WO 2004/077247 A2 |00 0 D0 O 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

10 September 2004 (10.09.2004) PCT WO 2004/077247 A2

(51) International Patent Classification’: GOOF

(21) International Application Number:
PCT/US2004/005076

(22) International Filing Date: 20 February 2004 (20.02.2004)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
10/371,969 21 February 2003 (21.02.2003) US

(71) Applicant (for all designated States except US): EN-
TERASYS NETWORKS, INC. [US/US]; 50 Minuteman
Road, Andover, MA 01810 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): HASKINS, Gregory
[US/US]; 4 Laurelwood Drive, Worcester, MA 01605 (US).

(74) Agent: RUSSAVAGE, Edward, J.; Lowrie, Lando &
Anastasi, LLP., One Main Street, Cambridge MA 02142
(us).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,

[Continued on next page]

(54) Title: METHODS FOR IMPROVED DATA CACHING

RECEIVE REQUEST
TOWRITE TO
MEMORY

CACHE CONTAIN
ASSOCIATED
DATA?

304

SERVICE REQUEST
WITH STRUCTURE
324

FLUSH/INVALIDATE/FILL
DATA STRUCTURE
308

SERVICE REQUEST
WITH STRUCTURE
312

UPDATE DESCRIPTOR
WITH SUBREGION
315

WRITE CONTENTS OF
SUBREGION TO MEMORY
320

(57) Abstract: Write transactions with large amounts of data us-
ing a typical cache may consume over half of the available backing
store bandwidth because of the way traditional caching algorithms
fill lines during a write-invoked eviction. Relaxing the traditional
constraint of cache coherency improves write performance by elim-
inating unneeded cache line fills. This technique conserves backing
store bandwidth during many write operations while having negli-
gible impact on the cache’s read performance.

WO 2004/077247 A2 [N 000000000 00 AR

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, For two-letter codes and other abbreviations, refer to the "Guid-
ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— without international search report and to be republished
upon receipt of that report

WO 2004/077247 PCT/US2004/005076

DATA CACHING

FIELD OF THE INVENTION

[0001]) The invention relates to data caching, and, in particular, to caching methods having

improved write performance.

BACKGROUND OF THE INVENTION

[0002] Computers utilize processors to access and manipulate stored data. The limiting
factor on an application’s performance is typically the rate at which the processor can be
provided with data. This rate is referred to as the “bandwidth” between the processor and the
backing store (i.e., the memory) containing the data. A backing store fashioned from a persistent
storage device, such as a hard disk, can cheaply store large quantities of data. However, the
bandwidth between the processor and the persistent memory may be significantly less than the
rate at which the processor can actually process the data. The processor idles while it waits to

receive data for processing, hindering the application’s performance.

[0003] One solution to this problem uses high-bandwidth memories having significantly
higher bandwidth to store data that is frequently accessed by the processor. This technique is
referred to as caching. Using a high-bandwidth memory as a cache reduces the amount of time

that a processor waits to receive data for processing, improving the processor’s performance.

[0004] The difference in bandwidth between persistent and volatile memories is generally
due to their different underlying technologies. An exemplary persistent storage device uses
Winchester-style magnetic platters, while an exemplary high-speed memory uses static random-
access memory (SRAM). The difference in underlying technology and resulting difference in
bandwidth typically make volatile memories more expensive and smaller in capacity than
persistent memories. As a result, a cache memory using volatile memory will be smaller in size

than an associated backing store; otherwise, the backing store would be implemented using the

cache memory technology.

WO 2004/077247 PCT/US2004/005076

[0005] The difference in capacity between the backing store and the cache memory requires
that the data passing between the processor and the backing store be selectively cached in any’
cache memory. This requirement of selectivity has led to development of caching algorithms,
i.e., methods for determining which data is to be stored in the cache. Some cache algorithms
focus on improving the performance of processor reads from slower backing store memory
subsystems. However, certain applications, such as saving the state of a routing table in a
network router device, would benefit from improved performance in a processér’s abiliﬁy 10

write data to a backing store.

[0006] A need therefore exists for caching methods that enhance the write performance

between a processor and a backing store.

SUMMARY OF THE INVENTION

- [0007] The present invention relates to methods for caching with improved write
performance. Write transactions with large amounts of data using a typical cache may consume
over half of the available memory bandwidth because of the way traditional caching algorithms
fill lines during a write-invoked eviction. By eliminating unneeded caché line fills, memory
bandwidth may be conserved with negligible impact on the cache’s read performance. Relaxing

the traditional constraint of cache coherency also improves write performance.

[0008] In one aspect, the present invention provides a method for servicing requests to a
memory using a cache having at least one structure, such.as a line, associated with an address in
the memory. A request to write to at least one address in the memory is received. The cache is
examined to determine whether it contains a data structure associated with the address in the
Write request. If the cache does not contain an associated structure, then a structure in the cache
is filled with data from the region in memory containing the address of the write request. The
write request is then serviced using the filled structure. A vaiue is sfored that is indicative of the
contiguous subregion of the structure affected by the servicing of the writing request. The value

may be stored in a descriptor that includes a pointer to the cache structure and a field for storing
the value,

WO 2004/077247 PCT/US2004/005076

[0009] In one embodiment, the structure selected for filling is the least recently. used
structure in the cache. The examination of the cache may include the computation of an index
value from the addresses in the request and the examination of an entry in a lookup table
associated with the computed index value. The contents of the structure used to service the
request, or a subset of those confents, may be flushed to memory before it is filled with daia

related to the request.

[0010] In one embodiment, the storage of the value indicative of the subregion affected bﬁr
the service of the request involves accessing a previously stored subregion value, computing a
new subregion value specifying a contiguous range from the sum of the previous value and the
value of subregion affected by the request, and storing the new subregion value. The method
may also include the step of writing the contents of the contiguous subregion of the structure to a

memory. The size of the structures in the cache may be adjusted to improve write performance.

[0011] In another aspect, the present invention provides a method for servicing requests to a
‘memory using a cache having at least one structure, such as a line, associated with an address in-
the memory. A request to write to at least one address in the memory is received. The cache is
examined to determine whether it contains a data structure associated with the address in the
write request. If the cache does not contain an associated structure, then a structure in the cache-
is evicted and used to service the request. A value is stored that is indicative of the contiguous
subregion of the structure affected by the servicing of the writing request. The value may be
stored in a descriptor including a pointer to the cache structure and a field for storing the value.
The method may also include the step of writing the contents of the contiguous subregion of the

structure to a memory. The size of the structures in the cache may be adjusted to improve write

performance.

[0012] In one embodiment, the method further includes servicing a second request to read
from at least one address in the memory, the address. associated with the afofemen‘tioned
structure, wherein the address of the second request is contained in the addresses associated with
the contiguous subregion of the structure. In another embodiment, the method further includes
receiving a second request to read from at least one address in the memory, the address
associated with the aforementioned structure, wherein the address of the second request is not

contained in the addresses associated with the contiguous subregion of the structure. In this

-3

WO 2004/077247 PCT/US2004/005076

embodiment, data is added to a second structure in the cache from a regioﬁ in the memory
including the address of the second request and the data from the contiguous:subregion of the:
first structure is copied to the second structure. The second request may be serviced using the
second structure. The second structure may be used to replace the first structure and the stored
subregion value may be modified to reflect the contiguous range specified by the sum of the
previously-stored subregion value with a value specifying the subregion affected by the servicing

of the second request.

[0013] In still another embodiment, a second request to write to at least one address in the
memory is received. The address of the second request is associated with the first structure, but °
it is not contained in the addresses associated with the contiguous subregion of the first structure.
Data is added to a second structure in the cache from addresses in the memory that include the
addresses in the second request. The data from the contigueus subregion of the first structure is-
copied to the second structure. The second request may be serviced using the second structure,
and the first structure may be replaced by the second structure. Addltlonally, the stored
Asubreglon value may be modified to specify the contiguous range reﬂectmg the sum of the
prev1ously—stored subregion value with the subregion affected by the servicing of the second ,

request.

[0014] In one embodiment, the structure selected for eviction is the least recently used
structure in the cache. The examination of the cache may include the computation of an index
value from the addresses in the request and the examination of an entry in a lookup table
associated with the computed index value. The contents of the structure used to service the

request, or a subset of those contents, may be flushed to a backing store before the structure is

invalidated.

[0015] The foregoing and other features and advantages of the present"in%rention will be

made more apparent from the description, drawings, and claims that follow.

BRIEF DESCRIPTION OF THE DR A WINGS

[0016] The advantages of the invention may be better understood by referring to the

following description taken in conjunction with the accompanying drawings in which:

WO 2004/077247 PCT/US2004/005076

[0017] FIG. 1 depicts a cache structure suited for use with the present invention;
[0018] FIG. 2 presents a flowchart describing typical cache operation;

j0019] FIG. 3 presents a flowchari of an embodiment of a first method in accord with the

present invention;

[0020] FIG. 4 presents an example of a cache write operation processed using the method of
FIG. 3;

[0021] FIG. 5 presents a flowchart of an embodiment of a second method in accord with the

present invention; and

[0022] FIGS. 6A and 6B present an example of multiple cache write operations processed - .
using the method of FIG. 5. |

[0023] In the drawings, like reference characters generally refer to ‘corresponding parts
throughout the different views. The drawings are not necessarily to scale, emphasis instead -

being placed on the principles and concepts of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0024] The present invention relates to methods for caching with imprbved write
performance. In general, tracking the subregions of cache structures dirtied by cache write
operations reduces the bandwidth required to flush cache structures. Relaxing cache coherency

constraints also improves write performance by eliminating unneeded cache line fills.

[0025] The following discussion presents several examples for illustrative purposes. It is to
be understood that these embodiments are used to illustrate the operation of the claimed
invention. These embodiments and the numerical parameters associated therewith are not

intended to limit the scope of the invention, which is determined by the claims.
[0026] Throughout the specification, the following definitions will apply:

A “flush” operation writes dirtied data from a line structure 100" in the cache to
the backing store.

WO 2004/077247 PCT/US2004/005076

An “invalidate” operation makes a cache line structure 100" invalid. That is, the
“VALID?” state flag in the associated descriptor structure 104™ is unset, references
to the line structure 100N are removed from the lookup table 108, and other data
structures normally associated with a valid line are removed.

An “evict” operation removes a line structare 100N from the cache system. If the
line is not “DIRTY™, an “evicted” line structure 100" is invalidated; if the line is
“DIRTY?, the “evicted” line structure 100 is flushed and invalidated.

An “eviction policy” determines which line structure 100 is evicted from the
cache when a cache miss occurs and a line structure 100" needs to be reused. One
eviction policy is “LRU”, evicting the least-recently used line structure 100",

[0027] FIG. 1 presents a typical caching structure in which the methods of the present
invention may advantageously be implemented. This cache may be used to, e.g., buffer
transactions between a processor and a backing store using a hard disk or disk array. As
iltustrated, the cache includes a plurality of N line structures 100V, a plurality of M descriptor
structures 104™ (where M may or may not equal N), and a lookup table 108. These data

structures may be stored in the same memory or in different memories.

[0028] In the example .of FIG. 1, the memory containing the line structures 100N is 16
megabytes in size. The memory is divided into 256 line structures 100N of 64 kilobytes (i.e.,
1,024 bytes) each. These parameters are configurable and the same region of memory could just
as easily be divided into 512 line structures 100~ of 32 kilobytes each. These parameters may be

altered to improve performance, as discussed in greater detail below.

[0029] Each line structure 100N is associated with a descriptor structure 104™. The
descriptor structure 104™ includes several parameters that describe the state of the line. A tag
identifier (“tag_id”’) may be used to specify a base memory value for the associated line structure
100N, so that the other memory locations in the line structure 100" may be identified as an offset
value rélative to this base value. For example, if the tag identifier specifies a base address of
10000 for a particular line structure 100, then the cache location for addresses 10005 through
10007 can be found at offsets 5 through 7 of the line structure 100. The descriptor structure
104 includes several flags (“state-flags™) that indicate whether the associated line structure
100" satisfies particular conditions of interest. For example, if a line structure is “DIRTY? (as
discussed below) then the associated state flag for “DIRTY” may be set to convey this
information to the cache engine or fulfillment engine. The descriptor structure 104™ also

—6—

WO 2004/077247 PCT/US2004/005076

contains a pointer (“data_ptr”) to the associated line structure 100N, permitting the descriptor

structures 104™ to be stored in a memory that is separate from that containing the line structures
100™.

[0030] In one embodiment where thiz caching system is used to handle file system data
requests, each line structure 100" contains data from the appropriate number of associated disk
blocks. For example, when a line structure 100" is 64 kilobytes long, the structure 100" contains
data from 128 512-byte sectors from the backing store. The aforementioned tag identifier
specifies the address of the first block contained in the line structure 100Y. The other sectors
contained in the line structure 100N are accessed using an offset value. relative to the base value'
specified by the identifier. For example, any individual sector stored in a line structure 100"
storing the data of 128 sectors from the backing store may be accessed using an offset number

ranging from 0 to 127.

[0031] The ‘state flags in the descriptor structure 104M may be implemented as Boolean
- values specifying that the associated line structure 100N satisfies one or more conditions of
interest. The state flags may be alternately implemented as one or more énﬁmerated values, with
each enumerated value specifying a single parameter or a combination thereof. To facilitate
discussion, the state flag implementation is assumed to use 'Boolean values and the flags in the
descriptor structure 104M are referred to as being “set” or “unset.” When the line structure 100N
satisfies a condition of interest and the associated flag is set, the line structure 100" may be said

" to be in the state corresponding to the flag.

[0032] In the embodiment of FIG. 1, there are two specified state flags in the dc;scriptbr
structure 104™: “VALID” and “DIRTY.” Accordingly, the “VALID” and “DIRTY” flags may
be set for a particular line structure 100" and the line structure 100N may be said to be “VALID”
or “DIRTY.” The “VALID” state flag is set when a liﬁe structure 100" is filled with data from
the appropriate addresses in the backing store memory. The “VALID” state flag is cleared when
the contents of the line structure 100N are emptied, i.e., “invalidated.” Similarly, the “DIRTY”

state flag is set when a line structure 100" is filled with data from a write transaction. The |
“DIRTY” state flag is cleared when the contents of a “DIRTY” line structure 100" are written,

i.e., “flushed,” to the backing store memory.

WO 2004/077247 PCT/US2004/005076

[0033] The descriptor structures 104M are stored in a data structures such as a doubly-linked
list—referred to hereinafter as the “descriptor pool” 112—to facilitate the implementation of
caching strategies without requiring the manipulation or resorting of the underlying line
structures 100Y. For example, the implementation of a least-recently used (LRU) cache policy
would require three pointer operations to resort a doubly-linked list of descriptor structures 104M
to move the descriptor structure 104™ associated with the most-recently accessed line structure
100™ to the head of the list. Implementing the policy directly on the line structures 100 would
require three line structure-sized copy operations and the availability of additional storage to

cache the data from a line structure 100",

[0034] At initialization, the “VALID” state flags in the descriptor structures 104M for the
associated line structures 100N are unset to indicate that the data in the line structures 100N is
“invalid”” When a line structure 100" becomes “VALID”—filled with data from the appropriate
addresses in the backing store memory—it is indexed in a lookup table 108 to facilitate the
identification of cached memory locations. The line structure 100N is removed from the lookup
table 108 when it becomes invalid, i.e., its “VALID” state flag is unset. The lookup table 108
may be implemented using a data structure such as a hash fable. Regardless of their presence in
the lookup table 108, the descriptor structures 104™ associated with the undeﬂying line structures

100N remain stored and accessible in their own data structure, as discussed above.

[0035] Referring to FIG. 2, in normal operation, a cache engine receives a request to read or
write to an address in the backing store memory (Step 200). The cache engine determines
whether the data associated with the address of the request is stored in the cache memory (Step
204) by examining the lookup table 108 for the presence of a line sfcfucture 100 containing the
desired data. If it is determined that the data associated with the address of the request is not ‘
available in the cache, then a descriptor structure 104 in the descriptor pool 112 is selected
(typically, the descriptor structure 104 associated with the least recently used line structure). If
the line structure 100 associated with the selected descriptor structure 104 is “DIRTY,” it
contents are flushed to the backing store, invalidated, and then ﬁlled wrth valid data from the
appropriate range of addresses in the backing store (Step 208). Then, the request is serviced
using the newly updated line structure 100 (Step 212). If the data is determined to be present in

WO 2004/077247 PCT/US2004/005076

the cache, the request may be serviced using the appropriate line structure. 100 in the cache (Step
216).

[0036] While this caching method improves performaﬁce, it suffers from several
inefficiencies. First, in the embodiment of FIG. 1, a line structure 100 contains 128 sectors of
data. Yet, if just one sector is dirtied, the entire line structure 100 is marked as “DIRTY” and all
128 sectors are written to the backing store on the next flush/invalidate cycle (Step 208) when,
optimally, only the one dirtied sector should be written to the store. Second, during large data
transfers, the fill of the line structure 100 that occurs after a miss on an attempted write (Step
208) is wasted, as the data read into the line structure 100 is simply overwritten without any

examination.

Dirty Subregion Tracking |

[0037] FIG. 3 presents a method for improved caphing that addresses the first problem, ie.,
where the size of individual read and write transactions 1s necessarily smaller than the size of the
line ‘structures 100 in the cache. In brief overview, by tracking the subregions of the line
structures 100" that are dirtied by write transactions, and only writing the dirtied subregions to
the Backing store on a flush or evict, the bandwidth required to write to the backing store may be

reduced and cache performance improved.

[0038] In one embodiment, subregion tracking is implemented by modifying the descriptor
structures 104M to include a data field that tracks the “dirty” span of the associated line structure
100Y. This dirty span field may be, for example, a pair of integers that specify the first sector
and the last sector of the subrange in the line structure 100 that have been “dirtied” by various
write transactions. The intervening sectors are assumed to be dirty for' caching purposes,
although not every sector may have been dirtied by a write transaction. For example, a write
request that dirties sector 5 and a second write request that dirties sector 8 would result in a dirty
span field indicating that sectors 5 through 8 are dirty, even though sectors 6 and 7 have not been
affected by write transactions. Alternately, the data field tracking the dirty span may be a pair of
integers that specify the first sector of the subrange and its length.

[0039] As discussed above, in normal operation, a cache engine receives a request to read or

write to an address in the backing store memory (Step 300). The cache engine detsrmines

—9—

WO 2004/077247 PCT/US2004/005076

whether the data associated with the address of the request is stored in the cache memory (Step
304). Ifitis determined that the data associated with the address of the request is not available in
the cache, then a descriptor structure 104 in the descriptor pool 112 is selected according to the
eviction policy (e.g., the descriptor structure 104 associated with the least recently used line
structure). If the line structure 100 associated with the selecied descriptor structure 104 is
“PDIRTY,” its contents are flushed to the backing store, invalidatsd, and then filled with valid
data from the appropriate range of addresses in the backing store (Step 308). In contrast to the
method of FIG. 2, if the dirty span field is set, then the only sectors flushed to the backing storé .
from the line structure 100 are those specified by the dirty span field. The write request is
serviced using the newly updated line structure 100 (Step 312) and the dirty span field of the
associated descriptor structure 104 is set to indicate which blocks of the line structure 100 have
been affected by servicing the write request (Step 316), With the dirty span field set, subsequent
flush operations are made more efficient by writing only those blocks from the dirty span to the
backing store (Step 320). If the data from the addresses of the write transaction is already

present in the cache, then the write request may be serviced using the appropriate line structure
100 (Step 324).

[0040] FIG. 4 presents an example of dirty region tracking using the method of FIG. 3
applied to the cache structure of FIG. 1. The cache engine receives a request to write to three
sectors beginning at memory address 10005 in the backing store. The lookup table is examined
to determine if a line structure 100 containing the data associated with address 10005 is present
in the cache. From examination of the lookup table, it is determined that there is no line
structure 100 in the cache associated with backing store address 10005. The cache engine selects
a line structure 100—e.g., the least recently used structure—flushes it to the backing store if it is
“DIRTY,” invalidates its contents, and then fills it with data frdm the backing store from sectors
10000-10127. In the associated descriptor structure 104, the line is marked “VALID” using a
state flag, the descriptor tag is set to 10000 (the base address of the data contained in ;che line
structure 100), the pointer is directed to the line sfructure 100, and the dirty span field is set to
“0:0,” indicating that there is no dirty subregion in the line structure 100, The line structure 100
and associated descriptor structure 104 are illustrated at 400.

-10-

WO 2004/077247 PCT/US2004/005076

[0041] After the line structure 100 is created in the cache, the cache engine writes the data
from the write request into the line structure at offsets 5, 6, and 7. The descriptor structure 104 is -
updated to reflect that the line is now “DIRTY” and the dirty span field is set to “5:7,” indicating
that the data at offsets 5 through 7 is to be written to the backing store on subsequent flush
transactions. The vpdated line struciore 100 and associated descriptor siructure 104 are
illustrated at 404.

[004Z]) The caching engine receives a new request to write to two sectors beginning at
address 10020 in the backing store. First, examining the lbokup table 108, the engine identifies
the previously-created line structure 100 as containing data associated with address 10020. it
services the request by writing its data to the line structure at offset locaﬁohs 20 and 21, as
illustrated at 408. '

[0043] The dirty span field in the associated descriptor structure 104 is updated to indicate.
that the dirty span goes from offsets 5 through 21, as illustrated at 412. Although the dirty range
indicates biécks 5 through 21 have been dirtied, in actuality only blocks 5, 6, 7, 20 and 21 have
been dirtied. Therefore, on a subsequent flush, blocks 8-19 will also be written to the backing
store when, strictly speaking, only blocks 5, 6, 7, 20, and 21 need to written to the store.
Although this result appears suboptimal, ‘o;‘?erations involving a backing store typically utilize a
hard disk or disk array having a large seek penalty but enjoying fairly high bandwidth.

Therefore, it is advantageous to minimize the number of writes in favor of bulk write operations.

[0044] In another embodiment of the invention, for example, utilizing low-latency, low
bandwidth backing stores, multiple dirty ranges in a single line structure 100 may be tracked
using multiple dirty span fields. This approach adds overhead to the algorithm and requires
additional memory for each descriptor structure 104. A 'similar result may be achieved by
configuring the cache to utilize smaller line structures 100. Also, if the caching system .
consistently marks a large number of valid blocks “dirty” due to the coarseness of single dirty

span tracking, then the size of the line structure 100 may require adjustment.

Lazy Cache Coherency

[0045] TFIG. 5 presents a method whereby the second problem—wasted bandwidth from

unnecessary fill operations on large data writes—is reduced. The problem arises from typical

—11-

WO 2004/077247 PCT/US2004/005076

cache design assumptions. If the examination of a lookup table 108 indicates the cache contains
a line structure 100 having data associated with the target addresseé in the backing store, then it
is assumed that the contents of the line structure 100 are coherent with the data stored at the
backing store arget addresses coupled with any locally dirty data. Therefore—as discussed
above—when no associated structure 100 is present in the cache, the cache engine locates a
candidate line structure 100 for eviction using the eviction policy (e.g. LRU), flushes the line
structure’s contents to the backing store if the line 100 is “DIRTY,” fills the line struciure 100

with data from the target addresses in the backing store, and then utilizes the newly-filled
structure 100 to service future read and write requests.

[0046] Although this results in correct cache operation, it wastes the bandwidth associated
with the fill operation under certain circumstances. For example, the writing of a large file to the
backing store will overwrite and destroy the contents of the sectors at the target addresses in
store without ever examining them. Under the previously-described cache system, each miss in
the lookup table results in the flushing, invalidating, and filling of a line structure 100 in the
cache memory which is subsequently overwritten with new data for later flushing to the store. In

this case, the fill operation was unnecessary.

[0047] In accord with the present invention, unnecessary fill operations are identified and
eliminated during the processing of a write transaction. In one implementation, the descriptor
structures 104 associated with the line structures 100 are modified to include a new valid span
field that tracks the valid sectors in the line structure and a new state flag (“COHERENT”) that
indicates coherence between the contents of the line structure 100 and the data stored at the

corresponding addresses in the backing store.

[0048] In a traditional cache, the “VALID” flag indicates that a line structure 100N is
“VALID”, “COHERENT”, and has a valid span spanning all of the sectors in the line structure
100". In this implementation with a “COHERENT” flag, a set “VALID” flag only indicates that
the tag identifier and valid span fields are valid. To determine the validity of any data contained
in the line structure 100~, the cache engine consults the “COHERENT” flag and/or the valid
span field. A line that is “COHERENT® is the equivalent of a line structure 100 having a valid
span that includes all of its sectors and having its “VALID” flag set. The presence of the

-12-

WO 2004/077247 PCT/US2004/005076

“COHERENT” flag improves performance by replacing tests of the “VALID” flag and the valid
span field with a single test of the “COHERENT” flag.

[0049] The cache engine sets the “COHERENT” flag in three circumstances. First, if a read
request results in a miss, the system will flush-invalidate-fill a line structure 100 selected by the
eviction policy, and set the “COHERENT” flag to indicate that the data contained in the line
structure 100 is identical to the data contained at the corresponding addresses in the backing
store. Second, if a request results in a “lazy miss”™—discussed below—the line is marlﬂs:ed
“COHERENT” after the processing of the lazy miss. Third, if the line structure 100 becomes
entirely “dirtied” (i.e., a dirty span from offsets 0 to (n — 1), where » is the length of the line) as a
result of one or more writes, then the “COHERENT” flag is set. '

[0050] As discussed above, in normal operation, a cache engine receives a request to write to
an address in the backing store memory (Step 500). The cache engine determines whether the ‘.
data associated with the address of the request is stored in the cache memory (Steb 504). If it is '
determined that the data associated with the address of the request is not available in the cache,
then a descriptor structure 104 in the descriptor pool 112 is selected by the eviction policy (e.g.,
the descriptor structure 104 associated with the least recently used line structure). If the line
structure 100 associated with the selected descriptor structure 104 is “ﬁIRTY,” its contents are
flushed to the backing store and-invalidated (Step 508). The write request is serviced using the -
newly updated line structure 100 (Step 512) and the dirty span field of the associated descriptor
structure 104 is set to indicate which blocks of the line structure 100 have been affected by
servicing the write request (Step 516). The updated line structure 100 and descriptor structure
104 are now used to service subsequent requests (Step 520). If the data from the addresses of the
write transaction is already present in the cache, then the write request may be serviced using the
appropriate line structure 100 (Step 524). In contrast to the method of FIG. 2, the line structure
100 is not filled with data from the backing store when the received transaction is a write

transaction. The line structure 100 is only filled with data from the backing store when the

transaction is a read transaction.

[0051] More specifically, when the transaction is a read transaction to an address that is not
cached, a line structure 100 is located by the eviction policy, flushed, invalidated, and filled as

described above. The associated descriptor structure 104 is set to indicate that this line structure

—13—

WO 2004/077247 PCT/US2004/005076

100 is “VALID” and “COHERENT,” and its valid span field is set to encompass all of the
sectors in the line structure 100, When the transaction is a write transaction to an address that is
not cached, the line structure 100 is located, flushed and invalidated, but is not filled from the
backing store. The associated descriptor structure 104 is set to indicate that the line structure 100
is “VALID,” but the “COHERENT?” flag is not set. The valid span field is initially set to “0:0”

indicating that no sector in the line structure 100 is currently valid.

[0052] The example from FIG. 4 is adapted to illustrate the lazy cache coherence technique
in FIGS. 6A and 6B. The cache engine receives a request to write to three sectors at memory
address 10005 in the backing store. The lookup table is examined to determine if a line structure
100 containing the data associated with address 10005 is present in the cache. From examination
of the lookup table, it is determined that there is no line structure 100 in the cache associated
with backing store address 10005. '

[0053] Previously, a candidate line structure 100 (selected by the eviction policy) would
have been flushed, invalidated and filled with data from the appropriate addresses in the backihg
store. Under the lazy cache coherency strategy, the candidate line structure is flushed and
.invalidated, but it is not filled, as illustrated at 800. - |

[0054] The write transaction is processed using the located line structure 100, storing the
data from the transaction at offsets 5 through 7. In the associated descriptor structure 104, the
descriptor tag is set to 10000 (the base address of the line structure 100) and the pointer is
directed to the line structure 100. The state flags are set to indicate that the line structure 100 is
“VALID” and “DIRTY” (but not “COHERENT”) and the valid span fields and dirty span fields
are set to “5:7” indicating that offsets 5 through 7 in the line structure 100 contain valid data and

have been dirtied through write transactions. The resulting line structure 100 is illustrated at
804. '

[0055] The fulfillment engine can process subsequent transactions directed to address 10005
in the backing store using the line structure 100 and the associated descriptor structure 104 with
the valid span field and the dirty span fields. The addresses in a read request can be compared

against the range specified in the valid span field to determine if the requested data is actually

contained in the line structure 100. If the addresses specified in the read request are not wholly

—14 -

WO 2004/077247 PCT/US2004/005076

contained within the valid span—e.g., the request is for offsets 4 through 7—then the cache

engine needs to perform a “lazy fill” operation on the line structure 100, as described below.

Similarly, if the address range specified in a subsequent write request is wholly outside the valid =

. range of the line structure 100—e.g., the request is for offsets 20 and 21, as illustrated at 808—

then the cache engine also needs to perform a lazy fill on the line structure 100.

[0056] A “lazy fill” operation is, effectively, a properly executed deferred fill operation.
Because the fill has been deferred, it is necessary to consolidate the information with the backing
store with the information that has already been writien to the line structure 100. This
consolidation may be achieved, for example, using a spare line structure 100°. As illustrated at
812, the “lazy fill” loads information into the spare line structure 100 from the backing memory.
As illustrated at 816, the data of the original line structure 100 is copied onto the spare line
structure 100°. As illustrated at 820, the descriptor structure 104 associated with the original line
structure 100 is adjusted to point to the spare line structure 100, the state flags are set to indicate
that the spare line structure 100’ is. “COHERENT” and the valid range is set to span the entire
line structure 100°. The spare line structure 100° has replaced the primary line structure 100
associated with the descriptor structure 104. The original line structure 100 may now be used as
a spare line structure 100” in the next lazy fill operation. As illustrated at 824, the fulﬁllment
engine completes servicing the write request by updating the data at offsets 20 and 21 and

changing the dirty span field to indicate that blocks 5 through 21 are dirty for subsequent flush

operations.

[0057] In situations where a lazy miss occurs on a line structure 100 having dirtied data
either at its start (from offsets 0 through n-1) or its end (from offsets #—1 through the end of the
line structure), the use of the spare line structure 100’ may be eliminated from the lazy fill

operation and the line fill may be performed using the original line structure 100.

[0058] If a cache read request does not prompt a lazy fill operation, then the data sought by
the read request may simply be copied from the valid range of the line structure 100 into a buffer
and returned for further processing. Similarly, a cache write request that does not prompt a lazy
fill operation may be serviced by copying the data of the request from the buffer to the line
structure 100 and updating the valid span field and dirty span ﬁelgl as discussed above.

~15—

WO 2004/077247 PCT/US2004/005076

[0059] Many alterations and modifications may be made without departing from the spirit
and scope of the invention. For example, as the methods relating to lazy cache coherency utilize |
the same structures as the methods relating to dirty subregion tracking, both techniques may be
implemented simultaneously in the same caching subsystem. Therefore, it is to be understood
that these embodimenis have been shown by way of example and should not be taken as limiting
the invention, which is defined by the following clairs. These claims are thus to be read as not
only including literally what is set forth by the claims but also to include those equivalents which
are insubstantially different, even though not identical in other respects to what is shown and

described in the above illustrations.

—16—

1.

WO 2004/077247 PCT/US2004/005076

CLAIMS

A method for servicing requests 1o a backing store using a cache comprising af least one

structure, the cache structure being associated with at least one address in the backing store, the

method comprising:

2.

3.

(a) receiving a request to write to at least one address in the backing store;

(b) determining the presence in the cache of a cache structure associated with the at least

one address;

(¢) if no cache structure is associated with the at least one address, adding data to an
invalidated cache structure from at least one address in the backing store that includes

the at least one address of the request;
(d) servicing the request using the cache structure of step (c); and

(e) storing a value indicating a contiguous subregion of the structure affected by the
servicing of the request.

The method of claim 1 wherein the cache structures are multi-byte lines.

The method of claim 1 wherein the value is stored in a descriptor comprising a pointer to

the cache structure and at least one field for storing a value.

4. The method of claim 1 wherein the cache structure of step (c) is the least recently used
structure in the cache.
5. The method of claim 1 wherein step (b) comprises:
(b-1) computing an index value from the at least one address of the request; and
(b-2) examining an entry in a lookup table associated with the computed index value to
determine the presence in the cache of a cache structure associated with the at least
one address.
6.

The method of claim 1 wherein the contents of the cache structure of step (c) are written

to the backing store before the addition of the data from the backing store.

—-17-

WO 2004/077247 PCT/US2004/005076

7. The method of claim 6 wherein the written contents of the cache structure are a subset of

the contents of the cache structure.

8. The method of claim 1 wherein step (€) comprises:
(e—1) accessing a ﬁrevicusly stored subregion value;
(e—2) computing a new subregion value reflecting the sum of the previously stored
subregion value and the value specifying the subregion affected by the servicing of
the request, the resulting sum specifying a contignous range; and

(e-3) storing the computed subregion value.

9. The method of claim 1 further comprising writing the contents of the contiguous
subregion of the cache structure to the backing store.

10. The method of claim 1 wherein the size of the cache structures is adjusted to improve

write performance.

11. A method for servicing requests to a backing store using a cache comprising at least one
structure, the cache structure being associated with at least one address in the backing store, the
method comprising: '
(a) receiving a request to write to at least one address in the backing store;
(b) determining the presence in the cache of a cache structure associated with the at least |
one address;
(c) if no cache structure is associated with the at least one address, evicting a first
structure in the cache;
(d) servicing the request using the first cache structure; and

(e) storing a value indicating the contiguous subregion of the first cache structure affected

by the servicing of the request.

12. The method of claim 11 further comprising servicing a second request to read from at
least one address in the backing store, wherein the at least one address of the second request is:
(1) associated with the first cache structure, and (ii) contained in the addresses associated with the

contiguous subregion of the first cache structure.

13. The method of claim 11 further comprising:

—18 —

WO 2004/077247 PCT/US2004/005076

receiving a second request to read from at least one address in the backing store, wherein
the at least one address of the second request is: (i) associated with the first cache
structure, and (ii) not contained in the addresses associated with the contiguous
subregion of the first cache structure;

adding data to a second cache structure from ai least one address in the backing store that
includes the at least one address of the second request; and

copying the data from a contiguous subregion of the first cache structure to the second

cache structure.

14. The method of claim 13 further comprising servicing the second request using the second

cache structure.

15. The method of claim 13 further comprising replacing the first cache structure with the

second cache structure.

16. The method of claim 15 further comprising modifying the stored subregion value to
reflect the sum of the previously-stored subregion value for the first cache structure and the value
specifying the subregion affected by the servicing of the second request, the resulting sum

specifying a contiguous range.

17. The method of claim 11 further comprising:

receiving a second request to write to at least one address in the backing store, the at least
one address of the second request is: (i) associated with the first cache structure, and
(ii) not contained in the addresses associated with the contiguous subregion of the
first cache structure;

adding data to a second structure in the cache from at least one addresses in the backing
store that includes the at least one address of the second request; and

copying the data from the contiguous subregion of the first cache structure to the second
cache structure.

18. The method of claim 17 further comprising servicing the second request using the second

cache structore.

—-19—

WO 2004/077247 PCT/US2004/005076

19. The method of claim 17 further comprising replaéing the first cache structure with the

second cache structure.

20. The method of claim 19 further comprising modifying the stored subregion value to
reflect the sum of the previously-stored subregion value for the first cache structure with the
value specifying the subregion affected by the servicing of the second request, the resulting sum

specifying a contignous range.
21. The method of claim 11 wherein the cache structures are multi-byte lines.

22. The method of claim 11 wherein the value is stored in a descriptor comprising a pointer

to the cache structure and at least one field for storing a value.

23. The method of claim 11 wherein the structure of step (c) is the least recently used
structure in the cache.

24. The method of claim 11 wherein stép (b) comprises:
(b-1) computing an index value from the at least one address of the request; and
(b-2) examining an entry in a lookup table associated with the computed index value to
determine the presence in the cache of a cache structure associated with the at least

one address.

25. The method of claim 11 wherein the contents of the cache structure of step (c¢) are written

to a backing store before the first structure is invalidated.

26. The method of claim 25 wherein the writien contents of the cache structure are a subset

of the contents of the cache structure.

27. The method of claim 11 further comprising writing the contents of the contiguous
subregion of the cache structure to the backing store.

28. The method of claim 11 wherein the size of the cache structures is adjusted to improve

write performance.

~20—

PCT/US2004/005076

1/7

WO 2004/077247

ISTT 9T

chl

85¢
(214

80l

oL —

SBUTT 8AVY

¢ :
¢ M e ITG®
w a7 ..u ¥IT ‘QITWA) sbe3-e3vys
3 prbe3 |
Kxowen -oqovo g9t
Ny} 2HFEP T

WO 2004/077247 PCT/US2004/005076

RECEIVE REQUEST |2
TOACCESS |
MEMORY
200

SERVICE REQUEST C‘A%"S'%g&[‘lrégw
WITH STRUCTURE
DATA?
26 204

FLUSH/INVALIDATE/

FILL DATA
STRUCTURE
208

| SERVICE REQUEST
WITH STRUCTURE
212

WO 2004/077247 PCT/US2004/005076

3

RECEIVE REQUEST
| TOWRITETO
WEMORY

" CAGHE CONTAIN

| SERVICE REQUEST &
WITH STRUCTURE ASSOCIATED
DATA?
34 304

FLUSH/INVALIDATE/FILL
DATA STRUCTURE
308

| SERVICE REQUEST
WITH STRUCTURE
312

| UPDATE DESCRIPTOR
WITH SUBREGION

WRITE CONTENTSOF &
SUBREGION TO MEMORY |

WO 2004/077247 PCT/US2004/005076

47
FlG, 4
livdeseripter .
. e id = 1000 62x2 {128 cector) lins
& =
400 — [emiam
dirty] 0: 0}

PRl ot -~
data_vtr e

line-descriptor

64KB {128 sector] line
tag_id = 10000

RN = e O

...... 0 5 1 127

line-descriptor

| 64KB {128 sector} lime
tag_id = 10000

408 ﬁ state = VALID, DIRTY

dirty{5:7)

e

data_ptr «

line-descriptor

- 64XB {128 secter) line
‘$tag_id = 10000

412 "'_\ state = VALID, DIRTY

dirty 5:21)

ol &

data_ptr P

= valid + dirty

i = invalid

...........

WO 2004/077247 PCT/US2004/005076

Sl

RECEIVE REQUEST
TOWRITE TO
MEMORY
500

~ CACHE CONTAIN
ASSOCIATED
DATA?
504

| SERVICE REQUEST
WITH STRUCTURE
524

FLUSH/INVALIDATE
DATA STRUCTURE
508

| SERVICE REQUEST
WITH STRUCTURE
512

| UPDATE DESCRIPTOR
WITH SUBREGION
516

SERVICING SECOND
REQUEST USING
STRUCTURE
520

WO 2004/077247 PCT/US2004/005076

6/7

LG, 64

7 = wlid + dirty

STEP It & valid bub met cooherest line is presevted

line- descriptor

64K8 {129 sestor) line
tag_id = 10000
800 — state = V-

dirty{ 0: 0) -
valid{ 0: 0) o "‘;{
0

v
T

ovtt
data_ptr -

127

Step 2: Fulfillmewt writes to offset (5:7)

line-descriptor

64KB {128 sector) line
tag_id = 10000
state = VD
804 —\ | izt
valid{5: 7}
data_ptr -~

woorv***

127

Step 3: ¥rite requests 2 blocks at 10020 faults with a lazy miss
line- descriptor

64XB {128 sector) line
808 tag_id = 10000
state = VD
©ON dirty5: 7 -
valid(5: 7) e

ol

data_ptr e 0

127

B sk hewie rogand

Step & Lazy fill using the spare line

line- descriptor

64X8 {128 sector} line
tag_id = 10000
state = ¥D-

812 =\ | dirtyis: 7

valid{5: 7} .
} dattx_ptr v

glokal state

"‘."Mn

127

spare line loads with disk data from 10000-10127

[sprop -

0 127

WO 2004/077247

T

Step 5 Copy owt dirty data from the old lire to the spare
line-deseriptor

64KB (128 sector) lime
tag_id = 10000
state = ¥D-

PCT/US2004/005076

dirty(5: 7)

816 RN ‘midsn)

data_ptr -~
global state

127

i spare_ptr

Step 6: Swap out the buffers, and wpdate the descriptor to CONBRRNT

line-deseriptor

64KB (128 sector} line
tag_id = 10000

820 -\ state = YIC

127

dirty(5: % §
valid 0: 127) -

data_ptr '.._,_‘m 3 o 0
global state

o e,
| spare ptr |

0 5 9
Step Tt PBerform the write of offeet(20:21), and adjust-the dirty-span

line-descriptor

64X8 (128 sector) lime
tag_id = 10000

824 —-\ state = ¥DC

32
e

data_ptr ~" 0 5 2

127

127

127

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

