous or
asynchronous modes. The mode in which the data is trans
ferred may be determined using a variety of factors, such as
the underlying protocol (e.g., UDP or TCP) on which the bulk
data is sent. In connectionless protocols (e.g., UDP), bulk
data may be transferred using a synchronous mode that allows
one of the nodes/services (“the driver') to control a rate at
which the transfer proceeds. In certain embodiments, after
each message in a synchronous mode bulk data transfer, an
acknowledgment may be sent before sending the next mes
sage in the bulk data transfer. The driver may be the sender
1402 or the receiver 1406. In some embodiments, the driver
may toggle between an online state and an offline mode while

10

15

25

30

35

40

45

50

55

60

65

40
sending messages to advance the transfer when in the online
state. In bulk data transfers using connection-oriented proto
cols (e.g., TCP), bulk data may be transferred using an asyn
chronous mode that does not use an acknowledgment before
sending Successive messages or a single driver.

Regardless of whether the bulk data transfer is performed
using a synchronous or asynchronous mode, a type of mes
sage may be determined using a Message Type 1172 in the
Application Payload 1146 according the Profile Id 1176 in the
Application Payload. Table 22 includes an example of mes
sage types that may be used in relation to a bulk data transfer
profile value in the Profile Id 1176.

TABLE 22

Examples of message types
for bulk data transfer profiles

Message Type Message

OxO1 Sendinit
OxO2 Sendaccept
OxO3 SendReject
Ox04 Receivenit
OxOS ReceiveAccept
OxO6 ReceiveReject
OxO7 BlockQuery
Ox08 Block
Ox09 BlockEOF
OxOA Ack
OxOB Block EOF
OxOC Error

i. Sendinit
An embodiment of a SendInit message 1420 is illustrated

in FIG. 44. The Send Init message 1420 may include seven
fields: a transfer control field 1422, a range control field 1424,
a file designator length field 1426, a proposed max block size
field 1428, a start offset field 1430, lengthfield 1432, and a file
designator field 1434.
The transfer control field 1422 includes a byte of data

illustrated in FIG. 45. The transfer control field includes at
least four fields: an Asynch flag 1450, an RDrive flag 1452, an
SDrive flag 1454, and a version field 1456. The Asynch flag
1450 indicates whether the proposed transfer may be per
formed using a synchronous or an asynchronous mode. The
RDrive flag 1452 and the SDrive flag 1454 each respectively
indicates whether the receiver 1406 is capable of transferring
data with the receiver 1402 or the sender 1408 driving a
synchronous mode transfer.
The range control field 1424 includes a byte of data such as

the range control field 1424 illustrated in FIG. 46. In the
illustrated embodiment, the range control field 1424 includes
at least three fields: a BigExtent flag 1470, a start offset flag
1472, and a definite length flag 1474. The definite length flag
1474 indicates whether the transfer has a definite length. The
definite length flag 1474 indicates whether the length field
1432 is present in the Send Init message 1420, and the Big
Extent flag 1470 indicates a size for the length field 1432. For
example, in Some embodiments, a value of 1 in the BigExtent
flag 1470 indicates that the length field 1432 is eight bytes.
Otherwise, the length field 1432 is four bytes, when present.
If the transfer has a definite length, the start offset flag 1472
indicates whether a start offset is present. If a start offset is
present, the BigExtent flag 1470 indicates a length for the
start offset field 1430. For example, in some embodiments, a
value of 1 in the BigExtent flag 1470 indicates that the start
offset field 1430 is eight bytes. Otherwise, the start offset field
1430 is four bytes, when present.

US 9, 172,759 B2
41

Returning to FIG. 44, the file designator length field 1426
includes two bytes that indicate a length of the file designator
field 1434. The file designator field 1434 which is a variable
length field dependent upon the file designator length field
1426. The max block size field 1428 proposes a maximum
size of block that may be transferred in a single transfer.
The start offset field 1430, when present, has a length

indicated by the BigExtent flag 1470. The value of the start
offset field 1430 indicates a location within the file to be
transferred from which the sender 1402 may start the transfer,
essentially allowing large file transfers to be segmented into
multiple bulk transfer sessions.
The length field 1432, when present, indicates a length of

the file to be transferred if the definite length field 1474
indicates that the file has a definite length. In some embodi
ments, if the receiver 1402 receives a final block before the
length is achieved, the receiver may consider the transfer
failed and report an error as discussed below.
The file designator field 1434 is a variable length identifier

chosen by the sender 1402 to identify the file to be sent. In
some embodiments, the sender 1402 and the receiver 1406
may negotiate the identifier for the file prior to transmittal. In
other embodiments, the receiver 1406 may use metadata
along with the file designator field 1434 to determine whether
to accept the transfer and how to handle the data. The length
of the file designator field 1434 may be determined from the
file designator length field 1426. In some embodiments, the
Send Init message 1420 may also include a metadata field
1480 of a variable length encoded in a TLV format. The
metadata field 1480 enables the initiator to send additional
information, such as application-specific information about
the file to be transferred. In some embodiments, the metadata
field 1480 may be used to avoid negotiating the file designator
field 1434 prior to the bulk data transfer.

ii. Send Accept
A send accept message is transmitted from the responderto

indicate the transfer mode chosen for the transfer. An embodi
ment of a SendAccept message 1500 is presented in FIG. 47.
The Send Accept message 1500 includes a transfer control
field 1502 Similar to the transfer control field 1422 of the
Send Init message 1420. However, in some embodiments,
only the RDrive flag 1452 or the SDrive 1454 may have a
nonzero value in the transfer control field 1502 to identify the
sender 1402 or the receiver 1406 as the driver of a synchro
nous mode transfer. The Send Accept message 1500 also
includes a max block size field 1504 that indicates a maxi
mum block size for the transfer. The block size field 1504 may
be equal to the value of the max block field 1428 of the
Send Init message 1420, but the value of the max block size
field 1504 may be smaller than the value proposed in the max
block field 1428. Finally, the SendAccept message 1500 may
include a metadata field 1506 that indicates information that
the receiver 1506 may pass to the sender 1402 about the
transfer.

iii. SendReject
When the receiver 1206 rejects a transfer after a Sendinit

message, the receiver 1206 may send a SendReject message
that indicates that one or more issues exist regarding the bulk
data transfer between the sender 1202 and the receiver 1206.
The send reject message may be formatted according to the
status reporting format described above and illustrated in
FIG. 48. A send reject frame 1520 may include a status code
field 1522 that includes two bytes that indicate a reason for
rejecting the transfer. The status code field 1522 may be
decoded using values similar to those enumerated as indi
cated in the Table 23 below.

5

10

15

25

30

35

40

45

50

55

60

65

42
TABLE 23

Example status codes for Send relect message

Status Code Description

OxOO2O Transfer method not supported
OxOO21 File designator unknown
OxOO22 Start offset not supported
OxOO11 Length required
OxOO12 Length too large
OxOO2F Unknown error

In some embodiments, the send reject message 1520 may
include a next status field 1524. The next status field 1524,
when present, may be formatted and encoded as discussed
above in regard to the next status field 1188 of a status report
frame. In certain embodiments, the send reject message 1520
may include an additional information field 1526. The addi
tional information field 1526, when present, may store infor
mation about an additional status and may be encoded using
the TLV format discussed above.

iv. Receivelnit
A ReceiveInit message may be transmitted by the receiver

1206 as the initiator. The Receivelnit message may be for
matted and encoded similar to the Send Init message 1480
illustrated in FIG. 44, but the BigExtent field 1470 may be
referred to as a maximum length field that specifies the maxi
mum file size that the receiver 1206 can handle.

V. ReceiveAccept
When the sender 1202 receives a ReceiveInit message, the

sender 1202 may respond with a ReceiveAccept message.
The ReceiveAccept message may be formatted and encoded
as the ReceiveAccept message 1540 illustrated in FIG. 49.
The ReceiveAccept message 1540 may include four fields: a
transfer control field 1542, a range control field 1544, a max
block size field 1546, and sometimes a length field 1548. The
ReceiveAccept message 1540 may beformatted similar to the
SendAccept message 1502 of FIG. 47 with the second byte
indicating the range control field 1544. Furthermore, the
range control field 1544 may be formatted and encoded using
the same methods discussed above regarding the range con
trol field 1424 of FIG. 46.

vi. ReceiveReject
If the sender 1202 encounters an issue with transferring the

file to the receiver 1206, the sender 1202 may send a Receiv
eReject message formatted and encoded similar to a Sen
dReject message 48 using the status reporting format, both
discussed above. However, the status code field 1522 may be
encoded/decoded using values similar to those enumerated as
indicated in the Table 24 below.

TABLE 24

Example status codes for receive relect message

Status Code Description

OxOO2O Transfer method not supported
OxOO21 File designator unknown
OxOO22 Start offset not supported
OxOO13 Length too short
OxOO2F Unknown error

vii. BlockQuery
A BlockQuery message may be sent by a driving receiver

1202 in a synchronous mode bulk data transfer to request the
next block of data. A BlockQuery impliedly acknowledges
receipt of a previous block of data if not explicit Acknowl

US 9, 172,759 B2
43

edgement has been sent. In embodiments using asynchronous
transfers, a BlockOuery message may be omitted from the
transmission process.

viii. Block
Blocks of data transmitted in a bulk data transfer may 5

include any length greater than 0 and less than a max block
size agreed upon by the sender 1202 and the receiver 1206.

ix. BlockEOF
A final block in a data transfer may be presented as a Block

end of file (BlockEOF). The BlockEOF may have a length
between 0 and the max block size. If the receiver 1206 finds
a discrepancy between a pre-negotiated file size (e.g., length
field 1432) and the amount of data actually transferred, the
receiver 1206 may send an Error message indicating the fail
ure, as discussed below.

X. Ack
If the sender 1202 is driving a synchronous mode transfer,

the sender 1202 may wait until receiving an acknowledgment
(Ack) after sending a Block before sending the next Block. If 20
the receiver is driving a synchronous mode transfer, the
receiver 1206 may send either an explicit Ack or a Block
Query to acknowledge receipt of the previous block. Further
more, in asynchronous mode bulk transfers, the Ack message
may be omitted from the transmission process altogether. 25

Xi. AckEOF
An acknowledgement of an end of file (AckEOF) may be

sent in bulk transferS sent in Synchronous mode or asynchro
nous mode. Using the AckEOF the receiver 1206 indicates
that all data in the transfer has been received and signals the
end of the bulk data transfer session.

xii. Error
In the occurrence of certain issues in the communication,

the sender 1202 or the receiver 1206 may send an error
message to prematurely end the bulk data transfer session.
Error messages may be formatted and encoded according to
the status reporting format discussed above. For example, an
error message may be formatted similar to the SendReject
frame 1520 of FIG. 48. However, the status codes may be 40
encoded/decoded with values including and/or similar to
those enumerated in Table 25 below.

10

15

30

35

TABLE 25
45

Example status codes for an error
message in a bulk data transfer profile

Status code Description

Ox001F Transfer failed unknown error
OxOO11 Overflow error 50

The specific embodiments described above have been
shown by way of example, and it should be understood that
these embodiments may be susceptible to various modifica- ss
tions and alternative forms. It should be further understood
that the claims are not intended to be limited to the particular
forms disclosed, but rather to coverall modifications, equiva
lents, and alternatives falling within the spirit and scope of
this disclosure. 60

What is claimed is:
1. An electronic device configured to send or receive mes

sages to other electronic devices over a platform layer,
wherein the messages to cause an operation to occur at the 65
electronic device or at the other electronic devices, wherein
the messages comprise:

44
a message format comprising:

a message type field, wherein the message type field is
configured to indicate a message operation code that
specifies a type of message being sent;

an exchange ID field immediately following the mes
sage type field, wherein the exchange ID field is con
figured to uniquely identify a discussion in which the
message occurs for the electronic device;

a profile ID field immediately following the exchange ID
field, wherein the profile ID field indicates a profile of
a plurality of profiles that enables a receiving device
to interpret the message type field and identify at least
one schema of a plurality of Schemas for transmitted
data, wherein each schema of the plurality of schemas
indicates an encoding format according to the profile
and Schema; and

an application payload field following the profile id,
wherein the application payload field comprises data
associated with an application layer of the electronic
device.

2. The electronic device of claim 1, comprising a profile
specific header field that immediately follows the profile ID
field and immediately precedes the application payload field,
wherein the profile-specific header is included in the message
format when the profile field indicates that a profile is
included that uses additional information to process the appli
cation payload.

3. The electronic device of claim 1, wherein each profile of
the plurality of profiles comprises a set of schema of the
plurality of Schemas.

4. The electronic device of claim 1, wherein the indicated
profile comprises:

a core profile comprising a set of basic schemas available to
the electronic device;

a data management profile comprising a set of data man
agement schemas that enables the electronic device to
access data located on the other electronic devices;

a bulk data transfer profile comprising a set of bulk data
transfer schemas that enables the electronic device to
transfer bulk data to the other electronic devices or from
the electronic devices;

a status reporting profile comprising a set of status report
ing schemas that enables the electronic device to send or
receive status information from the other electronic
devices; or

a software update profile comprising a set of Software
update schemas that enables the electronic device to
send or receive Software update images from the other
electronic devices.

5. The electronic device of claim 1, wherein the message
format comprises a version field configured to indicate a
version of the message format being used to format the mes
sage, wherein the message type field immediately follows the
version field, wherein the version field comprises 8 bits of
data.

6. The electronic device of claim 1, wherein the message
type field comprises 8 bits of data.

7. The electronic device of claim 1, wherein the exchange
ID field comprises 16 bits of data.

8. A non-transitory, computer-readable medium having
stored thereon message comprising a message format,
wherein the message format causes an operation to occur at
the electronic device having the non-transitory, computer
readable medium, wherein the message format comprises:

a message type field, wherein the message type field is
configured to indicate a message operation code that
specifies a type of message being sent;

US 9, 172,759 B2
45

an exchange ID field immediately following the message
type field, wherein the exchange ID field is configured to
uniquely identify a discussion in which the message
OCCurS;

a profile ID field immediately following the exchange ID
field, wherein the profile ID field indicates a profile of a
plurality of profiles that enables a receiving device to
interpret the message type field and identify at least one
Schema of a plurality of schemas for transmitted data,
wherein each schema of the plurality of schemas indi
cates an encoding format according to the profile and
schema; and

an application payload field following the profile id,
wherein the application payload field comprises data
associated with an application layer.

9. The non-transitory, computer-readable medium of claim
8, wherein the message format comprises a profile-specific
header field, wherein the profile-specific header field is used
in identifying the schema.

10. The non-transitory, computer-readable medium of
claim 8, wherein the profile ID field comprises 32bits of data.

11. The non-transitory, computer-readable medium of
claim 8, wherein the application payload field comprises a
variable length of data.

12. The non-transitory, computer-readable medium of
claim8, wherein the application payload field comprises data
formatted in a tag-length-value format.

13. The non-transitory, computer-readable medium of
claim 8, wherein each profile of the plurality of profiles com
prises a schema of the plurality of schemas.

14. A method for sending and receiving messages between
devices in a fabric network, wherein the messages cause an
operation to occur at an electronic device of the devices,
wherein the method comprises:

sending or receiving a message using a message format,
wherein the message format comprises:
a message type field, wherein the message type field is

configured to indicate a message operation code that
specifies a type of message being sent;

an exchange ID field immediately following the mes
sage type field, wherein the exchange ID field is con
figured to uniquely identify a discussion in which the
message occurs;

a profile ID field immediately following the exchange ID
field, wherein the profile ID field indicates a profile of
a plurality of profiles that enables a receiving device
to interpret the message type field and identify at least

10

15

25

30

35

40

45

46
one schema of a plurality of schemas for transmitted
data, wherein each schema of the plurality of schemas
indicates an encoding format according to the profile
and schema; and

an application payload field following the profile id,
wherein the application payload field comprises data
associated with an application layer.

15. The method of claim 14, wherein the message format
comprises a profile-specific header field that immediately
follows the profile ID field and immediately precedes the
application payload field, wherein the profile-specific header
is included in the message format when the profile field indi
cates that a profile is included that uses additional information
to process the application payload.

16. The method of claim 14, wherein each profile of the
plurality of profiles comprises a set of schema of the plurality
of schemas.

17. The method of claim 14, wherein the indicated profile
comprises:

a core profile comprising a set of basic schemas available to
the electronic device;

a data management profile comprising a set of data man
agement schemas that enables the electronic device to
access data located on the other electronic devices;

a bulk data transfer profile comprising a set of bulk data
transfer schemas that enables the electronic device to
transfer bulk data to the other electronic devices or from
the electronic devices;

a status reporting profile comprising a set of status report
ing schemas that enables the electronic device to send or
receive status information from the other electronic
devices; or

a software update profile comprising a set of software
update schemas that enables the electronic device to
send or receive software update images from the other
electronic devices.

18. The method of claim 14, wherein the message format
comprises a version field configured to indicate a version of
the message format being used to format the message,
wherein the message type field immediately follows the ver
sion field, wherein the version field comprises 8 bits of data.

19. The method of claim 14, wherein the message type field
comprises 8 bits of data.

20. The method of claim 14, wherein the exchange ID field
comprises 16 bits of data.

