wo 2013/067313 A1 I 00N OO O A0 A A R AR

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2013/067313 Al

10 May 2013 (10.05.2013) WIPO I PCT
(51) International Patent Classification: (74) Agents: GOTTLIEB, Kirk et al.; Fish & Richardson P.C.,
GO6F 15/16 (2006.01) P.O. Box 1022, Minneapolis, MN 55440-1022 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2012/063267 kind of national protection available). AE, AG, AL, AM,
(22) Imternational Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
g : BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
2 November 2012 (02.11.2012) DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
. KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(30) Priority Data: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
13/287,973 2 November 2011 (02.11.2011) Us RW, SC, SD, SE, 8G, 8K, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(71) Applicant: APPLE INC. [US/US]; 1 Infinite Loop, Cu- ZM, ZW.
pertino, California 95014-2094 (US).
(84) Designated States (uniess otherwise indicated, for every
(72) Imventors: MENON, Sanjay; 1 Infinite Loop, Cupertino, kind of regional protection available). ARIPO (BW, GH,

California 95014 (US). CHAKRABORTY, Krishnendu;
1 Infinite Loop, Cupertino, California 95014 (US). BHAT-
TACHARYA, Tanmoy; 1 Infinite Loop, Cupertino, Cali-
fornia 95014 (US).

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: NOTIFICATION AND REMINDER GENERATION, DISTRIBUTION, AND STORAGE SYSTEM

1
CONSTRANTS
x
N
NOTIFICATIONHEADER || NOTIFICATION METADATA
1)
FOOTER
, 1
m /' USEFULLIVGS
NOTIFICATION TEHPLATE
11
HEADRR
1 ‘
SURJECT 1" 116
HEADER CLSTOM
6.1 ELEMENTS

(57) Abstract: A centralized notification engine, which
serves notifications from multiple applications, receives a
request to register a notification from a particular applica-
tion. Responsive to the request, the notification engine
stores information that indicates a context of the notitica-
tion. The notification engine determines whether the notific-
ation satisfies metadata-specified constraints. Responsive to
determining that the notification satisties the constraints, the
notification engine selects, from a set of templates, a tem-
plate that is associated with the notification's context. The
notitication engine applies the template to information spe-
citied by the notification. As a result, a populated template is
produced.

WO 2013/067313 A1 WK 00TV VR0 R 0 T

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

WO 2013/067313 PCT/US2012/063267

NOTIFICATION AND REMINDER GENERATION, DISTRIBUTION, AND STORAGE
SYSTEM
FIELD OF THE INVENTION
[0001] The present invention relates to a computerized system for generating, distributing, and

storing notifications.

BACKGROUND

[0002] Many organizations try to build custom mechanisms to send notifications to internal and
external customers. Such notifications may be sent via e-mail, for example. Typically,
notifications sent to internal and external recipients vary vastly from one another since the content
and format of these notifications differ on specific rules that dictate the user interaction with the
system or application. On a typical day in any big organization in which large numbers of
notifications are being sent to employees, retail stores, and customers, employees get e-mails
related to the accounts they are trying to create or privileges they are trying to obtain for specific
application or resources. Within large organizations, each application maintains its own
mechanism to notify the customer on the status of the customer’s request. In the consumer
business, there is greater need to consolidate internal, retail, and external e-mails to create a unified
look and feel for all emails sent internally and externally.

[0003] In a decentralized notification system, every application maintains its own custom
mechanisms and rules to generate, store, and send notifications. There are some drawbacks that
attend the use of a decentralized system, though. In a decentralized system, the formats of
notification e-mails are not standardized between applications, and are usually manually generated.

In a decentralized system, there is no central repository in which notification rules can be

WO 2013/067313 PCT/US2012/063267

registered. In a decentralized system, there is no central repository in which to retain either the
finalized content of notifications that are sent or the input that was used to determine that content.
In a decentralized system, as business requirements change, additional time and effort is required
to generate new notifications manually. In a decentralized system, there is no data model that
encompasses all types of notifications regardless of whether those notifications are internal or
customer-focused.

[0004] A business organization’s provisioning system may interact with numerous internal and
external components in order to send notifications to employees, customers, and system
administrators. The total number of such notifications may lie in the range of several thousand
notification e-mails per day. Most of these e-mails may be critical for business. These
notifications may be generated for various use cases that include multifarious business
requirements, such as provisioning new employees on company accounts, creating new accounts
for retail and store employees, providing reports and alarms to system administrators and users,
etc. There is little commonality among these applications. The notifications that are sent by these
applications differ from each other with regard to content and context depending business rules.
This difference in notifications between applications makes the maintenance and updating of
notifications over time a tremendous challenge.

[0005] The approaches described in this section are approaches that could be pursued, but not
necessarily approaches that have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the approaches described in this section

qualify as prior art merely by virtue of their inclusion in this section.

WO 2013/067313 PCT/US2012/063267

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] In the drawings:

[0007] FIG. 1 is a block diagram that illustrates a data model for a notification engine, according to
an embodiment of the invention.

[0008] FIG. 2 is a block diagram that illustrates example names and purposes of various columns in
the notification header table and the notification metadata table, according to an embodiment of the
invention.

[0009] FIG. 3 is a block diagram illustrating an example of a client’s interaction with the
notification engine, according to an embodiment of the invention.

[00010] FIG. 4 is a flow diagram illustrating an example of an overview of a technique for
processing client notification requests at a notification engine, generating notifications, and
sending those notifications to recipients, according to an embodiment of the invention.

[00011] FIG. 5is a flow diagram that illustrates a more detailed example of a technique that the
notification engine can use to generate a notification envelope, according to an embodiment of the
invention.

[00012] FIG. 6 s a flow diagram that illustrates a more detailed example of a technique that the
notification engine can use to dispatch a notification to a recipient, according to an embodiment of
the invention.

[00013] FIG. 7 is a block diagram that illustrates a computer system upon which an embodiment of
the invention may be implemented.

[00014] FIG 8 is a diagram that illustrates a screenshot of a collated message of the kind that is

produced by one embodiment of the invention.

WO 2013/067313 PCT/US2012/063267

DETAILED DESCRIPTION
[00015] In the following description, for the purposes of explanation, numerous specific details are
set forth in order to provide a thorough understanding of the present invention. It will be apparent,
however, that the present invention may be practiced without these specific details. In other
instances, well-known structures and devices are shown in block diagram form in order to avoid

unnecessarily obscuring the present invention.

NOTIFICATION ENGINE OVERVIEW

[00016] A consolidated notification system is described herein. The consolidated notification
system includes a central notification engine that can register, send, and store notifications
generated by a multitude of diverse applications. The notification engine is able to decipher every
application request and associate, with each such request, request-related business rules that
determine when a notification will be generated and what the content of the notification will be.

[00017] In one aspect, the notification engine provides centralized notification generation and
distribution. The notification engine is a single service in which each application registers all of its
prospective notifications. The notification engine is also a single service through which each
application sends its notifications. The notification engine supports various notification formats.
The notification engine interacts with each application to deliver that application’s custom content
in a format that the application itself can determine.

[00018] In one aspect, the notification engine provides interfaces that allow applications to configure
the formats of their notification dynamically. Each application can specify application-customized
notification headers, footers, bodies, or any other notification message parts via rules that are

registered, with the notification engine, for the application. The notification engine includes a

WO 2013/067313 PCT/US2012/063267

transformation mechanism that sends the final content of each notification to its recipient. This
transformation mechanism may be independent of the specified input and output formats of the
notification.

[00019] In one aspect, the notification engine is agnostic to the underlying mechanism that actually
sends a notification to its recipient. The notification delivery mechanism can be modified or
substituted entirely with another notification delivery mechanism without the knowledge of any
end user.

[00020] In one aspect, the notification engine hosts all generated notifications even after their
delivery so that those notifications can be regenerated at any time in the future for compliance,
report generation, or legal purposes.

[00021] In one aspect, the notification engine translates all notification requests to conform to a
predefined set of templates that can be extended over time.

[00022] In one aspect, the notification engine consolidates multiple separate e-mail notifications
based on various constraints like elapsed time and quantity of accounts generated. The notification
engine may then send a single collated e-mail notification instead of sending multiple email
notifications to the recipient.

[00023] In one aspect, all rules and constraints for applications interacting with the notification
engine are centralized within the engine itself, making these rules and constraints easily accessible.
The notification rule engine is sufficiently generic to store any kind of rules that are specific to
sending notifications.

[00024] In one aspect, notifications are delivered asynchronously. Hence, callers of the notification
engine can register and configure callback Uniform Resource Locators (URLs) which the

notification engine may call in response to either the successful sending of a notification or the
5

WO 2013/067313 PCT/US2012/063267

abandonment of attempts to send a notification. The callback URLs may be associated with
different statuses, such as transmission success or transmission failure, so that the notification
engine calls the appropriate callback URL depending on the outcome of the attempt to send a
notification.

[00025] In one aspect, the notification engine hosts notification content in the form of Extensible
Markup Language (XML) and Extensible Stylesheet Language (XSL). The content hosted in this
form may include variables that are derivable by the notification engine. Callers of the notification
engine can also supply notification content in the form of key value pairs if those callers do not
want the notification engine to derive that content. The transformation mechanism may translate
notification content from XML to Hypertext Markup Language (HTML), but the transformation
mechanism also may be configured to translate notification content from any other specified input
format to any other specified output format.

[00026] In one aspect, the notification engine provides a public service URL that any user internal or
external to the business organization operating the notification engine can use to send reminders of
notifications. The notification engine’s interface allows users to register system-specific metadata
and rules without requiring those users to upload those metadata or rules to the engine manually.
The notification engine supports various protocols for this interface, including Hypertext Transfer
Protocol (HTTP), JAVA Remote Method Invocation (RMI), JAVA Architecture for XML Binding
(JAXB), etc. The diversity of protocols supported by the notification engine makes it easy for
users to interact with the notification engine.

[00027] In one aspect, the notification engine has the ability to localize (i.e., customize based on

location) notification content based on the locale that is specified for the notification’s recipient.

WO 2013/067313 PCT/US2012/063267

[00028] In one aspect, the application programming interfaces (APIs) of the notification engine are
transparent. The notification exposes a single API. The notification engine itself determines,
based on the user action indicated in the invocation of the API, whether the notification engine
needs to register or cancel a notification. In one aspect, the caller invokes a “notify” method for
state changes to all objects which can trigger notifications. The notification engine responsively
sends, cancels, or ignores notifications.

[00029] In one aspect, using the notification data, the notification engine generates reports on
activities at scheduled intervals (e.g., daily reports for various systems). In the notification system,
the completion of each significant activity triggers a notification. The notification engine may
report on such activities by reporting on the notifications generated for those activities.

[00030] In one aspect, cach notification also has a “reminders” property. This “reminders” property
enables the notification engine to generate and send reminders based on configurations per action
or based on a value overridden by a caller at the time of submitting a notification. After submitting
such a notification, the caller does not need to bother with the reminders; the notification engine
takes care of sending out the reminders at the appropriate time.

[00031] In one aspect, the notification engine detects errors and informs about those errors. For
example, the notification engine may trigger an alarm in response to detecting a sudden surge in
notifications beyond the average number. For another example, one instance of the notification
engine may detect that the quantity of queued-up notifications exceeds a specified threshold, and,
in response, silently suspend all notifications and trigger an alarm, thereby allowing that
instance of the notification engine to shift at least some portion of the notification load to other

instances of the notification engine.

WO 2013/067313 PCT/US2012/063267

[00032] In one aspect, the notification engine can be configured to release certain notifications, such
as blocked or error-producing notifications, only in response to manual intervention. In one
aspect, the notification engine can be configured to suspend certain notifications in response to
manual intervention.

[00033] In one aspect, the notification engine waits to send notifications (e.g., notifications
regarding the creation of user accounts) destined for a particular recipient until the notification
engine receives assurance that the particular recipient’s e-mail account has been established and is
available. This feature is especially useful when the notification recipient is a new hire to the
business organization operating the notification engine, because sometimes a new hire’s other
accounts may be created before that new hire’s e-mail account is created.

[00034] In one aspect, the notification engine generates alarm reports which notify users about
notifications that have failed or that have been suspended for a period of time that exceeds a
specified threshold.

[00035] In one aspect, the notification engine is fault-tolerant. Each instance of the notification
engine automatically distributes its load to other instances when that instance is under stress or is
starting to behave erratically. All notification data is finally persisted in a database. The

notification system remains live even if an individual data center completely goes down.

DATA MODEL FOR NOTIFICATION ENGINE
[00036] According to one embodiment of the invention, the notification engine data model is
sufficiently generic to capture all notifications for any specific domain. The model can support
notifications from any part of an organization and can be extended to store additional notification

data or metadata. FIG. 1 is a block diagram that illustrates a data model for a notification engine,

WO 2013/067313 PCT/US2012/063267

according to an embodiment of the invention. According to one embodiment of the invention,
each component shown in FIG. 1 corresponds to a separate relational table within a database. FIG.
1 illustrates how these relational tables relate to each other.

[00037] Notification header table 104 stores all the actual data related to each specific notification,
including final notifications that are generated by the notification system. Notification header
table essentially stores data that indicates the user-informative content of the notification message;
the expression of this content to the user is the notification’s core purpose. Example contents of
notification header table 104 are presented in a separate section further below.

[00038] Notification metadata table 102 stores all metadata related to each notification. The rows of
notification metadata table 102 have a one-to-many relationship with constraints in constraint table
108; each metadata item may be related to many different constraints. Constraints are rules
associated with a notification. These rules indicate how a notification will be sent. The rows of
notification metadata table 102 contain references to corresponding rows in notification template
table 106. The rows of notification metadata table 102 also may refer to message context,
reminder data, user action, locale (language), subject, etc.

[00039] Notification template table 106 refers to all templates in the notification engine. Each such
template specifies a format for a notification. The rows of notification template table 106 refer to
all of the different parts of a notification message. The parts include subject, header, footer, etc. As
shown in FIG. 1, each row of notification template table 106 refers to corresponding rows in footer
table 110, useful links table 112, header table 114, custom elements table 116, body table 118, and
subject table 120. A user or customer has the ability to inject text specific to that user’s application

in any of the fragments (stored in tables 110-120) and customize that text. The notification engine

WO 2013/067313 PCT/US2012/063267

then gathers all the notification message components from these tables and creates the combined
template for all of the specific notifications.

[00040] Although FIG. 1 illustrates an embodiment of the invention that includes tables 102-120, in
alternative embodiments of the invention, the data model includes fewer tables than those shown.
For example, in one alternative embodiment of the invention, the data model includes only tables
102 and 104. In such an alternative embodiment, notification metadata table 102 may include all
of the information shown in FIG. 1 to be contained within tables 106-120.

[00041] The segregation of the notification data, metadata, and template in this data model provides
significant strength to the notification engine’s ability to customize a notification as dictated by a
user. This segregation also helps the notification engine to configure the rules related to a specific

application.

NOTIFICATION TEMPLATES

[00042] Each notification is associated with an unique context or key. According to one
embodiment of the invention, each notification has four notification elements that collectively
determine the context of that notification. These notification elements are: (1) recipient, (2)
recipient type, (3) action, and (4) Context (for example Approver). Based on this known
combination of elements of a notification, the notification engine selects, from the set of different
templates stored in notification template table 106, a particular template that corresponds to that
combination of elements. In one embodiment of the invention, notification template table 106
initially stores a set of highly generic pre-defined templates. Notification designers can add, to
notification template table 106, their own customized templates, some of which may be

application-specific. By maintaining a store of standardized templates in notification template

10

WO 2013/067313 PCT/US2012/063267

table 106, the look and feel of notifications within a business organization can be made consistent
between applications and contexts. For example, any time that an account is created for any
application in the system, the notification engine can use an account creation template that is
stored in notification template table 106. A notification designer can choose an existing template
from notification template table 106 or generate a new, more specific template by changing parts
of such an existing template like the header, footer, etc.

[00043] Listed below are some example standard templates that the notification engine hosts, in one
embodiment of the invention. In the list, words enclosed within < and > indicate variables whose
values may be supplied to a template and used to fill in designated parts of the template in order to
compose the actual notification that will be sent. In the list, the term resources mentioned may be
any resources that may be provisioned to a user, potentially in response to the user’s request, such
as a virtual machine, or an SSL certificate, for example.

[00044] “Notification: ‘<System>° - New Account Information” is a standard template that indicates
a format for a notification that informs a user about information pertaining to a new account that
has been established for a user in a specified system.

[00045] “Notification: ‘<System>‘ - Account Updated” is a standard template that indicates a format
for a notification that informs a user about information pertaining to updates that have been made
to an existing account of the user in a specified system.

[00046] “Notification: ‘<System>° - Account Deleted” is a standard template that indicates a format
for a notification that informs a user about information pertaining to the deletion of a previously

existing account of the user in a specified system.

11

WO 2013/067313 PCT/US2012/063267

[00047] “Notification: ‘<System>‘ - Account Reactivated” is a standard template that indicates a
format for a notification that informs a user about information pertaining to the re-activation of a
previously suspended or expired account of the user in the specified system.

[00048] “Notification: ‘<System>‘ - Account Renewed” is a standard template that indicates a
format for a notification that informs a user about information pertaining to the renewal of an
existing account of the user in the specified system.

[00049] “Notification: ‘<System>‘ - Approval Required” is a standard template that indicates a
format for a notification that informs a user that approval is required before a requested resource in
the specified system can be provisioned to the user.

[00050] “Notification: ‘<System>‘ - More Information Required” is a standard template that
indicates a format for a notification that informs a user which additional information is required
from the user before a requested resource in the specified system can be provisioned to the user.

[00051] “Notification: ‘<System>‘ - Request Denied” is a standard template that indicates a format
for a notification that informs a user that the user’s request to have a resource in the specified
system provisioned to the user has been denied.

[00052] “Notification: ‘<System>‘ - Request Canceled” is a standard template that indicates a
format for a notification that informs a user that the user’s request to have a resource in the
specified system provisioned to the user has been canceled (potentially due to the user’s own
cancellation of that request).

[00053] “Notification: ‘<System>‘ - Request Confirmation” is a standard template that indicates a
format for a notification that informs a user that the user’s request to have a resource in the

specified system provisioned to the user has been received by the provisioning system.

12

WO 2013/067313 PCT/US2012/063267

[00054] “Notification: ‘<System>‘ - Renewal Request” is a standard template that indicates a format
for a notification that informs a user about information pertaining to a renewal request in the
specified system.

[00055] “Notification: ‘<System>‘ - Approval Reminder” is a standard template that indicates a
format for a notification that reminds the user that his approval of another user’s request for a
resource in the specified system is needed.

[00056] “Notification: ‘<System>‘ - Privilege Expiration” is a standard template that indicates a
format for a notification that informs a user that a privilege that the user previously had in the
specified system has expired.

[00057] “Notification: ‘<System>‘ - Account Expiration” is a standard template that indicates a
format for a notification that informs a user that an existing account of the user in the specified
system has expired or will expire.

[00058] “Notification: Account Suspended - <FN> <LN> (<DSID>)" is a standard template that
indicates a format for a notification that informs a user that an existing account of the user in the
specified system has been suspended. Variable <FN> is populated with a specified first name of
the user. Variable <LN> is populated with a specified last name of the user. Variable <DSID> is
populated with a specified unique directory services identifier of the user.

[00059] “Notification: Account Reactivated - <FN> <LN> (<DSID>)” is a standard template that
indicates a format for a notification that informs a user that a previously suspended or expired
account of the user in the specified system has been re-activated. Variable <FN> is populated with
a specified first name of the user. Variable <LN> is populated with a specified last name of the
user. Variable <DSID> is populated with a specified unique directory services identifier of the

user.
13

WO 2013/067313 PCT/US2012/063267

[00060] “Notification: Immediate Account Termination - <FN> <LN> (<DSID>)” is a standard
template that indicates a format for a notification that informs a user that an existing account of the
user in the specified system has been terminated immediately (potentially due to termination of the
user’s employment). Variable <FN> is populated with a specified first name of the user. Variable
<LN> is populated with a specified last name of the user. Variable <DSID> is populated with a
specified unique directory services identifier of the user.

[00061] “Notification: Business Account Termination - <FN> <LN> (<DSID>)" is a standard
template that indicates a format for a notification that informs a user that an existing business
account of the user in the specified system has been terminated. Variable <FN> is populated with
a specified first name of the user. Variable <LN> is populated with a specified last name of the
user. Variable <DSID> is populated with a specified unique directory services identifier of the
user.

[00062] “Notification: ‘<Resource Name>* - New <Resource Type> Information” is a standard
template that indicates a format for a notification that informs a user about information pertaining
to the existence of a new resource having a specified name and type. The type might be, for
example, a virtual machine type, and the name might be the name of an instance of a virtual
machine of that type.

[00063] “Notification: ‘<Resource Name>* - <Resource Type> <Completed Action>" is a standard
template that indicates a format for a notification that informs a user about information pertaining
to the completion of a specified action relative to a resource having a specified name and type. For
example, if the resource is of a virtual machine type, then the action might indicate the virtual

machine has started or stopped.

14

WO 2013/067313 PCT/US2012/063267

[00064] FIG. 2 is a block diagram that illustrates example names and purposes of various columns in
the notification header table and the notification metadata table, according to an embodiment of the
invention. Notification header table 202 (corresponding to notification header table 104 of FIG. 1)
contains columns storing a notification ID (which uniquely identifies the notification), a causal
entitlement ID (aka causal request id), a parent entitlement ID (aka causal entitlement id), a
transaction type, a notification type, a context, a metadata ID (which may be populated with a
reference to a row in notification metadata table 102 of FIG. 1), an action (e.g., account creation,
deletion, etc.), a notification status, a bundled written notification, a notification protocol, a
recipient override, a sole recipient indicator, template data, a sent date, a failure message, a target
region, a callback URL override, first through fifth reminder dates, a reminder count, a source
system ID, a target system ID, a target realm, a target object ID, a target object type (e.g., a type of
an object to which the notification pertains, such as “virtual machine”), a recipient ID, a recipient
type, a recipient e-mail address, a creator system ID, a create date, an update date, a creator ID, an
updater ID, and a target object classifier. Of these, a combination of the values of recipient ID,
recipient type, action, and transaction type columns may be matched to a combination of values of
similar columns in notification template table 106 of FIG. 1 in order to select a template for the
notification from notification template table 106. Notification header table 202 contains the
notification data itself.

[00065] Notification metadata table 204 (corresponding to notification metadata table 102 of FIG. 1)
contains columns storing a message ID, a message subject, a template reference (which may be
populated with a reference to a row in notification template table 106 of FIG. 1), a message
content, a user action, a language code, constraints (which may be populated with references to

rows in constraints table 108 of FIG. 1), an operator, reminder data, a create date, an update date, a
15

WO 2013/067313 PCT/US2012/063267

creator ID, an updater ID, and a notification type. Notification metadata table 204 contains
metadata pertaining to the behavior of a notification. Behavior in this context includes the format
of the notification, the entities to which the notification is to be sent, and the times at which the
notification is to be sent. The notification metadata essentially indicates how a notification looks
(template) and how the notification acts (constraints).

[00066] The schemas for the tables described above are merely one example of a multitude of
different schemas to which such tables could conform in alternative embodiments of the invention.

[00067] Since the final generated notification is kept in notification header table 202, users and
applications can query the generated notification any time. In this way, users and applications can
retrieve data for previously sent notifications if they need to do so for compliance purposes. User
and applications can also retrieve data related to the generation of such previously sent
notifications. In one embodiment of the invention, the notification engine is associated with an
administrator user interface through which an administrator can enter such queries. Alternatively,
an administrator could issue Structured Query Language (SQL) queries directly to the database in
order to retrieve previously sent notification information.

[00068] FIG. 3 is a block diagram illustrating an example of a client’s interaction with the
notification engine, according to an embodiment of the invention. A client 302 (which may be any
one of multiple separate clients that concurrently interact with the notification engine) can
communicate with notification engine 304 by calling (306) a “notify(NotificationRequest request)”

method of an API of notification engine 304. This API allows client 302 to talk with notification

engine 304 and send all the data related to the specific notification instance. Client 302 uses call

306 to (among other possible operations) register a new notification with notification engine 304.

According to one embodiment of the invention, every call to notification engine 304 specifies a
16

WO 2013/067313 PCT/US2012/063267

NotificationResponse object. Client 302 can call notification engine 304 through any transport
protocol like HTTP, sockets, JAXB, Web Services, etc. The interface is generic and can be
supported through any transport mechanism.

[00069] Client 302 may use JAVA 2 Platform Standard Edition (J2SE), for example. Client 302 may
be any one of the many applications in a business organization that seeks to send notifications to
people in that organization. Notification engine 304 may be implemented as a computer process or
as a thread of a multi-threaded process, for example. Notification engine 304 consolidates and
routes, to recipients, all of the notifications from all of the applications in the business
organization.

[00070] Client 302 may call (308) a “fetchNotification(NotificationRequest request)” method and/or
a “findNotification(NotificationRequest request)” method of the API in order to find and fetch
notifications that already have been sent. In one embodiment of the invention, one method permits
client 302 to query for a single specific notification (e.g., by notification ID or other field), while
another method permits client 302 to query for all notifications that match a specified pattern, such
as a string pattern.

[00071] Client 302 may call (310) a “createNotificationMetadata(NotificationRequest request)”
method of the API in order to create the metadata for the specified request object. This call is not
mandatory if the metadata is already created, but is used to create the metadata if the metadata
does not exist. This call also provides client 302 the ability to change any metadata pertaining to a
notification. For example, using call 310, client 302 may modify constraints or rules attached to a
specified notification or system or recipient. For another example, using call 310, client 302 may

modify the context of the notification, reminders, template, etc.

17

WO 2013/067313 PCT/US2012/063267

[00072] Client 302 may call (312) a “fetchNotificationMetadata(NotificationRequest request)”
method and/or a “findNotificationMetadata(NotificationRequest request)” method of the API in
order to find and fetch metadata for notifications that already have been sent. In one embodiment
of the invention, one method permits client 302 to query for metadata of a single specific
notification (e.g., by notification ID or other field), while another method permits client 302 to
query for metadata of all notifications that match a specified pattern, such as a string pattern.

[00073] In one embodiment of the invention, there is a many-to-one relationship between
notifications and notification metadata, such that after a particular set of metadata is registered
with notification engine 304, that metadata is applicable to multiple different notifications that are
registered with notification engine 304. However, in an alternative embodiment of the invention,
there is a one-to-one relationship between a notification and metadata for that notification, such
that each notification has its own metadata that is applicable to that notification only.

[00074] In one embodiment of the invention, notification engine 304 includes the following APIs:
(1) NotificationServicel, which is a service API for the notification engine; (2)
NotificationRequestl, which is a request API for the notification engine; (3) NotificationResponsel,
which is a response API for the notification engine; (4) Notificationl, which is a notification
instance interface for the notification engine; (5) NotificationMetadatal, which is an interface for
accessing the metadata for notifications; and (6) NotificationSearchCriterial, which is an interface
for searching for notifications. Regarding the last interface, a user could set the search criteria in a

Notification request.

18

WO 2013/067313 PCT/US2012/063267

REGISTERING, GENERATING, AND SENDING NOTIFICATIONS

[00075] FIG. 4 is a flow diagram illustrating an example of an overview of a technique for
processing client notification requests at a notification engine, generating notifications, and
sending those notifications to recipients, according to an embodiment of the invention. In block
402, a client, such as an application, sends a request to the notification engine by calling the
“NotificationServicel.notify()” method of the notification engine’s API. As is discussed above, the
request specifies a NotificationRequest object. Contents of a sample notification envelope are
shown below:

<REQ>

! <NTFNLST>

! ! <NTFN>

! ! ! <CAUSALREQUESTID>2000235429</CAUSALREQUESTID>

! ! ! <TARGETSYSTEMID>21</TARGETSYSTEMID>

! ! ! <TARGETREALM>UAT</TARGETREALM>

! ! ! <SOURCESYSTEMID>500</SOURCESYSTEMID>

! ! ! <CONTEXT>APPROVER</CONTEXT>

! ! ! <ACTION>SUBMITTED</ACTION>

! ! ! <TRANSACTIONTYPE>SUBMITTED</TRANSACTIONTYPE>

! ! ! <RECIPIENTID>297989987</RECIPIENTID>

! ! ! <RECIPIENTTYPE>PERSON</RECIPIENTTYPE>

! ! ! <DATALST>

! ! ! ! <NTFNDATA>

! ! ! ! ! <CATEGORY>ContextData</CATEGORY>
19

WO 2013/067313 PCT/US2012/063267

! ! ! ! ! <NAME>REQSTR_ID</NAME>

! ! ! ! ! <TYPE>PERSON</TYPE>

! ! ! ! ! <VALUE>297988245</VALUE>

! ! ! ! </NTFNDATA>

! ! ! ! <NTFNDATA>

! ! ! ! ! <CATEGORY>ContextData</CATEGORY>

! ! ! ! ! <NAME>TRGT _ID</NAME>

! ! ! ! ! <TYPE>PERSON</TYPE>

! ! ! ! ! <VALUE>1439155774</VALUE>

! ! ! ! </NTFNDATA>

! ! ! </DATALST>

! ! </NTFN>

! </NTFNLST>

</REQ>

[00076] The notification engine receives the request, and, in block 404, the notification engine
performs initial processing on the request. The initial processing, in one embodiment, involves
determining whether the request object is well-formed and contains all required values. If the
initial processing produces an error, then control passes to block 406. If the initial processing does
not produce an error, then control passes to block 408.

[00077] In block 406, the notification engine rejects the request and updates the client by informing
the client that the request has been rejected. In one embodiment, the notification engine performs
this update through a notification to the client. Such a notification may indicate the reasons why

the request was rejected. No further processing of the request is performed.
20

WO 2013/067313 PCT/US2012/063267

[00078] Alternatively, in block 408, the notification engine applies metadata-specified rules, or
constraints, that are applicable to the NotificationRequest object that was specified in the request.
If the object matches applicable rules that indicate that a notification is to be sent, then, once all the
rules are validated and all the metadata (e.g., template, etc.) are extracted for the request, control
passes to block 412. Alternatively, if the object does not match any applicable rules that indicate
that a notification is to be sent, then control passes to block 410. Such rules could be simple
constraints based on the target system or recipient. The rules could also be complex expressions
that a caller can add to the system through service APIs.

[00079] In block 410, the notification engine rejects the request and updates the client by informing
the client that the request has been rejected. In one embodiment, the notification engine performs
this update through a notification to the client. Such a notification may indicate the reasons why
the request was rejected. No further processing of the request is performed.

[00080] Alternatively, in block 412, the notification engine generates XML notification data for the
notification and persistently stores the XML notification into the data store. The notification
engine may generate the XML notification data, for example, by locating a template that matches
the elements of the request-specified NotificationRequest object and applying the formatting
specified by that template to the information contained with that object. In one embodiment of the
invention, the application of the formatting may be performed at least in part by the application of
one or more XML Stylesheets. Control passes to block 414.

[00081] The notification engine is task-based and asynchronous. After a certain interval, the
notification engine awakens and looks for all processed notifications. The notification engine then

divides the pending notifications into groups. In block 414, the notification engine transforms the

notification data into Hypertext Markup Language (HTML), according to one embodiment of the
21

WO 2013/067313 PCT/US2012/063267

invention. In alternative embodiments of the invention, instead of transforming the notification
data into HTML, the notification engine transforms the data into some other presentation format.
For example, that other presentation format might be a Short Message Service (SMS) message that
can be transmitted to a mobile phone. For another example, that other presentation format might
be an audio message (capable of being placed via a telephone call to a specified telephone number)
or motion video message or audiovisual message that can be transmitted to a telephone or a mobile
phone or a computer. The presentation format may be audible or visible or both, and may be
textual or image-based or both.

[00082] In block 416, the notification engine calls a service provider to send, the transformed
notification data to a recipient indicated by the data contained within the NotificationRequest
object. If the notification data is HTML, then the service provider may send such the HTML
message generated in block 414 to an e-mail address specified by the notification data. If the
notification data is in some other format, then the service provider may sent the notification data
via a channel that is appropriate for that other format. For example, if the notification data is an
audio message, then the service provider may call a telephone number of the recipient and present
the audio message over a telephonic channel.

[00083] In one embodiment of the invention, the notification engine is able to collate notifications to
send to a specific user, so that the user receives a single communication representing multiple
separate notifications. Example dispatching algorithms are discussed in greater detail further

below.

22

WO 2013/067313 PCT/US2012/063267

GENERATING A NOTIFICATION ENVELOPE

[00084] FIG. 5 is a flow diagram that illustrates a more detailed example of a technique that the
notification engine can use to generate a notification envelope, according to an embodiment of the
invention. In block 502, a client calls “NotificationService.notify()” in order to request registration
of a notification with the notification engine. In block 504, the notification engine processes the
notification request. If the request contains errors, then control passes to block 506. If the request
does not contain errors, then control passes to block 508.

[00085] In block 506, the notification engine rejects the request and updates the client, notifying the
client that the request has been rejected. Alternatively, in block 508, the notification is registered
with the notification engine.

[00086] Once the client has registered the notification with the notification engine, the notification
engine synchronously processes the client’s request and persistently stores the generated data in the
database for dispatch later. In block 510, the notification engine invokes the matching rules for
the notification. If no rules match the notification, then control passes to block 512. Alternatively,
if at least some rules match the notification, then control passes to block 514.

[00087] In block 512, the notification engine rejects the request and updates the client, notifying the
client that the request has been rejected. Alternatively, once the rules match, in block 514, the
notification engine optionally populates all the derived values for the generated notification. For
example, such derived values could include person information or account information which was
not sent in detail during the registration process. Although clients external to a business
organization are expected to send all of the details for a notification up-front in the registration
request, clients internal to the business organization may be exempted from sending the

notification engine all of this data during notification registration. In one embodiment of the
23

WO 2013/067313 PCT/US2012/063267

invention, the notification engine is sufficiently flexible to ensure that if the client does not want to
send all of the detailed notification information during the registration process, the client can
instead register, with the notification engine, a URL through which the notification engine can later
(i.e., in block 514 rather than earlier) derive all the values required to populate the generated
notification.

[00088] In block 518, metadata for the notification context is defined. According to one
embodiment of the invention, as is discussed above with reference to FIG. 2, this context is a
combination of the recipient, notification type, action, and transaction ID, as indicated in the
notification header table.

[00089] In block 520, once the context of the notification is finalized, the engine derives, or selects,
the correct template for the specific notification context. According to one embodiment of the
invention, the client is responsible for ensuring that a template for the notification context is
registered with the notification engine; in such an embodiment of the invention, the absence of
such a template causes the notification registration mechanism to fail. In one embodiment of the
invention, the template is selected based not only upon the notification context, but also based on a
locale of an intended notification recipient.

[00090] Once the correct template has been derived, or selected, the notification engine starts to
collate all of the different parts of the template, such as the header, footer, body, etc. Asis
discussed above, the template might be a standardized pre-defined template, or parts of such a
template might have been specifically overridden during template registration with customized
portions for the specific notification context. If the any part of the notification is to be customized
(i.e., as a deviation in part from a standardized template), then the notification engine populates the

generated notification by adding the custom templates instead of merely swapping values in a
24

WO 2013/067313 PCT/US2012/063267

single standard template. As is shown in FIG. 5, a header may be generated in block 522, a body
may be generated in block 524, a subject may be generated in block 526, a footer may be
generated in block 528, and other miscellancous custom parts may be generated in block 530.
[00091] In block 532, the notification generates the final notification message, potentially by
assembling all of the constituent parts generated in blocks 522-530. The final notification message
essentially is the template into which derived values (e.g., account information, privilege
information, etc.) have been entered. In block 534, the notification engine persistently stores this
final notification message in the database in any format (e.g., text or XML). In one embodiment of
the invention, the final notification message is stored using XML format so that the message can
later be transformed into HTML with XML Stylesheets casily. However, if the client decides to
choose a different output format, then the notification engine can replace the transformation
mechanism that will be used to transform the notification for a specific system or recipient. In one
embodiment of the invention, the notification engine stores the generated notification data in
relational database, but in alternative embodiments of the invention, the notification engine may
persistently store the generated notification data in any other kind of data store (e.g., a Lightweight

Directory Access Protocol (LDAP) directory or a flat file-based data store).

DISPATCHING NOTIFICATIONS TO RECIPIENTS
[00092] FIG. 6 is a flow diagram that illustrates a more detailed example of a technique that the
notification engine can use to dispatch a notification to a recipient, according to an embodiment of
the invention. The notification engine is task-based and asynchronous. In block 602, the
notification engine awakens after a predefined period of time and finds all notifications that are

pending. Instead of sending all the notifications separately, the notification engine can pre-process

25

WO 2013/067313 PCT/US2012/063267

all notifications that belong to a specific user or system and send a single collated email containing
all of the information from all of those notifications. In block 604, the notification engine collates
the set of pending notifications.

[00093] For example, when a new employee or contractor joins a company, the notification engine
can generate the first welcome e-mail as a consolidated list of all accounts that were provisioned
for the recipient employee or contractor. The new employee’s manager might prefer a single email
for all the accounts rather than dozens of emails spread over a period of time, so the notification
engine can generate a single consolidate e-mail for the manager as well. A similar usefulness for
collation can be imagined when the employee or contractor is not longer employed and his/her
accounts need to be de-activated. Collation can be time-based or based on a constraint which
indicates that collation is to be performed once certain systems are provisioned. FIG. 8 is a diagram
that illustrates a screenshot of a collated message of the kind that is produced by one embodiment
of the invention. The collated message includes information from notifications 802-812. Each of
notifications 802-812 originated from a different application, potentially at different times. The
collated message compiles all of the information from notifications 802-812 into a single message
that has a separate section for each notification. Additionally, each of notifications 802-812
aggregated into the collated message includes one or more helpful links (to various different
specified URLSs), which, in one embodiment, are extracted from useful links table 112 discussed
above in relation to FIG. 1. Application of a template to the aggregated notifications causes the
single message to have a unified look and feel that notifications 802-812 might not otherwise share
had they been dispatched separately.

[00094] In block 606, the notification engine applies rules from the notification metadata to collate

e-mails that should be sent to a specified person or for (i.c., in response to) a specified event. For
26

WO 2013/067313 PCT/US2012/063267

each pending notification, the notification engine determines whether the rules that indicate that
collation should be performed match that pending notification. If a particular pending notification
does not match any of these rules, then, relative to that notification, control passes to block 608.
Alternatively, if the particular pending notification matches one or more of these rules, then control
passes to block 610.

[00095] In block 608, no aggregation is required; the pending notification can be placed in a single
e-mail message of its own. Control passes to block 614.

[00096] Alternatively, in block 610, the notification engine finds, or selects, the correct template for
the pending notification based on a locale or region of either the recipient or some other user, such
as the user that originally registered the notification. Control passes to block 612, in which the
notification engine aggregates all e-mails that are to be sent to the same person or for (i.e., in
response to) the same event. Aggregation causes information from the multiple e-mails to be
placed in a group. Control then passes to block 614.

[00097] According to one embodiment of the invention, depending on whether the final output will
be collated (when aggregation was performed) or sent as a single notification (when aggregation
was not performed), the specific transformation stylesheet selected to transform the e-mail will
differ. Application of the stylesheet causes the notification data to be transformed into to the final
format, which may be HTML, for example. Thus, a stylesheet selected to transform a group of
aggregated notifications may assemble the information from all of the notifications in the
aggregated group into a single collated e-mail message. In block 614, the notification engine
transforms the consolidated or single notification into HTML (e.g., by applying the appropriately
selected stylesheet to either the group of aggregated notifications or the single notification) or

some other specified format (e.g., an audio presentation).
27

WO 2013/067313 PCT/US2012/063267

[00098] In block 616, once the transformation of block 614 is completed, a pluggable service
provider is called, and the email (according to one embodiment of the invention) is sent. In block
618, the final email (according to one embodiment of the invention) is also persisted in the
database for future reference or audit purposes. In block 620, after the notification has been
dispatched, the client that registered the notification is also notified of the final state of the
notification. The client may be notified via a URL that the client previously registered in
association with the notification when the client invoked the “notify()”” method of the notification

engine’s APL.

REPORT GENERATION

[00099] In one embodiment of the invention, the notification engine also has to the capacity to
harvest (e.g., from the database to which the final notification data has been persisted) all
notifications sent during a specified time interval. The notification engine can generate daily
reports based on this harvested information. The notification engine can automatically send such
daily reports to managers or application owners who are interested in such reports.

[000100] In one embodiment of the invention, in response to one instance of the notification engine
detecting that it is under a very high load (i.e., over a specified threshold load amount), that
instance sends monitoring reports to a system administrator, asking the administrator to shut down
that instance and fail over to another instance of the notification engine, which can start processing

notifications from the point where the previous instance of the notification engine left off.

ADMINISTRATIVE USER INTERFACE
[000101] Certain notifications could become blocked, or halted due to errors, as a result of those

notifications not being processed correctly. Such notifications are considered to be “stuck.” In one

28

WO 2013/067313 PCT/US2012/063267

embodiment of the invention, in order to remedy this situation, the notification engine provides an
administrative user interface through which an administrator can manipulate any “stuck”
notification. The administrator may do so via use of the notification engine’s APIs—and, more
specifically, by calling methods like find/fetch notification, as discussed above and then manually
sending the notifications that are found to have been stuck. This feature of the notification engine
helps to ensure that if a critical notification was missed for any reason, the administrator can debug
the information by pulling out the notification data in the administrative user interface. The
administrative user interface can also be used for compliance purposes, to fetch notifications

previously sent during any prior time period for auditing or any other purpose.

ASYNCHRONOUS TASK PROCESSOR

[000102] According to one embodiment of the invention, a task engine of the notification engine
provides a unified interface to execute tasks (activities) asynchronously in a clustered environment.
The task engine does this by recognizing whether a task needs to be executed locally or remotely.
The tasks are defined and configured. The task definition contains the task name, description,
priority, etc., and can contain a regular expression of the instance parameters that the task expects
to run. The configuration is the instance of the definition with concrete instance parameters and
other configurations such as designated server, etc. The definition can be compared to a class
definition or a method signature, while the configuration is similar to the actual instance of the
class or method invocation.

[000103] Since the task engine is aware that it is running in a clustered environment, the task engine
can distribute load among available servers. The task engine is able to do this based on the task

performance metrics collected from each task run. The task engine can detect long-running tasks

29

WO 2013/067313 PCT/US2012/063267

and hung tasks based on accumulated metrics over a period of time. In case such situations are
detected, the task engine can run the task on the best available server in the cluster. Due to this
feature, if the task is performing a heavy operation with regard to time taken and if the task can be
split into chunks (sub tasks), then the task engine can distribute such chunks throughout the cluster
for quicker completion. This feature also enables failover, which may be either designated or
decided at runtime. The task engine makes sure that this failover happens cleanly by initiating a
proper handshake.

[000104] According to one embodiment of the invention, each task has a predefined priority or is
submitted with some priority. The task engine ensures that the tasks are scheduled according to
their priority. Starvation can be avoided by performing load distribution, as mentioned above.

[000105] The task engine provides a clean mechanism to submit a task for execution. The task, once
submitted (to the task manager), can be executed anywhere, using designated machines in the
cluster, or based on convenience with a goal of reducing load on each machine. In one
embodiment of the invention, the user/caller is unaware of where a particular task is being
executed. Since the task is of asynchronous nature, the task engine also provides an API to poll for

the task status. The API provides comprehensive metrics of the task’s execution.

CONSTRAINTS
[000106] In one embodiment of the invention, constraints are defined inside the metadata, which, in
turn, points to the template to be used to generate and send a notification. The constraints add to
the notification engine’s ability to classify notifications based on derived and supplied values.

Constraints are simple, lightweight, one-level rules that can be evaluated easily. Apart from the

30

WO 2013/067313 PCT/US2012/063267

main criteria of context, action, and transaction type, which are the primary classifiers, there can be
several other rules associated with the notification.

[000107] For example, a rule might indicate that Japanese language e-mails are to be sent to people in
Japan. Rules may indicate various foreign language templates that are to be used to compose
messages in those foreign languages for various corresponding locales. For another example, a
rule might indicate that a copy of a particular e-mail is to be sent to the manager of the recipient.
For another example, a rule might indicate that if a recipient belongs to a specified department,
then a copy of the notification is to be sent to a department e-mail alias. For another example, a
rule might indicate that a particular notification is only to be dispatched after another specified
notification has been dispatched.

[000108] The above rules are just example rules, but they are often used to dispatch notifications
across a business organization. As can be seen from the above discussion, there is virtually no
limit to the variety of rules that can be defined. No static data structure is sufficient to capture all
such possible rules. However, constraints, used in an embodiment of the invention, provide a
mechanism to define such rules. An example constraint may look like the following:

CONS:srcSysld:=:55;trgtSysld:!=:263,604;trgtRIm:=:U AT;trgtR gn:!=:CORP

::ACT:cc:=:valueOf(trgtUsrMgr)

:DEP:any:=:1234,2345;all:=:898,768

[000109] The above constraint has 3 parts associated to it:

[000110] 1. CONS:srcSysld:=:55;trgtSysld:!=:263,604;trgtRIm:=:UAT;trgtRgn:!=:CORP

[000111] This is a constraint which acts as a classifier for this metadata. Only notifications having
source system 55 and a target system not in 263 or 604 and realm UAT and region not CORP will

qualify for this metadata. The values of these elements can be derived by the notification engine if
31

WO 2013/067313 PCT/US2012/063267

they are not supplied by the caller during registration. In case the caller wants to supply the
values, the caller is free to do so in name-value pairs in the request for registering the notification.
[000112] 2. ACT:cc:=:valueOf(trgtUsrMgr)
[000113] This part specifies that the mail should be copied to the manager of the recipient.
[000114] 3. DEP:any:=:1234,2345;all:=:898,768
[000115] This part specifies that notifications having such metadata must wait for other notifications

to be dispatched before notifications having such metadata can be sent to their recipients.

HARDWARE OVERVIEW

[000116] According to one embodiment, the techniques described herein are implemented by one or
more special-purpose computing devices. The special-purpose computing devices may be hard-
wired to perform the techniques, or may include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that
are persistently programmed to perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the techniques pursuant to program
instructions in firmware, memory, other storage, or a combination. Such special-purpose
computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom
programming to accomplish the techniques. The special-purpose computing devices may be
desktop computer systems, portable computer systems, handheld devices, networking devices or
any other device that incorporates hard-wired and/or program logic to implement the techniques.

[000117] For example, FIG. 7 is a block diagram that illustrates a computer system 700 upon which
an embodiment of the invention may be implemented. Computer system 700 includes a bus 702 or

other communication mechanism for communicating information, and a hardware processor 704

32

WO 2013/067313 PCT/US2012/063267

coupled with bus 702 for processing information. Hardware processor 704 may be, for example, a
general purpose microprocessor.

[000118] Computer system 700 also includes a main memory 706, such as a random access memory
(RAM) or other dynamic storage device, coupled to bus 702 for storing information and
instructions to be executed by processor 704. Main memory 706 also may be used for storing
temporary variables or other intermediate information during execution of instructions to be
executed by processor 704. Such instructions, when stored in non-transitory storage media
accessible to processor 704, render computer system 700 into a special-purpose machine that is
customized to perform the operations specified in the instructions.

[000119] Computer system 700 further includes a read only memory (ROM) 708 or other static
storage device coupled to bus 702 for storing static information and instructions for processor 704.
A storage device 710, such as a magnetic disk or optical disk, is provided and coupled to bus 702
for storing information and instructions.

[000120] Computer system 700 may be coupled via bus 702 to a display 712, such as a cathode ray
tube (CRT), for displaying information to a computer user. An input device 714, including
alphanumeric and other keys, is coupled to bus 702 for communicating information and command
selections to processor 704. Another type of user input device is cursor control 716, such as a
mouse, a trackball, or cursor direction keys for communicating direction information and
command selections to processor 704 and for controlling cursor movement on display 712. This
input device typically has two degrees of freedom in two axes, a first axis (e.g., X) and a second
axis (e.g., y), that allows the device to specify positions in a plane.

[000121] Computer system 700 may implement the techniques described herein using customized

hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in
33

WO 2013/067313 PCT/US2012/063267

combination with the computer system causes or programs computer system 700 to be a special-
purpose machine. According to one embodiment, the techniques herein are performed by
computer system 700 in response to processor 704 executing one or more sequences of one or
more instructions contained in main memory 706. Such instructions may be read into main
memory 706 from another storage medium, such as storage device 710. Execution of the
sequences of instructions contained in main memory 706 causes processor 704 to perform the
process steps described herein. In alternative embodiments, hard-wired circuitry may be used in
place of or in combination with software instructions.

[000122] The term “storage media” as used herein refers to any non-transitory media that store data
and/or instructions that cause a machine to operation in a specific fashion. Such storage media
may comprise non-volatile media and/or volatile media. Non-volatile media includes, for
example, optical or magnetic disks, such as storage device 710. Volatile media includes dynamic
memory, such as main memory 706. Common forms of storage media include, for example, a
floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data
storage medium, a CD-ROM, any other optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other
memory chip or cartridge.

[000123] Storage media is distinct from but may be used in conjunction with transmission media.
Transmission media participates in transferring information between storage media. For example,
transmission media includes coaxial cables, copper wire and fiber optics, including the wires that
comprise bus 702. Transmission media can also take the form of acoustic or light waves, such as

those generated during radio-wave and infra-red data communications.

34

WO 2013/067313 PCT/US2012/063267

[000124] Various forms of media may be involved in carrying one or more sequences of one or more
instructions to processor 704 for execution. For example, the instructions may initially be carried
on a magnetic disk or solid state drive of a remote computer. The remote computer can load the
instructions into its dynamic memory and send the instructions over a telephone line using a
modem. A modem local to computer system 700 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate circuitry can place the data on bus 702. Bus
702 carries the data to main memory 706, from which processor 704 retrieves and executes the
instructions. The instructions received by main memory 706 may optionally be stored on storage
device 710 either before or after execution by processor 704.

[000125] Computer system 700 also includes a communication interface 718 coupled to bus 702.
Communication interface 718 provides a two-way data communication coupling to a network link
720 that is connected to a local network 722. For example, communication interface 718 may be
an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to
provide a data communication connection to a corresponding type of telephone line. As another
example, communication interface 718 may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless links may also be implemented. In any
such implementation, communication interface 718 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing various types of information.

[000126] Network link 720 typically provides data communication through one or more networks to
other data devices. For example, network link 720 may provide a connection through local
network 722 to a host computer 724 or to data equipment operated by an Internet Service Provider

(ISP) 726. ISP 726 in turn provides data communication services through the world wide packet
35

WO 2013/067313 PCT/US2012/063267

data communication network now commonly referred to as the “Internet” 728. Local network 722
and Internet 728 both use electrical, electromagnetic or optical signals that carry digital data
streams. The signals through the various networks and the signals on network link 720 and
through communication interface 718, which carry the digital data to and from computer system
700, are example forms of transmission media.

[000127] Computer system 700 can send messages and receive data, including program code, through
the network(s), network link 720 and communication interface 718. In the Internet example, a
server 730 might transmit a requested code for an application program through Internet 728, ISP
726, local network 722 and communication interface 718.

[000128] The received code may be executed by processor 704 as it is received, and/or stored in
storage device 710, or other non-volatile storage for later execution.

[000129] In the foregoing specification, embodiments of the invention have been described with
reference to numerous specific details that may vary from implementation to implementation. The
specification and drawings are, accordingly, to be regarded in an illustrative rather than a
restrictive sense. The sole and exclusive indicator of the scope of the invention, and what is
intended by the applicants to be the scope of the invention, is the literal and equivalent scope of the
set of claims that issue from this application, in the specific form in which such claims issue,

including any subsequent correction

EXAMPLE NOTIFICATION ENGINE INTERFACES
[000130] Following is a list of interfaces that are provided in one embodiment of the notification
engine:

1. NotificationServicel

36

WO 2013/067313 PCT/US2012/063267

public interface NotificationServicel {
'
! //Notification related

! public NotificationResponsel notify(NotificationRequestl request) throws Exception;

! public NotificationResponsel fetchNotification(NotificationRequestl request) throws

Exception;

! public NotificationResponsel findNotification(NotificationRequestl request) throws

Exception;

! //Notification metadata related
! public NotificationResponsel createNotificationMetadata(NotificationRequestl request)

throws Exception;

! public NotificationResponsel fetchNotificationMetadata(NotificationRequestl request)

throws Exception;

! public NotificationResponsel findNotificationMetadata(NotificationRequestl request)

throws Exception;

!

37

WO 2013/067313

2. public interface NotificationRequestl {

! public PSRequestl getAppRequest();

! public Notificationl [] getNotifications();

! public NotificationMetadatal [] getMetadata();

! public NotificationSearchCriterial getSearchCriteria();

" public NotificationFetchPrefsl getFetchPrefs();

3. public interface NotificationResponsel {

! public PSResponsel getAppResponse();

public Notificationl [] getNotifications();

public NotificationMetadatal [] getMetadata();

38

PCT/US2012/063267

WO 2013/067313

4. public interface Notificationl {

!

!

public Long getNotificationld();

public Long getCausalRequestld();

public Long getParentRequestld();

/*

PCT/US2012/063267

* if this is left null it will be derived, if populated it will override the data

*/

public Long getMetadataReferenceld();

public Long getTargetSystemld();

public String getTargetRealm();

public String getTargetRegion();

public Long getSourceSystemlId();

public String getContext();

39

WO 2013/067313

public String getAction();

/ *
* CTC for AP and create/update/extend, etc for URP
*/

public String getTransactionType();

/ *

* Category - NotificationData

* Name - AccountName, AccountPassword, HostDetails
* Value - <applicable value>

*/

public CNTVI [] getNotificationData();

public String getTargetObjectld();

[
* ACCOUNT, RESOURCE, ACCOUNT PERMISSION
*/

public String getTargetObjectType();

/%
40

PCT/US2012/063267

WO 2013/067313

PCT/US2012/063267

* User can use this as a subtype for the target type, can send information useful ! *

forgeneration of notification Can be resourceType, policyType, userType for ! * Accounts, etc.

!

*/

public String getTargetObjectClassifier();

/ %
* Email
* Ticket
*/

public String getNotificationProtocol();

public Long getRecipientld();

/*

* PERSON/GROUP

*/

public String getRecipientType();

public String getRecipientEmailld();

/*

* comma separated staggered interval or fixed interval

*/

41

: count

WO 2013/067313 PCT/US2012/063267

public String getReminderInterval();

public String getCallbackURL();

/ *
* the following fields cannot be updated externally
*/

public Long getSentDate();

public String getNotificationStatus();

public String getFailureMessage();

public Long getBundledWithinNotification();

public Long getNextReminderDate();

public Integer getAvailableReminderCount();

/*

* this is only valid for response

*/

public Long getExpectedTimeOfDelivery();
42

WO 2013/067313

public Long getCreateDate();

public Long getUpdateDate();

public String getTransformedNotification();

5. public interface NotificationMetadatal

{

!

public Long getMessageld();

public String getMessageSubject();

public String getTemplateReference();

/ %
* List of user context

*

* REQUESTER
* RECIPIENT
* APPROVER_HIERARCHICAL

* APPROVER ADMIN
43

PCT/US2012/063267

WO 2013/067313

* APPROVER_GROUP
%/

public String getMessageContext();

/%

* List of user action
*

* SUBMITTED

* MODIFIED

* COMPLETED

* CANCELLED

* APPROVED

* REJECTED

*/

public String getUserAction();

/ x

*FYI

* Object Information
* Action Required

*/

public String getNotificationType();

44

PCT/US2012/063267

WO 2013/067313 PCT/US2012/063267

! * Email

! * Ticket

! */

! public String getNotificationProtocol();
! /*

! * null indicated no reminder

! */

! public String getReminderInterval();

! public String getLanguageCode();

! /*

! * use the below two to define constraints which will evaluate the qualification of events for this
notification.

! * [en:vall,val2;]+ or [cn:op:vall,val2;]+

! * cn = constraint name

! * op = operator

! * if op is defined along with constraint definition the value in operator is ignored.

! * constraints might be rearranged internally by the implementation and the original formatmight
not be retained.

! */

! public String getConstraints();

45

WO 2013/067313 PCT/US2012/063267

/*
*1 =, 1=, >, etc.
*/

public String getOperator();

/ *

* comma separated staggered interval or fixed interval : count
*/

public String getReminderData();

/ *

* below methods are related to the notification content

*/

public String getHeader();

public String getFooter();

/ x
* description of the account
*/

public String getBody();

public String getUsefulLinks();

46

6. public interface NotificationSearchCriterial

{

!

WO 2013/067313

public Long getRecipientld();!

/*

PCT/US2012/063267

* Default recipient type is PERSON; implied if recipient type is NULL

*/

public String getRecipientType();

public Long getTargetSystemld();

public String getTargetRealm();

public String getTargetRegion();

public Long getSourceSystemlId();

public Long getRangeStartDate();

public Long getRangeEndDate();

public String getAction();

47

WO 2013/067313 PCT/US2012/063267

public Long getCausalRequestld();

public Long getParentRequestld();

public String getTargetObjectld();

/ x

* Default object type is ACCOUNT; implied if object type is NULL
*/

public String getTargetObjectType();

public String getStatus();

48

WO 2013/067313 PCT/US2012/063267

CLAIMS
What is claimed is:
1. A computer-implemented method comprising:
receiving, from a particular application, a request to register a notification with a centralized
notification engine that serves notifications from multiple different applications;
in response to receiving the request, the notification engine storing information that indicates a
context of the notification;
determining, at the notification engine, whether one or more constraints are satisfied;
in response to determining that the one or more constraints are satisfied, the notification engine
selecting, from a set of templates, a particular template that is associated with the
context of the notification;
in response to the selection of the particular template, applying the particular template to
information specified by the notification, thereby producing a populated template; and
sending, to a recipient specified within the information, a message that was produced based on
the populated template;
wherein the one or more constraints express rules for the notification engine;

wherein the method is performed by one or more computing devices.

2. The method of Claim 1, further comprising:
calling a transformation mechanism from the notification engine to transform the populated
template into a document having a format different from a markup language used to

format the populated template;

49

WO 2013/067313 PCT/US2012/063267

wherein sending the message comprises sending, to the recipient, an e-mail message that

contains the document.

The method of Claim 1, further comprising:

calling a transformation mechanism from the notification engine to transform the populated
template into an audio presentation;

wherein sending the message comprises automatically calling a telephone number of the

recipient and presenting the audio presentation over a telephonic channel.

The method of Claim 1, further comprising:

determining whether the notification satisfies rules that indicate that the notification should be
collated with one or more other notifications prior to being any of the one or more other
notifications being sent to the recipient; and

in response to determining that the notification should be collated with the one or more other
notifications, aggregating information from the notification and the one or more other
notifications into an information group; and

applying a stylesheet to the information group to produce a single collated message.

The method of Claim 1, further comprising:

determining, based on stored metadata, that a part of the particular template is to be overridden;

and

50

WO 2013/067313 PCT/US2012/063267

in response to determining that the part of the particular template is to be overridden, applying a
second template to a portion of the information in order to produce a custom notification
portion that does not conform to the particular template;

wherein the custom notification portion is a header, footer, subject, or body of the message.

The method of Claim 1, further comprising:
after the sending of the message, the notification engine sending, on a reminder date specified

within data of the notification, a reminder pertaining to the message.

A computer-implemented method comprising:

receiving, from a particular application, a request to register a notification with a notification
engine;

wherein the notification comprises particular information that indicates a locale of an intended
recipient of the notification;

determining, at the notification engine, that the notification satisfies a constraint that indicates
that the notification is to be formatted in a particular manner that is based on the locale;

in response to determining that the notification satisfies the constraint, the notification engine
selecting, from a set of templates, a particular template that is associated with the locale;

in response to the selection of the particular template, applying the particular template to
information specified by the notification, thereby producing a populated template that is
designed specifically for the locale; and

sending, to a recipient specified within the information, a message that was produced based on

the populated template;
51

WO 2013/067313 PCT/US2012/063267

wherein the method is performed by one or more computing devices.

The method of Claim 7, wherein the step of applying the particular template to the information
comprises applying, to the information, a foreign language template that is composed in a

foreign language that is used to converse in the locale.

A computer-implemented method comprising:

receiving, from a particular application, a request to register a notification with a notification
engine;

registering the notification at the notification engine in response to the request;

selecting, from among a plurality of templates, each of which specifies a different appearance
that is independent of notification content, a particular template that specifies a
particular appearance;

applying the particular template to content of the notification, thereby producing an Extensible
Markup Language (XML) document that is structured in a manner that will cause the
particular appearance;

selecting, from among a plurality of different XML Stylesheets, a particular XML Stylesheet
engine that transforms the XML document into a particular format;

applying the particular XML Stylesheet to the XML document to produce a message in the
particular format;

causing the message to be sent to a recipient; and

persistently storing the message in a repository of messages along with data indicating details

regarding transmission of the message to the recipient;
52

10.

I1.

12.

13.

14.

WO 2013/067313 PCT/US2012/063267

wherein the method is performed by one or more computing devices.

The method of Claim 9, further comprising:

receiving, at the notification engine, via an invocation of a particular method of an application
programming interface of the notification engine, either a specified notification
identifier or a pattern indicated by a specified string;

executing the query at the notification engine to select, from the repository, one or more stored
messages including the particular message in the particular format; and

returning, from the notification engine, in response to the invocation of the particular method,
both the particular message in the particular format and the details regarding

transmission of the message to the recipient.

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 1.

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 2.

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 3.

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 4.
53

15.

16.

17.

18.

19.

20.

WO 2013/067313 PCT/US2012/063267

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 5.

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 6.

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 7.

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 8.

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 9.

One or more storage media storing instructions which, when executed by one or more

processors, causes performance of the method recited in Claim 10.

54

WO 2013/067313 PCT/US2012/063267

1/8

108
CONSTRAINTS

|

no|
NOTIFICATIONHEADER | | NOTIFICATION METADATA

il
FOOTER

112

v Ll
m /' USEFUL LIS

NOTIFICATION TEMPLATE

|~
|~
=

HEADER

=
|l

SUBJECT 118 11
HEADER CUSTOM
ELEMENTS

FIG.1

WO 2013/067313 PCT/US2012/063267

2/8
202
NOTIFICATION_HEADER / NOTIFICATION_METADATA
(" & NOTIFICATION_ID h (B MESSAGE_ID
CAUSAL_ENTITLEMENT ID B MESSAGE_SUBJECT
PARENT_ENTITLEMENT ID ® TEMPLATE REFERENCE
TRANSACTION_TYPE B MESSAGE CONTEXT
NOTIFICATION_TYPE i USER_ACﬂON
EA%IE[))(/ITA D B LANGUAGE_CODE
ooy B CONSTRANTS
NOTIFICATION_STATUS g ggﬁmggg DATA
BUNDLED_WITHIN_NOTIFICATION CREATE DT
NOTIFICATION_PROTOCOL B oD DT
RECIPIENT_OVERRIDE B UPD_
SOLE_RECIPIENT_INDICATOR @ CREATER ID
TEMPLATE_DATA B UPDATER_ID
SENT DATE ® NOTIFICATION_TYPE

FAILURE_MESSAGE
TARGET_REGION
CALLBACK_URL_OVERRIDE 204
FIRST REMINDER DATE
SECOND_REMINDER_DATE
THIRD_REMINDER_DATE
FOURTH_REMINDER_DATE
E'E&Tﬁggy'ggiﬁ}mm CONTEXT FOR NOTIFICATION -
SOURCE_SYSTEM _ID REGPIENT TYPE
TARGET_SYSTEM_ID ACTION

TARGET REALM TRANSACTION_TYPE
TARGET_OBJECT_ID
TARGET_OBJECT TYPE
RECIPIENT ID
RECIPIENT TYPE
RECIPIENT _EMAIL
CREATOR_SYSTEM_ID
CREATE_DT

UPD_DT

CREATOR_ID
UPDATER_ID
TARGET_OBJECT CLASSIFIER FIG. 2

[

SUBSTITUTE SHEET (RULE 26)

WO 2013/067313 PCT/US2012/063267

3/8
302 304

Feotification Engine

306

¥

MotificationBesponse isciviindMotification{MotificationBeguast! request) \

MotificationResponset createMotifoationMetaData (NotfcationRequest! reguest)

rrrrrrrrrrrrrrrrrrrrrrrrr -
310

312

FIG. 3

WO 2013/067313 PCT/US2012/063267

4/8

402
CLIENT SENDS REQUEST TO NOTIFICATION ENGINE

INITIAL 04
PROCESSING _—ENGINE PROCESSES NOTIFICATION
ERROR

REQUEST

406 INITIAL
ENGINE REJECTS REQUEST/ PROCESSING
UPDATES CLIENT OK
408

ENGINE APPLIES
NO RULES METADATA-INDICATED RULES TO
MATCHED NOTIFICATION

410 RULES
ENGINE REJECTS REQUEST/ MATCHED
UPDATES CLIENT

412
ENGINE GENERATES NOTIFICATION DATA

v

414
ENGINE TRANSFORMS NOTIFICATION DATA TO HTML

Y

416
SEND NOTIFICATION TO RECIPIENT

FIG. 4

WO 2013/067313 PCT/US2012/063267

5/8

FIG. 5 S0z
CLIENT CALLS NOTIFICATIONSERVICE.NOTIFY()

INITIAL 04
PROCESSING _—ENGINE PROCESSES NOTIFICATION
ERROR

REQUEST

506 INITIAL
ENGINE REJECTS REQUEST/ PROCESSING
UPDATES CLIENT OK
508

NOTIFICATION REGISTERED WITH ENGINE

510
ENGINE INVOKES AND MATCHES
NOTIFICATION RULES

NO RULES
MATCHED

RULES

512
ENGINE REJECTS REQUEST/ MATCHED
UPDATES CLIENT
514
ENGINE OPTIONALLY POPULATES DERIVED VALUES
v
518
ENGINE DEFINES METADATA FOR NOTIFICATION CONTEXT
v
520
ENGINE FINDS CORRECT TEMPLATE BASED ON NOTIFICATION
CONTEXT/RECIPIENT LOCALE
¥ 4 v
522 524 526 528 522
GENERATE | | GENERATE | | GENERATE | | GENERATE | | GENERATE
HEADER BODY SUBJECT FOOTER CUSTOM
CREATE FINAL » PERSIST MESSAGE IN
MESSAGE DATA STORE

WO 2013/067313 PCT/US2012/063267

6/8
602
ASYNCHRONOUS TASK ENGINE AWAKENS

v
604
COLLATE SET OF PENDING NOTIFICATIONS

606
APPLY METADATA RULES TO
COLLATE EMAILS TO BE SENT FOR
PERSON OR EVENT

NO RULES
MATCHED

RULES
MATCHED

608 610
NO AGGREGATION REQUIRED FIND CORRECT TEMPLATE
FOR CONSOLIDATION
BASED ON LOCALE/REGION
v
012
AGGREGATE ALL EMAILS
THAT ARE TO BE SENT TO
SAME PERSON/FOR SAME
EVENT
614
TRANSFORM CONSOLIDATED OR SINGLE NOTIFICATION TO
HTML OR OTHER FINAL FORMAT
Y
016
USE NOTIFICATION PROVIDER SERVICE TO SEND
NOTIFICATION
v
618
PERSIST FINAL NOTIFICATION FOR AUDIT/DEBUGGING
PURPOSES
v
620
UPDATE CLIENT ON THE STATUS OF THE NOTIFICATION

FIG. 6

Fig. 7

DISPLAY
[

INPUT DEVICE

114

WO 2013/067313

CURSOR
CONTROL
16

7/8
\ 777777777777777777777777
\
| MAIN ROM STORAGF
| MEMORY DRVICE
| 106 108 M
\
\
\
\
\
‘ > BUS
| 102
\
\
\
\
\
PROCFSSOR COMMUNICATION
| INTERFACE
| 18
\

PCT/US2012/063267

SERVER

0

128

INTERNET

LINK}

ACAL
O NETWORK

2

HOST
[

WO 2013/067313 PCT/US2012/063267
8/8
& ACCOUNTIANAGER NOTICATION [5a] |
ACCOUNT INFORMATION M
WELCOME T0 APPLE

HAVE CHANGED YOUR PASSWORDS.

INFORMATION SYSTEMS AND TECHNOLOGY WELCOMES YOU TOAPPLE. THIS MESSAGE CONTAINS YOUR NEWACCOUNT INFORMATION,
ANDISALSO PROVIDED TO YOU IN PRINTED FORMAS PART OF THE NEW EMPLOYEE ORIENTATION PROCESS. A COPY IS ALSO SENTTO
YOUR HIRING MANAGER. SINCE T INCLUDES YOUR ACCOUNT INFORMATION, PLEASE KEEP IT SAFE, AND DELETE TAS SOON AS YOU

WE RECOMMEND CHANGING YOUR TEMPORARY PASSWORDS AS SOON AS POSSIBLE TO SOMETHING THAT IS EASY FORYOUTO
REMEMBER BUT DIFFICULT FOR OTHERS TO GUESS. PASSWORD SELECTION TIPS CAN BE FOUND ON 54T WEB.

FEEL FREE TO ASK US QUESTIONS OR SUGGEST IMPROVEMENTS IN OUR SERVICES. WE LOOK FORWARD TO WORKING WITH YOU.

EMPLOYEE INFORMATION USEFUL LINKS
NANE: TANYA MENDEZ
802 EMPLOYEE NO: 1234
N AoV Sev o CETINGSTRTEDATAPRLE
APPLENAVAGER IAVE: VI AGARIAL . 34T CREATING PASSHORDS
REQUESTOR: RAKESHSING
CONPAIY.INFOSYS . ESSTEHTEALﬁYHgEYOURACCOUNTS' PASSIORD UTLZNG FORGOT | |
LOCATION: VP2
PO, NUNBER: 476564358
| PO, EXPIRATION DATE: 12110201
804 || | EMAL ACCOUNT INFORMATION
USER NANE: TANYAM .
N e L I
NCOMNG VAL SERVER NALLAPPLECON ' cery bvr i 'a i e
OUTGONG MAIL SERVER (SHTP}: RELAY APPLE COM
EMAL: ANYA N@APPLE.COM
806 || |-
Y APPLECONNECT
T ACCOUNT NAVEE: TMENDEZ 223 * RESET YOUR APPLECONNECT PASSWORD
| PASSWORD: TIVTTergiav2K2
8(& AL {OPEN DRECTORY) ~
X NANE: THENDEZ 22 o RESETYOUR OPEN DIRECTORY PASSWORD UTILIZING IFORGOT
810 PASSWORD: AW209485046
\ || | REMOTEACCESS o APPLECONNECT VPN SETUP ASSISTANT
o CHANGE YOURAPPLEPN
81< OTHER PROVISIONED SYSTEMS
n ESPRESSO ESPRESSO
RADAR RADAR
ATTACHE ATTACHE
OFFICE AND PHONE N
BADGING =
FIG. 8

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 12/63267

A.

CLASSIFICATION OF SUBJECT MATTER

IPC(8) - GO6F 15/16 (2013.01)
USPC - 709/207

According to International Patent Classification (IPC) or to both national classification and 1PC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 709/207

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 709/204; 370/389, 432

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWEST (PGPB, USPT, EPAB, JPAB); PatBase; Google Scholar, Search terms used: request, notification, announcement, alert,
reminder, constraint, value, rule, policy, satisfied, match, generate, produce, select, pick, choose, template

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2004/0215732 A1 (McKee et al.) 28 October 2004 (28.10.2004), para [0035], [0041]), [0050}- | 1-20
{0051], [0087], [0089], [0103]
Y US 2009/0119416 A1 (Sirdevan et al.) 07 May 2009 (07.05.2009), para [0004], [0051], [0066), 1-20
[0069], [0070], {0072}, [0076], [0087}-{0088], [0102]-[0103], {0105), [0108]
Y US 2005/0103767 A1 (Kainec et al.) 19 May 2005 (19.05.2005), para [0032]), [0071) 3,13
Y US 2004/0002988 A1 (Seshadri et al.) 01 January 2004 (01.01.2004), para [0004], [0091], 4,14
[0307], [0668)
Y US 2010/0153487 A1 (Greven et al.) 17 June 2010 (17.06.2010), para [0007], [0024) 6, 16
Y US 2005/0171818 A1 (McLaughlin) 04 August 2005 (04.08.2005), para [0021}-[0022] 8, 18

D Further documents are listed in the continuation of Box C.

[

*

“p”
«p»

i

«o”

“pn

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than
the priority date claimed

wpr

wyn

wy»

wg

later document published after the international filing date or priority
date and not in conflict with the a;:ﬁllqanon but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

11 March 2013 (11.03.2013)

Date of mailing of the international search report

05APR 2013

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No.

571-273-3201

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300 N
PCT OSP: §71-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - wo-search-report

