

## [54] IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINES

3,636,936 1/1972 Schuette..... 123/148 E  
 3,779,226 12/1973 Canup..... 123/148 E  
 3,791,364 2/1974 Saita..... 123/148 E

[75] Inventors: Dieter Callies, Jugenheim; Gunter Frank; Siegbert Graf vom Hagen, both of Bensheim, all of Germany

[73] Assignee: Kyberna GmbH, Germany

[22] Filed: Aug. 20, 1973

[21] Appl. No. 389,516

## [30] Foreign Application Priority Data

Aug. 21, 1972 Austria ..... 7180/72  
 Mar. 6, 1973 Austria ..... 1982/73

[52] U.S. Cl..... 123/148 E; 123/148 OC

[51] Int. Cl.<sup>2</sup>..... F02P 1/00

[58] Field of Search..... 123/148 E, 148 OC

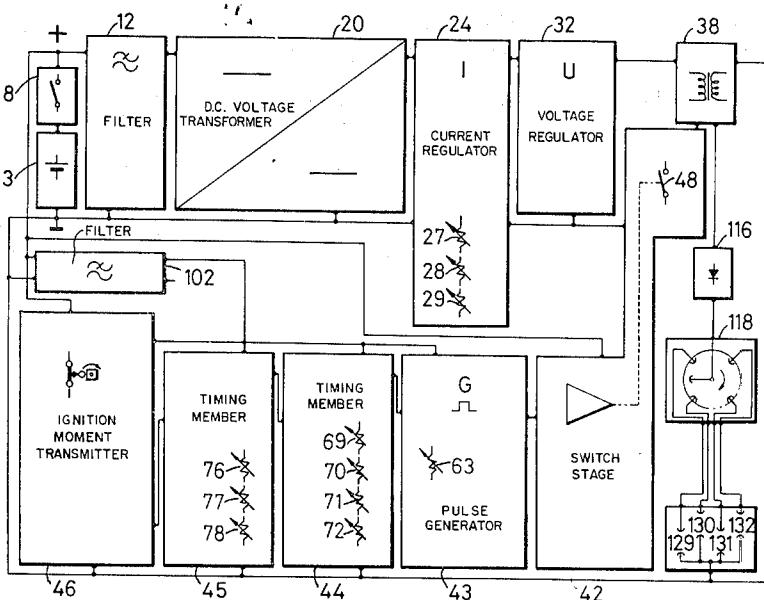
## [56] References Cited

## UNITED STATES PATENTS

3,489,129 1/1970 Issler..... 123/148 E  
 3,593,696 7/1971 Guido..... 123/148 E  
 3,626,910 12/1971 Porsche..... 123/148 E

Primary Examiner—Charles J. Myhre

Assistant Examiner—Ronald B. Cox


Attorney, Agent, or Firm—Stevens, Davis, Miller & Mosher

[57]

## ABSTRACT

An ignition device for an internal combustion engine comprising a timing member for providing an output which is a function of the angular position of the crank shaft or of the position of a piston in a cylinder of the engine, a pulse generator for turning the timing member on and off and a switching transistor connected to the pulse generator for coupling the ignition transformer of the engine to a source of d.c. voltage. The switching frequency of the transistor is determined by the pulse generator to control the start, end and duration of the period in which ignition energy is produced.

24 Claims, 27 Drawing Figures



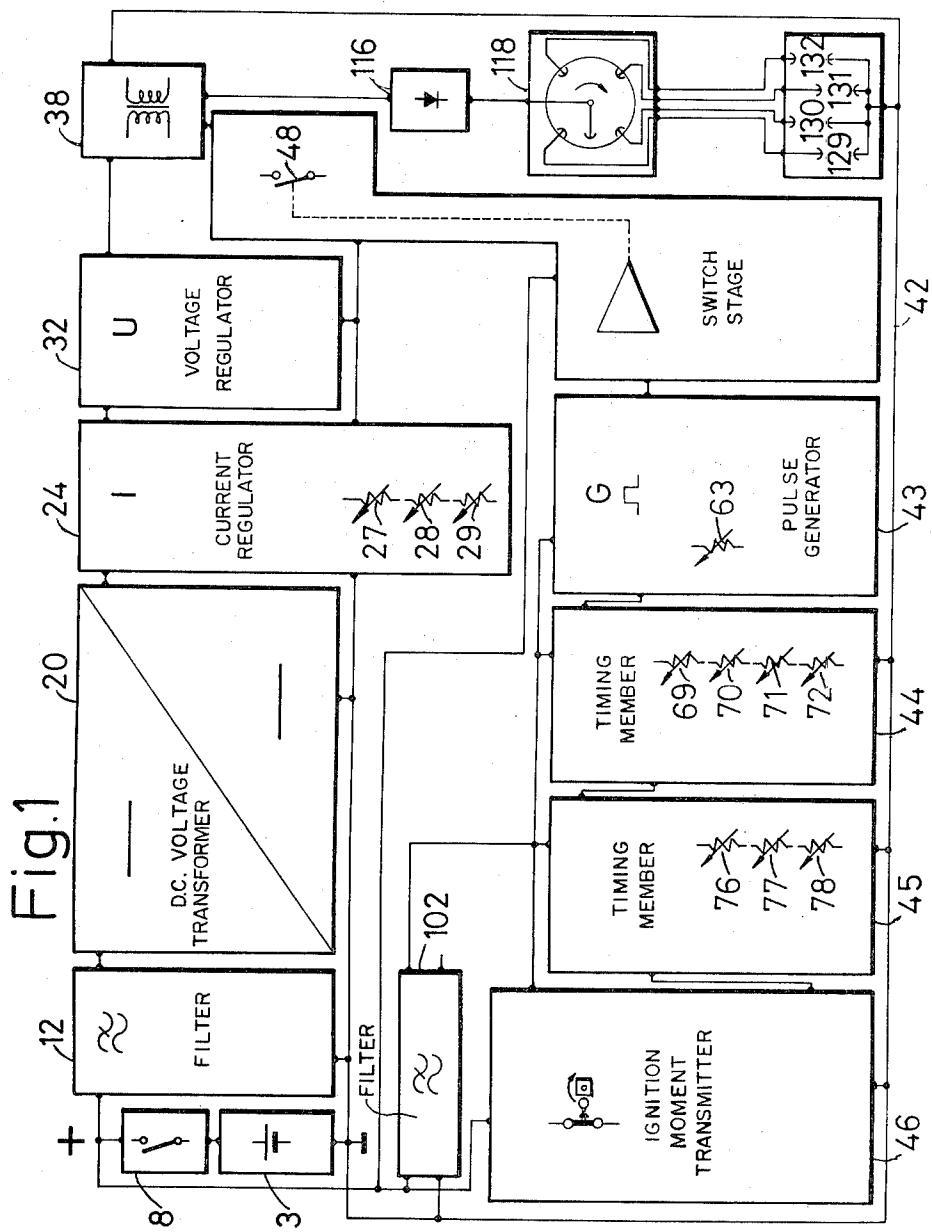
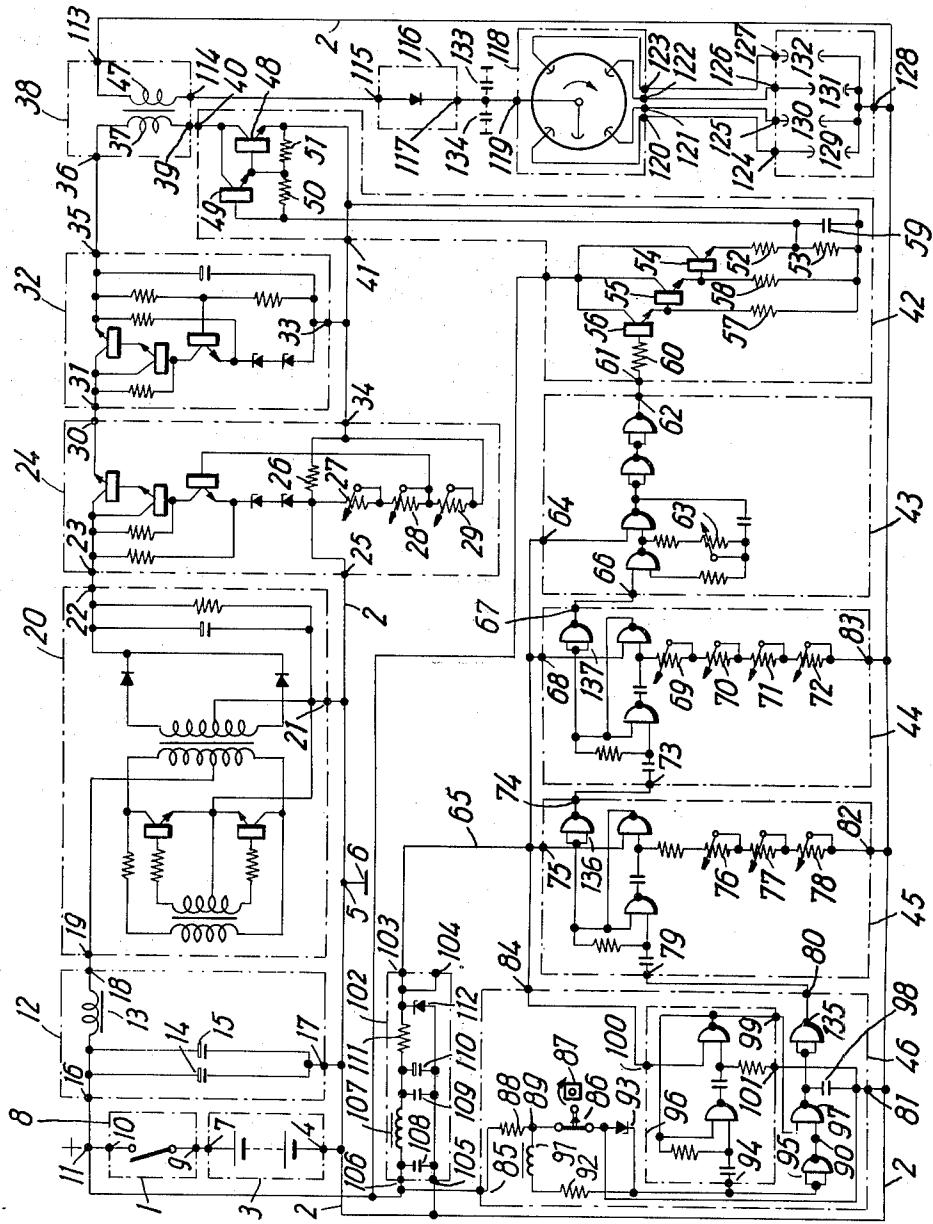




Fig. 2



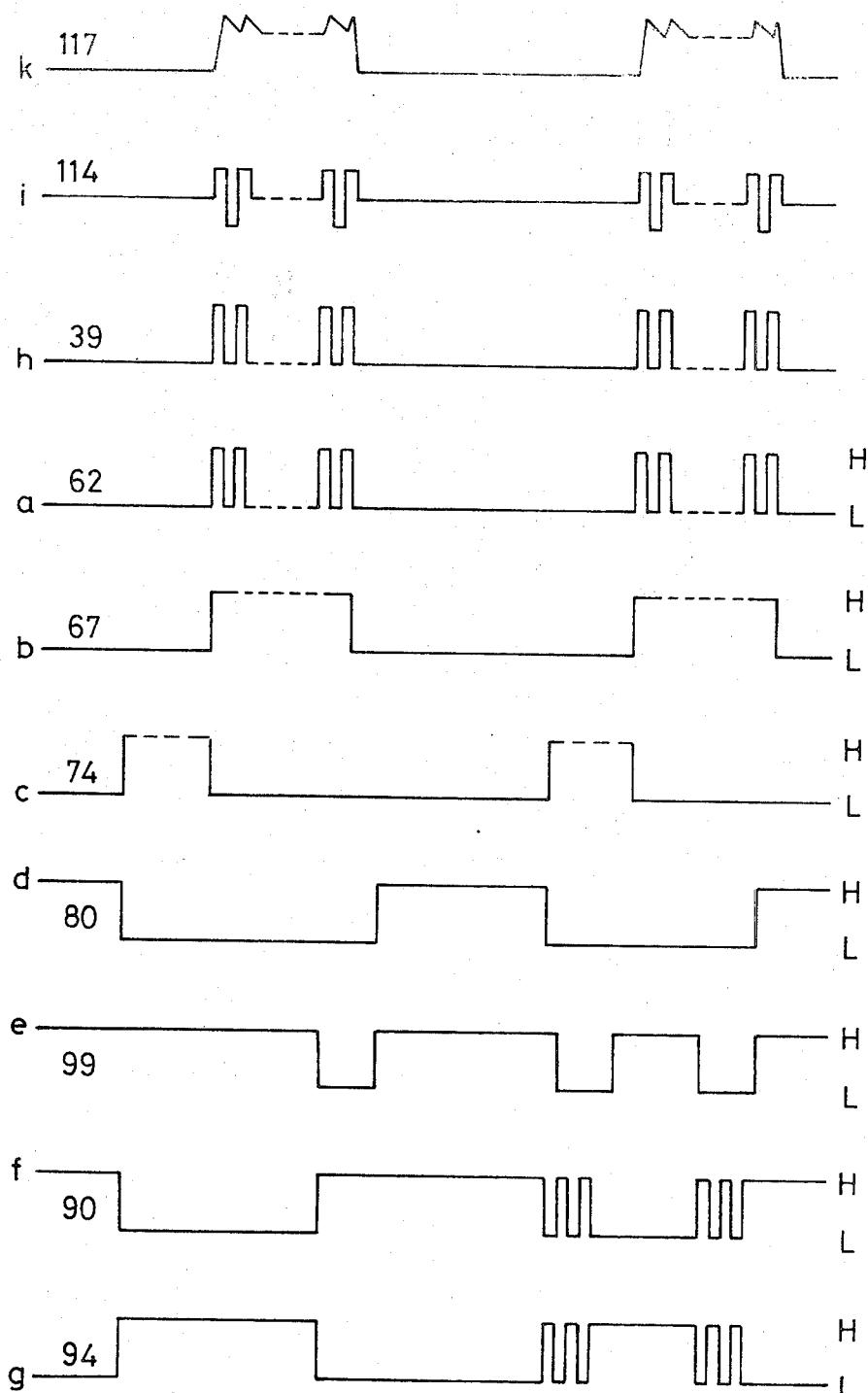
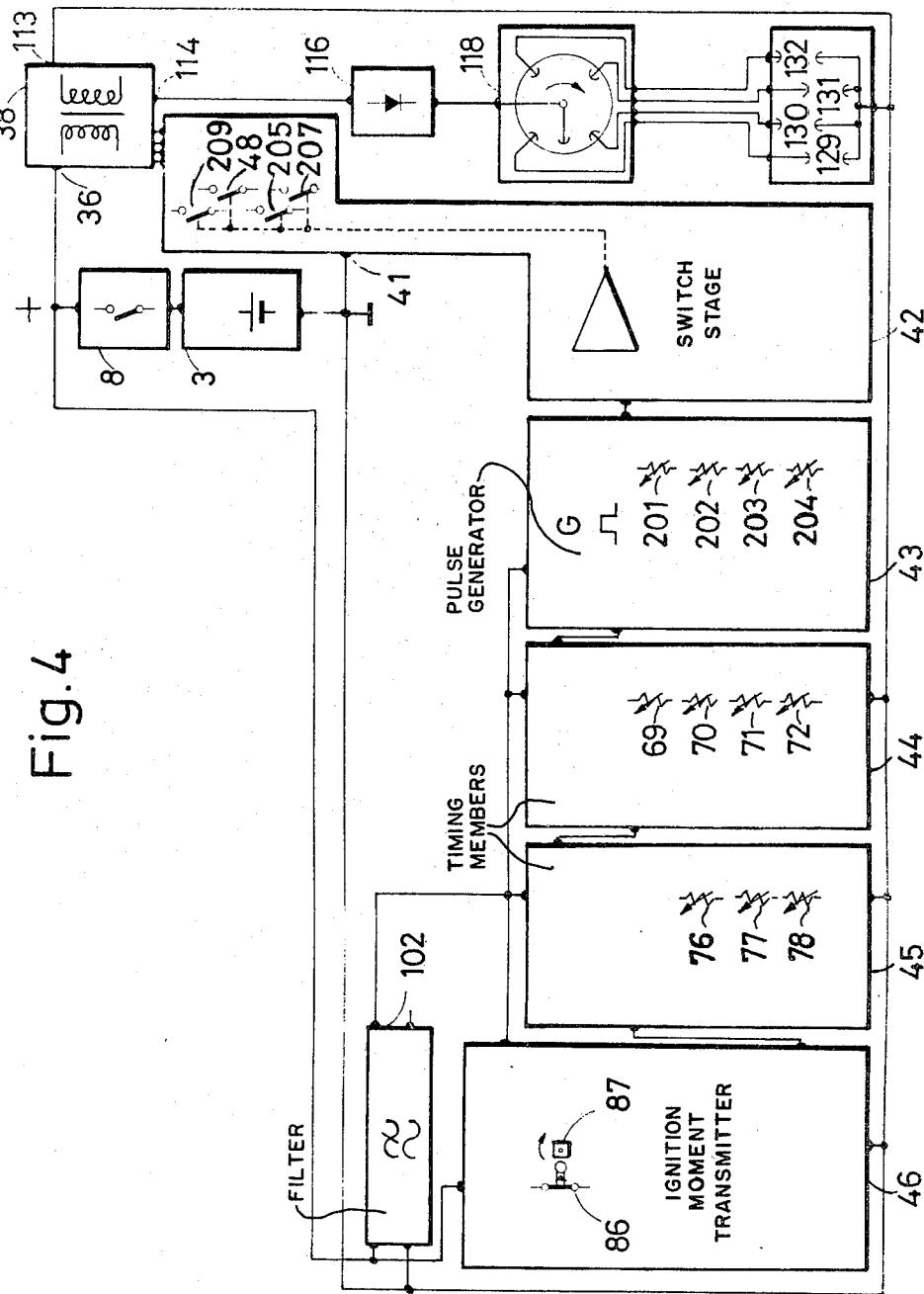
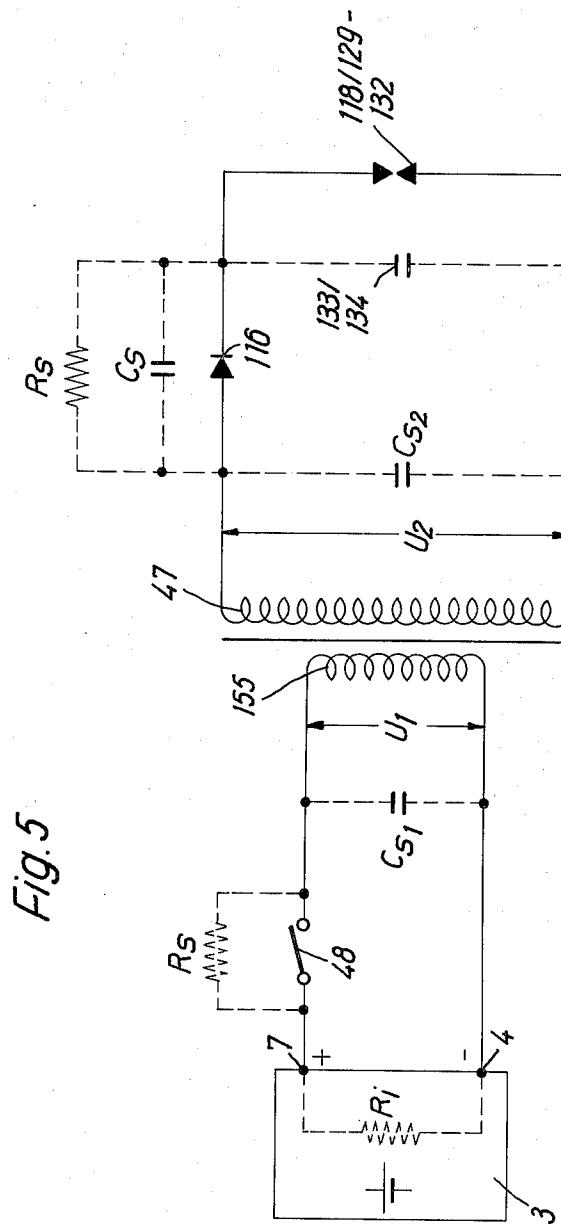





Fig. 3





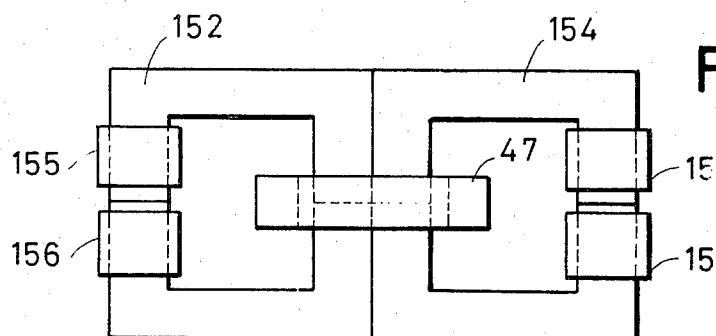



Fig.6

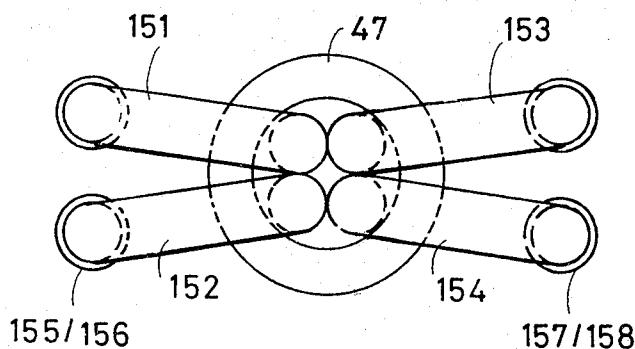



Fig.7

Fig.8

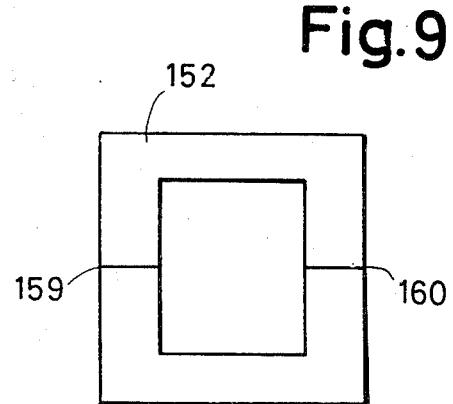
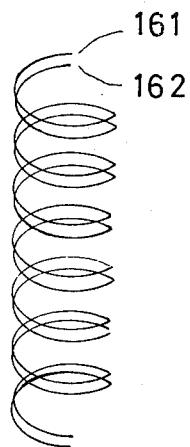




Fig.9

Fig. 10

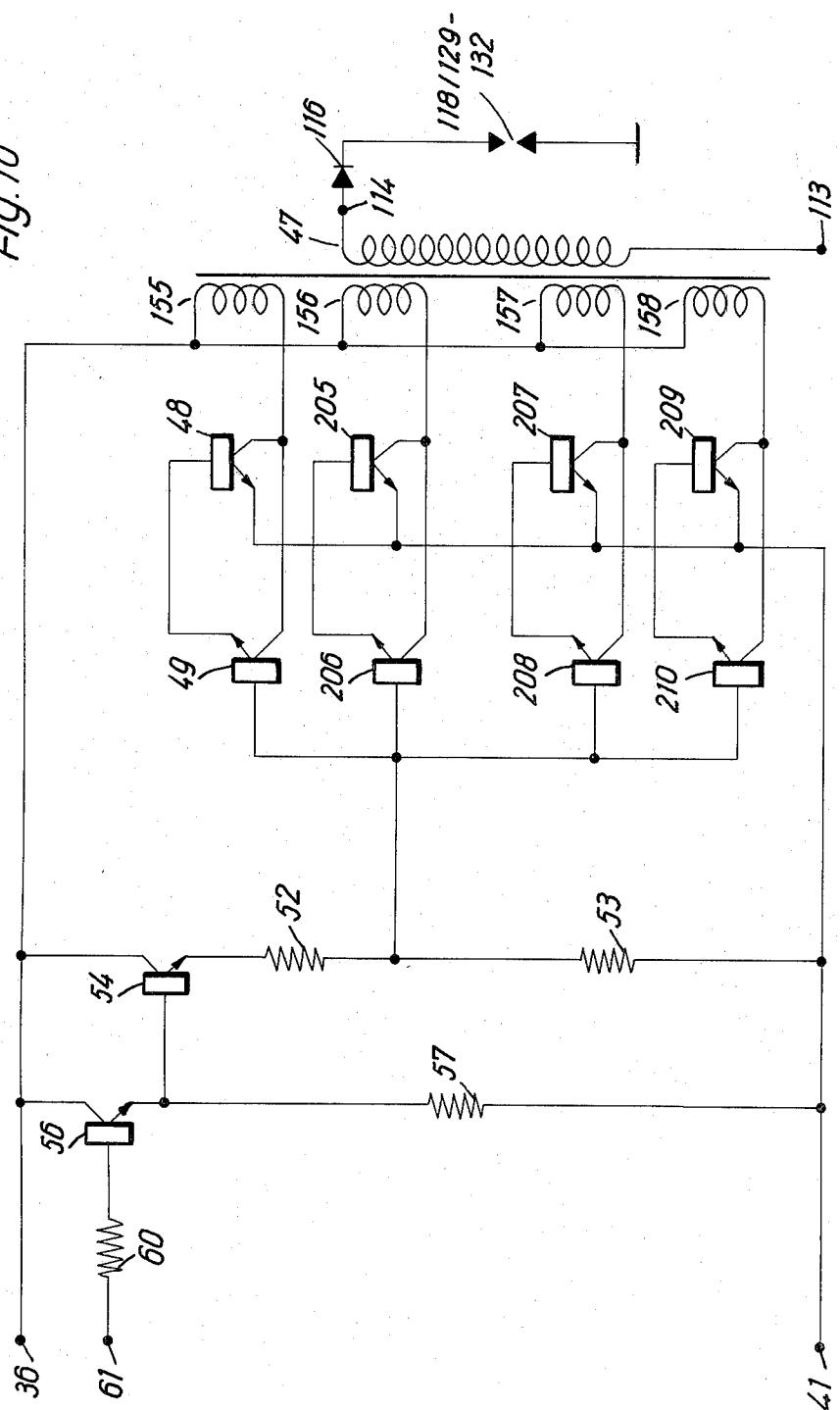



Fig. 11

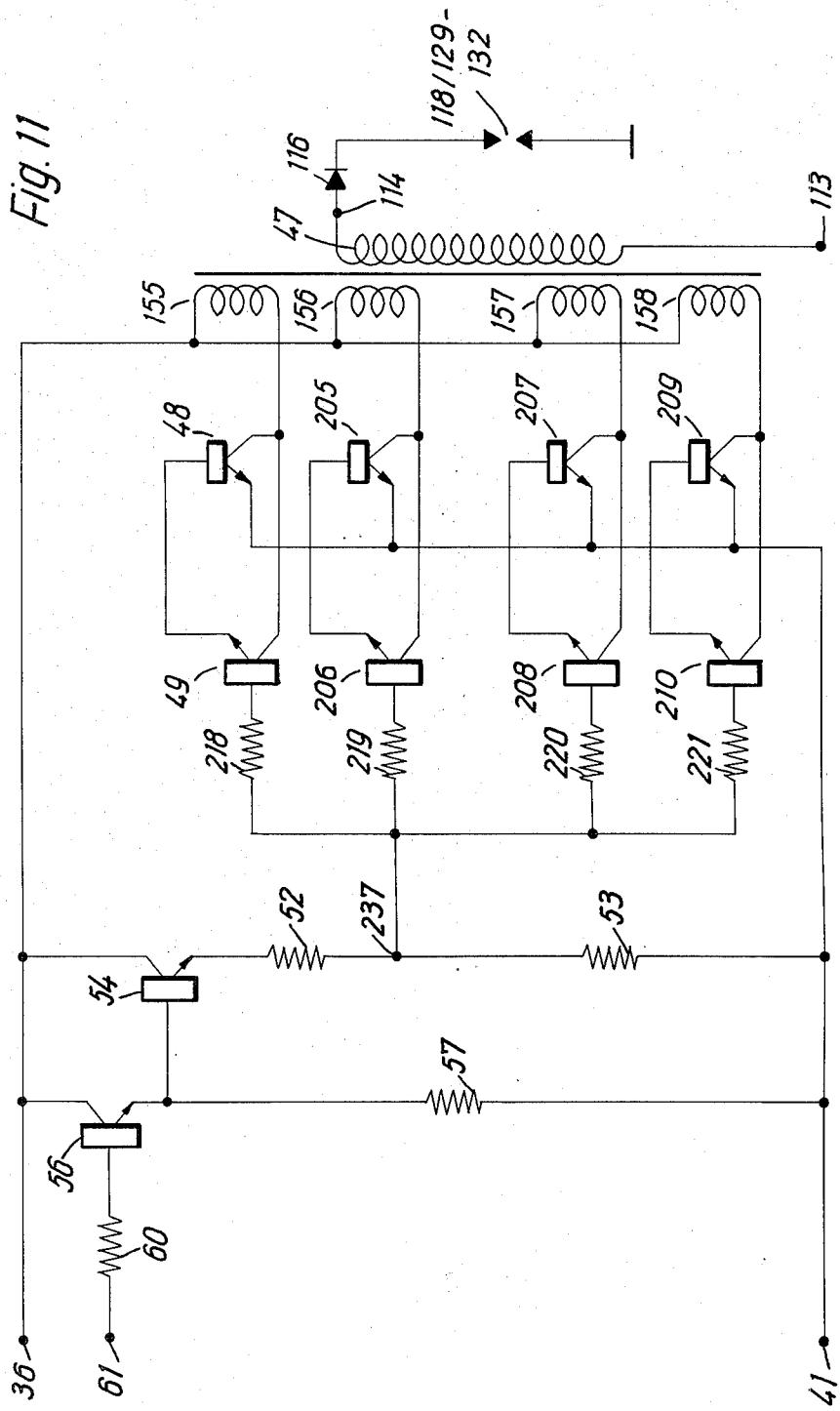



Fig. 12

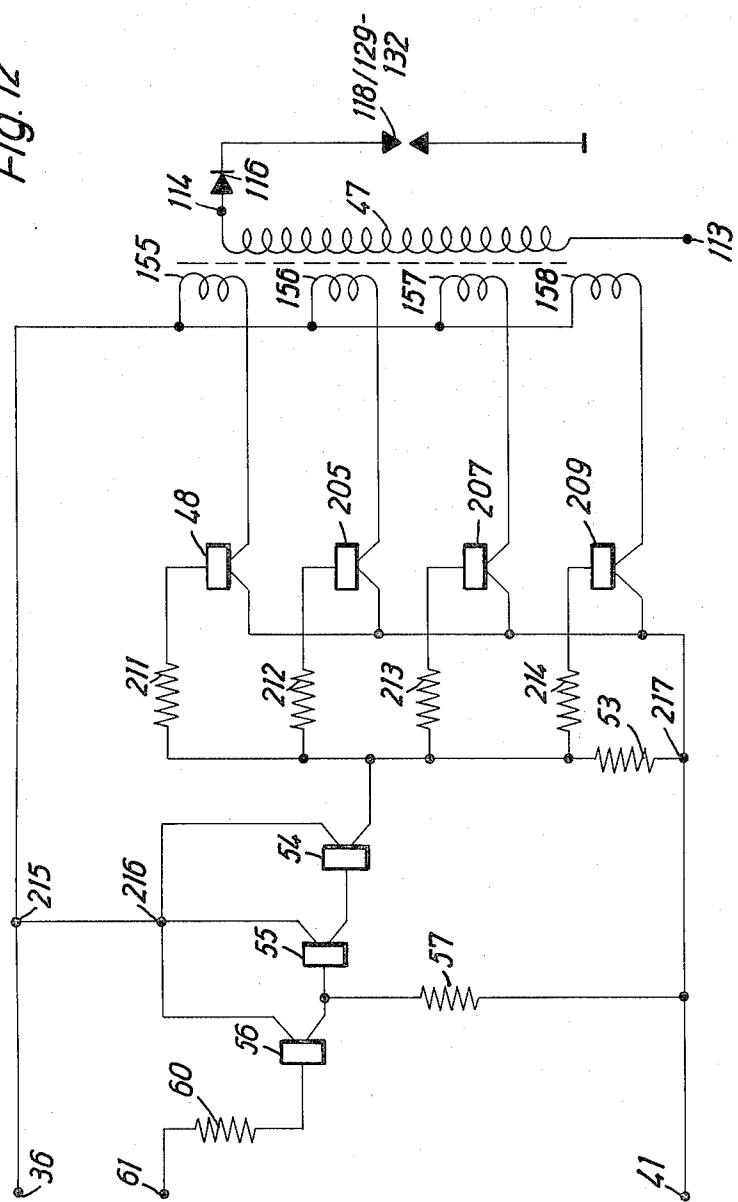
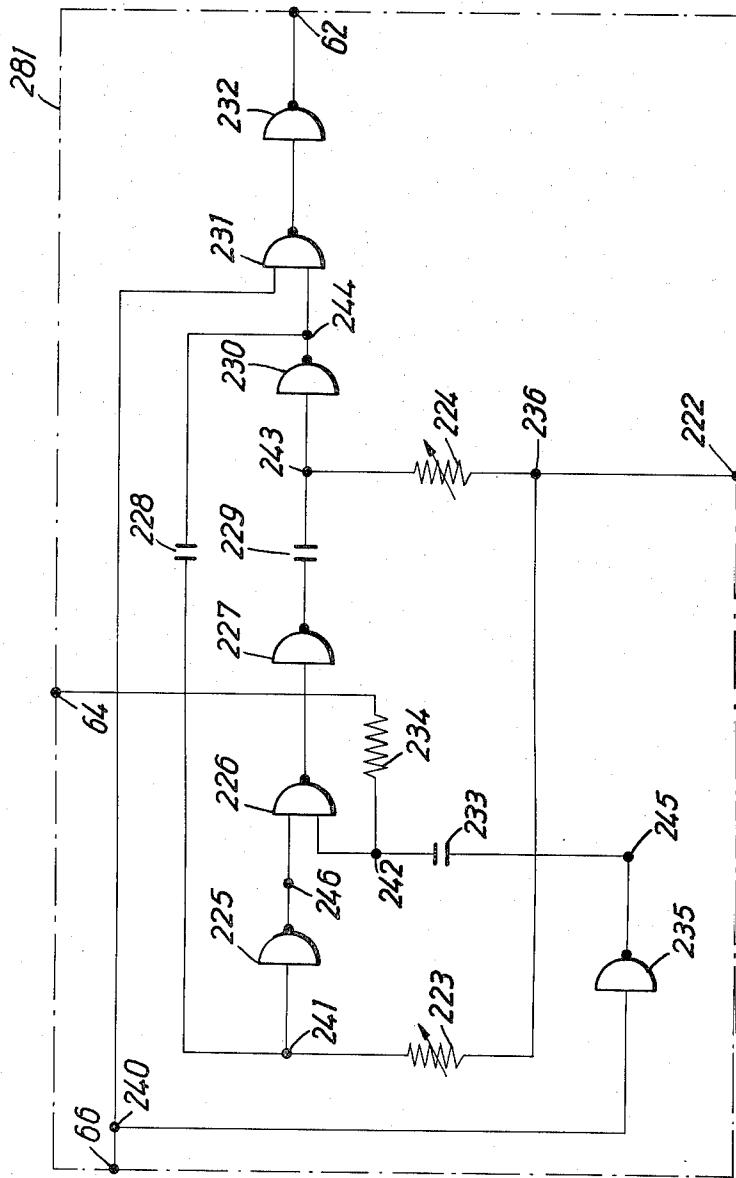




Fig. 13



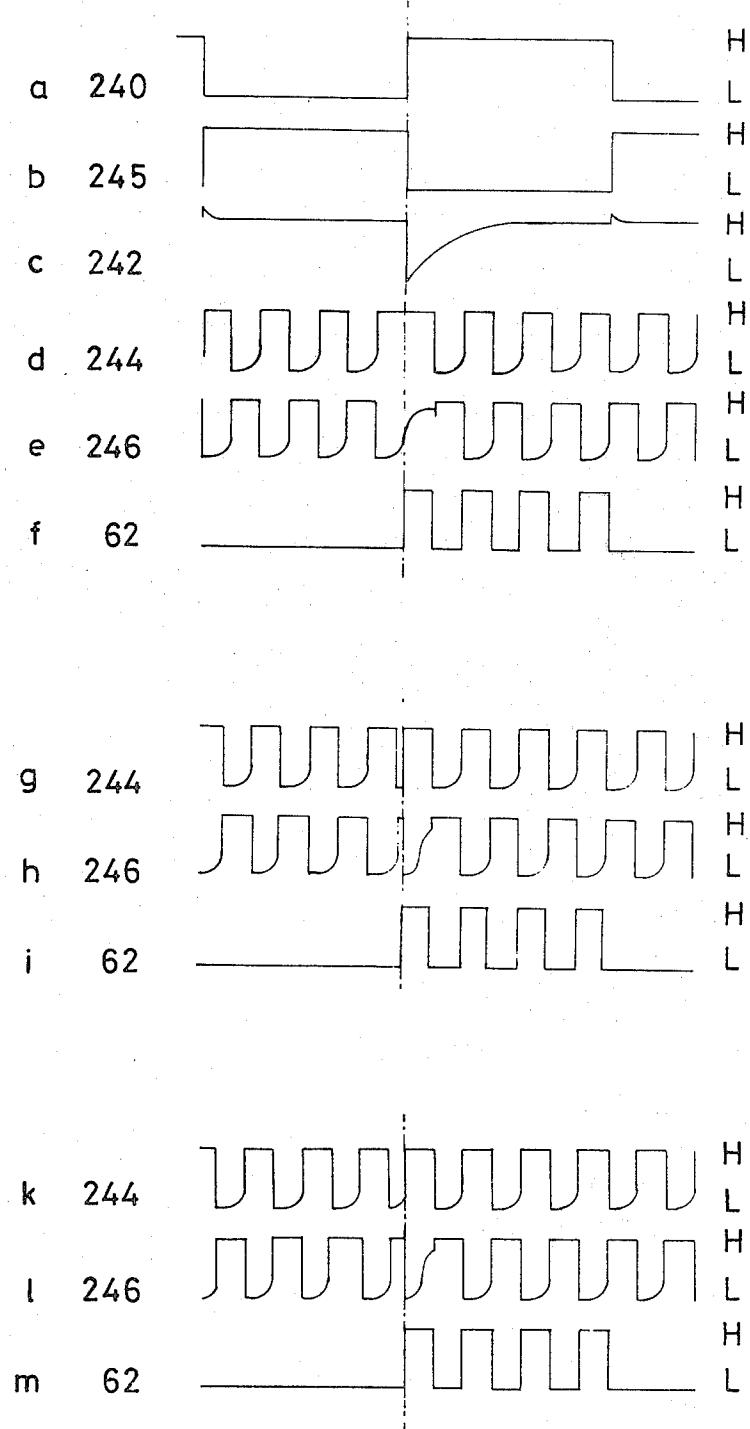



Fig. 14

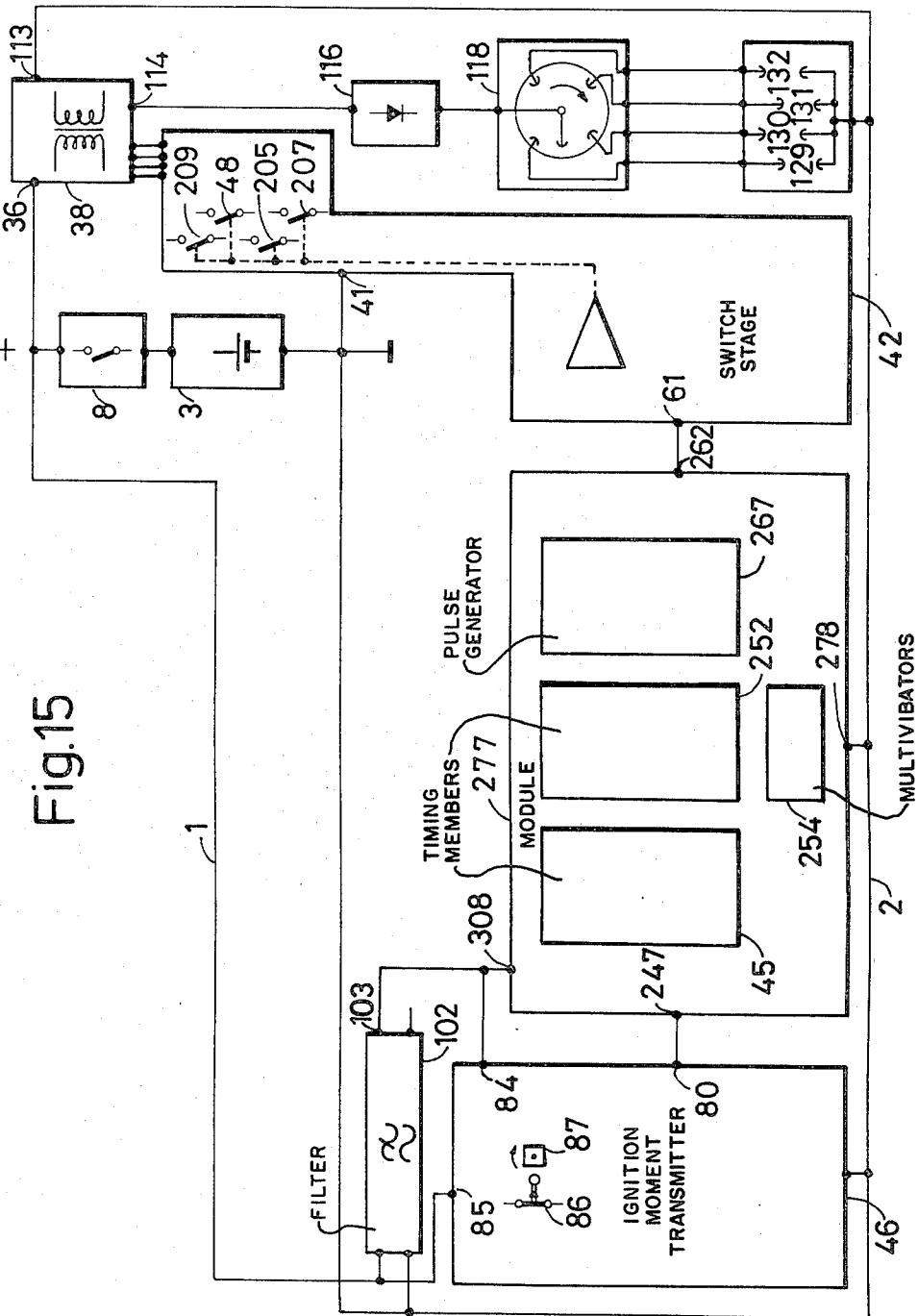



Fig. 16

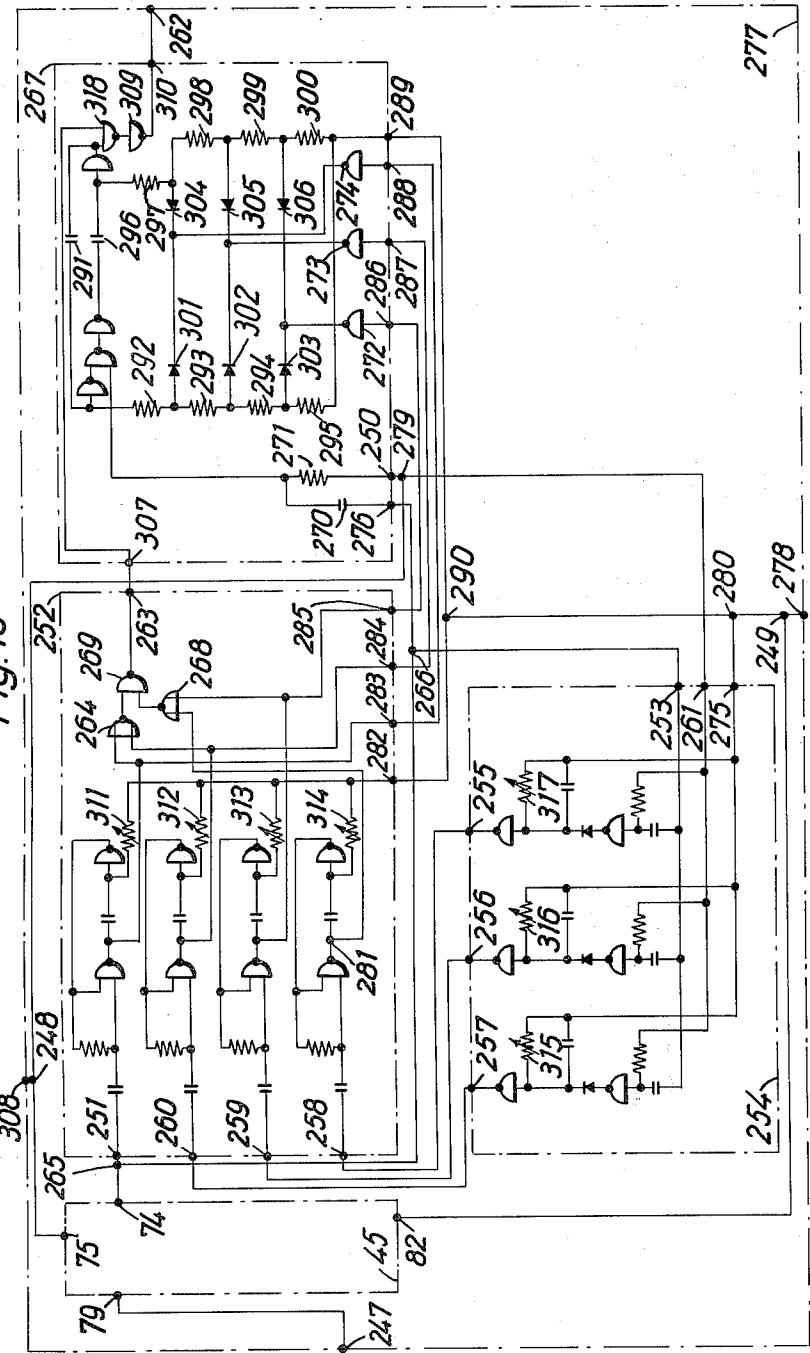



Fig. 17

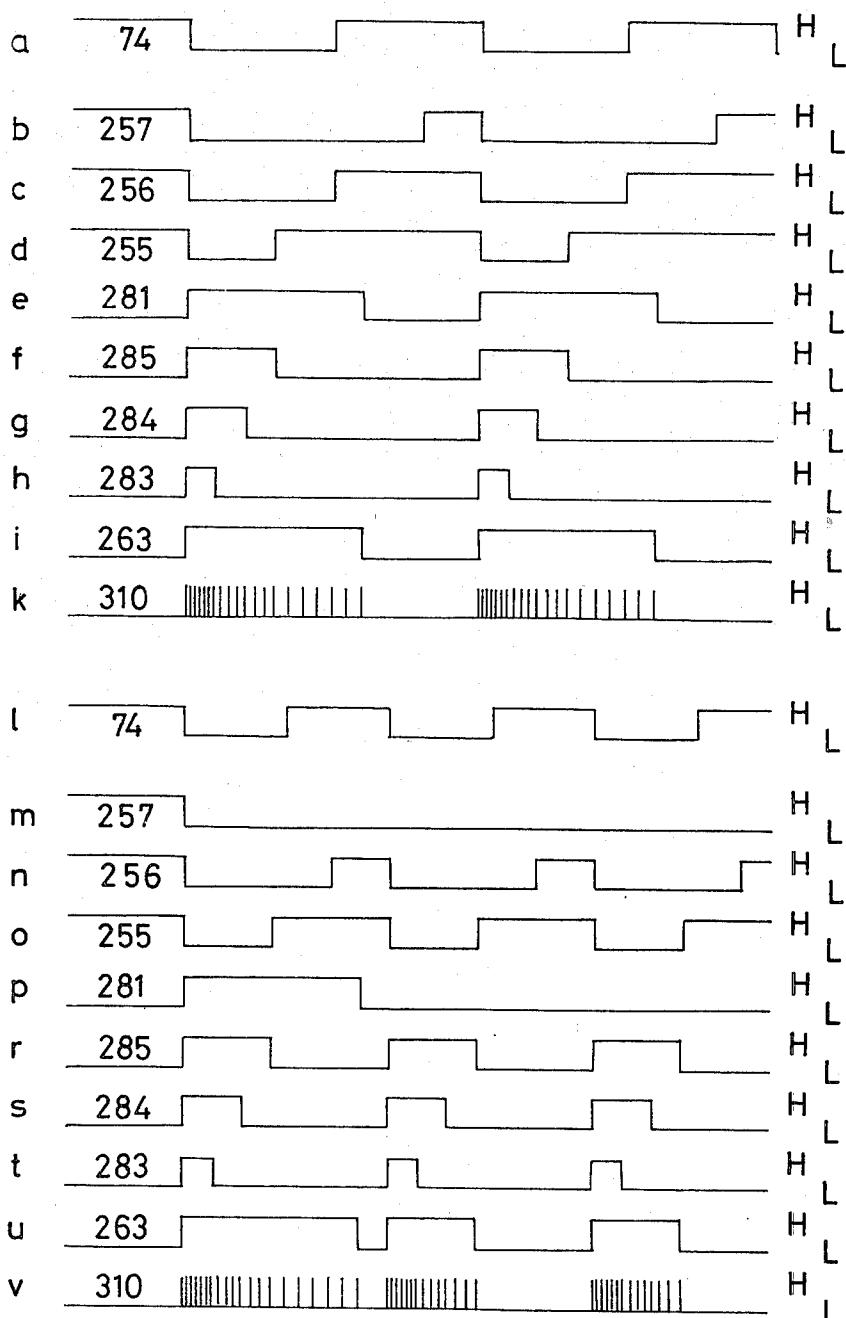



Fig. 18

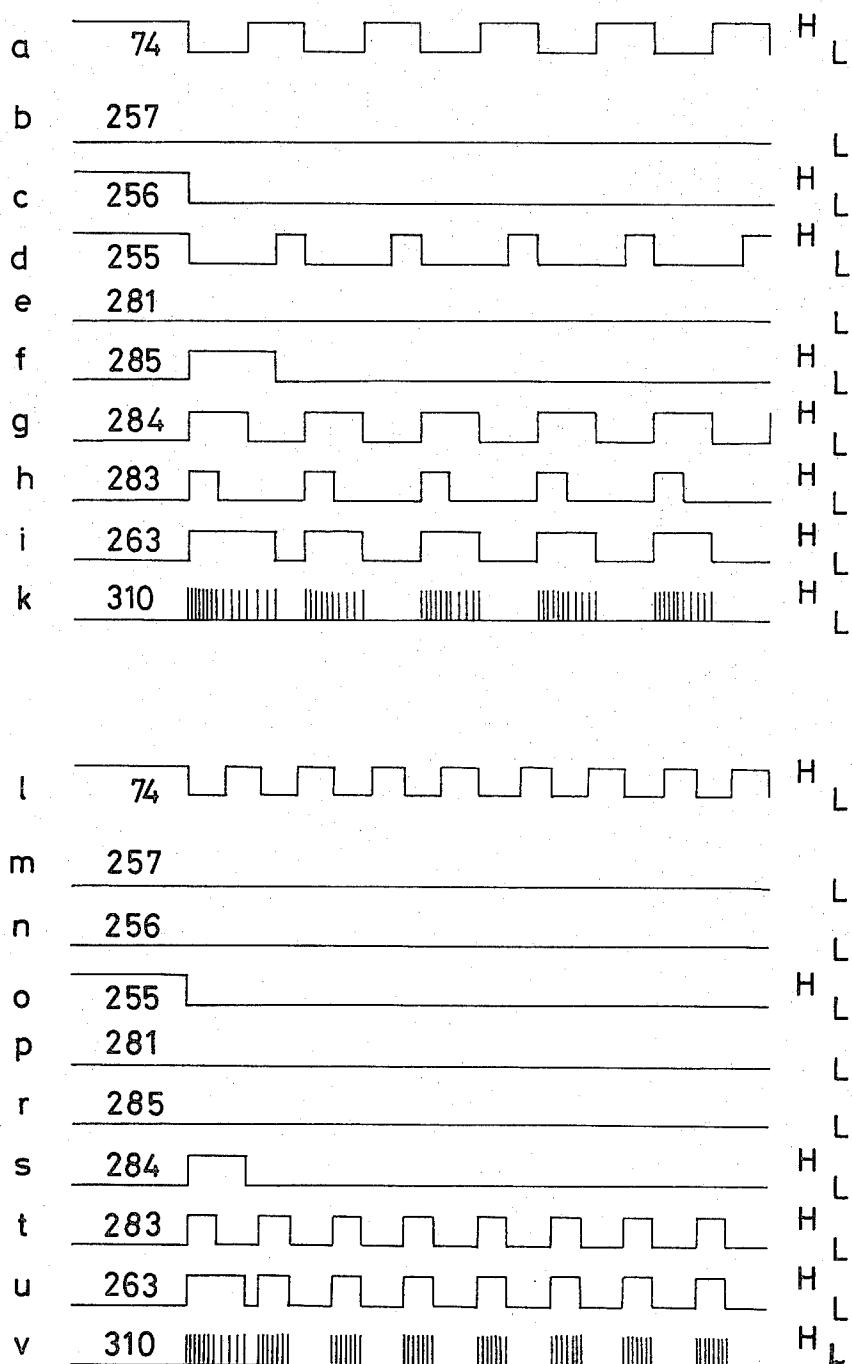



Fig. 19

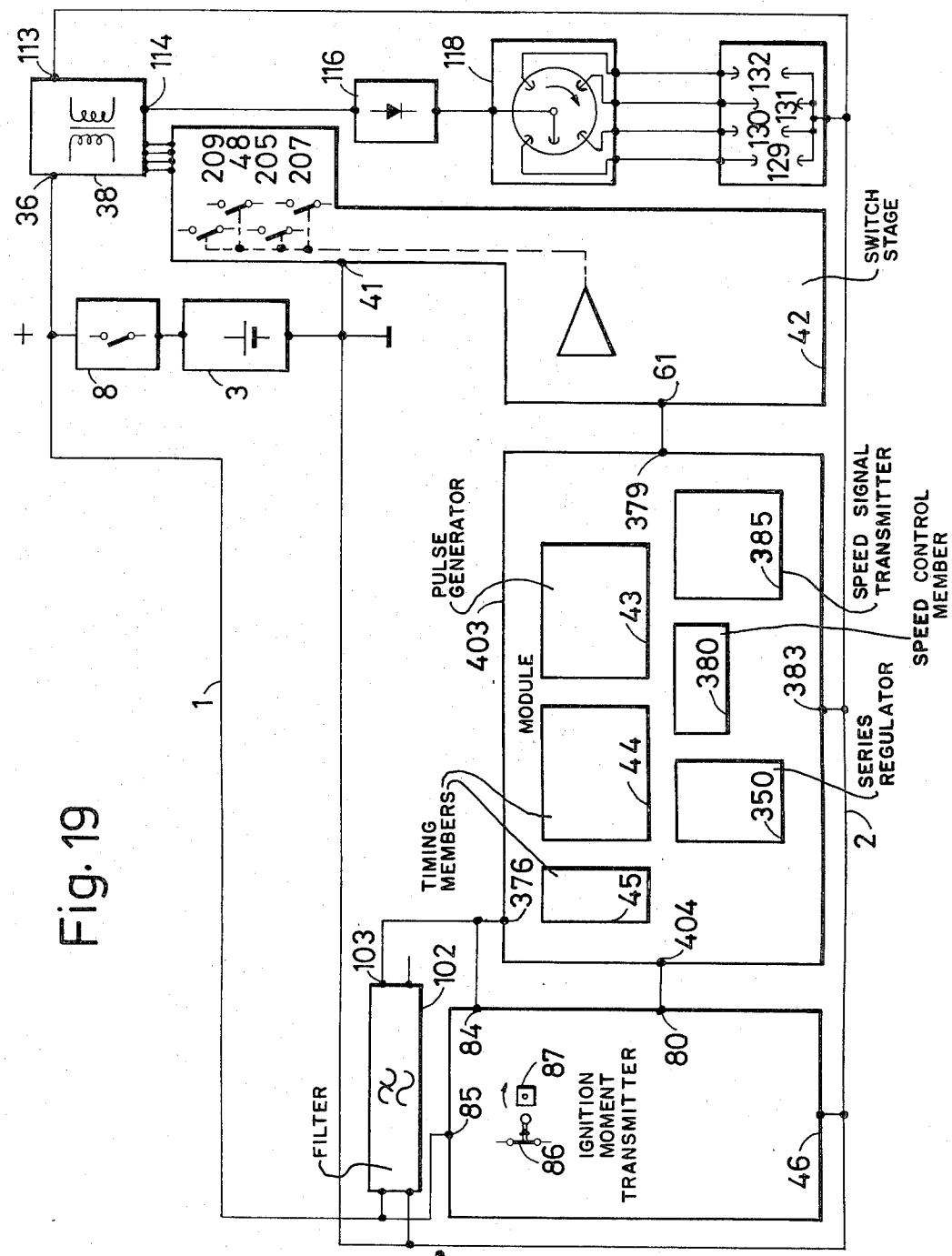



Fig. 20

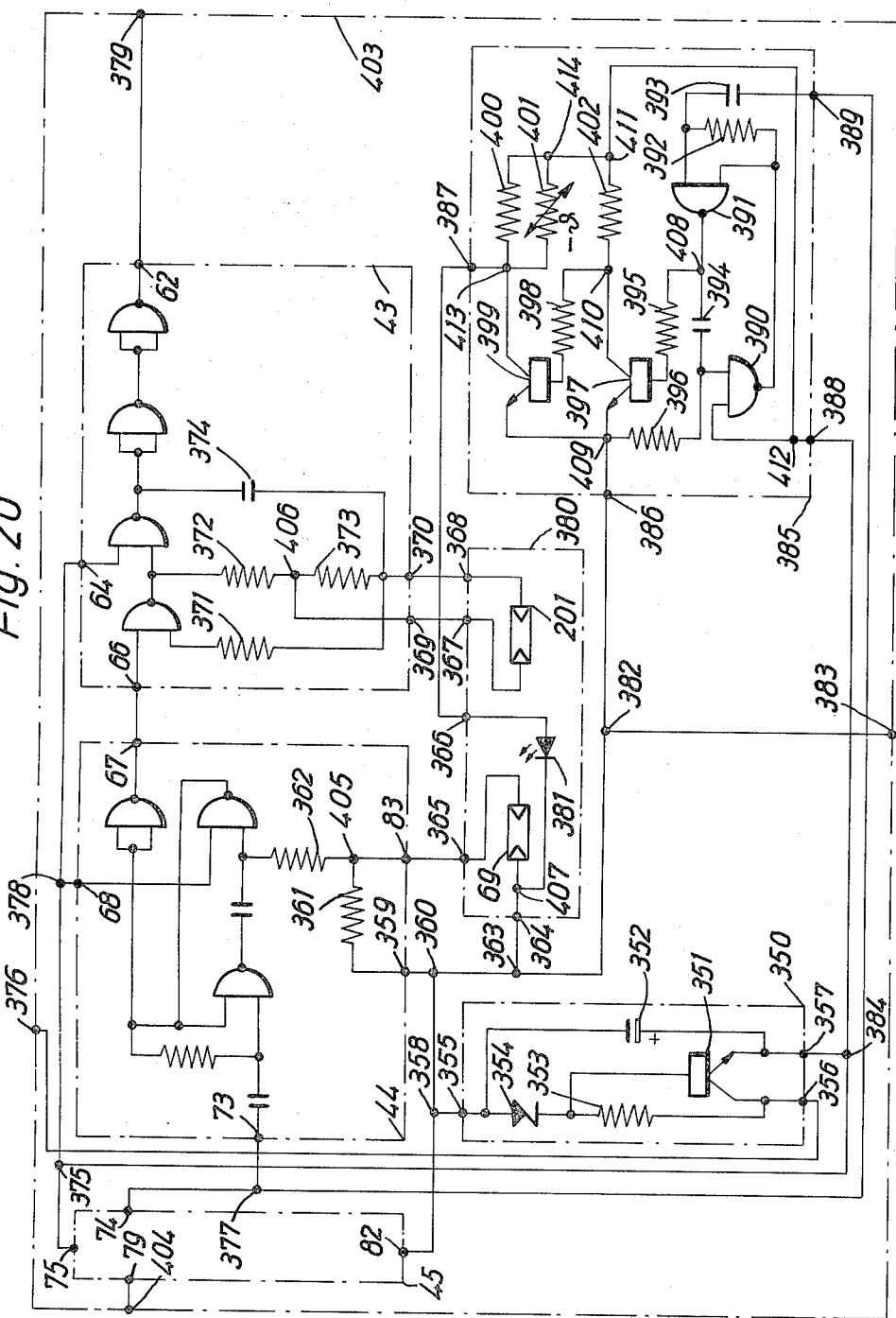



Fig. 21

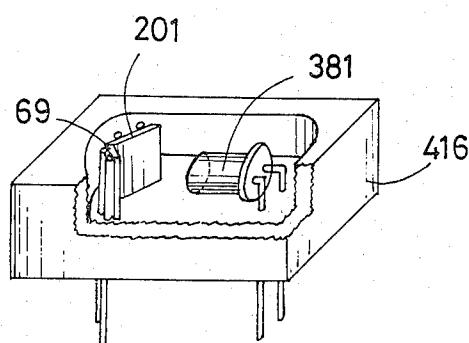
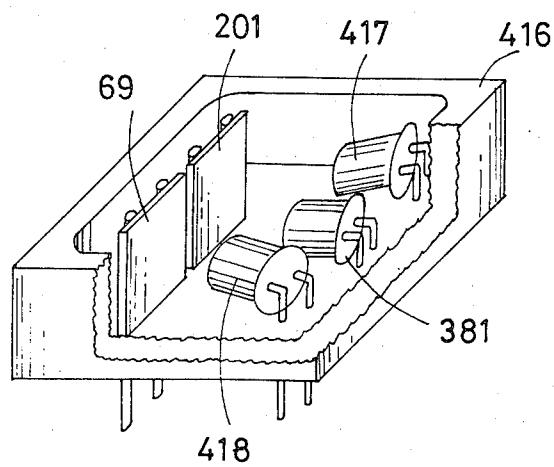




Fig. 22



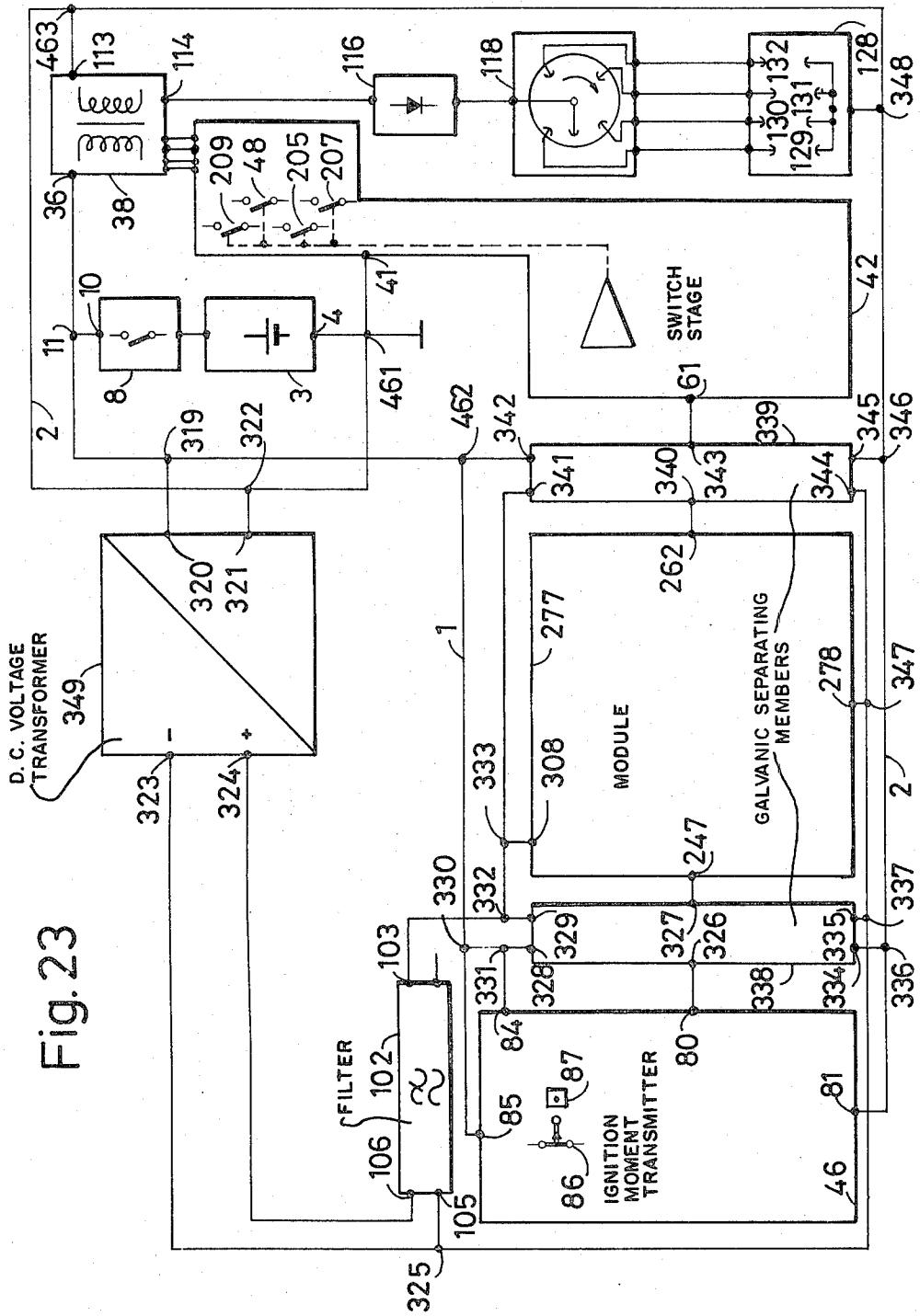
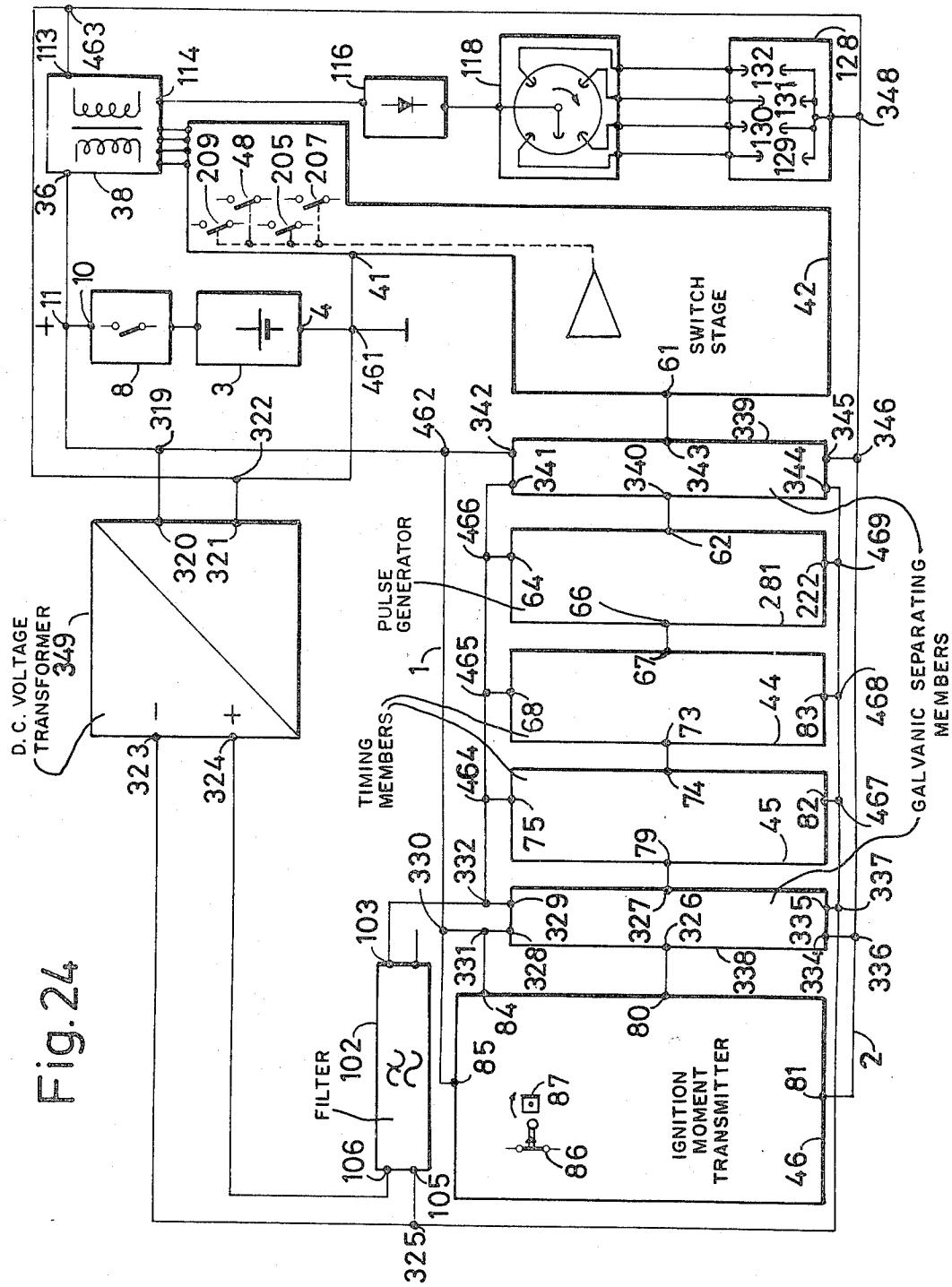
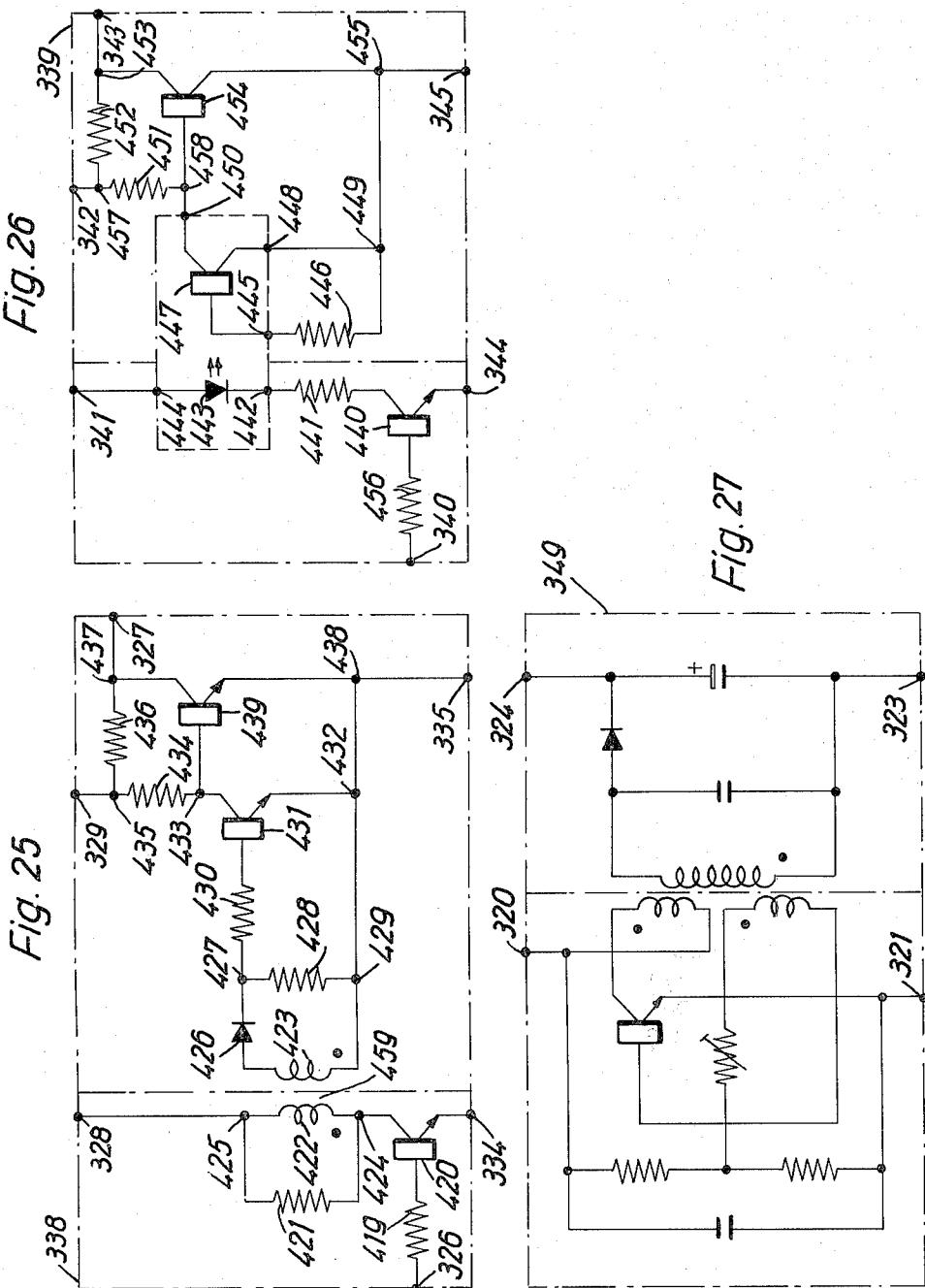





Fig. 24





## IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINES

The present invention relates to an ignition device for internal combustion engines. In the known ignition devices the ignition or power is produced by opening the breaker in the circuit of the primary side of the ignition transformer. The ignition energy made available by the ignition transformer for each ignition is, however, limited, among other things by the time available in each case for the building up of the magnetic field in the ignition transformer.

The object of the present invention is to create an ignition device by which a relatively large ignition energy (i.e. the energy of the arc which can be varied as desired) is made available for each ignition, the ignition voltage and ignition current, as well as their duration and their start being variable as desired within wide limits independently of each other. By this measure or these features, the combustion process which takes place in the internal combustion engine and the nature of composition of the combustion gases are to be controlled in the manner desired.

In order to attain this object, an ignition device for an internal combustion engine, in connection with which a source of d.c. voltage can be connected to the ignition transformer via a transistor which serves as a switch, is so developed in accordance with the invention that the switch frequency of the transistor serving as a switch can be determined by a pulse generator which can be connected and disconnected by a time member acting as a function of the angular position of the crank shaft or of the position of the piston in the engine cylinder in such a manner that the start, end and length of the production of the ignition energy of the arc can be freely varied.

It is advantageous to use a pulse generator whose output pulses are of rectangular or substantially rectangular form. An astable multivibrator can serve as such a pulse generator. While retaining the rectangular form, the delivery of a relatively large amount of energy per ignition is assured.

It is advantageous to use as the pulse generator a special embodiment of an astable multivibrator in connection with which a starting device sees to it that the rectangular oscillation is conducted at the time of ignition with full pulse length to the output logic for delivery to the switch stage. The pulse generator continues to operate after starting of the engine. It is furthermore advantageous for the pulse generator to operate with frequency-determining resistances connected to ground potential, whereby an easy introduction of process variables is made possible to vary the start, end and length of the production of ignition energy.

In some cases it is advantageous to provide a d.c. voltage transformer by which the voltage of the battery for the supplying of the transistor which serves as a switch can be increased from, for instance, 12 V to about 50 to 100 V, and preferably 70 V.

A half-wave rectification on the secondary side of the ignition transformer can be provided. The advantage obtained is that the reaction of the load capacitance on the primary side is substantially reduced and this capacitance can at the same time be used as a charging capacitor. Furthermore, there is obtained a polarization which has the advantage that with corresponding switching, the burning-off takes place on the outer

electrode of the spark plug, a stronger development of which is easier to obtain structurally than in the case of the central electrode. Furthermore, there is the advantage that the d.c. arc is stiffer.

With varying voltage of the d.c. voltage source it is advisable to provide a current and voltage regulator so that a load which is sensitive to the supply voltage, for instance digital circuits, is provided with a constant supply and on the other hand that a freely variable set-point determination for the parameters of the ignition energy is possible.

Since the ignition energy for each ignition can be produced with a relatively long duration with the new ignition device reference is no longer had in the following to "moment of ignition," as in the case of conventional ignition devices, but rather, for purposes of clear definition, reference is had to the start and the end of the production of the ignition energy.

The start of the production of the ignition energy can be determined in a customary manner as with a mechanically actuated breaker or breaker switch. However, the start of the production of the ignition of energy can also be controlled without the use of contacts. By the provision of a time-increasing member may be

combined either with the breaker or with a release member which acts without contacts, such as a semiconductor device or inductive transmitter, one has available a large range of variation for establishing the start of the production of the ignition energy as one desires and for providing variable starting points.

In order to achieve a good transfer of energy in the ignition transformer, it is advantageous to provide said ignition transformer with a core which is closed for the magnetic flux and therefore keeps the mounting-air gap such as small as possible. Furthermore, the ignition transformer is preferably developed as a wide-band transformer in order to improve the energy transfer and have a relatively large frequency range available. It is advisable to provide for an ignition transformer developed as wide-band transformer, a ferrite core which has one or more disk windings on the secondary side.

Since the plastic sealing compositions customary for transformer and ignition transformers have a tendency to shrink, an air gap is produced between the shielding housing and the surface of the sealing composition, thus resulting in an ionizing path. In order to exclude this ionizing path, the plastic sealing composition is provided on the outside with a "Faraday's cage" which, however, is not closed in order to avoid a short-circuit winding on the secondary side. This Faraday's cage can be represented, for instance, by a layer of graphite which is sprayed onto the high-voltage insulation. This layer can also be developed in the form of a grid.

It is advantageous to change the ignition output as a function of operating and surrounding data which are determined or measured directly or indirectly and which can be introduced as correcting variables via controlling elements into the current controller. Furthermore, properties of the exhaust gases can also be measured and act as correcting variables on the current controller.

It is advantageous to develop the ignition transformer in such a manner that it has two or more annularly or similarly developed ferrite cores and that each ferrite core has two or more primary windings, and for one leg of all the ferrite cores to lie within a single secondary winding which is traversed uniformly and in the same direction by the magnetic fluxes. In a preferred em-

bodiment, the ferrite cores consists of two ushaped halves, whereby air gaps are present which should be kept as small as possible upon the mounting. As a result of this embodiment of the ignition transformer, in which, as a result of the use of a plurality of magnetic circuits, the total induction obtainable is substantially increased over that obtainable with a single magnetic circuit, the number of turns required per volt of output high voltage decreases. As a result, the transformation behavior is substantially improved and an increase in the switching frequency is possible, since the inherent capacitance of the secondary winding decreases. Furthermore, by the use of a plurality of magnetic circuits, due to the decreasing number of secondary turns, the transmission ratio is reduced, as a result of which the ignition power is substantially increased. As a result of this, it is furthermore possible to omit the d.c. transformer provided for the supplying of the transistor serving as a switch, with its high heat losses which occur particularly at high ignition power, since the more favorable transmission ratio no longer makes an increase in battery voltage necessary.

By providing a plurality of primary windings on each closed magnetic circuit, it is possible in advantageous fashion to obtain the necessary primary power for the ignition transformer in several power stages in which each primary winding has associated with it a transistor which operates as a switch and has the corresponding power control, so that instead of one large transistor which serves as a switch, a plurality of smaller power transistors are used. In this way price advantages are obtained as well as a better distribution of power heat loss with respect to the cooling surface. Furthermore, there is obtained an advantageous effect on the height of the switch peaks which occur in the switching operation with a magnetic circuit. By this structural development of the power part, the reliability of the overall arrangement is also increased, despite the use of a plurality of transistors serving as a switch and the control thereof.

It is advantageous to modify the control for the transistors serving as a switch so as to adapt same to the specific ignition power required by an internal combustion engine by associating another transistor in a Darlington circuit with each switch transistor, in which case resistors can be present in the base of the Darlington transistor alternatively with the use of particularly high-grade, insulating sealing compositions for the ignition transformer, the magnetic circuits can be so dimensioned that the transistors in the Darlington circuit and their base resistors can be dispensed with, in which case then base resistors are inserted in advantageous fashion in each base lead of the switch transistors, the necessary control power for the switch transistors being provided by a common power control stage. The controlling power stage is advantageously developed in such a manner that the transistor which provides the main power has another transistor associated with it in a Darlington circuit. The ferrite cores of the ignition transformer are advantageous formed, for reasons of mounting, of two U-shaped core halves, whereby in-avoidable air gaps are formed which are kept small as small as possible.

The switch frequency is advantageously variable within a range of from 1 to 20 kilocycles, as a result of which it is possible to influence the ignition power via the effect, related to the change in the switch frequency, on the transmission properties of the ignition

transformer, as a result of which, through the controllable ignition power, special operating conditions of the internal combustion engine are taken into account. Furthermore, by means of the variable switch frequency and the ionizing action connected with it, the environmental variables and composition of the exhaust gas can be taken into account, depending on the ratio of the gasoline-air mixture.

In order to avoid the known opening and closing 10 chatter which occurs upon the actuation of the contact-breaker switch, a circuit which suppresses the chattering is provided which may consist, for instance, of digital switch elements and a capacitor.

The desired change in the start of the production of 15 the ignition energy, its duration or its end, and the desired change in the switch frequency is advantageously brought about via controlling elements which may, for instance, be potentiometers or magnetic, optical or similar devices. The correcting variables are primarily 20 the operating data which are determined or measured directly or indirectly. Furthermore, environmental data can also be taken into consideration as correcting variables. Furthermore, properties of the exhaust gases can also be measured and be fed as correcting variables via 25 controlling elements either to the pulse generator which determines the switching frequency or to the timing members which determine the duration or start and end of the production of ignition energy. In connection with the possibility of producing ignition currents of relatively long duration which are provided by 30 the new ignition device, it is advantageous to make the ignition distributor contacts wider than was heretofore customary.

The new ignition device which gives off a high ignition 35 arc energy permits the production of an arc which is resistant to forces of deflection; this provides the advantageous possibility of, if desired, so deflecting the arc by the bringing about of certain flow conditions in the combustion chamber that the focal lines of the arc 40 lie in a curved surface. This deflection can occur because the energy can be controlled therefore, the focal-line surface can be varied as desired.

One advantageous development of the controlling 45 elements for the subassemblies determining the start, the duration and the end of the production of the ignition energy, as well as the switching frequency, consists in developing the controlling elements as photoresistors which are coupled optically with a photodiode which changes its intensity of illumination as a function 50 of a process variable, for instance as a function of speed of rotation, whereby a change in resistance is effected in the photoresistors. An input of a plurality of process variables on the same photoresistors can be obtained by the provision of a plurality of optically coupled photodiodes, one photodiode being associated with each process variable.

One particularly advantageous development of the 60 subassemblies determining the start, the duration and the end of the ignition energy, as well as those determining the switch frequency consists in introducing the process variable into the controlling elements in freely selectable stages. The process variables can be formed as a function of operating and possibly environmental data determined or measured directly or indirectly, as well as a function of the composition of the exhaust gas. In the case of the process variable of speed of rotation, one to several stages are provided in the manner that, for instance, for the initial speed of rotation, there is set

an ignition duration of 40 ms, an ignition energy of up to 14 Ws and a high voltage of up to 40 kv; for the idle speed an ignition duration of 5 ms, an ignition energy of up to 4 Ws and a high voltage up to 40 kv; for an average speed an ignition duration of 3 ms, an ignition energy of up to 0.5 Ws and a high voltage of up to 40 kv; for the maximum speed an ignition duration of 1.5 ms, an ignition energy of up to 0.2 Ws and a high voltage of up to 40 kv. In this way, during the starting process, the effect of the shunting of the spark plugs is substantially reduced, during the idle speed there is taken into account in addition consideration of the shunt on non-homogeneities of the preparation of the mixture, while at the medium speed substantially non-homogeneities of the preparation of the mixture are acted on, and at the maximum speed value is placed on dependable ignition with strong flow in the combustion chamber. Value must be placed on the increased ignition power parameters due to the increased demand on the dependability of operation of internal combustion engines, for instance dependable operation for 50,000 miles, and the requirements resulting from the exhaust gas laws, since electrode spacings of up to 2 mm are to be taken into consideration, *inter alia*, at the spark plugs.

With the particularly high ignition power, it is advantageous to effect the supplying from the battery of the logical circuits in galvanically separated subassemblies described via a d.c. voltage transformer. For this purpose galvanic separating members are provided which galvanically separate the subassemblies in question which are supplied by the d.c. voltage transformer from the rest of the ignition device. The galvanic separating members may be provided with transformers or optical coupling elements.

The supplying from the battery of the structural groups galvanically separated affords the possibility of using logical circuits which require a constant supply voltage and are more unfavorable in their signal-noise ratio than logical circuits in COS MOS design.

One embodiment of the ignition device in accordance with the invention is indicated in the drawings which show diagrammatically:

FIG. 1, a block diagram of the ignition device;  
FIG. 2, a wiring diagram;

FIGS. 3a to 3i and 3k, pulse diagrams;

FIG. 4, a block diagram of the ignition device;

FIG. 5, an equivalent circuit diagram of the ignition transformer provided with a plurality of ferrite cores in accordance with the invention, shown only for one magnetic circuit;

FIG. 6, the new ignition transformer in side view;

FIG. 7, a top view of the transformer of FIG. 6;

FIG. 8, a portion of a double winding;

FIG. 9, a ferrite core consisting of U-shaped parts, with air gaps;

FIG. 10, several primary windings with their transistors serving as a switch and their control;

FIG. 11, several primary windings with their transistors serving as a switch for them and their control, in expanded form;

FIG. 12, several primary windings with their transistors serving as a switch for them and their control, in a different form;

FIG. 13, a wiring diagram of a pulse generator;

FIGS. 14a to 14i and 14k to 14m, pulse diagrams;

FIG. 15, a block diagram of the ignition device;

FIG. 16, a wiring diagram for the speed-dependent adjustment of the duration of the ignition time and switch frequency;

FIGS. 17a to 17i, 17k to 17p and 17r to 17v, pulse diagrams;

FIGS. 18a to 18i, 18k to 18p and 18r to 18v, pulse diagrams;

FIG. 19, a block diagram of the ignition device;

FIG. 20, a wiring diagram for the speed-dependent adjustment of the duration of the ignition time and switch frequency;

FIG. 21, a perspective view of the assembly consisting of a photodiode and 2 photoresistors;

FIG. 22, a perspective view of the assembly consisting of 3 photodiodes and 2 photoresistors;

FIG. 23, a block diagram of the ignition device;

FIG. 24, a block diagram of the ignition device;

FIG. 25, a galvanic separating member in an embodiment with a transformer;

FIG. 26, a galvanic separating member in an embodiment with optical coupling, and

FIG. 27 shows a d.c. voltage transformer in an embodiment as a single-ended transformer.

FIGS. 1 to 3 show an ignition device in which a d.c. voltage transformer supplies the power stage, while the other subassemblies are fed by the battery. The ignition power is varied as a function of the process via a current controller.

FIGS. 4 to 12 show an ignition device in which the d.c. voltage transformer with voltage and current controller is eliminated. The entire ignition device is fed by the battery. The change in the ignition power as a function of the process is obtained via the variable pulse generator frequency in combination with the transmission behavior of the ignition transformer which consists of a plurality of magnetic circuits. The power stages are divided up so as to obtain an economical and dependable solution.

FIGS. 13 and 14 show a pulse generator for the production of the switch frequency which can operate with reference to ground and has particular advantages in combination with the rest of the system.

FIGS. 15 to 18 show the control as a function of the process of the new ignition device, using as an example the speed in four freely selectable stages. All parts of the system are supplied by the battery.

FIGS. 19 to 22 show the control as a function of the process of the new ignition device, using the speed as an example in freely selectable continuous dependence. The introduction of the correcting variables takes place via optical coupling elements. All parts of the system are supplied by the battery.

FIGS. 23 to 27 show the new ignition device with the introduction of a supply separated galvanically from the battery for assemblies which are sensitive to noise voltage in combination with galvanic separating members by a d.c. voltage transformer. All other parts of the system are supplied by the battery.

The figures are described in further detail on the following pages.

The ignition device of FIGS. 1 and 2 is connected via the positive line 1 and negative line 2 to a d.c. voltage source 3 whose negative terminal 4 is connected via the terminal 5 with the negative line 2 and ground 6 and

whose positive terminal 7 is connected via its terminals 9 and 10 of the ignition switch 8 with the positive line 1 via the terminal 11. The source of d.c. voltage 3 can have a voltage of, for instance, 12 V.

The supplying of the d.c. voltage transformer 20 takes place via a filtering device 12 which is connected at the terminal 16 with the positive line 1 and at the terminal 17 with the negative line 2. It is a lowpass filter consisting of the choke 13 with the capacitors 14 and 15, which has the object of keeping away the switching frequency of the d.c. voltage transformer 20 as a superimposed disturbance of the d.c. voltage supply at the terminal 19 from the d.c. voltage source 3. The cutoff frequency of the filtering device 12 is determined by the choke 13 and the capacitor 14, while the capacitor 15 prevents the entrance of high frequencies. The output terminal 18 of the filter device 12 is connected with the input terminal 19 of the d.c. voltage transformer 20 to the positive supply.

The d.c. voltage transformer 20 is connected via the terminal 21 with the negative line 2. In the case shown as the example, the d.c. voltage transformer 20 is a push-pull transformer of known type. A single-ended transformer can also be used. The d.c. voltage transformer 20 has the object of converting the voltage of the d.c. voltage source 3 to a d.c. voltage of, for instance, 50 to 100 V, and preferably 70 V. The output terminal 22 of the d.c. voltage transformer 20 is connected with the input terminal 23 of a known current regulator 24.

The negative reference point of the current regulator 24 is produced via the connection of the terminal 25 with the negative line 2. The actual value of the load current to be regulated is tapped off as a voltage value from the resistor 26. The establishing of the set point is effected via controlling elements 27, 28, 29 which are potentiometers in the embodiment shown by way of example, the controlling element 27 being actuated as a function of the position of the throttle, the controlling element 28 as a function of the ignition moment and the controlling element 29 as a function of the nature of the gasoline-air ratio. The output terminal 30 of the current regulator 24 is connected with the input terminal 31 of a known voltage regulator 32.

The negative reference point is produced by the connection of the terminal 33 of the voltage regulator 32 with the terminal 34 of the current regulator 24. The voltage regulator 32 has the purpose of providing a constant output voltage. The output terminal 35 of the voltage regulator 32 is connected with the input terminal 36 of the primary winding 37 of the ignition transformer 38.

The terminal 39 of the primary winding 37 of the ignition transformer 38 is connected via the terminals 40, 41 of the switch stage 42 to the negative reference point 34 of the current regulator 24 and the negative reference point 33 of the voltage regulator 32. The switch frequency of the ON or OFF condition of the switch stage 42 is determined by the pulse generator 43 in combination with the timing members 44, 45 and the ignition moment transmitter 46. By the switching of the switch stage 42, a voltage is induced in the primary winding 37, this voltage being transformed to a high voltage in the secondary winding 47 of the ignition transformer 38.

The transformer 38 consists of two U-shaped cores which are combined together to form a closed core without air gap. The core material of the transformer 38 is preferably ferrite material. The secondary winding 47 of the transformer 38 is preferably developed as a disk winding.

The switch stage 42 consists of the switch transistor 48 and of the transistor 49 which is connected with the switch transistor 48 in the known Darlington circuit. The resistors 50, 51 serve to adjust the operating point of the transistor 48 acting as a switch. In order to obtain the necessary control power for the transistor 49, the emitter resistors 57, 58, 52, 53 are associated with the transistors 54, 55, 56 which operate in a known collector circuit, the resistors 52, 53 determining the operating point of the transistor 49. The capacitor 59 prevents self-oscillations. The base of the transistor 56 is connected via the decoupling resistor 60 and the terminal 61 with the output terminal 62 of the pulse generator 43. The pulse generator 43 operates in the known embodiment as an astable multivibrator. The potentiometer 63 permits a variation of frequency of the pulse generator 43 to optimize the switch frequency to the transfer behavior of the ignition transformer 38. The pulse generator 43 is built up of logical circuits in an integrated technique. The logical reference point is brought up with the line 65 via the terminal 64 of the pulse generator 43. The pulse generator 43 is connected and disconnected via the timing member 44 for preselectable intervals of time. The switch command arrives via the connection of the terminal 66 of the pulse generator 43 with the terminal 67 of the timing member 44. FIG. 3a shows the pulse diagram for the terminal 62, and FIG. 3b the pulse diagram of the terminal 67.

The timing member 44 is developed as a monostable multivibrator of known type. The monostable multivibrator is constructed of logical circuits in an integrated technique. The logical reference point is brought up with the line 65 via the terminal 68 of the timing member 44. The "on" time of the timing member 44 can be freely varied. The provision of the desired value is effected via the controlling elements 69, 70, 71, 72 which are potentiometers in the embodiment shown by way of example, the controlling element 69 being actuated as a function of the speed of rotation, the controlling member 70 as a function of the position of the throttle, the controlling element 71 as a function of the moment of ignition and the controlling member 72 as a function of the nature of the gasoline-air ratio. The timing member 44 is turned on via the connection of the terminal 73 of the timing member 44 with the terminal 74 of the timing member 45.

The timing member 45 is developed as a monostable multivibrator of known type. The monostable vibrator is constructed of logical circuits in an integrated technique. The logical reference point is connected with the line 65 via the terminal 75 of the timing member 45. FIG. 3c shows the pulse diagram of the terminal 74 of the timing member 45. The time delay which is introduced by the timing member 45 for the commencement of the production of the ignition energy can be freely varied. The provision of the desired value is effected via the controlling elements 76, 77, 78 which are potentiometers in the embodiment shown by way of example, the controlling element 76 being actuated as a function of the speed, the controlling element 77 as a function of the position of the throttle, and the controlling element 78 as a function of the nature of the gasoline-air mixture.

The timing member 45 is turned on via the connection of its terminal 79 with the terminal 80 of the ignition moment transmitter 46. The pulse diagram of the terminal 80 is shown in FIG. 3d. The logical reference

point is connected to the line 65 via the terminal 84. At the terminal 85 the ignitionmoment transmitter 46 is connected with the positive line 1. The negative reference point of the ignition-moment transmitter 46 is produced by the connecting of the terminal 81 with the negative line 2. For the timing members 44, 45, the negative reference point is prepared via the connections of the terminals 82, 83 with the negative line 2. The ignition-moment transmitter serves to introduce the ignition process. In the embodiment shown in FIG. 2 there is shown a traditional breaker switch 86 which is actuated as a function of the crank angle by a cam 87 driven by the internal combustion engine. The ignition process is introduced in traditional manner by the opening of the breaker switch 86. Since the opening and closing of the breaker switch 86 is accompanied by contact chattering, the first instant of opening can be noted for maintaining the clear open condition. This is achieved by a control logic which consists of the known monostable multivibrator 96 with the logical circuits 95, 97 and 135 in combination with the capacitor 98. The resistor 88 provides a shunt current over the breaker switch 86 as long as it is closed so as to avoid oxidation of the contact. The shunt current has a value of 20 to 100 ma, and preferably 50 ma. The choke 91 in combination with the resistor 92 and the Zener diode 93 prevents the feeding of noise frequencies. If the breaker switch 86 opens, then there takes place at terminal 89 a transfer of voltage from the potential of the negative line 2 to the potential of the positive line 1, less the voltage drop at the resistor 88. The transfer of voltage from negative to positive arrives at the logical circuit, namely on the NAND gate 95 connected as an inverter and, via the terminal 94, into the monostable multivibrator 96. The output of the NAND gate 95 is connected with the first input, and the output of the monostable multivibrator 96 is connected at the terminal 99 with the second input of the logical circuit, namely the NAND gate 97. The output of the NAND gate 97 is connected via the NAND gate 135, connected as an inverter, with the terminal 80 of the ignitionmoment transmitter 46 for the turning on of the timing member 45 at the terminal 79. The pulse diagram of the terminal 94 is shown in FIG. 3g, that of the terminal 90 is FIG. 3f, and that of the terminal 99 in FIG. 3e, while that of the terminal 80 is shown in FIG. 3d.

From the pulse diagrams of FIGS. 3a to 3i and 3k, there can be noted the course of the function as associated with the parts of the ignition device shown on blocks in FIG. 1.

In each of FIGS. 3e to 3g there is shown in the first half of the pulse diagram a chatter-free operation of the breaker switch 86 and in the second half the preventing of the opening and closing chatter. Voltage intrusions at the logical outputs are counteracted by the capacitor 98 which lies between the terminal 81 of the ignition-moment transmitter 46 and the output of the logical circuit 97 and the input of the logical circuit 135. The logical reference point of the monostable multivibrator 96 in the ignition-moment transmitter 46 is supplied via the connection of the terminals 84, 100 of the ignition-moment transmitter 46. The negative reference point of the monostable multivibrator 96 in the ignition-moment transmitter 46 is formed via the terminals 101 and 81 in the ignition-moment transmitter 46.

The filter member 102 is connected with the positive line 1 by the terminal 106 and with the negative line 2 by the terminal 105.

The filtering device 102 consists of the choke 107, the capacitors 108, 109, 110 and the series connection of resistor 11 and Zener diode 112. The choke 107 with the capacitors 108, 109 is developed as a lowpass filter in the known pi network. The low-pass filter is intended to keep superimposed noises of the d.c. voltage supply away from the supply line of the timing members 44, 45 for the pulse generator 43 and of the ignition-moment transmitter 46, which are supplied from the terminal 104 in a connecting line (not shown in the drawing). The capacitor 110 prevents the entrance of high frequencies. The Zener diode 112 with the series connected resistor 111 prevents overvoltages at the terminals 103, 104 of the filter device 102. The logical reference point, namely the line 65, is connected with the terminal 103 of the filter device 102. The negative reference point of the logical circuits in the pulse generator 43, in the timing members 44, 45 and in the ignition-moment transmitter 46 is not shown in the connecting points.

The high-voltage alternating voltage which is tapped off from the secondary winding 47 of the ignition transformer 38 at the terminals 114 and 113 in good connection to the negative line 2, and the frequency of which is determined by the pulse generator 43 and its effective duration by the timing member 44, the release taking place by the ignition-moment transmitter 46 in combination with the timing member 45, is fed via the rectifier path 116 with the terminals 115, 117, and the ignition distributor 118 with the terminals 119 and 120 to 123, to the spark plugs, namely 4 spark plugs in the example shown in the drawing. Via the terminal 128, the spark plugs 129 to 132 are connected at their reference points with the negative line 2. The positive connections of the distributor with the spark plugs are effected via 120 with 124, via 121 with 125, via 122 with 126 and via 123 with 127. The high-voltage alternating voltage at the output of the ignition transformer 38 at the terminals 114, 113 is rectified in the rectifier path 116 in a half-wave rectifier circuit. The stray capacitance 133 and line capacitance 134 of the screened lines which extend to and from the ignition distributor 118 act as a charging capacitor. The capacitances are indicated in dotted line. Due to the small inherent capacitance of the rectifier 116, the reaction of the capacitors 133, 134 with the square of the transformation ratio on the primary side of the ignition transformer 38 is extensively prevented, since the capacitance of the rectifier 116 acts as a series capacitance to the capacitances 133, 134. By this compensation, the highest possible switching frequency of the switch stage 42 is obtained with the ignition transformer 38.

The timing members 45, 44 are monostable multivibrators which enter into operation in the voltage transfer from, for instance, 12 V to 0 V. In order to fulfill the function described, shown in FIG. 3, inverting gates are provided behind their output, namely gate 136 in the timing member 45 and gate 137 in timing member 44.

The transistors which are shown as npn transistors can, with suitable change in the circuit, also be developed as pnp transistors, for instance as silicon transistors.

The logic shown refers to integrated circuits, series COS MOS of RCA. It is characterized by particularly high suppression of noise voltages. Since its supply volt-

age can also vary within wide limits, the d.c. voltage supply can be effected from a source of d.c. voltage 3 with varying output voltage, for instance a battery. Other logic series of other manufacturers can also be supplied with high suppression of noise voltage, but do not permit such a large variation of their d.c. voltage supply. When they are used, control units must be employed, possibly in combination with a d.c. voltage transformer 20.

From the secondary side of the ignition transformer 38, the stepped-up alternating voltage is fed to a rectifier path 116 and, via the mechanical ignition distributor 118, to the spark plugs 129 to 132. Instead of the mechanical ignition distributor 118, an electronic ignition distributor can also be provided.

This ignition device which produces and gives off a very high ignition are energy and in connection with which the duration, start and end of the arc produced at the electrodes of the spark plugs is variable within very large limits which have not previously been achieved, is particularly well suited for the introduction of, i.e. the influencing by, correcting variables which are characteristics of the operation of the internal combustion engines and their environment. These correcting variables are fed to controlling elements which are indicated or combined as follows in the block diagram of FIG. 4: switch stage 42 contains the transistors 48, 205, 207, 209 serving as a switch with corresponding power amplification. The pulse generator 43, preferably an astable multivibrator, contains controlling members - in the embodiment shown by way of example potentiometers 201 to 204 - with which there are associated correcting variables which are dependent, for instance, on the throttle, the ignition moment, the speed and the nature of the gasoline-air ratios used. The timing member 44, preferably a monostable multivibrator, contains controlling elements - in the embodiment shown by way of example potentiometers 69 to 72 - with which there are associated correcting variables which are dependent, for instance, on the throttle, the ignition moment, the speed and the nature of the gasoline-air ratio used.

The timing member 45, which is also preferably a monostable multivibrator, contains controlling elements - in the embodiment shown by way of example potentiometers 76 to 78 - with which there are associated correcting variables which are dependent, for instance, on the throttle, the speed of rotation and the nature of the gasoline-air ratio used.

46 is the ignition-moment transmitter in combination with a breaker switch 86 and cam 87. 102 is a filter device consisting of choke, capacitors, a series connection of a resistor and Zener diode; it is intended to keep superimposed noises of the d.c. voltage supply away from the supply line of the timing members 44, 45, of the pulse generator 43 and of the ignition-moment transmitter 46.

FIG. 5 shows the equivalent circuit diagram of the ignition transformer, shown as consisting of a primary winding, for instance 155, in combination with the secondary winding 47. The source of alternating voltage U 1 has the internal resistance  $R_{primary}$  which is composed of the series circuit of the internal resistance of the storage battery 3, the residual saturation resistance of the transistor 48 serving as a switch and the ohmic resistance of the primary winding 155.

$$R_{primary} = R_i + R_s + R_{winding}$$

This resistance is stepped up by the square of the transformation of the turns ratio between primary and secondary windings on the secondary side to the resistance  $R_{secondary}$ .  $R_{secondary}$  together with the internal resistance  $R_s$  of the rectifier 116 forms the internal resistance of the source of high voltage. The winding and stray capacitances on the secondary side are stepped up with the square of the transformation ratio to the primary side and thus limit the switching frequency obtainable with the transistor 48 serving as a switch.

$$C_{sl} = \ddot{u}^2 \times C_{s2}$$

15 The ignition and the spark plugs are represented as arc paths 118, 129 to 132. The stray capacitances 133, 134 of the feedline are substantially reduced by the series capacitance of the rectifier 116 with respect to their effect on the transformation properties of the ignition transformer 38 and act at the same time as a charging capacitor for the half-wave rectifier 116.

20 The transformer 38 developed in accordance with the invention which is shown in FIGS. 6 and 7 has four rectangular ferrite cores 151, 152, 153 and 154 of closed construction. The secondary coil 47 surrounds in each case one leg of all ferrite cores which, on their other, opposite legs, each bear two primary windings, for instance 155, 156 and 157, 158 respectively.

25 FIG. 9 shows a ferrite core 152 which is composed of two pieces and has air gaps 159, 160 which are to be kept as small as possible. The split construction makes it possible to place the completely wound coils with their supports over the legs.

30 Instead of two primary windings, for instance 157, 158, arranged apart in space and one over the other on a leg, a double or multiple winding can be provided whereby the stray losses are reduced, particularly when in the case of a large numbers of turns, several layers are required. A part of a double winding, pulled open, 35 is shown in FIG. 8. The windings which travel in the same direction are designated 161 and 162.

35 FIG. 10 shows the multiple control of the primary windings in circuit diagram.

40 The primary windings 155 to 158 have switch transistors 48, 205, 207, 209 and transistors 49, 206, 208, 210 in Darlington circuit associated with them. The secondary winding 47 is connected at its one end via the output terminal 114 and the rectifier 116 with the ignition distributor 118 and the spark plugs 129 to 132 (see FIG. 4).

45 The other end is connected by the output terminal 113 to the grounding point of the vehicle. The transistors 56, 54 are connected behind the pulse generator 43 to amplify the output and impart a sufficient control power to the Darlington circuit. The resistors 52 and 53 are emitter resistors for the transistor 54 which operates in collector circuit; their resistance ratio is determined in accordance with the need for bias voltage of the Darlington circuit. Resistor 57 is the emitter resistor for the transistor 56 which operates in a collector circuit. The resistance matching to the pulse generator 43 is effected by the resistor 60 via the terminal 61. The positive supplying of the circuit takes place via the terminal 36 and the negative supplying via the terminal 41.

50 In FIG. 11 there is shown the mutual uncoupling of the base currents by the resistors 218 to 221 for the transistors 49, 206, 208, 210 operating in Darlington circuit. By introduction of the base resistors 218 to

221, contrary to the circuit shown in FIG. 10, the result is obtained that the residual saturation voltage of the transistors 48, 205, 207, 209 serving as switches become less and the individual dispersions become less. In this way the scope of use of transistor types is increased.

In detail, the resistor 218 is connected at its one end with the base of the transistor 49, the resistor 219 with the base of the transistor 206, the resistor 220 with the base of the transistor 208, and the resistor 221 with the base of the transistor 210. The other ends of the resistors 218 to 221 are connected to each other and connected to the junction of the resistors 52 and 53 at point 237.

In FIG. 12 there is shown a particularly economical multiple power control of the primary side in a circuit diagram. This circuit has become possible, since sealing compositions of higher electrical insulating power which have recently come on the market have made possible a reduction in the insulation paths on the one hand between the secondary winding and the grounded ferrite-core leg and on the other hand between the primary winding and the second winding (see FIGS. 6 to 9). By the reduced structural size, the length of the iron path of a magnetic circuit of the ignition transformer consisting of two or more magnetic circuits can be reduced. In this way there results a reduced need for current in the primary winding in order to obtain the same magnetic flux. As a result, the transistors 48, 205, 207, 209 which serve as switches can be selected from a smaller power class, together with the advantage of relatively smaller loss power.

In detail, the transformer consisting, for instance, of four primary windings 155 to 158 and one secondary winding 47 is connected at one end of the primary winding 155 with the collector of the switch transistor 48, at the primary winding 156 with the collector of the switch transistor 205, at the primary winding 157 with the collector of the switch transistor 207, at the primary winding 158 with the collector of the switch transistor 209, while the other ends of the primary windings 155 to 158 are connected via the terminals 215, 36 with the positive potential of the supply (see FIG. 4). The emitters of the transistors 48, 205, 207, 209 which serve as switches are connected with each other and connected via the terminals 217, 41 to the negative potential of the supply. The base of the switch transistor 48 is connected via the resistor 211, the base of the switch transistor 205 via the resistor 212, the base of the switch transistor 207 via the resistor 213, the base of the switch transistor 209 via the resistor 214, with the emitter of the transistor 54 which operates in collector circuit. The base resistors 211 to 214 serve for the mutual uncoupling of current. The emitter of the transistor 54 which operates in collector circuit is connected via the resistor 53 and the terminals 217, 41 with the negative potential of the supply. The transistor 55 operates with the transistor 54 in a Darlington circuit in order to increase the current amplification. Its emitter is connected with the base of the transistor 54. The base of the transistor 55 leads to the emitter of the transistor 56 which operates in a collector circuit and the base of which is connected via the resistor 60 for impedance matching to the pulse generator 43 via the terminal 61 with the output terminal 62 of the pulse generator 43. The emitter of the transistor 56 is connected via the resistor 57 and the terminal 41 with the negative potential of the supply. The collectors of the

transistors 54, 55, 56 are connected with positive potential of the supply via the terminals 216, 215, 36.

The circuit shown with the transistors 54, 55, 56 produces the necessary control power for the switch transistors 48, 205, 207, 209. The secondary winding 47 of the transformer has its one end connected via the terminal 114 with the rectifier 116, the ignition distributor 118 and the spark plugs 129 to 132. The other end is connected via the terminal 113 with the grounding point of the vehicle.

The circuit on the primary side of the ignition transformer, in the manner in which it has been selected in accordance with the invention, in particular also has the following advantage. The division of power present

15 on the primary side makes possible the use of transistors of small switching power so that the expense, even though several transistors are used, is less when employing a single transistor of very high switching power. Furthermore, this has inherent in it the advantage that 20 the heat losses are better distributed and, upon failure of one or several switch transistors, the operation is not greatly impaired and can still be maintained to the necessary extent for a relative long period of time.

FIG. 13 shows another embodiment of the pulse generator 43 (see FIG. 2).

FIG. 14 shows the course of the functions in pulse diagrams at the points indicated.

The pulse generator 281 consists of a known astable multivibrator, consisting of the logical inverter circuits 225 and 230, as well as the capacitors 228 and 229 and the resistors 223 and 224. In order to obtain a very rapid starting of oscillation so as to operate with the full pulse length of an "on" pulse already upon the first rectangular oscillation, so as to avoid a falsifying of the 30 moment of ignition, the logical inverter circuit 235 has been supplemented by the differentiation member consisting of the capacitor 233, resistor 234, and logical inverter circuit 226, 227 in the known astable multivibrator circuit. Furthermore, the pulse generator 281 35 consists of the logical AND circuit 231, 232 so as to free the generator frequency or switch frequency at the switch stage 42 for the duration of the function of the timing member 44 (see FIG. 2).

The input terminal 66 is connected with the output 45 terminal 67 of the timing member 44. The terminal 66 leads on the one hand via the junction point 240 to an input of the NAND gate 231 and on the other hand to the input of the logical inverter circuit 235. The output of the logical inverter circuit 235 is connected, via the 50 capacitor 233, junction 242, with an input of the NAND gate 226 and which is connected via junction 242, resistor 234, and terminal 64 with positive potential of the supply. The other input of the NAND gate 226 is connected with the output of the logical inverter circuit 225 whose input extends on the one hand via the junction 241 to the capacitor 228 and is connected on the other hand via the junction 241, resistor 223, junction 236, and terminal 222 with negative potential of the supply. The other end of the capacitor 228 is connected via the point 244 with the output of the logical inverter circuit 230 and the input of the NAND gate 231 whose output is connected with the input of the logical inverter circuit 232 whose output is connected via the output terminal 62 with the input terminal 61 of the switch stage 42. The output of the logical inverter circuit 227 is connected via the capacitor 229 and junction 243 with the input of the logical inverter circuit 230 and is connected on the other hand via point 243,

resistor 224, junction 236 and terminal 222 to the negative potential of the supply.

The logic shown refers to integrated circuits, Series COS MOS, for instance of RCA. The positive and negative logical reference points of these integrated circuits are not shown.

Instead of the individual resistors 224 and 223 shown in the case given by way of example, any other combinations of resistors can be used, for instance in series or parallel connection. For this fixed resistors, variable resistors and strain gauges can, for instance, be used as linear resistors, while as nonlinear resistors there may be used, for instance, photoresistors, thermistors and low-temperature conductors, field plates and transistors, as well as combinations of linear and nonlinear resistors.

The frequency and the pulse duty factor of the pulse generator 281 are determined on the one hand by the capacitor 228 with the resistor 223 and the capacitor 229 with the resistor 224 and can be varied by a corresponding dimensioning of the parts.

FIG. 15 shows the system relationships of the circuit 277 with the other elements of the ignition system.

FIGS. 16 to 18 serve to explain the switching details further.

The circuit 277 is a combination module of the timing members 45 and 252, the pulse generator 267 and the circuit 254, a displacement of the ignition time and of the switch frequency which is dependent on the speed being obtained by the modules 252 and 267. The circuit 277 shows the time-delay member 45 in the circuit of FIG. 2. The module 252 is - for the displacement as a function of speed of the ignition time in connection with circuit 254 - a different embodiment of the timing member 44 (see FIG. 2), while the module 267 is a different embodiment of the pulse generator 43 (see FIG. 2) for the displacement of the switch frequency as a function of the speed of rotation. The circuit 277 is connected via the input terminal 247 with the output terminal 80 of the ignition-moment transmitter 46, while the output terminal 262 leads to the input terminal 61 of the switch stage 42. The terminal 308 of the circuit 277 is connected with positive potential of the supply and the terminal 278 is connected with negative potential of the supply.

For a further explanation of FIG. 16, four pulse diagrams have furthermore been shown in FIGS. 17 and 18. The 4 pulse diagrams show the corresponding pulses at the indicated points of the timing member 252 with the circuit 254 and of the pulse generator 267 during the starting process and at three other speed points. FIGS. 17a to 17k apply for the lowest engine speed range during the starting process prior to the first switch point. FIGS. 17l to 17v show the first switch point at higher engine speed. FIGS. 18a to 18k show the second switch point at again higher engine speed. FIGS. 18l to 18v show the third switch point at still higher engine speed.

The circuit 254 consists of a plurality - in the specific case three - of known re-triggerable monostable multivibrators. The monostable multivibrators of circuit 254 are controlled by the output pulse of the timing member 45 which represents the time-delayed pulse of the ignition-moment transmitter 46, by the connection of the terminal 74 via the junctions 265, 266 with the terminal 253. The duration of the output pulses of the monostable multivibrators of circuit 254 is of different length. When the distance in time between two input

pulses at the terminal 253 of circuit 254 is smaller than the duration of the output pulse of one or more monostable multivibrators of the switch 254, their outputs 255, 256, 257 remain in quasi-stable condition. However, if the difference in time between two input pulses at the terminal 253 of the circuit 254 is greater than the duration of the pulse of one or more monostable multivibrators of the circuit 254, then each of these monostable multivibrators gives off an output pulse to the multiple timing member 252. The multiple timing member 252 consists of a plurality - in the specific case four - of known non-retriggerable monostable multivibrators and of the logical OR circuit 264, 268, 269. With a different number of non-retriggerable monostable multivibrators, the logical OR circuit 264, 268, 269 is correspondingly broadened or reduced.

Several - in the specific case three - of these monostable multivibrators receive their input pulses from the circuit 254 via the input terminals 258, 259, 260. One of the monostable multivibrators of the multiple timing member 252 receives its input pulse directly from the timing member 45 via the terminals 74, 265, 251. The duration of the output pulses of the monostable multivibrators of the multiple timing member 252 is of different length. The output pulses of the monostable multivibrators of the multiple timing members 252 are connected with each other via a logical OR circuit 264, 268, 269. The longest pulses present at the inputs of the logical OR circuit 264, 268, 269 act on the output of the logical OR circuit 264, 268, 269 via the output terminal 263. The dimensioning of the monostable multivibrators of circuit 254 has been effected in such a manner that with an increase in the speed of rotation of the engine - and therefore with an increasingly small difference in time between two pulses of the ignition-moment transmitter 46 via the terminal 74 of the timing member 45 - one monostable multivibrator after the other of the multiple timing member 252 no longer receives an input pulse, since the controlling monostable multivibrators of circuit 254 pass one after the other into the quasi-stable condition. Starting at one engine speed, the duration of the pulse at the output terminal 263 of the logical OR circuit 264, 268, 269 is determined solely by the monostable multivibrator of the multiple timing member 252 which receives its input pulse not via the circuit 254, but directly from the terminal 74 of the timing member 45.

The pulse generator 267 can be switched electronically in its frequency in any desired number of stages. In the embodiment shown by way of example, three switchings with four frequency stages are shown. The pulse generator 267 consists of a known astable multivibrator, a logical AND circuit 318, 309, a capacitor 270 with the resistor 271 as differentiating member, the logical inverter circuits 272, 273, 274 and the resistors 292, 293, 294, 295 with the diodes 301, 302, 303 and the capacitor 291, as well as the resistors 297, 298, 299, 300 with the diodes 304, 305, 306 and the capacitor 296.

From the first pulse at the terminal 74 of the timing member 45, which for all practical purposes represents a time-delayed pulse of the ignition-moment transmitter 46, the pulse generator 267 is stimulated to oscillate via the connecting of the terminal 74 of the timing member 45 via the connecting points 265, 266 to the terminal 276 and thereupon resynchronized by each additional pulse at the terminal 74 of the timing member 45. By the synchronization the result is obtained

that the pulse generator 267 commences with the full length of pulse at each ignition moment. The very short synchronization pulse is formed from the time-delayed pulse of the ignition-moment transmitter 46 by the differentiator member 270, 271. The outputs of the monostable multivibrators of the multiple timing member 252 are connected via the output terminals 283, 284, 285 with the logical inverter circuits 274, 273, 272 of the pulse generator 267 via the input terminals 288, 287, 286. In this way, due to the output pulses at the output terminals 283, 284, 285 of the multiple timing member 252, depending on the number of monostable multivibrators of the multiple timing member 252 which are in operation, a given sequence of frequency switchings of the pulse generator is brought about. As long as an output pulse is present at the terminal 263 of the multiple timing member 252, a number of groups of pulses with frequencies associated with them, depending on the number of monostable multivibrators of the multiple timing member 252 which is in operation, will enter into action. In the example shown, one possibility of frequency association of the pulse generator 267 with the duration of the ignition power present is shown. By interchanging the connection between the output terminals 283, 284, 285 of the multiple timing member 252 and the input terminals 286, 287, 288 of the pulse generator 267, other associations of the frequency of the pulse generator 267 with the duration of the ignition power are also possible. The frequency and the pulse duty factor of the pulse generator 267 are determined on the one hand by the capacitor 291 with the resistors 292, 293, 294, 295 and on the other hand by the capacitor 296 with the resistors 297, 298, 299, 300.

A change in frequency which is dependent on speed of rotation is obtained in the manner that the resistors 292, 293, 294, 295 and 297, 298, 299, 300 respectively are connected in groups by the logical inverter circuits 272, 273, 274 over the diodes 301, 302, 303 and 304, 305, 306 respectively against negative potential of the supply. For example, one group is formed of the logical inverter circuit 272, the diodes 303, 306 and the resistors 295, 300. A change in frequency is brought about by the application of an input pulse to the logical inverter circuits 272, 273, 274 and remains in existence for the duration of the input pulse. If no input pulse is present at the logical inverter circuits 272, 273, 274, then the pulse generator 267 oscillates at its natural frequency. The output terminal 263 of the multiple timing member 252 is connected with the input terminal 307 of the pulse generator 267 so as to release the switch frequency of the pulse generator 267 at the switch stage 42 for the duration of the output signals at the terminal 263 of the multiple timing member 252 in combination with the logical AND circuit 318, 309 of the pulse generator 267, so that the pulses of the astable multivibrator of the pulse generator 267 are present at the terminal 310 for the duration of the output pulses of the logical OR circuit 264, 268, 269 of the multiple timing member 252.

The resistors 311 to 314 of the multiple timing member 252 and the resistors 315 to 317 of the circuit 254 are made variable and dependent on directly or indirectly measured or determined operational and possibly environmental data.

The input terminal 247 of the circuit 277 leads to the input terminal 79 of the timing member 45 which is connected via the terminal 75, point 248 with the output terminal 308 to positive potential, and via the ter-

5 minal 82, point 249, output terminal 278 to negative potential. The output terminal 74 of the timing member 45 leads to the input terminal 251 of the multiple timing member 252 and via points 265, 266 to the terminal 253 of the circuit 254 and to point 276, pulse generator 267. The output terminals 255, 256, 275 of the circuit 253 are connected with the input terminals 258, 259, 260 of the multiple timing member 252. The circuit 254 is connected with the output terminal 261 via the points 279, 248 and via the output terminal 308 of the circuit 277 with positive potential of the supply. The output terminal 275 of the circuit 254 is connected via the points 280, 249 via the output terminal 278 of the circuit 277 with negative potential. The output terminal 263 of the multiple timing member 252 is connected with the input terminal 307 of the pulse generator 267 whose output terminal 310 leads to terminal 262 of the circuit 277. The output terminals 283, 284, 285 of the multiple timing member 252 are connected 10 with the input terminals 288, 287, 286 of the pulse generator 267. The input terminal 250 of the pulse generator 267 is connected via the points 279, 248, terminal 308 of circuit 277, with positive potential of the supply. The input terminal 289 of the pulse generator 267 is connected via the points 290, 280, 249, terminal 478, with negative potential. The input terminal 282 of the multiple timing member 252 is connected via the points 290, 280, 249, terminal 278, with the negative potential.

15 20 25 30 The logic shown refers to integrated circuits, Series COS MOS, for instance of the RCA company. The positive and negative logical reference points of these integrated circuits is not shown.

35 Instead of the individual resistors 311 to 317 shown in the example, any desired other combination of resistors, for instance in series or parallel connection, can be used. In this connection, fixed resistors, variable resistors and strain gauges can, for instance, be used as linear resistors and photoresistors, thermistors and cold conductors, field plates and transistors, for instance, can be used as nonlinear resistors, it being also possible to use combinations of linear and nonlinear resistors.

40 45 FIG. 19 shows the circuit 403 which represents another embodiment of the circuit 277 shown in FIG. 15. The control of the timing member 44 and of the pulse generator 43 as a function of the speed is effected by an analogous process.

50 55 The circuit 403 consists of the timing members 45, 44, the pulse generator 43 (see FIG. 2), the series regulator 350, the speed signal transmitter 385 and the speed control member 380. The circuit 403 is connected via the input terminal 404 with the output terminal 80 of the ignition-moment transmitter 46. The output terminal 379 is connected with the input terminal 61 of the switch stage 42. The circuit 403 is connected via the terminal 376 with positive potential and via the terminal 383 with negative potential of the supply.

60 65 FIG. 20 shows the more detailed development of the circuit 403.

70 The circuit 403 contains the timing members 44, 45 with the known monostable multivibrator circuit and the pulse generator 43 in the known astable multivibrator circuit. The process-dependent resistor 69 for the timing member 44 and the process-dependent resistor 201 for the pulse generator 43 are developed as photoresistors. They are photoconductively connected with the photodiode 381 which in the present case operates

in dependence on the speed of rotation. Further process variables can be coupled to the timing member 44 and the pulse generator 43 with in each case another photodiode which is photoconductively connected with the photoresistors 69, 201. The photodiode 381, controlled in the present case by the speed signal transmitter 385, gives off for each ignition moment a light pulse of constant intensity over the entire speed range to the photoresistors 69 and 201. Since the photoresistors 69 and 201 can release a pulse train frequency of a few cycles, while the photosignal train of the photodiode 381 can amount, however, depending on the speed, to 10 to 500 cycles, the change in resistances of the photoresistors 69, 201 is determined by the photopulse train of the photodiode 381, since, as a result of the high integration time of the photoresistors 69, 201, the dead time between 2 light pulses is not recognized. At high speed of rotation and high ignition-moment sequence there results a high photopulse density of the photodiode 381 and thus a small resistance of the photoresistors 69 and 201. This results in the case of the timing member 44 and the photoresistor 69 in a short duration pulse and in the case of the pulse generator 43 and the photoresistor 201 in a high switch frequency. The standardized light signal of the photodiode 381 is, in the case of the example, obtained from the speed signal transmitter 385 by a known monostable multivibrator consisting of the logical circuits 390, 391, the capacitors 393 and 394 and the resistors 392, 395, 396, in combination with the transistors 397 and 399 serving for the amplification of the power in the emitter circuit, in the manner that for each ignition moment, independently of the speed of rotation, a constant, rectangular current pulse of constant voltage is imparted to the photodiode 381. The constancy of voltage is assured by the series regulator 350, while the temperature compensation of the circuit is obtained via the resistors 400 and 401.

The input terminal 404 of circuit 403 leads to the input terminal 79 of the time-delay member 45 whose positive potential is brought to the supply via the terminal 75, points 375, 384 of the terminal 357 of the series regulator 350. The negative potential of the supply for the time-delay member 45 comes from the terminal 383 of the circuit 403 via the points 382, 363, 360, 358 to the terminal 82. The output terminal 74 of the time-delay member 45 leads on the one hand over the points 377 to the input terminal 73 of the timing member 44 and on the other hand via terminal 389 to the speed signal transmitter 385. The positive potential of the timing member 44 is connected to the terminal 68 and is brought via the points 378, 375, 384 from the terminal 357 of the series regulator 350. The negative potential of the timing member 44 for terminal 359 is brought via points 360, 363, 382 from the terminal 383 of the circuit 403. The output terminal 67 of the timing member 44 leads to the input terminal 66 of the pulse generator 43 whose terminal 64 is brought for positive potential from the points 378, 375, 384 from the terminal 357 of the series regulator 350. The output terminal 62 of the pulse generator 43 is connected to the output terminal 379 of the circuit 403. The resistors 361, 362 with the photoresistor 69 in the speed control member 380 is controlling for the time of the timing member 44. One end of the resistor 362 extends via point 405, terminal 83 of the timing member 44, and terminal 365 of the speed control member 380 to the photoresistor 69. The other end of the resistor 362 is connected with the

known monostable multivibrator. The resistor 361 has its one end connected to the point 405 and its other end connected to terminal 359 of the timing member 44. The other end of the photoresistor 69 extends over point 407, and terminal 364 of the speed control member 380, and further over the points 363, 382, via the terminal 383 of the circuit 403 to the supply with negative potential. The resistors 372 and 373 with the photoresistor 201 of the speed control member 380 are determinative of the frequency for the pulse generator 43. The one end of the resistor 372 is connected with the known astable multivibrator of the pulse generator 43. The other end of the resistor 372 extends over point 406, resistor 373, terminal 370 of the pulse generator 43, terminal 368 of the speed control member 380 to the one end of the photoresistor 201 of the speed control member 380 whose other end is connected over the terminal 367 of the speed control member 380, and terminal 369 of the pulse generator 43 to the point 406. The known monostable multivibrator of the speed signal transmitter 385 produces, for each ignition moment, a pulse of a duration independent of the speed, which is conducted from point 408 over resistor 395 to the base of the power-amplification transistor 397 which operates in an emitter circuit. The emitter of the transistor 397 is connected via point 409 with negative potential to the terminal 386, while the collector is connected via point 410, resistor 402, point 411, 412 with the positive potential to the terminal 388 of the circuit 403. The collector of the transistor 397 is connected via point 410, resistor 398 to the base of the transistor 399 which operates in emitter circuit for further power amplification and the emitter of which is connected via point 409 to the terminal 386. The collector of the transistor 399 leads via point 413, resistor 400, points 414, 411, 412 to positive potential at the terminal 388, and on the other hand via point 413, the temperature-dependent resistor 401, the points 414, 411, 412 to the terminal 388. The speed signal transmitter 385 is connected with the terminal 388, point 384 with the terminal 357 of the series regulator 350 for supply with positive potential, while the terminal 386 is connected via point 382 of negative potential from the terminal 383 of the circuit 403. The output 387 of the speed signal transmitter 385 extends over the terminal 366 of the speed control member 380 to one end of the photodiode 381, while the other end is connected via point 407 with the terminal 364 of the speed control member 380. The terminal 364 of the speed control member 380 is connected via the points 363, 382 with the negative potential of the supply at terminal 383 of circuit 403. The series regulator 350 in known circuit consists of the transistor 351, the resistor 353, the Zener diode 354 and the capacitor 352. The unregulated positive supply voltage is brought from the terminal 376 of circuit 403 to the terminal 356. The terminal 357 is the reference point for the controlled positive supply voltage. The terminal 355 of the series regulator 350 is connected via the points 358, 360, 363, 382 with the negative potential of the terminal 383 of the circuit 403.

FIGS. 21 and 22 show the structural development of the speed control member 380 in the circuit 403 of FIG. 20.

FIG. 21 shows the inclusion of the photoresistors 69 and 201 and of the photodiode 381 in the housing 416. The photocoupling between the photoresistors 69 and 201 and the photodiode 381 can be obtained by light-

permeable sealing composition in the housing 416 or by the insertion of light-conducting material and in addition light-conducting sealing material.

FIG. 22 shows the photoresistors 69 and 201 and the additionally provided photodiodes 417 and 418 which can be limited to the action of further process variables of the internal combustion engine or environmental data on the photoresistors 69 and 201. The photoconductive connection is produced in the manner described in FIG. 21.

FIG. 23 shows the cooperation of the circuit 277 with the rest of the ignition system of FIG. 23 via the galvanic separating members 338 (see FIG. 25), 339 (see FIG. 26) with galvanically separated supply of the circuit 277 by the d.c. voltage transformer 349. The galvanic separating members 338, 339 can optionally be developed as a transformer solution (see FIG. 25) or as optical solution (see FIG. 26). The d.c. voltage transformer 349 is supplied with positive potential of the battery 3 via the terminal 320, point 319, point 11, from the terminal 10 of the ignition switch 8. The terminal 321 of the d.c. voltage transformer 349 is connected via point 322 and point 461 with the terminal 4 for supply with the negative potential of the battery 3. The output voltage of the d.c. voltage transformer 349 is present on the terminals 324, 323. It is galvanically separated from the battery voltage. The d.c. voltage transformer 349 can be developed as a singleended transformer (see FIG. 27) or as a push-pull transformer (see FIG. 2). The positive potential leads from the terminal 324 to the input terminal 106 of the filter device 102 and from its output terminal 103 thereof via point 332 to the terminal 329 of the galvanic separating member 338, from point 332 via point 333 to the terminal 308 of the circuit 277, and from point 333 to the terminal 341 of the galvanic separating member 339. The negative potential of the d.c. voltage transformer 349 is conducted from the terminal 323, point 325 to the terminal 105 of the filter device 102, and from point 325, point 337 to the terminal 335 of the galvanic separating member 338, from point 337 via point 347 to the terminal 278 of the circuit 277, from point 327 to the terminal 344 of the galvanic separating member 339. The positive potential of the battery 3 is conducted from terminal 10 of the ignition switch 8 via point 11, 319, point 462 to the terminal 342 of the galvanic separating member 339, from point 462, point 330, point 331 to the terminal 328 of the galvanic separating member 338, from point 330 to the terminal 85, from point 331 to terminal 84 of the ignition-moment transmitter 46.

The negative potential of the terminal 4 of the battery 3 extends over point 461, point 322, point 463, point 348, point 346 to terminal 345 of the galvanic separating member 339, from point 346 via point 336 to the terminal 334 of the galvanic separating member 338 and from point 336 to terminal 81 of the ignition-moment transmitter 46.

The output signal of the terminal 80 of the ignition-moment transmitter 46 leads to the input terminal 326 of the galvanic separating member 338 whose output terminal 327 is connected with the input terminal 247 of the circuit 277. The output terminal 262 of the circuit 277 leads to the input terminal 340 of the galvanic separating member 339 whose output terminal 343 is connected with the input terminal 61 of the switch stage 42.

FIG. 24 shows the cooperation of the timing members 45, 44 and pulse generator 281 with the rest of the ignition system of FIG. 24 via the galvanic separating members 338 (see FIG. 25), 339 (see FIG. 26) with galvanically separated supply of the timing members 45, 44 and of the pulse generator 281 by the d.c. voltage transformer 349.

The galvanic separating members 338, 339 can be developed either as a transformer solution (see FIG. 25) or as an optical solution (see FIG. 26).

The d. c. voltage transformer 349 is supplied with positive potential of the battery 3 via the terminal 320, point 319, point 11 from terminal 10 of the ignition switch 8. The terminal 321 of the d.c. voltage transformer 349 is connected via point 322, point 461 with the terminal 4 for supply with the negative potential of the battery 3. The output voltage of the d.c. voltage transformer 349 is present on the terminals 324, 323. It is galvanically separated from the battery voltage. The d.c. voltage transformer 349 can be developed as a single-ended transformer (see FIG. 27) or as a push-pull transformer (see FIG. 2). The positive potential leads from the terminal 324 to the input terminal 106 of the filter device 102 and from its output terminal 103 over point 332 to the terminal 329 of the galvanic separating member 338, from point 332 via point 464 to the terminal 75 of the timing member 45 and from point 464 via point 465 to the terminal 68 of the timing member 44, from point 465 via point 466 to the terminal 64 of the pulse generator 281, and from terminal 466 to terminal 341 of the galvanic separating member 339. The negative potential of the d.c. voltage transformer 349 is conducted from the terminal 323, point 325 to the terminal 105 of the filter device 102 and from point 325, point 337 to the terminal 335 of the galvanic separating member 338 and from point 337 via point 467 to the terminal 82 of the timing member 45, from point 467 over point 468 to the terminal 83 of the timing member 44, from point 468 via point 469 to the terminal 222 of the pulse generator 281 and from point 469 to the terminal 344 of the galvanic separating member 339. The positive potential of the battery 3 is brought from the terminal 10 of the ignition switch 8 via point 11, point 319, point 462 to the terminal 342 of the galvanic separating member 339, from point 462, point 330, point 331 to the terminal 328 of the galvanic separating member 338, from point 330 to the terminal 85, from point 331 to terminal 84 of the ignition-moment transmitter 46. The negative potential of the terminal 4 of the battery 3 extends over point 461, point 322, point 463, point 348, point 346 to terminal 345 of the galvanic separating member 339, from point 346 via point 336 to the terminal 334 of the galvanic separating member 338 and from point 336 to terminal 81 of the ignition-moment transmitter 46.

The output signal at terminal 80 of the ignition-moment transmitter 46 leads to the input terminal 326 of the galvanic separating member 338, its output terminal 327 to the input terminal 79 of the timing member 45, and the output terminal 74 to the input terminal 73 of the timing member 44. The output terminal 67 of the timing member 44 is connected with the input terminal 66 of the pulse generator 281 whose output terminal 62 is connected with the input terminal 340 of the galvanic separating member 339 whose output terminal 343 is connected to the input terminal 61 of the switch stage 42.

The galvanic separating member 338 is shown in FIG. 25.

It consists of the transistors 420, 431, 439, the resistors 419, 421, 428, 430, 434, 436 the diode 426 and the transformer 459.

The galvanic separation is obtained by the transformer 459 which has a transformer ratio of 1:1 to 1:3, and preferably 1:1. Primary and secondary windings 422, 423 are wound jointly and arranged either on a ferrite-core bar or in a ferrite pot core. The rectifier 426 dampens switching peaks which occur upon pulse-like transformation. The resistor 421 dampens switching peaks on the primary side, the resistor 428 is the operating resistor of the rectifier 426 and, simultaneously with resistor 430, the base resistor of the transistor 431. Resistor 434 is the operating resistor of the transistor 431 operating in emitter circuit, resistor 436 is the operating resistor for the emitter circuit with transistor 439. Resistor 419 serves for resistance matching to the signal source.

The input signal comes from the terminal 326 and is conducted over resistor 419 to the base of the transistor 420 operating in emitter circuit, whose emitter is connected via the terminal 334 to the negative potential of the supply.

The collector of the transistor 420 is connected via point 424 to the one end of the resistor 421 and to the one end of the primary winding 422 of the transformer 459. The other end of the resistor 421 is connected via point 425, terminal 328 with the positive potential of the supply. The other end of the primary winding 422 of the transformer 459 is connected via point 425 to the supply with positive potential at the terminal 328. The one end of the secondary winding 423 of the transformer 459 is connected over rectifier 426, point 427, resistor 430 to the base of the transistor 431 which operates in emitter circuit. The other end of the secondary winding 423 of the transformer 459 extends over point 429, 432 which is also connected with the emitter of the transistor 431, point 438 which is also connected with the emitter of the transistor 439, to the terminal 335 for supply with negative potential. One end of the resistor 428 is connected to point 427 and its other end to point 429. The collector of the transistor 431 is connected over point 433, resistor 434, point 435 to the terminal 329 for supply with positive potential. The collector of the transistor 431 is connected via point 433 with the base of the transistor 439 whose collector is connected via point 437 with the one end of the resistor 436 and the terminal 327. The other end of the resistor 436 leads via point 435 to the terminal 329 for supply with positive potential.

FIG. 26 shows the galvanic separating member 339.

It consists of the transistors 440 and 454, the phototransistor 447, the photodiode 443 and the resistors 456, 441, 446, 451, 452.

The galvanic separation is obtained by optical coupling between photodiode 443 and phototransistor 447. Photodiode 443 and phototransistor 447 are obtainable as a structural unit on the market. Resistor 441 determines the current dimensioning for the photodiode 443. Resistor 456 serves for resistance matching to the signal source. Resistor 446 is the base resistor of the phototransistor 447. Resistor 451 is the corresponding working resistor in the collector circuit. Resistor 452 is the working resistor for the transistor 454 in the collector circuit.

The input signal comes from the terminal 340 and is brought via resistor 456 to the base of the transistor 440 which operates in emitter circuit and whose emitter is connected via the terminal 344 to the negative potential of the supply. The collector of the transistor 440 extends over resistor 441, point 442, photodiode 443, point 444 to the terminal 341 for supply with positive potential. The base of the phototransistor 447 extends over point 445, resistor 446 and point 449 which is also connected via point 448 with the emitter of the phototransistor 447, over point 455 which is also connected with the emitter of the transistor 454, to the terminal 345 for supply with negative potential. The collector of the transistor 447 is connected via point 450, point 458 which is also connected with the one end of the resistor 451, to the base of the transistor 454. The other end of the resistor 451 leads via point 457 to the terminal 342 for supply with positive potential. The collector of the transistor 454 is extended to the terminal 343 over point 453 which is also connected with the one end of the resistor 452. The other end of the resistor 452 leads via point 457 to the terminal 342 for supply with positive potential.

In FIG. 27 the d.c. voltage transformer 349 is shown in a known embodiment as a single-ended transformer. A push-pull transformer 20 of known embodiment can also be used (see FIG. 2).

The input supply of the d.c. voltage transformer 349 is supplied in positive potential via the terminal 320 and in negative potential via the terminal 321. The output d.c. voltage which is galvanically separated from the input voltage is given off in positive potential by the terminal 324 and in negative potential by the terminal 323.

What is claimed is:

1. In combination with an internal combustion engine having a crank shaft and a cylinder containing a piston, an ignition device comprising:
  - a. an ignition transformer;
  - b. a timing member for providing an output which is a function of the position of said piston in said engine cylinder;
  - c. a pulse generator, coupled to said timing member, including an astable multivibrator having first and second NAND gates each having first and second inputs and an output, a first inverter and a first capacitor coupled between the first input of said first NAND gate and the second input of said second NAND gate, second and third inverters and a second capacitor coupled between the output of said first NAND gate and the second input of said second NAND gate, first and second resistors coupled between the input of said first inverter and the input of said third inverter, and a fourth inverter and third capacitor coupled between the first input of said second NAND gate and the second input of said first NAND gate, said timing member turning on and off said pulse generator;
  - d. a switching transistor coupled to said pulse generator, said switching transistor coupling said ignition transformer to a source of d.c. voltage, the switching frequency of said transistor being determined by said pulse generator to control the start, end and duration of the production of ignition arc energy; and
  - e. a half-wave rectifier circuit including a rectifier coupled with a secondary winding of said ignition transformer.

2. An ignition device as defined by claim 1 wherein said pulse generator provides output pulses which have a substantially rectangular shape.

3. An ignition device as defined by claim 1 which further comprises a d.c. voltage transformer coupled to said source of d.c. voltage, said d.c. voltage transformer increasing the nominal voltage of said d.c. voltage source from about 12 volts to a value within the range of 50 to 100 volts.

4. An ignition device as defined by claim 1 which further comprises a current regulating unit and a voltage regulating unit coupled between said d.c. voltage source and said ignition transformer.

5. An ignition device as defined by claim 1 which further comprises a breaker switch coupled to said crank shaft and actuated as a function of said piston position, said breaker switch initiating production of said ignition energy.

6. An ignition device as defined by claim 1 which further comprises a contact-lens transmitter for initiating the production of said ignition energy.

7. An ignition device as defined by claim 5 which further comprises a time-delay member coupled to said breaker switch.

8. An ignition device as defined by claim 6 which further comprises a time-delay member coupled to said contactless transmitter.

9. An ignition device as defined by claim 1 wherein said ignition transformer is provided with a closed core for magnetic flux.

10. An ignition device as defined by claim 9 wherein said ignition transformer is a wideband transformer.

11. An ignition device as defined by claim 10 wherein said ignition transformer has a ferrite core and at least one disk winding on a secondary side.

12. An ignition device as defined by claim 11 which further includes an un-closed Faraday cage on high-voltage insulation for said ignition transformer.

13. An ignition device as defined by claim 12 wherein said Faraday cage comprises a layer of graphite sprayed on said high-voltage insulation.

14. An ignition device as defined by claim 4 wherein said current regulator comprises a plurality of series-connected potentiometers for controlling the output of said regulator as a function of operational and environmental data.

15. An ignition device as defined by claim 1 wherein said ignition transformer comprises at least two ferrite cores, at least two primary windings surrounding each of said ferrite cores, and a single secondary winding surrounding one leg of each of said ferrite cores, and further comprising winding transistors coupled to each of said primary windings, respectively.

16. An ignition device as defined by claim 15 wherein the collector of each of said winding transistors is cou-

pled to a corresponding primary winding and the emitters are coupled together; and which further comprises auxiliary transistors coupled in a Darlington circuit, the collector and emitter of each auxiliary transistor being coupled to the collector and base respectively of a corresponding winding transistor, and the bases of said auxiliary transistors being coupled together.

17. An ignition device as defined by claim 16 wherein a resistor is connected in series with the base of each of the auxiliary transistors associated with said Darlington circuit.

18. An ignition device as defined by claim 15 wherein the collector of each of said winding transistors is coupled to a corresponding primary winding and the emitters are coupled together; and which further comprises auxiliary transistors having their collectors coupled together and the emitter of each auxiliary transistor coupled to the base of another of said auxiliary transistors; and a plurality of resistors, one end of each of said resistors being coupled to the base of a corresponding winding transistor and the other end to an emitter of one of said auxiliary transistors, said auxiliary transistors providing control power for said winding transistors.

19. An ignition device as defined by claim 15 wherein each of said ferrite cores is provided with an air gap.

20. An ignition device as defined by claim 9 wherein the switching frequency of said transistor is in the range of 1 to 20 kilocycles.

21. An ignition device as defined by claim 5 which further comprises means for suppressing chatter of said breaker switch.

22. An ignition device as defined by claim 1 which further comprises an ignition moment transmitter coupled to said timing member, said timing member being provided with a plurality of series-connected potentiometers for determining the duration of said ignition energy as a function of operating and environmental data.

23. An ignition device as defined by claim 1 which further comprises a speed signal transmitter having an output corresponding to the speed of rotation of said internal combustion engine, a photodiode coupled to said speed signal transmitter, and photoresistive means within said timing member and said pulse generator and optically coupled to said photodiode for controlling said pulse generator as a function of operating and environmental data.

24. An ignition device as defined by claim 1 which further comprises a d.c. voltage transformer, galvanic separating members and a time-delay member, said galvanic separating member, time-delay member, timing member and pulse generator being supplied by said d.c. voltage transformer.

\* \* \* \* \*