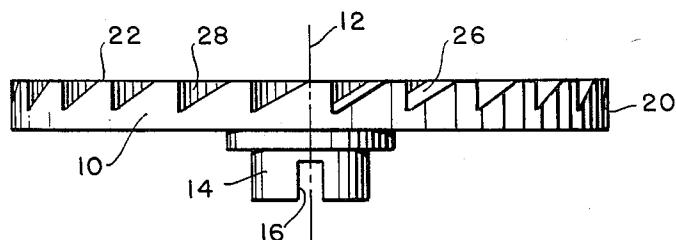
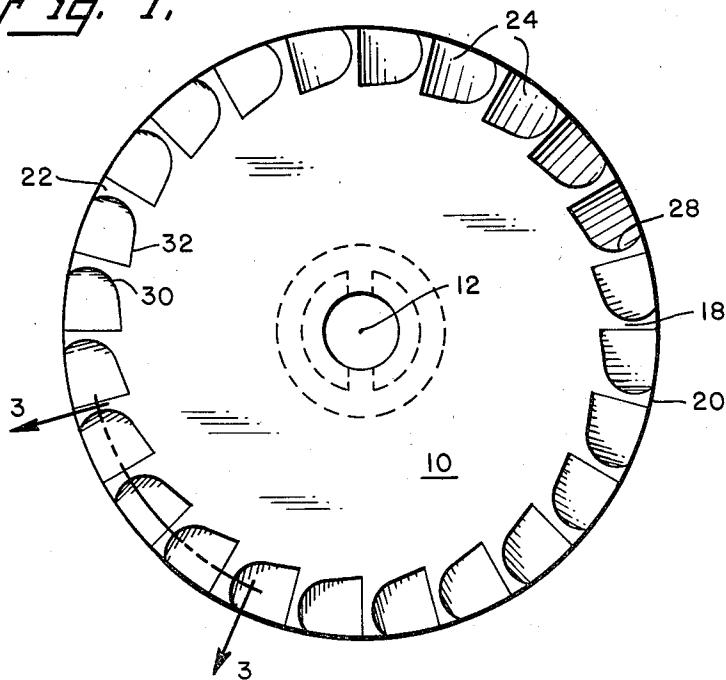


Feb. 4, 1958



W. B. MCLEAN

2,822,145

TURBINE ROTOR

Filed April 29, 1954

Fig. 1.

Fig. 2.

Fig. 3.

INVENTOR.
WILLIAM B. MC LEAN

BY *L. D. O'Brien*

ATTORNEY

United States Patent Office

2,822,145

Patented Feb. 4, 1958

1

2,822,145

TURBINE ROTOR

William B. McLean, China Lake, Calif., assignor to the United States of America as represented by the Secretary of the Navy

Application April 29, 1954, Serial No. 426,609

1 Claim. (Cl. 253—39)

(Granted under Title 35, U. S. Code (1952), sec. 266)

The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

This invention relates to turbine rotors, and in particular to an improved rotor for a gas driven turbine.

The rotor comprising this invention is primarily intended for use in a gas driven turbine which powers a magnetic alternator such as is disclosed in U. S. patent application Serial No. 392,064, filed November 13, 1953, now Patent No. 2,743,412, by William B. McLean and entitled A. C. Power Supply.

Previously used turbine rotors have been very costly to manufacture because of the large amount of machining required. A high unit cost is acceptable if relatively few rotors are to be made. However, if large numbers of identical rotors are needed, it is essential that the unit cost of each rotor be minimized.

It is, therefore, an object of this invention to provide an efficient turbine rotor that is capable of being manufactured by economical mass production methods.

It is a further object of this invention to provide an efficient turbine rotor that can be mass produced by stamping or die casting.

It is a still further object of this invention to provide an efficient turbine rotor which can be easily manufactured without requiring machining.

Other objects and many of the attendant advantages of this invention will be readily appreciated as the same become better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

Fig. 1 is a plan view of the turbine rotor,

Fig. 2 is a side elevation of the rotor, and

Fig. 3 is a section taken on line 3—3 of Fig. 1.

Referring to Fig. 1 the improved rotor comprising this invention has a disc like member 10 which is adapted to be rotated about axis of rotation 12. Member 10 may be formed from any suitable material, but in a preferred form, it is made of aluminum. Member 10 has an integral hub 14 in which notch 16 is formed. Hub 14 and notch 16 facilitate securing member 10 to a shaft which is not illustrated. Member 10 is a relatively thin cylindrical disk, the outer peripheral surface of which is designated by the reference numeral 20 in the drawing, said disk having flat top and bottom surfaces. The upper and lower surfaces of member 10 lie in planes which are substantially perpendicular to the axis of rotation 12.

A plurality of equiangularly spaced buckets 24 are formed in the upper surface 22 of member 10, being positioned in a ring adjacent the outer peripheral edge 20 of the disk in a rim section 18. The bottom surface 26 of each bucket 24 is angularly disposed with respect to the

2

upper surface 22 of rim section 18, as shown, and extends to the upper surface 22. The side walls 28 of each bucket 24 are substantially parallel to the axis of rotation 12, or side walls 28 are generated by the movement of a straight line which is substantially parallel to the axis of rotation 12. The intersection between the side walls 28 of each bucket 24 and the upper surface 22 of rim 18 consists of an arcuate portion 30 having a substantially constant radius of curvature, and a straight portion 32 which is tangent to the arcuate portion 30. The arcuate portion 30 extends to the outer surface 20 of rim section 18 and reverses the direction of flow of the fluid impinging on each bucket 24.

The particular arrangement of the buckets 24 on member 10 may be varied; for example, the exhaust gases could escape toward the axis of rotation 12 if desired. Member 10 can be provided with several concentric bands of buckets so as to provide several stages of expansion if this is desired. The thickness of member 10 has been shown as being equal to the thickness of the rim portion 18 although it may be made to have a lesser thickness.

From the foregoing it is clear that the turbine rotor comprising this invention can be easily manufactured without the use of precision machining which permits the rotor to be manufactured with a low unit cost.

Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is, therefore, to be understood that within the scope of the appended claim the invention may be practiced otherwise than as specifically described.

What is claimed is:

A turbine rotor of the impulse type operable to be rotated about a central axis of rotation comprising a solid body having a cylindrical portion and having a circular end face perpendicular to said cylindrical portion as a right section thereof, a plurality of angularly spaced buckets formed in said end face adjacent the periphery thereof and each of said buckets comprising a substantially planar bottom surface angularly disposed to said end face and extending from a point within the confines of said body to said end face, said buckets having side walls substantially parallel to the axis of rotation of said cylindrical portion the intersection of said substantially planar bottom surface with said end face being defined by a straight radial line, the intersection of said side walls of each bucket with said end face consisting of an arcuate portion having a substantially constant radius of curvature at the area of greatest depth of said bottom surface and a straight portion tangent to said arcuate portion at the radially inward portion of said bucket and extending from said radially inward portion to the point at which said bottom surface meets said end face of said body, said arcuate portion extending to the surface of the cylindrical portion of said solid body and operable to reverse the direction of flow of fluid impinging thereon.

References Cited in the file of this patent

UNITED STATES PATENTS

60	538,050	Swabel	Apr. 23, 1895
	1,146,375	Wahle	July 13, 1915
	1,744,757	Ferguson	Jan. 28, 1930
	1,768,241	Ferguson	June 24, 1930
	1,972,548	Brady	Sept. 4, 1934
65	2,283,844	Brady	May 19, 1942
	2,296,640	Hansen	Sept. 22, 1942
	2,320,663	Schultz	June 1, 1943
	2,671,404	Krueger	Mar. 9, 1954